ter 9. Variational Methods
e

459
Geodesic Problemg

1 General geodesic problem

20desic c'onnects two points in space or on a surface. Here we are concerned
1 geodesics on surfaces. The geodesic problem for a surface can be stated
ollows: |

en points A(z1, Y1, 21) and B(z2, s, z2) on a surface z = z(z, y)
ind the arc of shortest length connecting A and -B.

re we have to minimize

B B A
£ / g / J(@)? ¥ @y T (@)
Ja A |
= / 2 \/1 e ylz A (z;c 4 2y yl)2 dz
4 ml : e

1ere we have used the result |

A gidy = (2 + zy) 4=
Yy ‘

“ or

bject, to the conditions

@)=y, y(z2) = o, 2(w1) =21, #(22) =7

"
6.2 IMustrative examples

o . mples.
Ve ‘u‘lstrate A T My geodeSiC problems with examp

“Oordinageg . ).

*© length g i given by ol B8
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toledan 1% = [/ 2 df subject t
s we have to minimize [, ds = [ Vr* +7T d J 0 r(6))

stant, and r(f3) = constant. ¥
e F(0, r, ') = V12417

e there is no explicit dependence on the independent variable 8, we

first integral of the E-L equation, (Beltrami’s identity): F — ' (9F /')

tant, which becomes

/
r

=1, a constant
V2 4 12

h on simplification reduces to r2 = c1 Vre + 72,

last equation gives

r2 472 _ 4/

P LR el
= e s W i
(;f dB C1 ¢
:l:Cl dr 0 1
4 T ER s st e o
e 2 "o 0 + (8,
efrom '
c; =
1 T cos(f + cp) = 7(cos @ cos ¢y — sin g sin cy)

= (cos C2) xz (sin c2)y

Where g js the radius of the sphere

B an Mngonth of two neighbou

T E
e

. 8 On the sphere, Thep the abo"

i

e the c@ polar Ccoordinates (r, d, ¢) ! |
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Figure 9.7: Points A and B on the surface of g sphere and the curve of shortest

distance between them.

In case of a sphere 7 = a, dr = 0. Therefore the problem reduces to

B b
/ \/a,2 (d8)? + a? sin? @ (dp)? — min
A

6 2
a/ : 1. + sin? 6 (d—d)) df — min
o1 db

: | b
F=F(;r;r)= \/1+sin29q5’2, ¢ = =

or

Here

The requireq curve satisfies the E-L equation, (with ¢ = d¢/ 45)

ar - (9_{) e
B9 do \9¢

21 /2 .02 4 =0
T [_1_ (1+sin20¢’2) 1/2 2sin 605]
vhig, . Lol
Blveg
' y 112
_sin’g g b1 +sin’0 4°)

»  Viisintggn

| . A2 —

a1

o ] /__//’//2/9
g -_or¢”3inzgm

ing. [l p . o2



ethods of Mathematical Physics

dp  ocosec’t In cylin
de \/ 1 ~ a% cosec? We have
lerefore (~()Sp(‘2 6 dﬁ
T + Qg
P / V1 - of cosec? §
perform the integration, let cot # = S then cosec? § df = —dp.
erefore on substitution
—df
V1-0o(1+ 57 subject ¢
o;d
=_/ 12ﬂ - T 2 Here F’ =
\/(1“01)‘0152
dp
= - + o
/\/(1 —af)/ai — B2
ontinuing further i
dp
b= - [ ta, = (1- ol
g
: whose go]
= cos~ ! -ﬁ—-+a2:cos“1 C0t0+ag |
a3 a3 On Passin
cot @
o p (# — a2) = cos ¥2€08 ¢ + sin ay sin"gb
 can also be written as The inter;
oot o £08 0 T | Xtremg]
iy = 71 COS ¢ + 74 sin f
sin 6 i Example
71 and vy, are new constants. 1
| Fing the g
lly 3(2, ! Y
acos § = g+, Sin 0 cos ¢ + q -, sin 6 sin ¢ Sol‘ltion
Ssllng f-ot ;he Cartesian coordinates z — M Z + v y which is the equatio? ere
iane ; ough ttfe centre of the sphere. Hence the curve of shortes! " h
JOIning A and B is the arc of the great circle through A and B
ple 3 | .
: / 3 Ub.
he geodesic curve for the cylinder 42 4 ¥? = a2 - ; o

ion

R .

— o
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. drical coordinates ¢ — "
pdrical } 00080, Sl i
Yll ) y-aSln8’2:2.
have tO minimize

[ =

B B
d- . \/\
/A S /A a? (d9)? ¥ 472

0,
dz\ 2
T
fol (d()) "

02
/ Va2 £ 22 g,y _ &
0, 4

o= i

do

ect to no constraint, (where 6; and 02 correspond to A and B

, F = Va2 + 22. The E-L, equation in this case is

Il

Il

).

oF M d OF riig
0z d 8z ~
h in this case reduCes to
| di: d*z _
O—-@(Qz)--O or W«-—O

se solution is given by z = a; + a26.

passing to Cartesian coordinates

ly ‘ ¢ :2
z = o3 + g tan o gy #an as &

: ' ives the required
intersection of this surface with the given cylinder gives q

emal curve.

mple 4 ) and
, ; £ 1, 0) an
| the shortest distance between the pm;l;s_vAél, )
1, = 1) in the plane 15z — 7y + 2~
ition
' We have to minimize a /

z2=2 ot y,2 T2 de / 7

£ = ./B. \/(dz)z # (dym ' /mszl
A

B be on the plane

| : 1 Av
et to the constraint that the points
a E z e’ 22 - O

b

g=1z-Tt
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e the auxiliary function is given by
HeF+AG=V1+12+224 (152 — Ty +2 -2

e corresponding E-L equations are
gl i ey OH d (8HY _
( ) =0 and i e 0

By dz \ Y

0y dx

> have to solve (1) and (2) using the condition

152 - Ty+2-=22=0

{

e endpoint conditions satisfied by the functions y = y(z) and 2z = 2(x) ar

y(1)=-1, y(2)=1, 2(1) =0, 2(2)= -1
m (1) and (2), by eliminating A

d "7

_dx \/1+y12+212
ch gives |
Y AT
Vity?+z2  ©
m (3)

2 = g 15
stituting for 2’ from (6) into (5), we obtain

Y +7(7y — 15)
Vit +(y 152

50y’ — = 2

25(104' — o132 _
2510y — 21)® = 2 (5042 210y’ + 226]

25(1002 _
‘( 00y 420y" 4 441) = C%(SOy'z L0y + 226)

i

Chapte

or
(2500
or
50(50 -

which 1
it so th:
gives y

Applyin
we obta

For z we
z2 =Ty -
The reqn
£= f12 V
Examp

Find the
on the sy

Solutio;
The prob
b )
= fo \/j
Subject to

Here

and
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or

~ 3 2 ' 4
(2500 — 50c7) ¥ + (210¢2 — 10500) ¥ + (11095 — 952, :
\ "t - a8 ‘l..! =

or

50(50 — 1) ¥? + 210(c? — 50)-y/

+ (11025 228(:3;} = 0

]
which is quadratic equation ip
it so that the equation has reg]
gives y = o + f.

Y. Since ¢; is

arbitrary, we can always choose
roots. Let

@ be one such root. then DE ¢/ = o

Applying the given B.Cs., viz. y(1) =

: -1, y(2) =1, 12(1) = 0, 2(2) = ~1].
we obtain a =2, 8= _3, Therefore y

= g . §

For z we have
z=7y—151:+22=7(2:z:—3)—15:r+22=—r+1

The required least distance is

b= V1492 ¥ 22dz = [> VTT a5 1dc = V6

Example 5

Find the shortest distance between the points A(1,0, —1) and B(0, -1,1) lying
on the surface z + y + z = 0.

Solution

The problem is equivalent to

ltfol\/1+yf2+z’2 dr — minimum

Subject to y(0) = —1, z(0) =1, y(1) =0, 2(1) = - 1.

Here

z+y+z=0, F:ﬁ-{-y’l—{-z’?, G=z+ytz
H-_—F+)\(I)G=\/1.+yf2+z’2+A(r)($+y+Z)

equations for H, we have

From § ;.

and
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: 2 N s
r:‘ (v — qv?) dx — Minimupm, f o ry?d 1

o ’ 3 ;i y(Tz) = Y2
olution of (b) above 1S ¥ = (/5 - ‘
s of t egre COmpare it wit}, the values obtgi sy 5 Milimum
ation of y = (v/3/2) . > Obtained by

Cunsirh:rmg

d the E-L equations of the two- dimensiong

F
//1; (e, Y, u(z, y), Uz, u,) drdy — minimum ’

/\/RG(.T, Y, U(.’E, y)» Ug, uy) dl‘dy:L

u = u(z, y) satisfies the b
ary curve C of the region R.

] 1SOperimetrjcg] problem

Oundary Conditi()n U(I, y) = uO(_r,‘ y) on
d the curve joining the

points (0, 0) and (1, 0)
hat the y - coordinate o

with the given length
f its centroid is minimum.

Applications to Mechanics

pplications of the Calculus of Variations in Mechanics are be.xse(.i on
ing principle of least action and Hamilton’s principle. These principles

ted below.

Principle of least action

: 1 ive. If the -
article move in an external field of force which is Cl?ier:: t:etl then
. : t) to tz, whe
takes place in the interval otf tllm_es f:g;no;e Sons silidT = L2 12 dt
article 1 ; tem L =
L;?llmpgthhtraCEdi: );hi;hial_)grangian and for a conservative S8ys
. where

Energr - Potential Energy =T — V.

Hamilton’s Principle g B
; igid body in the

ng h iple. the path of motion of a ngic

A€ to this principle,

ta ~ t; is such that the integral
e t2

dt
gl &

iy

| : rangian.
ationary value where L is the 138
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9.7.3 Illustrative Examples

Example 1

Find the equation of motion of a particle moving in a conservatjyp fie

force described by the function V(z, y, 2).

Solution
Here
- g p p
L =T-V=:m (& + 9% + %) ~ V(z, ¢, 2)

By the principle of least action, the equations of motion are given by

81 =0= [?§L dt

From this condition the following equations of motion follow
-5 () =0 Bog (o) ot_a (25 <o
dr dt \ 8z ' Oy dt \ oy ' Oz  dt \ Oz

The last three equations are called Lagrangian equations of motion.

Example 2 ( Simple Harmonic Motion)

Use the principle of least action o obtain DY describing the vibrations ol
simple harmonic oscillator.

Solution

3y dehmtl‘on for a particle executing simple harmonic motion (§.11.M.) alo
he X - axis, the force F'is given by p - '
rom the centre of vibration (or the
s called the spring constany The

3 . o “.ﬂ!
~kz. where z denotes displace™ 8

‘or the potential energy, ;' . . dV/da and therofore | I8, s given by
/= [krdz = (1/2) k 22,

I'herefore the Lagrangian 1, is piven by

L..— T.H Ve (1/2) ma? (1/2) k 2% = Lz, &)

Mimn

OL d (8L

The Eplor-L&grmlge oqu

v ! " H W -
origin); the constant A which 18 l’”""t..lﬁ 3
Kinetic Cnergy is given by T’ (|/2) me

N«

lﬂ)r
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1 this case reduces to
i

The Lagrangian L for a systemn o
coordinates (h'tand generalized: velogit; ‘
integral I = ftlz L dt leads to the follow;

(d/dt) [OL/84i) — (OL/dg;) = o

Solution
Hel‘eL = L(Ql, Joy - Se y n, (?1, 427 q'n,)
Therefore :
“ = (0L
0l = / (—~6 +
tle aqi "

C— 1‘
Now consider

%) T .
/ g ST
t1 8Q1

t2
t1 /t
t2 d [ GL
P 2 Yol e g
/l,’1 04 dt (6(],‘)

Where we have used the fact that g; are fixed at times ¢} and ¢3.

50 equation (1) becomes
&g v gy daL) S dt
Siw el Ol
oI = / Y (aq,-\ dt 0q;
tl 1—1
For the extremal, §7 = 0. Therefore we have

e R
: % qu dt aqf,

] lemma ~
the fundamenta /
y making an apk

Si ,
Ofnce ;s arbitrary, therefore b

Ca, W
Culus of variations, we have

aL d (9-13-):0, i=12""
dg;  dt \ 94

EXamme 4’ :
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' By T e
" | ('19!!-1.' . 2T 7}{
I’M n‘].‘l(“-‘“ BIVES ()-'17
(he ¥
(’) f (')(: bt
Ye | a5
Ox2
| s oL

(' : U{ ‘.“‘ 2 Y \ "‘(3- §£
' at 03/! = 2 P Yy

we values in (1), w

R (/’/'T)-Z/t.t, =0

+ r'
",_,\‘.‘ll""l‘ g

jseuss the vibrations of a stretched membrane
<

and obtain i :
qotion by m Wking use of Hamilton’s principle. aln 1ts equation of

jolution

Ve consider the transverse vibrations of a membrane of arbitrary shape which
lic
ssupposed to be perfectly flexible but inextensible. Before applying Hamil-

on's principle we calculate kinetic and potential energies of the vibrating
nembrane,

We choose the coordinate axes so that originally the membrane lies in the
UF-plane. As in case of the st ring, we suppose that displacements are small
nd are perpendicular to the XY plane, i.e. in the direction of the Z-axis, (see
'R"“‘ U8). When the membrane is vibrating a rectangular element of area A

C D originally lying in the X Y- plane is brought to the position of curved
tment dS' in space centered around the point (z, y, 2) at time & Here the
MSponding 2 coordinate denotes the displacement of the membrane at time

) L6, 8 Z(;r, y’ f)

analyse the motion of an element

then

b
Mm 9
tlate potential and kinetic energies we

I the
1 me mbrane. If 7" denotes the total kinetic energy,

, : 1 2
AR l p l ~'Z T z‘ d.’U dy
e E/((im) 3 = é—/(mlS) %' 5 P / f

oy ‘ '
B a.ppmxnna.tlon.

¢ haye taken dS = da dy in the first

Js(actl()n 9.4 3, we know that

z + v dlfﬂ/
\/l ' %z . are small.

hl § 3
thy 4 rations arv
i , the vibra
D“’blem L. hecause the

» and z, are negligible




2 ' Theref
. Hence |

. By Han
- motion

Figure 9.8: Vibrations of a stretched membrane.

ralculate V, the total potential energy of the vibrating membrane, we hatt
slculate the work done in bringing membrane from its original posite®
¥ Y-plane to its current position. First we calculate the work done®
rectangular element ABCD of area dz dy in bringing it to the position®
nent 4.5, (see figure 9.6).

notice that if 7 is the tension per unit length in the membrane, then m

membering that the work done on these sides is respectively (ds1 - da) 7
1 (dsy ~ dy) 7 dz, work done for the element of area d S will be ;

&

dV = 7(dsy —dz)dy + 7 (dsy — dy) dz
= 7(ds1dy + dsy dx — 2dzx dy)

Cndy = /(dz) ¥ (d2P dy = /TF 22 de dy
o 1
= A3+ 5 2) dx dy

VWP + @ ds = /1 + 22 dady
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g sl Therefore wo can writo

V = 1 l(l
1
. \

:

|

“J) P L ¥y
g% | dedy | (l = ;) da dy — .‘Zda'dy}

a2+ a) dedy

‘%

m‘,g‘\w total 1‘\“«‘\\“:\1 cnerpy s Ri\'!‘ll by

v ' / (:, " LJ) dx dy
J8 ‘

once the Lagrangian s given by

* y l 4 ) 9 9
LT Ve [pad=r(24+:)] dody
£JS

By Hamilton's principle the condition § j"l L dt = 0 leads to the equation of

& -
/ / (P % —~TRE-T 2y) dedydt =0
Jy JS )

af 2 i .-

F(t, =, yi 2 2z, 2, B) = px —TI,—TH
Fuler-Lagrange equation, called Lagrangian equation of motion, is given
oF &8 [OF o (')F) 4 _('_?_ (ili) L5

8 Bt O Ox \ Oz dy \ Oz

h substitution

6 6 i __-__('z_'_v > \=10
0- & (pa) ~ ge(-2) = 5y -73)

=+ 2y = (p/7) 2u
. %22+ 2yy = (1/c?) 2y, where ¢ = v/ 7/p is the

velocity of the elastic waves.

Exercises

from a fixed support. It passe;
M, then goes up over a secon

spended at the end of the rope.
e obtain its equation of motion.

od downwards, then

llght. inextensible rope hangs vertically
ad b‘ght pulley which supports a mass
kY Which is fixed. A second mass m is SU
"8t the Lagrangian of the system and th
nh | is ch * e the point Of SuspenSion




b & Loy Dhoe
\ 1S {nmul
b ranglan
ained Lag ,
e unconstr
Iint: The

cylindrical coordinates z = f(r).

ian is f d to be
Tint: The unconstrained Lagrangian 15 foun

v us — 29Y2).
= (m1/2) (&% + ¥} — 291)] + (m2/2) (%3 + U3

.8 Applications to Mechanics

he applications of the Calculus of Variations in Mechanics

aploying principle of least action and Hamilton’s principle. Tl
e stated below.

8.1  Principle of least action

t a particle move in an exter

nal ﬁeld of force whim 1S conser
otion takes place in the inter

— Potential Energy_ = 7 -
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sp &
_sar 9
papt®t —

. Hamilton’s Principle

_—

s E
nng to this princ ole. the pat ¢
£ b t‘} ‘m. Path of motion £
¢, 1s such that the i 1 O a nigid |
. ntegral rigid body ;
sre - Yy 1n the ti
” ime

A= / b

< a stationary value where L is the I.. :
EN ht Lagranglan'

[llustrative Examples

9
o

¥ &)

xample 1

<nd the equation of 2 ’

In L‘"; eq ‘ of motion of a particle moving in a conservati

1oscribed by the function V(z, y, z) S servative field of
Y ? 3 ")'

~eany  §
UG AT

olution
fere
S B T
= — _ -2 -2
T ZY"I'L —2771&1- +y __22)
L = T'—I-zlm(iz_’_'?s_’.z Vi )
Lo (@ 497+ ) Vi, v, )
By the principle of least action, the equations of motion are given by
tz
8l =0 ——-/ oL dt
t
llow

From this condition the following equations of motion fo

oL d (8L gL d (9L oL d (OL) _
8z dt \ oz » By dt \ By 9z dt \ 9z

last three equations are called Lagrangian equafions of motion.

The

Examl)le 2 ( Simple Harmonic Motion)

escribing the vibrations of a

I
’“’5& - : .
Sy tlhe principle of least action to obtain DE d
Ple harmonic oscillator.
: . = (S.HM.)

iy defin; le harmonic motion (9

bition for a particle eX°¢7 - here T denotes
% the X - axis, thep force F is BIVeD ha AW ¥

ting; SimMP
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f vibration (or the origin); the ¢q,,. VO

re O
om the cent ‘
constant. The kinetic energy ig g

ment fr j
e lled the spring

sy 3 /t‘rr
positive, 15 ca )

= —dV/dz, the potential energy is given by

| g
V:-—— /k.’EdCE: 51('1'&

d since

Lerefore the Lagrangian L is given by
Bt o . :
L=T-V=-mi*—-kz° = L(z, &)
2 2
herefore the Lagrangian equation of is given by
ob ddeby. 1 0
0 dt \8x)
hich in this case reduces to

d
—k-’E*E(mz'E) =0 or mi+kzx=0

xample 3

h :
';dli:sf:anglan L for a system of n partlcles is a function of g'émeﬁ“’g
® ¢ and generalised velocities ¢;. Show that minimization o?

te ral I~ t2
& Ji Ldt leads to the following equation of motion

(aL) AL
a% _(')_q: S

lution
re

L = L
4 (qlu g%, *=- ’q‘ny fI’1, CI’2, q':l)

ty 1=n
PR oL
w5 (aq bas + L 5] d

W considey '

3 H1,
" Bn'dqt 7l i 7o) aL]t’ | [tz 4 fBLYN &

.!m

‘_!
%

:"‘

_’____‘__,._,._.4

('bzp

nave

whme weE
{1

8o equation L=/

For the extrem

Since 4q; is arbi
of calculus of v
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»t"r ‘}"

.'1
/ dq
Jiy

we have used the fact that ¢, are
¢ WE |

: 1) becomes
quation (1)

= ['3]
)  im}

the extremal, &/

0L

Jdq,
(). Therefore we

Ji |

JdL |
dq,

oL

— ——

dt (’)q:

——— AT7
——t———

‘l ((’,,/ l

1 l’,f \()ql‘ (i

fixed at times ty and t,.

d 0L

{”‘[i ;)([:} 0q; di

have

)j| dq; dt =0

.~ (l‘ E 5

T ST
aleculus of variations, we hav

ol
‘(')q:

al, ,_(_i

g dt

AP

- e bt o

0, i=12,-
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Example 4
Ommmimdmotionofastr&dnduﬁngb,

Solution
Let the string have uniform density p and length 7. Let

" : “ ‘
alangtbex-un,mdwbmpluctulletitvibrminﬂlxhy
the K.E. of an element ds of the string. Then )

1
Lucdned el
2dmv -z-pday,’
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By Hamilton's principle, the equ

ation of mot;
p 1wtion .
stionary value of of the

to st tring will correspond

: '2

; E NN

3 Ldt= -~ 2 2

e /rl 2 ~/f1 A loy; - Ty:| drdt

4 . 2 2
et L= PYt — T Yz

5 For the extremal path

‘E’._i(im) 8 /8L
3 Oy 0z \dy.) ot ((TJ{) . (1)
Now
: s 0 and oL ) Oy
I o = G —_— ) .4
ay ay.r & (3:)

The last relation gives

2@
0x \ Oyr b dx*

oL a (oL 5
== = 2P == 5 \bn = ZpYu
t

| Putting these values in (1), we obtain

| Also

_ Example 5

3 = : d ¥ 3 . f
- Discuss the vibrations of a stretched membrane and obtain its equation O

- Motion by making use of Hamilton's principle.

membrane of arbitrary shape which

tensible. Before applying Hamil-

' We consider the transverse vibrations of a
‘ gies of the vibrating

3}lpposed to be perfectly flexible but inex e
S principle we calculate kinetic and potentl
e R in the
- - ah brane lies n e
. We choose the coordinate axes so that omgma.ll){1 :?ii ::;::L ity
X Y" Plane, ‘As in case of the string, we Suppose :



