$F_y' - (d/dx) F_y'' = \text{constant}$, if the integrand does not depend on y and the first integral

 $F-y'\left(F_{y'}-\left(d/dx\right)F_{y''}-y''F_{y''}\right)=$ constant, if the integrand does not depend on x

14. Find the extremals of the functional $I[y] = \int_0^1 (y'^2 + x^2) dx$ subject to conditions y(0) = 0, y(1) = 0 and the side condition $\int_0^1 y^2 dx = 2$.

(Ans.
$$x/a + y/b = 1$$
 with $ab = 2A$).

(Hint
$$A = \int_0^a y dx$$
, Area = $\int_0^a 2\pi y ds \rightarrow \text{minimum}$).

15. Find the curve that extremizes the functional $I[y] = \int_0^1 (360 \, x \, y^2 - y''^2)$ subject to y(0) = 0, y'(0) = 1, y(1) = 0, y'(1) = 5/2.

9.4 Euler-Lagrange Equation for two and three In dependent Variables

9.4.1 Euler-Lagrange equation for two independent variable

Let $F = F(x, y, u, u_x, u_y)$ where x and y are independent variables. In the case the problem is to determine the surface which extremizes the functions

$$I[u(x, y)] = \int_{R} \int F(x, y, u, u_{x}, u_{y}) dx dy$$

. The relevant theorem is given below.

Theorem

The extremal (surface) of the functional

$$I[u(x, y)] = \int_{R} \int F(x, y, u, u_{x}, u_{y}) dx dy$$

where u has different values inside the region R but is prescribed on the boundary of the region R. Moreover u is supposed to possess continuous particle derivatives upto second order, is given by the PDE

$$\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y} \right) = 0$$

 $I[u(x, y)] - \int_R \int_{-\infty}^{\infty} dx$

We consider the variation δI of I in (9.4.1) corresponding to variation. Using the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3), variations are considered in the shortened procedure discussed above (subsection 9.2.3).

$$\delta I = \int_{R} \int \left(\frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial u_{x}} \delta u_{x} + \frac{\partial F}{\partial u_{y}} \delta u_{y} \right) dx dy$$

Now consider

$$\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \delta u \right) = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \right) \delta u + \frac{\partial F}{\partial u_x} \delta u_x$$

Therefore

$$\frac{\partial F}{\partial u_x} \delta u_x = \frac{\partial}{\partial x} \, \left(\frac{\partial F}{\partial u_x} \, \delta u \right) - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \right) \, \delta u$$

Similarly

$$\frac{\partial F}{\partial u_y} \delta u_y = \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y} \delta u \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y} \right) \delta u$$

Substituting in (9.4.2),

$$\delta I = \int_{R} \int \left[\frac{\partial F}{\partial u} \delta u + \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_{x}} \delta u \right) - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_{x}} \right) \delta u \right] dx dy$$

$$+ \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_{y}} \delta u \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_{y}} \right) \delta u dx dy$$

or on rearranging terms

$$\delta I = \int_{R} \int \left[\frac{\partial F}{\partial u} \delta u - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_{x}} \right) \delta u - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_{y}} \right) \delta u \right] dx dy$$

$$+ \int_{R} \int \left[\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_{x}} \delta u \right) + \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_{y}} \delta u \right) \right] dx dy$$

$$= I_{1} + I_{2}$$

According to Green's theorem, (see appendix A)

$$\int_{R} \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{C} (P dx + Q dy)$$

Using this theorem, we can prove that the second integral above vanishes.

$$I_2 = \int_C \left(\frac{\partial F}{\partial u_x} dy - \frac{\partial F}{\partial u_y} dx \right) \delta u$$

 $I = \int \int_{V} \int \left[\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_{x}} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_{y}} \right) - \frac{\partial}{\partial z} \left(\frac{\partial F}{\partial u_{z}} \right) \right] \delta u \, dx \, dx$

r the extremal $\delta I = 0$, which implies that

$$\int \int_{V} \int \left[\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_{x}} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_{y}} \right) - \frac{\partial}{\partial z} \left(\frac{\partial F}{\partial u_{z}} \right) \right] \delta u \, dx \, dy \, dz$$
ence by fundamental lemma of the calculus of variations,

$$\left[\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x}\right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y}\right) \right] - \frac{\partial}{\partial z} \left(\frac{\partial F}{\partial u_z}\right) \delta u = 0$$

ince $\delta u \neq 0$ in the region, therefore

$$\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial u_y} \right) - \frac{\partial}{\partial z} \left(\frac{\partial F}{\partial u_z} \right) = 0$$

0.4.3 Plateau's problem

To find the surface of minimal area which is bounded by a given closed. This problem is called problem of minimal surface or Plateau's problems and after the Belgian physicist Plateau (1801–1883) who was the study such problems systematically. To formulate this problem we not for a surface z = z(x, y) which is described parametrically by the parameter (u, v), are element of any curve on it is given by

$$(ds)^2 = E(du)^2 + 2F du dv + G(dv)^2$$

where E, F and G are fundamental quantities of the surface given by

$$E = \frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial u}, \quad F = \frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial v}, \quad G = \frac{\partial \mathbf{r}}{\partial v} \cdot \frac{\partial \mathbf{r}}{\partial v}$$

Since u, v are parametric coordinates for points on the surface z=z therefore x=x(u, v), y=y(u, v).

We take (x, y) as parameters i.e. u = x, v = y, then

$$E = (\frac{\partial \mathbf{r}}{\partial x})^2 = (\frac{\partial x}{\partial x}\mathbf{i} + \frac{\partial z}{\partial x}\mathbf{k})^2 = 1 + z_x^2$$

3. Find E-L equations for

$$I[u] = \int \int \int_{R} \int \frac{1}{2} (u_t^2 - u_x^2 - u_y^2 - u_x^2 - m^2 u^2) \, dx \, dy \, dz \, dt, \ m = \text{constant}$$

- 4. Obtain the PDE satisfied by the extremal surface z = z(x, y) for the variational problems
 - (a) $\iint_D \left[(z_x)^2 (z_y)^2 \right] dx dy \to \text{minimum}$ with $z = z_0$ on the boundary of the region D.
 - (b) $\int \int_{D} \left[(z_{xx})^2 + (z_{yy})^2 + 2(z_{xy})^2 2z f(x, y) \right] dx dy \to \text{minimum}$ with $z = z_0$ on the boundary of the region D.
- 5. Generalize the three dimensional problem discussed in section 9.5 to n dimensions. Find E-L equation for the functional

$$I[u] = \int \cdots \int \sum_{i=1}^{n} u_{x_i}^2 dx_1 dx_2 \cdots dx_n$$

6. Find the E-L equation for the functional

$$I[y]' = \int \int_{R} \int \sqrt{1 + u_x^2 + u_y^2 + u_z^2} \, dx \, dy \, dz$$

7. Write the appropriate generalization of the E-L equation for the functional

$$I[u] = \int \int_{R} F(x, y, u, u_{x}, u_{y}, u_{xx}, u_{yy}, u_{xy}) dx dy$$

9.5 Constrained Extrema

These problems are also called variational problems with constraints or variational problems are problems is called ational problems are also called variational problems with constitutional problems with side conditions. A subclass of these problems is called isoperimetrical. isoperimetrical problems.

There are certain variational problems in which we have to find stationary values of a functional of the form

$$G_j(x, y_1, \dots y_n) = \text{constant}, j = 1, 2, \dots m$$

satisfy the Euler-Lagrange equations corresponding to the functional

$$H[y_1, y_2, \cdots, y_n] = \int_{x_1}^{x_2} \left[F(x, y_1, y_2, \cdots, y_n) + \sum_{i=1}^m \lambda_i(x) G_i(x) \right] dx$$

$$= \int_{x_1}^{x_2} H(x, y_1, \cdots, y_n) dx$$

where $\lambda_i(x)$ are suitably chosen multipliers.

It is clear that the Euler-Lagrange equation in this case will be

$$\frac{\partial H}{\partial y_i} - \frac{d}{dx} \left(\frac{\partial H}{\partial y_i'} \right) = 0, \quad i = 1, 2, \dots, n$$
 (9.7.1)

The curves $y_i = y_i(x)$, $i = 1, 2, \dots, n$ be determined from equations (9.7.1) and the equations of the constraints, viz.

$$G_j(x, y_1, y_2, \cdots, y_n) = 0, j = 1, 2, \cdots, m$$

More general variational problem with constraints 9.5.3

In this case we have to find the extremal curves y = y(x) which extremizes $I[y] = \int_{x_1}^{x_2} F(x, y, y') dx$ with endpoint conditions $y(x_1) = y_1$, $y(x_2) = y_2$ subject to

$$J[y] = \int_{x_1}^{x_2} G(x, y, y') dx = \text{constant}$$

We assume (as in the case without constraint) that F and G have continuous second order derivatives w.r.t. their arguments; similarly y is supposed to have second order continuous derivative. We consider a 2-parameter family of curves represented by

$$y(x, \epsilon_1, \epsilon_2) = y(x) + \epsilon_1 \eta_1(x) + \epsilon_2 \eta_2(x)$$

The end point conditions on the curves $y(x, \epsilon_1, \epsilon_2)$ and y(x) require that

$$\eta_1(x_i) = 0, \quad \eta_2(x_i) = 0, \quad i = 1, 2$$

Because of dependence of y on ϵ_1 and ϵ_2 , we have

of dependence of
$$y$$
 on ϵ_1 and ϵ_2 ,
$$I(\epsilon_1, \epsilon_2) = \int_{x_1}^{x_2} F(x, y + \epsilon_1 \eta_1 + \epsilon_2 \eta_2, y' + \epsilon_1 \eta'_1 + \epsilon_2 \eta'_2) dx$$

 $\epsilon_1, \ \epsilon_2) = \int_{x_1}^{x_2} G(x, \ y + \epsilon_1 \eta_1 + \epsilon_2 \eta_2, \ y' + \epsilon_1 \eta_1' + \epsilon_2 \eta_2') dx = \text{constant}$

we vary ϵ_1 , and ϵ_2 , the function $I(\epsilon_1, \epsilon_2)$ takes different values but change and ϵ_2 conspire to keep $J(\epsilon_1, \epsilon_2)$ to the constant value of k. (This we be possible in case of a single parameter).

suppose that the stationary value of $I(\epsilon_1, \epsilon_2)$ corresponds to $\epsilon_1 = \epsilon_2 = 0$ ce we must have

$$\frac{\partial I}{\partial \epsilon_1}\Big|_{\epsilon_1 = \epsilon_2 = 0} = 0 = \frac{\partial I}{\partial \epsilon_2}\Big|_{\epsilon_1 = \epsilon_2 = 0}$$

$$J(\epsilon_1=0,\ \epsilon_2=0)\ =\ k$$

s is equivalent to a problem in the calculus of constrained extrema in which have to extremize the function

 I_1, ϵ_2) subject to $J(\epsilon_1, \epsilon_2) = k$.

ce the solution corresponds to $\epsilon_1 = \epsilon_2 = 0$, we must have

$$\left. \left(\frac{\partial I}{\partial \epsilon_1} + \lambda \frac{\partial J}{\partial \epsilon_1} \right) \right|_{\epsilon_1 = \epsilon_2 = 0} = 0, \quad \left. \left(\frac{\partial I}{\partial \epsilon_2} + \lambda \frac{\partial J}{\partial \epsilon_2} \right) \right|_{\epsilon_1 = \epsilon_2 = 0} = 0$$

$$(J-k)|_{\epsilon_1=\epsilon_2=0} = 0$$

e first equation is equivalent to

$$\frac{\partial}{\partial \epsilon_1} \int_{x_1}^{x_2} \left[F(x, y + \epsilon_1 \eta_1 + \epsilon_2 \eta_2, y' + \epsilon_2 \eta'_1 + \epsilon_2 \eta'_2) \right] dx |_{\epsilon_1 = 0 = \epsilon_2} = 0$$

$$\int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} \eta_1 + \frac{\partial F}{\partial y'} \eta_1' + \lambda \left(\frac{\partial G}{\partial y} \eta_1 + \frac{\partial G}{\partial y'} \eta_1' \right) \right] dx = 0$$

integrating the second and the fourth terms by parts, and using the endint conditions $\eta_1(x_1) = 0 = \eta_1(x_2)$, we obtain

$$\int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} + \lambda \left(\frac{\partial G}{\partial y} - \frac{d}{dx} \frac{\partial G}{\partial y'} \right) \right] \eta_1(x) dx = 0$$

milarly we have

$$\int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} + \lambda \left(\frac{\partial G}{\partial y} - \frac{d}{y'} \frac{\partial G}{\partial y'} \right) \right] p_0(x) dx = 0$$

Since

in gene

we can

which

This re

where the fun condition

or

which is

In actua $\int_{x_1}^{x_2} G(x)$

9.5.4

The foliostraints.

Examp

Find the Solution

$$\partial y = \overline{dx} \left(\overline{\partial y'} \right) \neq 0$$

general, (because the functional J is not an extremum for $\epsilon_1 = \epsilon_2 = 0$

$$\int_{x_1}^{x_2} \left(\frac{\partial G}{\partial y} - \frac{d}{dx} \frac{\partial G}{\partial y'} \right) \eta_1(x) \ dx \neq 0$$

hich is always possible when

$$\frac{\partial G}{\partial y} - \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) \neq 0$$

his relation can be used to define λ . Using this value of λ in equation (2), e obtain

$$\int_{x_1}^{x_2} \left[\left(\frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} \right) + \lambda \left(\frac{\partial G}{\partial y} - \frac{d}{dx} \frac{\partial G}{\partial y'} \right) \right] \eta_2(x) dx = 0$$

where $\eta_2(x)$ is arbitrary function which vanishes at the end-points. Invoking the fundamental theorem of the calculus of variations, we have the necessary condition

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) + \lambda \left[\frac{\partial G}{\partial y} - \frac{d}{dx} \left(\frac{\partial G}{\partial y'} \right) \right] = 0$$

or

$$\frac{\partial H}{\partial y} - \frac{d}{dx} \frac{\partial H}{\partial y'} = 0$$

which is the Euler-Lagrange equation for $H = F + \lambda G$, with the end-point conditions $y(x_1) = y_1$, $y(x_2) = y_2$.

In actual calculations, λ is determined from the side condition

$$\int_{x_1}^{x_2} G(x, y, y') dx = k, \quad \text{a constant.}$$

Illustrative examples

The following solved examples illustrate the variational problems with constraints.

Example 1 (Dido's problem)

Find the closed curve of given length which encloses maximum area. Solution

Geodesic Problems

odesic is the curve of shortest length joining two points in space. Geodesic lems are similar to variational problems with constraints but sometimes be reduced to problems without constraint(s).

General geodesic problem

eodesic connects two points in space or on a surface. Here we are concerned n geodesics on surfaces. The geodesic problem for a surface can be stated ollows:

ven points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ on a surface z = z(x, y)find the arc of shortest length connecting A and B.

re we have to minimize

.1

$$\ell = \int_{A}^{B} ds = \int_{A}^{B} \sqrt{(dx)^{2} + (dy)^{2} + (dz)^{2}}$$
$$= \int_{x_{1}}^{x_{2}} \sqrt{1 + y'^{2} + (z_{x} + z_{y} y')^{2}} dx$$

here we have used the result

$$z = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = (z_x + z_y y') dx$$

bject to the conditions

$$(x_1) = y_1, \ y(x_2) = y_2, \ z(x_1) = z_1, \ z(x_2) = z_2$$

.6.2 Illustrative examples

We illustrate some well-known geodesic problems with examples.

Example 1

Find the curve of shortest length between two given points in a plane, using polar coordinate Polar coordinates (r, θ) .

Solution

The arc length ds is given by

iven by
$$\sqrt{r^2 + r^2} d\theta, \quad r' = \frac{dr}{d\theta}$$

as we have to minimize $\int_A^B ds = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + r'^2} \ d\theta$ subject to $r(\theta_1) = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + r'^2} \ d\theta$ stant, and $r(\theta_2) = \text{constant}$.

$$e F(\theta, r, r') = \sqrt{r^2 + r'^2}$$

be there is no explicit dependence on the independent variable θ , we use first integral of the E-L equation, (Beltrami's identity): $F - r' (\partial F/\partial r') =$ tant, which becomes

$$\sqrt{r^2 + r'^2} - r' \frac{r'}{\sqrt{r^2 + r'^2}} = c_1$$
, a constant

h on simplification reduces to $r^2 = c_1 \sqrt{r^2 + r'^2}$.

last equation gives

$$r'^2 = \frac{r^4 - c_1^2 r^2}{c_1^2}$$
 or $\frac{dr}{d\theta} = \frac{r}{c_1} \sqrt{r^2 - c_1^2}$

$$\int \frac{\pm c_1 \, dr}{r \sqrt{r^2 - c_1^2}} = \theta + c_2 \quad \Rightarrow \quad \sec^{-1} \frac{r}{c_1} = \theta + c_2$$

efrom

$$c_1 = r \cos(\theta + c_2) = r(\cos\theta \cos c_2 - \sin\theta \sin c_2)$$
$$= (\cos c_2) x - (\sin c_2) y$$

is a linear equation in x, y of the form $\alpha x + \beta y + \gamma = 0$ and represents

nple 2

d the curve of shortest length (geodesic) on the surface of a sphere.

and B be two points on the sphere S. Here the problem is to minimize

$$ds = \int_{A}^{B} \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$$

to the constraint $x^2 + y^2 + z^2 = a^2$ where a is the radius of the sphere. roblem can also be solved by using spherical polar coordinates (r, θ, ϕ) . θ , ϕ) and $(a, \theta + d\theta, \phi + d\phi)$ be the coordinates of two neighbouring on the curve through A and B and lying on the sphere. Then the above

0)

He

Th

Or

whice

Or

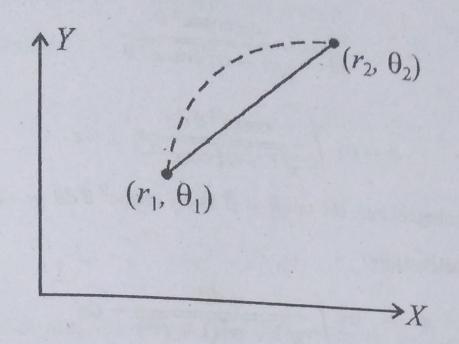


Figure 9.7: Points A and B on the surface of a sphere and the curve of shortest distance between them.

In case of a sphere $r=a,\ dr=0.$ Therefore the problem reduces to

$$\int_A^B \sqrt{a^2 (d\theta)^2 + a^2 \sin^2 \theta (d\phi)^2} \rightarrow \min$$

10

$$a \int_{\theta_1}^{\theta_2} \sqrt{1 + \sin^2 \theta \left(\frac{d\phi}{d\theta}\right)^2} d\theta \rightarrow \min$$

Here

$$F \equiv F(\theta; r; r') = \sqrt{1 + \sin^2 \theta \, \phi'^2}, \quad \phi' = \frac{d\phi}{d\theta}$$

The required curve satisfies the E-L equation, (with $\phi'=d\phi/d\theta$)

$$\frac{\partial F}{\partial \phi} - \frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) = 0$$

10

$$0 - \frac{d}{d\theta} \left[\frac{1}{2} (1 + \sin^2 \theta \phi'^2)^{-1/2} 2 \sin^2 \theta \phi' \right] = 0$$

which gives

$$\frac{\sin^2 \theta \, \phi'}{\sqrt{1 + \sin^2 \theta \, \phi'^2}} = \alpha_1 \quad \text{or} \quad \sin^4 \theta \, \phi'^2 = \alpha_1^2 (1 + \sin^2 \theta \, \phi'^2)$$

$$\phi' = \frac{\alpha_1}{\sin \theta_1 / \sin^2 \theta - \alpha_1^2}$$
 or $\phi' = \frac{\alpha_1}{\sin^2 \theta \sqrt{1 - \alpha_1^2 \csc^2 \theta}}$

$$\frac{d\phi}{d\theta} = \frac{\alpha_1 \csc^2 \theta}{\sqrt{1 - \alpha_1^2 \csc^2 \theta}}$$

nerefore

$$\phi = \alpha_1 \int \frac{\csc^2 \theta \, d\theta}{\sqrt{1 - \alpha_1^2 \csc^2 \theta}} + \alpha_2$$

perform the integration, let $\cot \theta = \beta$ then $\csc^2 \theta d\theta = -d\beta$.

erefore on substitution

$$\phi = \alpha_1 \int \frac{-d\beta}{\sqrt{1 - \alpha_1^2 (1 + \beta^2)}} + \alpha_2$$

$$= -\int \frac{\alpha_1 d\beta}{\sqrt{(1 - \alpha_1^2) - \alpha_1^2 \beta^2}} + \alpha_2$$

$$= -\int \frac{d\beta}{\sqrt{(1 - \alpha_1^2)/\alpha_1^2 - \beta^2}} + \alpha_2$$

ontinuing further

$$\phi = -\int \frac{d\beta}{\sqrt{\alpha_3^2 - \beta^2}} + \alpha_2, \quad \alpha_3^2 = (1 - \alpha_1^2)/\alpha_1^2$$

$$= \cos^{-1} \frac{\beta}{\alpha_3} + \alpha_2 = \cos^{-1} \frac{\cot \theta}{\alpha_3} + \alpha_2$$

$$\frac{\cot \theta}{\alpha_3} = \cos (\phi - \alpha_2) = \cos \alpha_2 \cos \phi + \sin \alpha_2 \sin \phi$$

can also be written as

$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \gamma_1 \cos \phi + \gamma_2 \sin \phi$$

 γ_1 and γ_2 are new constants.

illy

$$a\cos\theta = a\gamma_1\sin\theta\cos\phi + a\gamma_2\sin\theta\sin\phi$$

ssing to the Cartesian coordinates $z = \gamma_1 x + \gamma_2 y$ which is the equation plane through the centre of the sphere. Hence the curve of shortest joining A and B is the arc of the great circle through A and B.

iple 3

he geodesic curve for the cylinder $x^2 + y^2 = a^2$.

ion

Chapter

In cyline

We have

subject t

Here F =

which in

whose sol

On passin

The inters extremal c

Example

Find the s B(2, 1, -

Solution

Here we ha

subject to

ylindrical coordinates $x = a \cos \theta$, $y = a \sin \theta$, z = z.

have to minimize

$$l = \int_{A}^{B} ds = \int_{A}^{B} \sqrt{a^{2} (d\theta)^{2} + dz^{2}}$$

$$= \int_{\theta_{1}}^{\theta_{2}} \sqrt{a^{2} + \left(\frac{dz}{d\theta}\right)^{2}} d\theta$$

$$= \int_{\theta_{1}}^{\theta_{2}} \sqrt{a^{2} + z'^{2}} d\theta, \quad z' = \frac{dz}{d\theta}$$

ect to no constraint, (where θ_1 and θ_2 correspond to A and B).

 $F = \sqrt{a^2 + z'^2}$. The E-L equation in this case is

$$\frac{\partial F}{\partial z} - \frac{d}{d\theta} \frac{\partial F}{\partial z'} = 0$$

ch in this case reduces to

$$0 - \frac{d}{d\theta}(2z') = 0 \text{ or } \frac{d^2z}{d\theta^2} = 0$$

se solution is given by $z = \alpha_1 + \alpha_2 \theta$.

passing to Cartesian coordinates

$$z = \alpha_1 + \alpha_2 \tan^{-1} \frac{y}{x}$$
 or $\tan \left(\frac{z - \alpha_1}{\alpha_2}\right) = \frac{y}{x}$

intersection of this surface with the given cylinder gives the required emal curve.

imple 4

the shortest distance between the points A(1, -1, 0) and (1, -1) in the plane 15x - 7y + z - 22 = 0.

ution

we have to minimize

Have to minimize
$$\ell = \int_{A}^{B} \sqrt{(dx)^2 + (dy)^2 + (dz)^2} = \int_{x_1=1}^{x_2=2} \sqrt{1 + y'^2 + z'^2} \, dx$$

ject to the constraint that the points A, B be on the plane

$$G \equiv 15x - 7y + z - 22 = 0$$

ere the auxiliary function is given by

$$H = F + \lambda G = \sqrt{1 + y'^2 + z'^2} + \lambda (15x - 7y + z - 22)$$

e corresponding E-L equations are

$$\frac{\partial H}{\partial y} - \frac{d}{dx} \left(\frac{\partial H}{\partial y'} \right) = 0$$
 and $\frac{\partial H}{\partial z} - \frac{d}{dx} \left(\frac{\partial H}{\partial z'} \right) = 0$

$$-7\lambda - \frac{d}{dx} \left(\frac{y'}{\sqrt{1 + y'^2 + z'^2}} \right) = 0 \tag{1}$$

$$\lambda - \frac{d}{dx} \left(\frac{z'}{\sqrt{1 + y'^2 + z'^2}} \right) = 0$$

e have to solve (1) and (2) using the condition

$$15x - 7y + z - 22 = 0$$

e endpoint conditions satisfied by the functions y = y(x) and z = z(x) are

$$y(1) = -1, \quad y(2) = 1, \quad z(1) = 0, \quad z(2) = -1$$

om (1) and (2), by eliminating λ

$$-\frac{d}{dx} \left[\frac{y' + 7z'}{\sqrt{1 + y'^2 + z'^2}} \right] = 0$$

ch gives

$$\frac{y' + 7z'}{\sqrt{1 + y'^2 + z'^2}} = c_1$$

m(3)

$$z' = 7y' - 15$$

estituting for z' from (6) into (5), we obtain

$$\frac{y' + 7(7y' - 15)}{\sqrt{1 + y'^2 + (7y' - 15)^2}} = c_1$$

$$50y' - 105 = c_1 [1 + y'^2 + 49y'^2 - 210y' + 225]^{1/2}$$

$$25(10y'-21)^2 = c_1^2 \left[50y'^2 - 210y' + 226 \right]$$

$$25(100y'^2 - 420y' + 441) = c_1^2(50y'^2 - 210y' + 226)$$

Chapte

or

(2500

or

50(50 -

which i it so the gives y

Applyin we obta

For z we z = 7y -

The requ

 $\ell = \int_1^2 \sqrt{$

Examp

Find the on the su

Solution

The prob.

$$\ell = \int_0^1 \sqrt{1}$$

subject to

Here

x+y+z=

From E-L

and