;- (@/dn) Fy = constqm, 'f the integrand does not ;
and the first integral depend on y

F-y (Fy - (d/dz) Fp - ) ~

% v) constant, if the integrand does not deper

14 Find the extremals of the - P
conditions y(0) = 0, y(1) = 0 ang thelﬁdaundiv’ u{;(fr::l.? -

{Am !’/G§V/b‘-w]'“h°br_2" )

(st 4 = I‘;N‘ Area - f:hyda -+ minimum )

15 Find the curve that extremizes the functional / 1
V| - 360 - g
subject to y(0) = 0, /(0) = 1, y(1) = 0, y(1) -s[lla W -

9.4 Euler-Lagrange Equation for two and three In
dependent Variables

9.4.1 Euler-Lagrange equation for two independent variable

let F = F(z,y,u,Ug, uy) where z and y are independent variables. In th
case the problem is to determine the surface which extremizes the functions

L]

lu(z, y)] = /R /F(r. Y, U, Uy, W) drdy
- The relevant theorem is given below
Theorem
The extremal (surface) of the functional
fiuta, 9 = [ [ Fle. v v ) oy
MuumwmmmAMbmwumw

Wdﬁ.l‘- LWUBW”"”MM
wmm.i-wbv*m
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in (9.4.1) corresponding to variatic
ol f Iin (9.4.1) corresponding |
variation 41 0

We consider the d procedure discussed above (subsection 9.2.3), |

Using the shortene
aFé‘ o OF O, + ..(:)_E. ou ) dx dy
61-,’—"-/}2/_5;1‘ By~ . DY

Now consider

8 [ OF d (OF oF
omem (S i J L
Oz (_c')ux Ju) oz (Bux) g Ouy 2

Therefore

Similarly

Substituting in (9.4.2),

OF 0 ([ OF d [OF
<y _/R/ [.B_u-du_'_ Oz (Bu,, Ju) - Oz (Bux) o
- 8 [OF 8 (OF
* wlmt) 5 (%) ]«
Or on rearranging terms ‘ |
S OF 8 (F d (oF
= - ), O (OF
& L / | Ou 5 oz (Bux) du Oy (auy) (Su] o

- 8 (OF ‘Grar
+ /};/ o (6u, 51&) +5;'(5-U—V-5U)] dz dy
= Il + 12' ‘ '




LS ) () 4
v 8 il dx iy, Ay Huy) e (Uu )‘ ou dz d
i

r the extremal 1 < 0, which implios that

//{"”ﬂ' - ("”“ O (OF\ 0 (0OF
v Ou Ox Oy {)u -”“v) D2 (/)tl;,) dude dy dz

snce by fundamental lemma of the caleulus of variat fons

[c‘m 8 (i’_f_'_) o [ OF 5 {OF
ou Ox \ Ou, Oy i;;;) o ((’;:‘)} u = 0O

nee du # 0 in the region, therefore
o R 4 (f”" 8 (OF\ 8 (8F\ _,
du 0z \Bug) ~ Oy \ow,) 92 \Ou, )~

.4.3 Plateau’s problem

lo find the surface of minimal area which is bounded by a given closed
[his problem is called problem of minimal surface or Plateau’s probl
s named after the Belgian physicist Plateau (1801-1883) who was the |
tudy such problems systematically. To formulate this problem we nof
for a surface z = 2(z, y) which is described parametrically by the para

(u, v), arc element of any curve on it i1s g

(ds)? = E(du)® + 2Fdudv + G (dv)?

iven by

whefe E, F and G are fundamental quantiti% of the surface given by

i p O &
g & oL . —, = 3" B

—— e—

- Bu ou’ du Ov
Since U, v are parametric coordinates for points on the

t
%ex:‘:z(u' ”)) g - U(“' U)-

surface z = 2

~ We take (z, y) as parameters i.e. U= r, v =y, then
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4 find -1 equations for w———
; P
2 “ )
—d & p 4 : >
ll“»] ///I(/‘I( il thy ": m“wz)rl' 1
laraydzdt, i,  COnstas

1 Obtain the PDE satisfied by the

Ylrema oflan
vﬂ,iatinnnl problems | surface

2 = 2z, v) for the

) Yiw
(ﬂ) / ”l(Z:p) (*'u) I‘L‘:‘l'!l + minimum
with z = 25 on the Imumlury of the region ),

. 2 \2 \4
z . Y ¢ ‘
(b) / D l( 171) ' (zuu) | ")‘(z:ny) - 2% flo, ]/)J da:dy =¥ minimum

with 2 = 2z on the boundary of the region D,

5. Generalize the three dimensional problem discussed in section 9.5 te n di-
mensions. Find E-L equation for the functional

I[U]:—"—/"'/XU?N dwldwz---d:cn

=]

6. Find the E-L equation for the functional

I[y]‘://ﬂ/\/l+u§“{-u3+u3(imdydz

L, equation for the functional

1. Write the appropriate generalization of the I-

I[u] z// F(z, y, u, Uz, Yy Yz Uyy) Ugy) 42 dy
R .

; 45 Constrained Extrema

;?:‘;;‘mbm are also called variational

b, constraints or VoY

problems wit s is called

blem
g Problems with side conditions. A subelass of these pro

i
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x1

where i (z) are suitably chosen multipliers.

. clear that the Buler-Lagrange equation in this case will b
e

It

i d (0H

. 0y; dx 8y;> =0 IS S (9.7.1)
The curves ¥i = yi(x), 1+ = 1,2,--- ,n be determined from equations(9.7.1)

and the equations of the constraints, viz.

GJ(:L', Yis Y 77 7yn)zoi .7:'1) 2) RS

9.5.3 More generél variational problem with constraints

In this case we have to find the oxtremal curves y = y(z) which extremizes

Iy = [, F(= 9, y')dz with endpoint conditions y(z1) = Y1, ¥(z2) = W2

subject to

I = f:f G(z, ¥, ¥)dz = copstant
aint) that F and G have continuous

uments; similarly ¥ is supposed to

We assume (as in the case without constr
parameter family of

iGCOnd order derivatives w.r.t. their arg
ave second order continuous derivative: We consider a 2-

Gurves represented by

(e, €, ez) = y(x) 61771(;5) a e 62,72(35)
€1, €2) and y(x) require that

Th , |
: §nd point conditions on the curves y(Z,

‘ nlx. il .
o) < fo(es) =0, i=1,2
Beg

a oy |
Use of dependence of y on €1 and €2, we have |
) dz

/
I{c 72 o + el
1, €7) = / F(z, y + €17
z1

A

4 €272
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: § Since
7 it e
o St = e
oy = [ Gl yreamtem Y ey g
1 - fg
: : ifferent values E .
e vary €1, and ez, the function I(e1, €a) takes dt];ffe: value of kbu(tIChmmhm? sy
1y ‘ , » stan v I8y can
and €z conspire t0 keep J(e1, ez) to the con 'ﬂ »
he possible in case of a single parameter). |
suppose that the stationary value of [ (€1, €2) corr esponds to €; =¢, a04
e we must have f which |
ol ol
861 €1=¢€9=0 BCZ CI:':(Q:O E
" This re
Jie1 =0, gg=0] = &k ~ we obt:
s is equivalent to a problem in the calculus of constrained extrema in whid
have to extremize the function ] ]
, €2) subject to J(e;, €3) = k. ~where 7
. ~ the fun
ce the solution corresponds to ¢ = ¢y = 0, we must have conditi

al aJ :
()], =t (e 3 e &
€1 €1 €1=¢2=0 862 862 £1=£2=0
l
(J v k)lelneguo - O
e first equation is equivalent to
@ [ |
'5'6'; Ll [F(fﬂ, Yyt+em+eang, o + 62’7'1 + €2 775)
ot X, o | i
(%, y+ eretay + egmy, y +en) + emy)] da lenpemss =8

¢ eerating the second and the fourth terms by
- onaiions m (1) = 0 = ny(x3), we obtain

3 .E.QE. B4l (_‘ZE d ¢
. oty E;'g;;)] m(z) de = 0

Bl 5] ar . oc
L 0G|
L [Bymﬂ' 5yt A (79;"71+--—-m)] dz = 0

parts, and using the end




O dz \gy) # o0
eneral, (because the functional s NOb an ey e,
Ghoose (=) such that —

/ A
T (7’3/ (L} ()?/) 711(”?) du / ()

jich is always possible when

G d (e6c
oy T @ a;,') 4

his relation can be used to define )
e obtain

[ : (QE & "d‘?ﬁ) N e
x By dxz Byl H’{/ d; J?}')J I[z(.l,)dy, = 0

vhere 75(z) is arbitrary function which vanishes at the end-points. Invoking
he fundamental theorem of the calculus of variations, we have the nece

g
> canl

. Using this value of ) In equation (2),

BHATY
ondition
S (QE) x [?__ﬁ . (”"’)J e
dy dx \ Oy dy dz \ oy
or |
B aom
Oy dx 0y

Which i the EUIEI‘-La,gra,nge equation for H = F 4+ )G, with the end-point
onditiopg y($1) =4, y(zz)=y2.

:In aCt‘_lﬂ-l calculations, ) is determined from the side condition
el

“¥ ¥)dz =k, a constant.
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Geodesic Problemg

1 General geodesic problem

20desic c'onnects two points in space or on a surface. Here we are concerned
1 geodesics on surfaces. The geodesic problem for a surface can be stated
ollows: |

en points A(z1, Y1, 21) and B(z2, s, z2) on a surface z = z(z, y)
ind the arc of shortest length connecting A and -B.

re we have to minimize

B B A
£ / g / J(@)? ¥ @y T (@)
Ja A |
= / 2 \/1 e ylz A (z;c 4 2y yl)2 dz
4 ml : e

1ere we have used the result |

A gidy = (2 + zy) 4=
Yy ‘

“ or

bject, to the conditions

@)=y, y(z2) = o, 2(w1) =21, #(22) =7

"
6.2 IMustrative examples

o . mples.
Ve ‘u‘lstrate A T My geodeSiC problems with examp

“Oordinageg . ).

*© length g i given by ol B8
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toledan 1% = [/ 2 df subject t
s we have to minimize [, ds = [ Vr* +7T d J 0 r(6))

stant, and r(f3) = constant. ¥
e F(0, r, ') = V12417

e there is no explicit dependence on the independent variable 8, we

first integral of the E-L equation, (Beltrami’s identity): F — ' (9F /')

tant, which becomes

/
r

=1, a constant
V2 4 12

h on simplification reduces to r2 = c1 Vre + 72,

last equation gives

r2 472 _ 4/

P LR el
= e s W i
(;f dB C1 ¢
:l:Cl dr 0 1
4 T ER s st e o
e 2 "o 0 + (8,
efrom '
c; =
1 T cos(f + cp) = 7(cos @ cos ¢y — sin g sin cy)

= (cos C2) xz (sin c2)y

Where g js the radius of the sphere

B an Mngonth of two neighbou

T E
e

. 8 On the sphere, Thep the abo"

i

e the c@ polar Ccoordinates (r, d, ¢) ! |
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g

Figure 9.7: Points A and B on the surface of g sphere and the curve of shortest

distance between them.

In case of a sphere 7 = a, dr = 0. Therefore the problem reduces to

B b
/ \/a,2 (d8)? + a? sin? @ (dp)? — min
A

6 2
a/ : 1. + sin? 6 (d—d)) df — min
o1 db

: | b
F=F(;r;r)= \/1+sin29q5’2, ¢ = =

or

Here

The requireq curve satisfies the E-L equation, (with ¢ = d¢/ 45)

ar - (9_{) e
B9 do \9¢

21 /2 .02 4 =0
T [_1_ (1+sin20¢’2) 1/2 2sin 605]
vhig, . Lol
Blveg
' y 112
_sin’g g b1 +sin’0 4°)

»  Viisintggn

| . A2 —

a1

o ] /__//’//2/9
g -_or¢”3inzgm

ing. [l p . o2
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dp  ocosec’t In cylin
de \/ 1 ~ a% cosec? We have
lerefore (~()Sp(‘2 6 dﬁ
T + Qg
P / V1 - of cosec? §
perform the integration, let cot # = S then cosec? § df = —dp.
erefore on substitution
—df
V1-0o(1+ 57 subject ¢
o;d
=_/ 12ﬂ - T 2 Here F’ =
\/(1“01)‘0152
dp
= - + o
/\/(1 —af)/ai — B2
ontinuing further i
dp
b= - [ ta, = (1- ol
g
: whose go]
= cos~ ! -ﬁ—-+a2:cos“1 C0t0+ag |
a3 a3 On Passin
cot @
o p (# — a2) = cos ¥2€08 ¢ + sin ay sin"gb
 can also be written as The inter;
oot o £08 0 T | Xtremg]
iy = 71 COS ¢ + 74 sin f
sin 6 i Example
71 and vy, are new constants. 1
| Fing the g
lly 3(2, ! Y
acos § = g+, Sin 0 cos ¢ + q -, sin 6 sin ¢ Sol‘ltion
Ssllng f-ot ;he Cartesian coordinates z — M Z + v y which is the equatio? ere
iane ; ough ttfe centre of the sphere. Hence the curve of shortes! " h
JOIning A and B is the arc of the great circle through A and B
ple 3 | .
: / 3 Ub.
he geodesic curve for the cylinder 42 4 ¥? = a2 - ; o

ion

R .

— o
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. h“-\u——‘
. drical coordinates ¢ — "
pdrical } 00080, Sl i
Yll ) y-aSln8’2:2.
have tO minimize

[ =

B B
d- . \/\
/A S /A a? (d9)? ¥ 472

0,
dz\ 2
T
fol (d()) "

02
/ Va2 £ 22 g,y _ &
0, 4

o= i

do

ect to no constraint, (where 6; and 02 correspond to A and B

, F = Va2 + 22. The E-L, equation in this case is

Il

Il

).

oF M d OF riig
0z d 8z ~
h in this case reduCes to
| di: d*z _
O—-@(Qz)--O or W«-—O

se solution is given by z = a; + a26.

passing to Cartesian coordinates

ly ‘ ¢ :2
z = o3 + g tan o gy #an as &

: ' ives the required
intersection of this surface with the given cylinder gives q

emal curve.

mple 4 ) and
, ; £ 1, 0) an
| the shortest distance between the pm;l;s_vAél, )
1, = 1) in the plane 15z — 7y + 2~
ition
' We have to minimize a /

z2=2 ot y,2 T2 de / 7

£ = ./B. \/(dz)z # (dym ' /mszl
A

B be on the plane

| : 1 Av
et to the constraint that the points
a E z e’ 22 - O

b

g=1z-Tt
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e the auxiliary function is given by
HeF+AG=V1+12+224 (152 — Ty +2 -2

e corresponding E-L equations are
gl i ey OH d (8HY _
( ) =0 and i e 0

By dz \ Y

0y dx

> have to solve (1) and (2) using the condition

152 - Ty+2-=22=0

{

e endpoint conditions satisfied by the functions y = y(z) and 2z = 2(x) ar

y(1)=-1, y(2)=1, 2(1) =0, 2(2)= -1
m (1) and (2), by eliminating A

d "7

_dx \/1+y12+212
ch gives |
Y AT
Vity?+z2  ©
m (3)

2 = g 15
stituting for 2’ from (6) into (5), we obtain

Y +7(7y — 15)
Vit +(y 152

50y’ — = 2

25(104' — o132 _
2510y — 21)® = 2 (5042 210y’ + 226]

25(1002 _
‘( 00y 420y" 4 441) = C%(SOy'z L0y + 226)

i

Chapte

or
(2500
or
50(50 -

which 1
it so th:
gives y

Applyin
we obta

For z we
z2 =Ty -
The reqn
£= f12 V
Examp

Find the
on the sy

Solutio;
The prob
b )
= fo \/j
Subject to

Here

and




