7 = J28 Floy 909709

is a continuous function having continuous first ad Becon

= y(z) | v
ng endpoint conditions.

vatives satisfying the follow1
y(z1) = y1, ¥(T2) = V2

pposed to have continuous first and second order derivatives w
ents, then the function y(z) will extremise the given integral if j;

he differential equation
f‘?_f'_ 2 g oy 0
dy dx \ OV ‘
. A

sroof of this theorem involves a result known as fundamental theorem
lculus of variations. We discuss this theorem in the next subsection.

Fundamental theorem of the calculus of variations

nent: (one independent variable)

s continuous in the interval (z1, z2) and the integral f:l’ f(z) g(z) dz
cally zeroie. [* f(z) g(z) dz = 0, where g(x) satisfies the conditions

t is an arbitrary function with continuous derivatives in the interval

e

1) = g(z2) = 0

r) =0 for all z € [z, 3]

ve by contradiction. If possible let f(z) # 0 in (z;, x3). Then there
§st one point zg in (z;, x3) such that f(zg) # 0. Then becaust 0
ity of f(z) in (1, z2) there must exist an interval (zo - 4, To * O/
8 > 0) surrounding zo such that f(z) > 0 for all z € [zg — ¢, @0 1
(x) is arbitrary it can be taken as

g(z) = { (# — 29+ 8)*(z —wp— 8)?, zg-8<T LMY+
: 4 otherwise

)

lear ' :
e that g(x) vanishes at the endpoints of the interval (xg — 6, 70 +0
8 continuous derivative incide the intorval
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The integral [* f(#) 9(z) dz then becomes

xo4d
/x 3 f(I)(m~x0+6)2 (:L'-—:co~6)2dz > 0

0~

This contradicts the assumption that

| 1@ o) ae = o

Hence
f(x) =0 Vze (Il, 132)

Fundamental theorem of calculus of variations for two independen
variables

Theorem

Let a function f(z, y) be continuous in a region D of the XY-plane, an
g(z, y) be an arbitrary function with continuous partial derivatives in D, an
let g(z, y) vanish on the boundary curve C of the domain D.

; [o./f(x’ y) g(z, y) dz dy = 0

then f(z, y) = 0 for all (z, y) in the domain D.

Proof

If possible, let f(z, y) # 0 in D. Then there is at least one point (%o, -

of the region D such that f(zo, yo) # 0 Without loss of generality we t.
f(zg, yo) > 0. Since f(z, y) is continuous, there exists a circular dom

centred at (zg, yo) and with radius € > 0ie. Co: (z—z0)*+ (¥ vo)’
¢? such that f (z, y) > 0 in this domain. Now since g(x, y) is arbitrary

~ continuous, we can choose it such that

o —y0)?}, (= , k>0
9(z, y) = {g,{ el f)tilgr)wi.eseD f

. Then

/D/f(xi y) g(z, y)dzdy = /D[f(:r, y)

x k [(@ - 20) +(y— )] 4z dy >0

R |
_ hich is a contradiction. Hence the theorem.



a

g, o __
B (x, 0) + - (17/(1:) = #(f)

srefore I
Iy [ x
¥ Jr ar
. /z {Tl(m) %f)y + 7/ {z) = } dx %23

oy

«t we consider

- aF o (% £
4 OF " £y P
/;c1 oy’ ) by i - ma) 7 ( B ) ds

nd - T}~ e a
/;-,, n(z) dx ( i)'y’ ) dz

erefore

SR g " 4 (07
P /z; 77(:!:)“51:’1!:1:—-—/aB n(:c)a-;(w)dz

1 \

% /‘2 {BF__ d(ap)] A
L & &

r the extreme value, (91/d«a) = 0. This condition gives

[ 15 -& @) naree=e

1

ow n(z) is an arbitrary function of z which vanishes at the endpomts of the
terval [z, z) and the expression within square brackets is & comtimuou
mnction of z. Therefore by invoking the fundamental theorem of the cacuius

f variations, we obtain
oF  d (6F) so Lod O e

vy J
&

The differential equation (9.2.4) is known as the Euler-Lagrange eguatomn.

It is easy to show that Euler-Lagrange equation is a .
. Since F = F(z,y,y'), it follows that OF /8y and OF /8y are aiso Famcuioms
f2,y,'. Therefore by chain rule
| d?_‘f_ % 32F£+32Fﬂ+$%
A 2 d s ‘:&: \ oy’ ) - Qroy dz dyoy' dz"
= FW*‘FWVI'*'FU'V'Q

on

substitution in the Euler-Lagrange equat



TS OF Y then from (9.2.4)

- ot oF _
E; Ay’ =0 which imlpies —(-9——!7 = constant
- result is also called

, Beltrami’s identity, after the Italian mathem:;
enio Beltrami (

1835-1900) who first derived it.
If Fis not ex
/0x) =0 Also t

Plicitly dependent on z ie. F is independent of z,
he Euler-Lagrange equation in this case becomes

oF d OF
dy dx oy’

€ )\ dy ,i(iF_‘)
Eg oy’ ) dzx ydy Y’

OF : E)F)
o ¥ i == o) di] el
(33/) = (By’

1 taking the total differential of F' = F(y, y’) and using the above re
 have

Il

I

erefore

OF oF
& = -—(,Edy—i—(—?—y—,dy

. FOENF g 4
= va(5p) + s

, OF
d(-’f 557)

ence in this case the Euler-Lagrange equation takes the simpler form

I

F — ' —— = constant

vhich in fact is its first integral

3.2.3  Short hand

procedure for obtaining variation of the fun
tional ‘ :

We know that for a function y = f(z), the increment (or variation) Jy
glven by dy =~ f'(z) §z. Therefore from (9.2.3) we can obtain 01 = (dI /da)
X an increment in the parameter a and wil] correspond to

g Curve.




(1l‘apuc‘ Py ¥ LeA IRBUVAVIIACEL 1Y
Gliap o ACLNOaAds

i L
. 419
Using this result we obtain frop, (9.2 |
2.3)
ol
7~0a 2§l - /’:2[ OF
o 50 1
x n(z) ™ i) g_yF?] e i 025

Now we use relations (9.2.1)
-«.1) and (9.2 2) and :
) - obtain
y(m, a’) *'y(x, 0) =y =~ 5077(22)

Ve, a) -y
’ Y, O = I adea

In view of these relations, (9.2.5) can be writt
itten as

b / o [aF OF
___._6 s
2 | Oy ¥ Ay’ 5y’] dz (9.2.6)

The procedure sketched ab
ove for obtaining t iati
as a short-hand form of the method descrjtidhsa‘:ﬁ:ratmn oI can be regarded

9.2.4 Illustrative examples

Application of the simpl
plest form of the Euler-La
: : : -Lagrange fide T
case in which the functional has the form I[y] = [ F(i equ’a‘tifl} ie. in the
by examples. x) ¥, ¥')dz is illustrated

Example 1 L//

U 3 vk p
se calculus of variations to prove that a straight line is the curve with shortest

distance between two points in a plane.
i ST

Solution . | A
/olwlrﬂ/y

The element of length along a curve y = y(z) is given by ds = Ty or
1‘;1(‘:;—}‘1&\/&11 ;— y”dx Tl:xe‘refore we have to minimize I = f: v/ 1+ y? dz subject
point conditions y(a) = yo and y(b) = v1-
Lagi(:;i = m. I will be u'linix.num if :
ige equation (9-24). On substituting for OF /8y in (
o
/v OF R

S, A A K
F /f‘}’ ) a,yr'"c i W

Whi .
¢h on simplification gives

satisfies the Euler-
9.2.4), we obtain




an W

[)(x:y,)

v
L
Figure 9.2: Particle falling under gravity from one point to another, not lying

on the vertical. /

Find the equation of the path in space down which a particle will fall from
one point to another in the shortest possible time.

'Example 3

Solution

This problem is called brachistochrone problem and is one of the earliest prob-
lems of the calculus of variations. It was first proposed by John Bernoulli in

1696 and solved by himself, his elder brother Jacob (James), Newton, Leibniz
and de I'Hopital.

Let a particle fall from a point A to another point B. There are infinite
number of paths between A and B, but we are to consider that path only along
which the time taken is minimum.

We choose coordinate axes as shown in figure 9.2. Let (x,y) be the position
of the particle at time it. If ds denotes the arc element of the curve y = y(z),
then the total time taken by the particle in falling from A to B is given by

B g
T :_—/ ) | 5 Qg/b/ﬂ) ot j,:/{;)
A L Cé '\/J‘
where the time increment dt is related to the arc element ds by v = ds/dt.
Therefore

_ \ e
/B P B de 1 / B ds 1 / # \/‘_'1/ - T
T .=

il b, Y R R

el L
Vw2l 9V gy D V2%, -
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Figure 98: Curve connecting two fixed pomts in space A and B whose surface
of revolution is also shown
Example 4 | -

Find the curve joining the points (z3, y1) and (z2, y2) which gives minimum
area of the surface of revolution generated around (i) y-axis, (ii) z-axis.

Solution

Let A(z;, y1) and B(z2, y2) be two points in zy- plane. We want to find a
curve which gives the minimum area of the surface of revolution.

(i) Let us consider the case when the curve revolves-about the y - axis In
this case, area of the surface of revolution will be given by

Area = / 2r z ds
A .

B
e 21r/ :cds-—27r/ z \/1+y?dz

‘ A

, For the minimum value it must satisfy the Euler-Lagrange equation
* BF _d OF

_ dy dx Oy

- Which ip this case is equivalent to‘(because F is independent of ¥ )

AF - (1)

o e Sy TESPERT i <[LAav
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fethe .
1 re;F — 5 o/1+ Y% Therefore
Ie = I A/

oF z
oo 2
oy 2\/1'4737 1+y
Putting in (1) i e
14 y?
or on simplification ; s
Pt g 2 — a2

Therefore on integration by separating the variables, we have

T
dr or yzacosh'1 —+c

a
o= | 7= #
(i) : 1
Area = / 2ryds = 27‘/ yV1it+y?de
A A
Since we want a curve which gives minimum area of the surface of revolu.tmﬂ
generated about the - axis, so it must satisfy the Euler-Lagrange equation

: OF d OF
Oy dx

which (because of no explicit dependence on z) is equivalent to

el
F—4 6 - = constant

In this case F' = y+/1 4 2. Therefore

oF yy'

SN e
The Euler-Lagrange equation becomes

/

y 1_+_y12 B yy

Vity?
@y _ @

dp v

a

Or on simplification

On integration

rodg SR

dy or x = gcosh™ 1—\+c

£ Y 112-—1')
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Example 5

On what curves can the functional J — fo"/ 2(y’2 - 4%)

dz with endpoint condi-
jons ¥(0) =0, ¥(7/2) = 1 be extremized. i .

Solution

fere F = ¢"2 — y2. The E.L. equation is given by

d
e e RS / it &
Y= 7-2) =0 or y+4" =0
vhose solution can be written as Yy = Acosz + Bsinz.

Now the B.C. y(0) = 0 gives A = 0. Therefore y = Bsinz.

Next we apply the second B.C. yiz. y(m/2) =1, which gives B = 1.

Hence the required extremal is y =sing.

) } Exercises

. From among the curves connecting the points A(1, 3) and B(2, 5) find the
xtremal curve of the functional

2
Ily] = / ¥ (z) (1+ :czy'(a:)) dx
1
Ans. y=T7-4/z ).
+/Find the extremals of the problem

Iy = /Ol(y'2 + 3y + 2z) dz, y(0) = 0,'y(1) = 1

Ans. y = (3/4)a? + (1/4) ).

- Find the extremals y = y(z) subject to the given conditions and satisfying
'€ given functionals and endpoint conditions.

1
(a) Iy = / zyy dz, y(0) =0, y(1)=1
: 0

-
(b)'vyf'y' == /2 y1+y dz, y(1) =0, y(2) =1
e ¥l

T

(0) Iy = /:(ily” + y*) dz, y(@1) = n, y(@2) =12



' fined below where :
4. Find the extremals for the‘ functionals defin Y(2) is -
to be constant at the end points..

(a) / b (%—;) dz, (b) /a b(y2+‘y'2+2ye‘”)dz

. Show-that the E-L equation for the functional

I[ylzfsz(x, y) V1+y?dz

as the form - i

Y
Fy._— B 1+y/2F=0

. Find extremals of the following functional subject to the given conditions

[y] = fol(ey +zy')dz, y(0) = 0, y(1) =a (Ans.: y=0ifa=0. Forg #(
1ere is no extremal ). | %

S o

—

- Find extremals of the following functional subject to the given conditions °

) Ily] = J7 (v — y?) da, y(O) =1, y(n/4) = (vV2/2)

Ans.: T cos& )‘

)b = 67 - dz, y(0)=1, y(r) = _1

\ns.: y = cosz 4+ Csin z, where C is an arbitrary constant).

) Ify] = [} (= + ¥?)dz, y(0)=1, y(1)=2
MBS y=zg41). _

) Il = 52 + u’?) dz, y(0) =0, y(1) ='1 |
NS.: y=sinhz/ginh1 )

T = {2 + a4y g,

’) e 82: y(1)= 1

ns.: Y = éze“h ) 7 -
= G200 - 2 g, o

ns. y="~:2008h:8).
Y

33) dxl, y(0) = 2, (7 /2) = 200811(77/2)



- (9) F=sin(zy)
. (Ans (a) ay+y’ =0 (b) z—4@) 7V =0

Chapter 9. Variational Methods

s SR b 2

e

427

L T 3 . ;
U\) 'In (v* + ¢ + lyexp(;r,) dr — stationary, y(m,) 1 N p

%

-L equation corresponding to the problem

: rg
L‘ f(m) \/ ‘ '* y") dx, y(Il) - ylv y(mz) — y2

(Ans. (8) v=oc1+aa!, (b) y=(1/2)ze" + cye® + C2 exp( 1)

8. Find the general solution of the |

and investigate the special cases f(z) = VT mnn f(z) = :z:.’

9. Among all curves of length ¢ in the upper half-plane passing through the
points (—a, 0) and (a, 0), find the one which together with the interval [—a, a]
encloses the largest area. ‘

1({. F:l;nd the curve joining the points (0, 0) and (1, 0) for which the integral
Jo ¥ dz is minimum if )

(a) ¥(0) =0, y'(1) = b, (b) No other conditions are prescribed.

11. Find the equilibrium position of a heavy flexible inextensible cord of given
length, fastened at its end points. /

12. Among all curves joining a given point (0, b) on X-axis to a point on the
X-axis and enclosing a given area A together with X-axis, find the curve which
generates the surface of revolution of having the least area when rotated about
the X-axis.

| \/’13. Find the Euler-Lagrange equation when the function F'is given by

(b) F =3y +y"

(d) F=a%/V1+"

(8)) F=z%y?-y”

- (9) cos(ay) — a(y/ +2y") sin (zy/) =0 |
id). 2 1+ y’z) ~3zy'y" =0, which is a second order nonlinear ODE )

93 ion witl
9.3 Extensions of the Euler-Lagrange Equation W

one Independent Variable

| . in ope inde
S g e Tuler-Lagrange equation o



Therefore all the unknown constants have been determined as A = B :
¢ = 0 and E = 1. On substitution in (3) and (4) we finally obtain

/ yzﬂln.‘t, 2=“Sinx

v/

Find the extremal of the functional

n/2
Iy(z)] = /0 (" -y +2%)dz

y(0) =1, y(x/2) =0, y(0)=0, ¢/(n/2) =1

Solution
The extremal curve y = y(z) is obtained by solving the Euler-Lagrange equ
tion, naz.

OF d [(OF o & [&F

oy & ) =(a7)-° :

Since F = (y")? — y* + z%, we have

oF - ~2y, g:: 0 and therefore % (%) =0

aF & (OF\ _ o ()
=2y" and therefore —— ( W) =2y

On substitution (1) becomes —2y — 0+ 2y = 0, which is equivalent to

(D'~ 1)y =0 or [(D—l)(D+1)(D’+1)]y=o

A — ¢38inT +Q°mx* therefore

“‘ aq-ata a‘ 0



