Shapter 9
Variational Methods

I'he subject of caleulus of variations or variational methods is similar to but
more general than the subject of maxima and minima in Calculus. In the
former we have to find the extreme or stationary values of a function of one or
more variables whereas in the latter we have to determine the extreme value
of a functional, which is usually in the form of an integral.

9.1 Preliminaries

Functional

Let M be the set of functions defined over the interval [a, b]. I.f there is a
rule which assigns each function of M to a real number J, then J is ca.lletil the
functional from M to IR. Extremal is the curve along which r’he functional

takes the stationary value.
The maximum or minimum value of a function or func-

7' tionary Value:
tional is called stationary value.

,, remal: The curve y = f(z) along which a functional J takes the stationary

* i called the extremal.
Some examples of variational problems
blems whose attempted solutions have led

alculus of Variations. At this stag:ﬂ 1:
lems. The solutions will be given

& we discuss some important pro
he development of the subject of C
Lonly discuss and formulate the prob
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Figure 9.1: Circular region of radius ¢ centred at (zg, yo) lying in the region |
D _
\

Proof of the theorem for the extremal curve

It is clear Lhn.t between the fixed points A(xy, yi) and B(zg, y3), there are 1’.’
infinitc number of curves giving infinite number of values to the functional [

We have to find the curve which gives stationary value of the functional. Let 5
the family of curves passing through fixed points A and B be defined as é

y(z, @) = y(z, 0) + anlz) (911)

where 1(z) denotes the deviation from the curve y = y(z) = y(z, 0) and a "

a parameter labelling different paths, and it is independent of z. We WPP" 3
that the extremal curve corresponds to the value a = 0. Since all curves pass

w the endpoints (), y;) and (23, y), it follows that n(zy1) = n(z2) "F‘;'j;
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Onintwﬂmwmy-+a1+b, whidlilthoequﬁkmd‘w :

Example 2 \0

Give the geometrical interpretation of the variational problem fol 14+
minimum with the boundary conditions y(0) = 0 and y(1) = 1.

X i
i =

B
f
1

Solve the problem for the extremal. Find the stationary value of the
and compare it with the values of the integral which are obtained for ey S
that join the same end points but are different from the extremal i

B 2

Solution o1 il
(1) Since arc element of a curve is ds = /1 + y2 dx, (in view of o
follows that the given problem can be stated as e

000) b

ds — minimum &t 3

s _ ‘.
m&wahmalhm : -
(0,0) and (1,1); which is a straight line. 'ﬁﬂhthml:;b”
() 1f ¥ denote the stationary value, then a0 A,:‘ln;‘;’,t- _
e g o ] | L
*-[ vy #-LMd’-’ﬁf‘S-ﬁ_ﬂ .

0 G

e For th : values of the integral which are obtained for curves
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We want to find out the extremal curve through A and B |
- 18

the Euler-Lagrange equation tay
p JOF
- ¥ 5-:7 = constant = a, say
Here F = /1 + y/?/_ /¥, and therefore
A Y/
VI 2/1+y2 Y1 + o2)
Putting in (1)
yitg® . oFf
Vi i+ 7
or on simplification
. a?,y = @ = ¥ = oy
y(1 + y2) P S T a2
y
or
Sy .
=1y :
To integrate (2), let a?y = gip? 6/2, or
1
3 V= 22 sin? g (
 Therefore /
dp=ig gl B 10y 4
2 Yl 00 252 Sin 0 dg
Onsubsti;utionin (2)
s ;
- sin® g/ 1
a2 240 = dy
R @ T 542 (1-cos 0) do = dz
integration
1
iy g
2 sin ¢
and from (3) ga e
V=55 (1~cosg ¢
Equati 2q2 )
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T RLY 1.8 i .
(i) The case F' = F(z, y1, ¥2," " ¥m Yo ¥" " Un) 0. when thayy 18

LY “!'
independent variable and n dvpt sndent variables.

(ii) The case F’ = F(z, v, ¥ g, ey ;u(")) i.e. the integrand in the “""‘l.imm
involves higher order derivatives.

9.3.1 Euler-Lagrange equation, one independent, many depey,.
dent variables

This i: a direct generalization of the case studied in section 9.2 above, Huy
the functional is of the form

f F(x, y1, ¥2, Y3, s Yny Y1s Var V30 Up) d
3
with the boundary conditions

Yk(x1) = constant, yx(x3) = constant, k=1,2,--- n

Using the shorthand procedure for finding the variation, 87 of I when y varies
by dyx, k=1, 2, ---,n, we have

. oF oF oOF
of = S+ —38 el TR
~/31 [(831 o 8 ey Myn, y )

oF oF 0}' :
3 0 ,
(d / yl (1) ; 6'9'2 + d :1 6U“)] d.i'?

or

oF aF i OF
ol = f K-——& + —4 ") B -
x ay & By' " + 0 gayz dy& 6')'2
o oF

: I (g 2N gt
(ay 0yn + oy Jyn)] dx, (9.3.1)

Now consj,dcr
— e iy i (OF
-LI ( Il5‘y;c) i d 6yk o 6yk : ( ) dr
@

d
- / dyp — ((S‘y ) dx
k

T3, therefore

S LN P TR PR

‘Eim:e 61;5:034;3_.___31’
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k =
]‘! 21 i A 7 (9.3.2)
Therefore on substituting expressions (9.3.2) in (9.3.1)

y WE Obta.in
= Y oF d 8F
g [ Kay hd-'a')‘syﬁ = _ 288N
| xy 1 L1 0y dyz dzayrz Y2
T +(?£“_‘i§f_ 5
dyn  dz By, yn] dx (9.3.3)

The extremal corresponds to 61 = 0. Therefore putting 41 = 0 in (9.3.3) we

obtain
[ Z oF oF
3yk dz i\ Ol dyrdr =0 (9.3.4)

Since tl'w curves (functions) yx, k = 1, 2, are independent of each other, each
of the integrals on R.H.S. of (9.3.4) must be zero, (fundamental theorem of
the calculus of variations).

“Therefore we must have

Nl I d  OF
2ded SEERSF s, J Sy §P.TRS T - e S (N
./;1 [ayk dx " Oy’ )] yk

Now invoking the fundamental theorem of the calculus of variations, we have

o (QE)]=0, =iy &
Oyr  dx \ 9y

Since dyx # 0,k = 1,2, .-+, we must have

el

6F d BF) //"’-
LRI N6 k=1, & L
da:( S

Ok Y

-: which are the required equations for the :
independent curves (functions), there are 7 E-L equations.

extremal curves. Qince there are n

9.3.2 Euler-Lagrange equation, with higher order derivatives

Here the functional is of the form

Iy} = fF(I By e y(“)) g

With the endpoint conditions T
(v=1)(z;) = constant

U(-TI) i y’(ﬂil) s y"(m) T 5 vty

R
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The given fanction is F =V

RN NP Therefore

M 1,"1 FE i,l‘t ) &
l'.j_’“ 'Ay. ﬂ."d — Jy' H;’ ‘J/

oF ,
; iz iy

. ' 22,
My

On substitution in (1) and (2)

a.nd

2 - —(2f)=0 =mm z -y =0

2 ~ a;..(zz)._-;o == ¢y~ 2 =10

sihomationl PRYSIC e

On combining the DEs z = " and y = 2" we obtain =y y=2

From these DEs, we have y) = y or (D* = 1)y = 0, where D = d/&
This DE can be written as ,

[(D-1)(D+1)(D*+1)]y = 0

whose solution is given by

Also |

y = Ae® + Be™ + Ccosz + Esinz

i 15
3 = yl' - ey (Ae® 4+ Be™ + Ccosz + Esinz)

= Ag°4 Be * —-Cceosxr— Fsinz

Applying the given conditions to (3) and (4), we obtain

y(0) =0 == 0=A+B+C
¥(r/2) =1 == 1=A¢"/2+Be "2+ E

% .__1..

0) and (7) A + B =0 or B = ~A. Also by subtraction from (5) **

z0)=0 == 0=A+B-C
"f(“.'/g)""]- == —1=Ae"24 Be" "I F

t ;ﬂ@jﬁn B = — A we obtain

BEL "

(@)

¢

d (8) Ae™/? 4 Be~/2 = 0, and by subtraction from ®) o
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and

¥(zz) = i/ (z;) = V'(z3) =

2 - [a
“ (OF dF e oF
6] = — 4 —dy 4 .-—'—;5 + +—9 n)dx 93
/n (61;”01/“01/”} oy Y g
Now consider
*2 9F A 2 - FaP
= 8 d = ——-—-JyJ ——/ Jy—n(-——
~/;1 ayl xry Z] dI ay
Now since ¥(z;) and y(z3) are constant dy must be zero at z; and Z2. Thera
fore
= BF) G L
2 ) &dr = _ oy — ———-)
/n (31/ n  dz \ gy
Similarly Integrating by parts twice and making use of the endpoint conditions
foryandy’at:cl, Z3 we have
ey oF i 2 d (8F
=— 4 de = — g/ _ il = ==
~/-'I=.1 (ay” 5 ay” yJ:n 1 - dz (ay”
i d (OF
[ ()
z dz \ Gy’
d [(OF\]* d&? [8F
= Lpyd fOF +—-12/J-—-(~—-—)dz
vz (5 [+ o V& 5
s OF
= (-1)? iy i dz
( ) b y 2(8y”)

dz3 \ gy
o 3F OF
(n) oo e
{
Sﬂbatituting for thes i
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subject to y(0) = 0, y(m) = 1, 2(0) =0, z(x) = ~1.

(A““. ¢ Csing (_r/ﬂj co8Z, 2= Csinx + (2sinz - Icmx)/-ﬂ-’ wh&e'

{s arbitrary).
% Find extremals for the variational problems

(a) Ju: [24(11; er)JJ dz ~» minimum, y(-1) = 1, y(0) = 0, 9’('-1)
(9/2), V'(0) =0, y"(~1) = 16, y"(0) = 0.

() Jo(v + /) dz — minimum, y(a) = o, Y(b) = 11,'(a) = vf, y(b =y
(Ans. There is no minimum ).
9. Find the extremals of the following problems:

(a) fﬂ;(yu)ﬂd:z =+ minimum, y(0) = 0, y'(0) =0, (1) =1

(1]
R —

( z{+:)(2f9*1 y? + za/3)d:!: —* stationary, y(1) = 0, y(-1) = 2, 2(1)

. n/? e
(.)u({r/,g) li'zl+ 2% — y2)dx — stationary, y(0) = 0, y(r/2) = 1, z(O)=

If’ Do W +2% 4 2y) dz minimum, y(0) = 1, y(1) = (3/2), z(0) =0, z(1) =
[Ans.: (a) y=2%/2, (b) y = - ) 2
sinz, z = sinz, (dJy"(:tfz/)L’)il] e 1Pl b

- 10. Find the extremals of the functional Iy] = AV 3 ST P dz
(Hint: Use polar coordinates.

o Ans. z2cos 7 + 22y gin o - y? cos o = B, where a, f are constants F

“ @.w ' Gfﬁhﬁprqblem Ily] _fwfz(y,,g o +z’)dzmbjﬁ'

¢ Bl o e o 1y = 3,5, ., 1



Chapter 9. Variational Methods 441

Since u is presgribed on the boundar
Next we simplify the first integral

') oF 8 [ 8F
——l -
= o o () - £ (2) w b

For extremal 4/ = 0, and therefore

dF oF d [ OF
.//[f)u ——(Buz) 6y( )Jﬁud:r,dy 0

Since du is arbitrary, by invoking generalized form of the fundamental theorem
of the calculus of variations, we have

oF 8 (8F d (OF o
du 9z \Ou, ) @y (auy) s

9.4.2 Euler-Lagrange equation for 3 independent variables

¥, 0u must be zero, and therefore I, = ().

Theorem

Given the functional

Iu(z, y, z)] = /// (z, v, 2, u, Up, Uy, u,) dedydz

where u has different values in a three dimensional region V but is prescribed
on the boundary surface S of the region; it is assumed that u has continuous
partial derivatives up to the second order in the region V. Then a necessary
condition for this functional to have an extremum is that u = u(z, y, z) must
satisfy the PDE

OF 9 (OF a(ap)__@_(ap)zo
Buqazr(au,) Ay \Ouy ) 0z \Ou,

: Proof

| It is given that

I(u(z, y, 2)) = /L/F(z, Y, Z, U, Uz, Uy, U,) drdydz

idering the variation in the functional corresponding to u — u + du, we

ey

aF oF 943
u“//[(aFﬁu+aFJ +§':Ju,+au‘&a)dxdvdl (9.4.3)
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Now since p _é?_ff_ i _(?— _(?_F_ ) P :T;U* S
9z \ Ouz oz \ Ouz My
Therefore o o [ OF g (ap ) ;
duzy = 37—~ 8 el U
au,; i 3:1: 8“‘3‘: 8:[; duI
Similarly |
OF d (3F ) d (()F)
T S Su) - =— |7z ] ou
Oy dy Uy dy \ Ouy
and
3F6u _?_(HF ¥ _i}_(@p g
6“3 = az 6?_}__z az auz

Putting these values in (9.4.3), we obtain
]/j’[ B(SFJH)*E OF 5
Sz Az \Buzh

d [ OF

Tl il N, L

dy (61:,1, u) Ay (6%) i

L
0z

4 0z (auz 5u) - (81:.3 Ju)] dz dy dz

//][ ( E 9F a (OF

du Oz Oug dy \du, ) 0z (3112,)] dz dy dz
// .[ [3:5 (Buméu) By (8—611.) +5 (auzéu)] dz dy d7
Consider

Izgfff[( )6(6F 5 ap _
0z \ Ou, ay gg;t'iu) E(@u, 51;,)] dax dy d2

of

. Or

f/ Bl 5y OF OF
/ ( ui+ auy 6uJ+b‘lT&uk) d:r:dydz

£ f/;fdivcdv

Where dV = dz dy dz, and
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& LT aenk) U+ =%y
dr 0Oy

and

dy

In terms of parametric coordinates (u, v) the surface element dS is given by

dS = dsy dsy = VE du VG dv sinf = VEG dudv sin @

where # is the angle between the parametric coordinate curves u = constant
and v = constant. and cos § = F//VEG.

Therefore

_ F2 JVEG-F?
sinf = +/1-cos?2f=14/1~ o
EG VEG

= VEG — F? dudv

When (z, y) are used as parameters

and

VO+22)(1+22) - 222 dedy = 1+ 22 + 22 dedy
The problem is to minimize the integral

f[g/\/l+z§+z§dmdy

ject to the condition z —

Zp on C. On simplifying the E-I, equation we

, (assuming

- c'ud) dx dy

w4 5w constant

U= ulz, y)
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where the arguments of F are subject to some additional conditiong ¢, %

straints such as

(i) G(z,y1,* Yn) = constant.

or (ii) G'(.?:, y1, - Ynr Y1, - - - Yp) = constant. .

or (iii) f:f Gz, 11, i yi," -+ yr) dz = constant.

Isoperimetrical problems are special cases of these problems.

9.5.1 Constrained maxima and minima problems in calculyg

Let u= f(zy,2,, - ,z,) with side conditions
(;‘5,-(1-‘1, Za, '--I‘n) == 0, g = 1, 2, AT S (m = n)
; ; B =
In Lagrange’s method of multipliers, we consider an auxiliary function

w{rl ¥ xzj

m
o) = Eopt
) f(xl: I3, .’L‘n) = ZAi¢i($1: Z2, "'xn)

1=1




torically three such fundamental problems are

The problem of geodesics i.e. to find the curve of minimym len

) points on a given surface. :

The brachistochrone problem i.e. to find the path of quickest

. desogy
ing two points in space, for a particle moving under gravity. ,
- Dido’s problem i.e. the problem of finding curve of given length whig
loses maximum area by itself or with a given straight line.
ample 1
find t

he curve whose distance between two points on a surface is minimug

SCusSsion

z(z,y). The distance between the points 4 and B on an

y curve y = y(z)
ich is the same ag length [ of the curve between A and

B) is given by
B B '
¢ = [ do- | V@ T @ T @y
= /AB V1+ (dy/dzx)? + (dz/dx)? dx

B
= / V1+y2 12 g,
A

the points A and B lie in the X Y plané,
the expression for { takes the simpler form /¢ — ff V' 1+ 92 dz.

mple 2

rticle of falls under

gravity from A4 to . Determine 'the curve along which
taken by the parti

cle will be minimum.

ussion



ghry ...._..1 [B 1 = yIZ
V¥ 4 » dx

ch is in the form of a funct;
un i

the required ti ctional. By minimizir : :

L quired time. 1g this functional we can

ample 3

find the curve y = : |
y(z) which h ;
, with, say, X-axis. as a given length [ and encloses maximum

scussion

.ce the area enclosed b
y the curve y = .
— b and the X- axis is given by y = y(z) between the lines z = a and

. B ,
b /y(ﬂi) dx (9.1.1)

d the length £ of the same curve between £ = a and z = b is given by

b b :
E:/ ds = / 1+ y? dz (9.1.2)

hus the problem reduces to that of maximizing the area in equatioh (9.1.1)

ibject to the condition given in (9.1.2).

.2 Euler-Lagrange Equation

ive the relevant DEs from which the

n this and the following sections we der
be obtained. In each case we have t«

equired extremal curves or surfaces can
xtremize a functional of the form

@) = [ Fa s

or

U, Ux, 'U‘yy"')dx dy

J[u(x: Y, )] iy '/;F(JI, PP R e S

ms in different situations. The simples!

The integrand F will have different for
corresponds to F = P(z, v, ¥)-

e \/




