
Notice that a class hierarchy is not the same as an organization chart. An organization chart
shows lines of command. A class hierarchy results from generalizing common characteristics.
The more general the class, the higher it is on the chart. Thus a laborer is more general than a
foreman, who is a specialized kind of laborer, so laborer is shown above foreman in the class
hierarchy, although a foreman is probably paid more than a laborer.

Multiple Inheritance
A class can be derived from more than one base class. This is called multiple inheritance.
Figure 9.9 shows how this looks when a class C is derived from base classes A and B.

Inheritance

9

IN
H

ER
ITA

N
C

E
403

A B

C

FIGURE 9.9
UML class diagram for multiple inheritance.

The syntax for multiple inheritance is similar to that for single inheritance. In the situation
shown in Figure 9.9, the relationship is expressed like this:

class A // base class A
{
};

class B // base class B
{
};

class C : public A, public B // C is derived from A and B
{
};

The base classes from which C is derived are listed following the colon in C’s specification;
they are separated by commas.

10 3087 CH09 11/29/01 2:22 PM Page 403

Member Functions in Multiple Inheritance
As an example of multiple inheritance, suppose that we need to record the educational
experience of some of the employees in the EMPLOY program. Let’s also suppose that, perhaps
in a different project, we’ve already developed a class called student that models students with
different educational backgrounds. We decide that instead of modifying the employee class to
incorporate educational data, we will add this data by multiple inheritance from the student
class.

The student class stores the name of the school or university last attended and the highest
degree received. Both these data items are stored as strings. Two member functions, getedu()
and putedu(), ask the user for this information and display it.

Educational information is not relevant to every class of employee. Let’s suppose, somewhat
undemocratically, that we don’t need to record the educational experience of laborers; it’s only
relevant for managers and scientists. We therefore modify manager and scientist so that they
inherit from both the employee and student classes, as shown in Figure 9.10.

Chapter 9
404

employee student

manager

scientist

laborer

FIGURE 9.10
UML class diagram for EMPMULT.

10 3087 CH09 11/29/01 2:22 PM Page 404

Here’s a miniprogram that shows these relationships (but leaves out everything else):

class student
{ };

class employee
{ };

class manager : private employee, private student
{ };

class scientist : private employee, private student
{ };

class laborer : public employee
{ };

And here, featuring considerably more detail, is the listing for EMPMULT:

//empmult.cpp
//multiple inheritance with employees and degrees
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names
//
class student //educational background

{
private:

char school[LEN]; //name of school or university
char degree[LEN]; //highest degree earned

public:
void getedu()

{
cout << “ Enter name of school or university: “;
cin >> school;
cout << “ Enter highest degree earned \n”;
cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;
cin >> degree;
}

void putedu() const
{
cout << “\n School or university: “ << school;
cout << “\n Highest degree earned: “ << degree;
}

};
//
class employee

{
private:

char name[LEN]; //employee name
unsigned long number; //employee number

Inheritance

9

IN
H

ER
ITA

N
C

E
405

10 3087 CH09 11/29/01 2:22 PM Page 405

public:
void getdata()

{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;
}

void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number;
}

};
//
class manager : private employee, private student //management

{
private:

char title[LEN]; //”vice-president” etc.
double dues; //golf club dues

public:
void getdata()

{
employee::getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: “; cin >> dues;
student::getedu();
}

void putdata() const
{
employee::putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues;
student::putedu();
}

};
//
class scientist : private employee, private student //scientist

{
private:

int pubs; //number of publications
public:

void getdata()
{
employee::getdata();
cout << “ Enter number of pubs: “; cin >> pubs;
student::getedu();
}

Chapter 9
406

10 3087 CH09 11/29/01 2:22 PM Page 406

void putdata() const
{
employee::putdata();
cout << “\n Number of publications: “ << pubs;
student::putedu();
}

};
//
class laborer : public employee //laborer

{
};

//
int main()

{
manager m1;
scientist s1, s2;
laborer l1;

cout << endl;
cout << “\nEnter data for manager 1”; //get data for
m1.getdata(); //several employees

cout << “\nEnter data for scientist 1”;
s1.getdata();

cout << “\nEnter data for scientist 2”;
s2.getdata();

cout << “\nEnter data for laborer 1”;
l1.getdata();

cout << “\nData on manager 1”; //display data for
m1.putdata(); //several employees

cout << “\nData on scientist 1”;
s1.putdata();

cout << “\nData on scientist 2”;
s2.putdata();

cout << “\nData on laborer 1”;
l1.putdata();
cout << endl;
return 0;
}

Inheritance

9

IN
H

ER
ITA

N
C

E
407

10 3087 CH09 11/29/01 2:22 PM Page 407

The getdata() and putdata() functions in the manager and scientist classes incorporate
calls to functions in the student class, such as

student::getedu();

and

student::putedu();

These routines are accessible in manager and scientist because these classes are descended
from student.

Here’s some sample interaction with EMPMULT:

Enter data for manager 1
Enter last name: Bradley
Enter number: 12
Enter title: Vice-President
Enter golf club dues: 100000
Enter name of school or university: Yale
Enter highest degree earned
(Highschool, Bachelor’s, Master’s, PhD): Bachelor’s

Enter data for scientist 1
Enter last name: Twilling
Enter number: 764
Enter number of pubs: 99
Enter name of school or university: MIT
Enter highest degree earned
(Highschool, Bachelor’s, Master’s, PhD): PhD

Enter data for scientist 2
Enter last name: Yang
Enter number: 845
Enter number of pubs: 101
Enter name of school or university: Stanford
Enter highest degree earned
(Highschool, Bachelor’s, Master’s, PhD): Master’s

Enter data for laborer 1
Enter last name: Jones
Enter number: 48323

As we saw in the EMPLOY and EMPLOY2 examples, the program then displays this information
in roughly the same form.

Chapter 9
408

10 3087 CH09 11/29/01 2:22 PM Page 408

