
Ambiguity in Multiple Inheritance
Odd sorts of problems may surface in certain situations involving multiple inheritance. Here’s
a common one. Two base classes have functions with the same name, while a class derived
from both base classes has no function with this name. How do objects of the derived class
access the correct base class function? The name of the function alone is insufficient, since
the compiler can’t figure out which of the two functions is meant.

Here’s an example, AMBIGU, that demonstrates the situation:

// ambigu.cpp
// demonstrates ambiguity in multiple inheritance
#include <iostream>
using namespace std;
//
class A

{
public:

void show() { cout << “Class A\n”; }
};

class B
{
public:

void show() { cout << “Class B\n”; }
};

class C : public A, public B
{
};

//
int main()

{
C objC; //object of class C

// objC.show(); //ambiguous--will not compile
objC.A::show(); //OK
objC.B::show(); //OK
return 0;
}

The problem is resolved using the scope-resolution operator to specify the class in which the
function lies. Thus

objC.A::show();

refers to the version of show() that’s in the A class, while

objC.B::show();

Inheritance

9

IN
H

ER
ITA

N
C

E
413

10 3087 CH09 11/29/01 2:22 PM Page 413

refers to the function in the B class. Stroustrup (see Appendix H, “Bibliography”) calls this dis-
ambiguation.

Another kind of ambiguity arises if you derive a class from two classes that are each derived
from the same class. This creates a diamond-shaped inheritance tree. The DIAMOND program
shows how this looks.

//diamond.cpp
//investigates diamond-shaped multiple inheritance
#include <iostream>
using namespace std;
//
class A

{
public:

void func();
};

class B : public A
{ };

class C : public A
{ };

class D : public B, public C
{ };

//
int main()

{
D objD;
objD.func(); //ambiguous: won’t compile
return 0;
}

Classes B and C are both derived from class A, and class D is derived by multiple inheritance
from both B and C. Trouble starts if you try to access a member function in class A from an object
of class D. In this example objD tries to access func(). However, both B and C contain a copy of
func(), inherited from A. The compiler can’t decide which copy to use, and signals an error.

There are various advanced ways of coping with this problem, but the fact that such ambiguities
can arise causes many experts to recommend avoiding multiple inheritance altogether. You
should certainly not use it in serious programs unless you have considerable experience.

Aggregation: Classes Within Classes
We’ll discuss aggregation here because, while it is not directly related to inheritance, both
aggregation and inheritance are class relationships that are more specialized than associations.
It is instructive to compare and contrast them.

Chapter 9
414

10 3087 CH09 11/29/01 2:22 PM Page 414

