
Aggregation in the EMPCONT Program
Let’s rearrange the EMPMULT program to use aggregation instead of inheritance. In EMPMULT the
manager and scientist classes are derived from the employee and student classes using the
inheritance relationship. In our new program, EMPCONT, the manager and scientist classes
contain instances of the employee and student classes as attributes. This aggregation relationship
is shown in Figure 9.12.

Chapter 9
416

manager

scientistemployee student

laborer

FIGURE 9.12
UML class diagram for EMPCONT.

The following miniprogram shows these relationships in a different way:

class student
{};

class employee
{};

class manager
{
student stu; // stu is an object of class student
employee emp; // emp is an object of class employee
};

class scientist
{
student stu; // stu is an object of class student
employee emp; // emp is an object of class employee
};

class laborer
{
employee emp; // emp is an object of class employee
};

10 3087 CH09 11/29/01 2:22 PM Page 416

Here’s the full-scale listing for EMPCONT:

// empcont.cpp
// containership with employees and degrees
#include <iostream>
#include <string>
using namespace std;
//
class student //educational background

{
private:

string school; //name of school or university
string degree; //highest degree earned

public:
void getedu()

{
cout << “ Enter name of school or university: “;
cin >> school;
cout << “ Enter highest degree earned \n”;
cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;
cin >> degree;
}

void putedu() const
{
cout << “\n School or university: “ << school;
cout << “\n Highest degree earned: “ << degree;
}

};
//
class employee

{
private:

string name; //employee name
unsigned long number; //employee number

public:
void getdata()

{
cout << “\n Enter last name: “; cin >> name;
cout << “ Enter number: “; cin >> number;
}

void putdata() const
{
cout << “\n Name: “ << name;
cout << “\n Number: “ << number;
}

};
//
class manager //management

Inheritance

9

IN
H

ER
ITA

N
C

E
417

10 3087 CH09 11/29/01 2:22 PM Page 417

{
private:

string title; //”vice-president” etc.
double dues; //golf club dues
employee emp; //object of class employee
student stu; //object of class student

public:
void getdata()

{
emp.getdata();
cout << “ Enter title: “; cin >> title;
cout << “ Enter golf club dues: “; cin >> dues;
stu.getedu();
}

void putdata() const
{
emp.putdata();
cout << “\n Title: “ << title;
cout << “\n Golf club dues: “ << dues;
stu.putedu();
}

};
//
class scientist //scientist

{
private:

int pubs; //number of publications
employee emp; //object of class employee
student stu; //object of class student

public:
void getdata()

{
emp.getdata();
cout << “ Enter number of pubs: “; cin >> pubs;
stu.getedu();
}

void putdata() const
{
emp.putdata();
cout << “\n Number of publications: “ << pubs;
stu.putedu();
}

};
//
class laborer //laborer

{

Chapter 9
418

10 3087 CH09 11/29/01 2:22 PM Page 418

private:
employee emp; //object of class employee

public:
void getdata()

{ emp.getdata(); }
void putdata() const

{ emp.putdata(); }
};

//
int main()

{
manager m1;
scientist s1, s2;
laborer l1;

cout << endl;
cout << “\nEnter data for manager 1”; //get data for
m1.getdata(); //several employees

cout << “\nEnter data for scientist 1”;
s1.getdata();

cout << “\nEnter data for scientist 2”;
s2.getdata();

cout << “\nEnter data for laborer 1”;
l1.getdata();

cout << “\nData on manager 1”; //display data for
m1.putdata(); //several employees

cout << “\nData on scientist 1”;
s1.putdata();

cout << “\nData on scientist 2”;
s2.putdata();

cout << “\nData on laborer 1”;
l1.putdata();
cout << endl;
return 0;
}

The student and employee classes are the same in EMPCONT as they were in EMPMULT, but they
are related in a different way to the manager and scientist classes.

Inheritance

9

IN
H

ER
ITA

N
C

E
419

10 3087 CH09 11/29/01 2:22 PM Page 419

Composition: A Stronger Aggregation
Composition is a stronger form of aggregation. It has all the characteristics of aggregation, plus
two more:

• The part may belong to only one whole.

• The lifetime of the part is the same as the lifetime of the whole.

A car is composed of doors (among other things). The doors can’t belong to some other car,
and they are born and die along with the car. A room is composed of a floor, ceiling, and
walls. While aggregation is a “has a” relationship, composition is a “consists of” relationship.

In UML diagrams, composition is shown in the same way as aggregation, except that the
diamond-shaped arrowhead is solid instead of open. This is shown in Figure 9.13.

Chapter 9
420

Car

Doors Engine

FIGURE 9.13
UML class diagram showing composition.

Even a single object can be related to a class by composition. In a car there is only one engine.

Inheritance and Program Development
The program-development process, as practiced for decades by programmers everywhere, is
being fundamentally altered by object-oriented programming. This is due not only to the use
of classes in OOP but to inheritance as well. Let’s see how this comes about.

Programmer A creates a class. Perhaps it’s something like the Distance class, with a complete
set of member functions for arithmetic operations on a user-defined data type.

10 3087 CH09 11/29/01 2:22 PM Page 420

