Example-2.1 : Consider an quadratic equation

2~ (3+2)r+2+e¢=0 (2.1.1)
when € = 0 then (2.1.1) reduce to
2 —3r+2=0= (z—-2)(r—1)=0 (2.1.2)

whose roots are x = 1 and 2. Equation (2.1.1) is called perturbed equation where as

equation (2.1.2) is called un-perturbed or reduced equation.

Stepl : In determining an approximate solution is to assume the form of the expansion.

Let us assume that the roots have expansion in the form
I:I0+€$1+62$2+... (213)

Here the first term z is the zeroth-order term, the second term ex; is the first order term

and the third term €?z, as the second order term.

Step2 : Substitute equation (2.1.3) in equation (2.1.1)

(mo +exy + g+ ..)2 = (B3+2) (o +ery +..) +2+e=0 (2.1.4)

Step3 : Using binomial theorem to expand the first term

(zo + exy + 1y + ...)% = 25 + 270 (€1 + €0 + ...) + (€71 + 29 + ...)2
= x?) + 2exguy + 263wy + e%f + 2630 w0 + €122 + ..

= x5 + 2ex071 + (22072 + 23) + ... (2.1.5)
Similarly,

(34 2¢) (w0 + exy + 39 + ...) = 330 + ey + 327 + 2ewg + 26311 + ...

= 3I0+€(3.’E1 +2£C0) +€2(31’2+2.’E1) + ... (216)
Substitute equation (2.1.5)and(2.1.6) in equation (2.1.4)

75 + 2emomy + (27070 + 77) — (370 + (311 + 270) + (312 + 271)) + 2+ € =0



Collect the co-efficient of like powers of € yields,

(x5 — 370 + 2) + €(2moz1 — 371 — 220 + 1) + (23072 + 75 — 339 — 271) + ...

Stepd : Equating the co-efficient of each power of € to Zero.

22— 300 +2=0
2x0x1—3x1—2x0+1:0

270T9 + 17 — 379 — 271 = 0
From equation (2.1.8),z9 = 1,2, when 27 = 1 equation (2.1.9) becomes
1+1=0=2,=-1
When zy = 1 and z; = —1 equation (2.1.10) becomes
200 +1 =329 +2 =10

=>1—-3=0=>2,=3

When xy = 2, equation (2.1.9) becomes
r11—3=0=>x1=3
equation (2.1.10) = 2o +3=0= 25 = —3
Stepb : When g =1, z; = —1 and 7o = 3
Equ'(3)=x=1—¢c+3+ ...
When 2y =2, r1 =3 and 2, = —3

Equ*(3) = x =2 + 3¢ — 3¢

(2.1.7)

(2.1.8)
(2.1.9)
(2.1.10)

(2.1.11)

(2.1.12)

.. Hence Equ™(2.1.11) and (2.1.12) are the approximations for the two roots of (2.1.1).

Now, to verify this approximation are correct, we compare with the exact solution.

72— (34202 +2+e=0

1
:>:L’:§[3+26:l: V(34 26)2 —4(2 +¢)

1
:>.’17:§[3+2€:|:\/1+86+4€2]

(2.1.13)



Using binomial theorem, we have

(3)(5)

5 (8¢ + 4e*)? + ...

1
(1+ 8¢ +4€2)% =1+ 5(86 + 4¢) +
1
=1+ 4e+26% - 5(6462 +...)
=1+ 4e+26 — 8 + ...

= 1+4e— 6" + ...
Substitute this value in Equ"(13), we have

1
x:§®+zﬂ+y+%—68+“)
=2+3c—3+ ...

1
ZC:§(3+26—1—46—|—662—|—...)

=1—c+3+...
Which are same as equation (2.1.11) and (2.1.12).

2.2 Singular Perturbation Theory

It concern the study of problems featuring a parameter for which the solution of the
problem at a limiting value of the parameter are different in character from the limit
of the solution of the general problem. For regular perturbation problems, the solution
of the general problem converge to the solution of the limit problem as the parameter

approaches the limit value.

Example-2.2: Consider,

e’ +r+1=0 (2.2.1)

Since equation (2.2.1) is a quadratic equation, it has two roots. For ¢ — 0 Equation

(2.2.1) reduce to

r+1=0 (2.2.2)
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Which is of first order. Thus x is discontinuous at ¢ = 0. Such perturbation are called

singular perturbation problem.
T =x0+ €xy + 19 + ... (2.2.3)
Putting this value in Equation (1)

e(ro+ery+...)+ro+er;+...+41=0
= ¢ (2§ + 2exozy +...) + 2o+ ez + ... +1=0
:>EZ(I(2)+262270371+...+5L’0+€$1+...+1:0

= e(xf+a1)+20+1=0
Equating co-efficient of like power of € gives

$0+1:0

When 2o = —1 , x1 = —1 So one of the root is
r=—-1—€e+.. (2.2.4)

Thus as expected the above procedure yielded only one root. We investigate the exact

solution i.e. ,
1
T= 5 (—1+v1—4e) (2.2.5)
€

Using binomial theorem we have

V1—4de=1-2e+ <%>(%1>

TR (—de)* + ...
=1—2¢—2+ ... (2.2.6)
Substituting (6) in (5)
—1+1—2—2e2+ ...
P e S S ML I (2.2.7)
2€
—1—-14+2+22+... -1
T = +26+ < =—+1+e+.. (2.2.8)
€ €

11



1

Therefore, both of the roots go in powers of ¢ but one starts with e~*. Hence it is not

surprising that the assumed expansion in (2.2.3) is failed to produce the root (2.2.8).
consequently one can not determine the second root by a perturbation technique unless
its form is known. In those cases, we recognize that, if the order of the equation is not
to be reduced, the other tends to oo as ¢ — 0 and hence, assume that the leading term

has the form

= < 2.2.9
= (229)

Where v must be greater than zero and needs to be determined in the course of analysis.

Substitute (2.2.9) in (2.2.1)
ey ey +1+...=0
Since v > 0, th second term is much bigger than 1 . Hence the dominant part of (2.2.9) is
€7 'y =0 (2.2.10)
which demands that power of € be the same.
1-2v=—v =wv=
Forv=1 =y=o0or—1.
The first value y = 0, correspond to the first root + = —1 — €. For y = —1, it

corresponds to second root. Thus it follows from (2.2.9)

-1
r=—44..
€

To determine more terms in the expansion of second root, we try

-1
r=—+z0+... (2.2.11)
€

Substitute it in equation (2.2.1)

~1 1
:>€(T+SE0—|—> —?+$0++1:0

-1% 2z —1
:>6<— +—0+x(2)+-.->—?+370+1+~~:0

= 2z0+z0+1+0O(e) =0
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= xo = land equation (2.2.11) becomes

1
r=—4+1+..
€

Alternatively, once v has been determined. We view (2.2.9) as a transformation from z

to y. Then putting r = ¥ in (2.2.1) yields,

v +y+e=0 (2.2.12)

Which can be solved to determine both the roots because € does not multiply the highest

order.

2.3 Perturbation Theory For Differential Equation

Example-2.3 : Consider,

d*y dy dy
Let us assume the expansion
y(7) = yo(7) + ey (1) + €ya(7) + O(e*) (2.3.2)

Substitute Equation (2.3.2) in (2.3.1)

Py dy
e =
772 + EdT + 0

s () + () + () + O))

+ edilT (50(7) + eva(7) + () + O()) +1 =0

d*yo d*y, | dyo o ( Py | dy 3
:>F+1+€(F+E tel o2t +O(€) =0

Equating the co-efficient of € , it becomes

d*yo dy_o
:>W+1_07 yo(O)—07 dT(O>—
Py dy dyr
Tt =0 n0)=0, —2(0)=0
d2y2 dyl dyl
ZJ2 It = —(0) = 2.3.
iz T =0 =0 (0 =0 (2:3:)

13



By solving the above equation we will get

7_2

yo(t) =7 — 5 (2.3.4)
2 13

g (1) = -5 (2.3.5)
3 4

(7)==~ 51 (2.3.6)

Putting these values in equation (2.3.2), we have the solution

-2 72 .3 . B—1
y(r) =71 — 5 +e (T+E> + € (E_ﬂ> + O(e?)

14



CHAPTER 3

3 Homotopy Perturbation Method

In recent years, the Homotopy Perturbation Method has been successfully applied to solve
many types of differential equation. It was proposed by ”Ji-Huan He” in 1999 . Dr. He
used HPM to solve

1. Lighthill equation
2. Duffing equation
3. Non-linear wave equation

4. Schrodinger equation

In the homotopy perturbation technique we will first propose a new perturbation tech-
nique coupled with the homotopy technique. In topology two continuous function from
one topological space to another is called "homo-topic”. Formally a homotopy between
two continuous function f and ¢ from a topological space X to a topological space Y is

defined to be a continuous function
H:Xx[0,1] —Y
such that
H(z,0) = f(z) and H(xz,1)=g(x) ,VreX
The homotopy perturbation method does not depend upon a small parameter in the
equation. By the homotopy technique in topology, a homotopy is constructed with an

embedding parameter p € [0, 1] which is considered as a small parameter.

3.1 Basic idea of HPM

Let us consider the non-linear differential equation

Alu) — f(r)=0, reQ (3.1.1)



with boundary condition

rel (3.1.2)

Where A is a general differential operator , B is a boundary operator. I' is the boundary
of domain Q. f(r) is a known analytic function. Now, the operator A can be divided
into two parts L and N, where L is linear and N is non-linear. Equation (3.1.1) can be

written as follows
L(u)+ N(u)— F(r)=0 (3.1.3)
By the homotopy technique, we construct a homotopy
v(r,p): Q2 x[0,1] — R,
Which satisfies
H(v,p) = (1 = p)[L(v) — L(uo)] + p[A(v) = f(r)] =0, pe0,1], re (3.14)

H(v,p) = L(v) — L(ug + pL(ug + p[N(v) — f(r)] =0

Where, wg is an initial approximation of equation (3.1.1), which satisfies the boundary

condition. From equation (3.1.4)

H(v,0) = L(v) — L(uy) = (3.1.5)
H(v,1)=A(w) — f(r)=0 (3.1.6)

The changing process of p from zero to unity is just that of v(r,p) from wu(r) to u(r). In

topology, this is called deformation and L(v)— L(ug) and A(v)— f(r) are called homotopic.

In this paper, we will first use the embedding parameter p as a small parameter and

assume that the solution of equ™(3.1.4) can be written as a power series of p.
v = vy + pv; + PPy + ... (3.1.7)
setting p = 1, results the approximate solution of equ™(3.1.1)

w=limv = vy +v; + vy + ... (3.1.8)

p—1
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The series (3.1.8) is convergent for most cases, however the convergent rate depends upon

the non-linear operator A(v).

Example 3.2: We will consider the Lighthill equation

d
(m+ey)£+y:0, y(1) =1 (3.2.1)

By the method, we can construct a homotopy which satisfies

dy d dy
(1-p) {GY% - Gyo%] +p {(a: + ey)% + Y} =0, pel0.1] (3.2.2)

We can obtain a solution of (3.2.2) in the form
Y(x) = Yo(z) + pYa(z) + p°Ya(z) + ... (3.2.3)

Where Y;(x);i = 0,1,2, ... are functions yet to be determined. By considering only first

two terms of the above equation substitute equation (3.2.3) into equation (3.2.2)

dYo dYy dyo
1-n e (g0 G ) -y
aYy Y,

+p {(x‘f’ﬁyo‘i‘prl) <E +p%> + (Yo +le>} =0

dY, dY; dY, dY; d
= (1) Yo (S0 + S0 ) oy (S0 + 50 ) - g™
dx dx dz

dx dx
dYy  dv; B
+p {($+€Yo+€py1) (E +p%> + (Y +py1)} =0
dy; dYy dyo
Viet 4 (1—p) | Vo= — eyg—22
= epYr——= + (1 - p) le 0 eyodw]

dY; dYq dY;
+p {(x%—e%)d—;JrYo] + ep’Y) <—$0 +p—xl) +p’Y1 =0

Now, we get

1) dyo
EYE)_CZLE — Yo = 0 (3.2.4)
dY; dY;

The initial approximation Yy(z) or yo(x) can be freely chosen. Here I set

Yo(x) = yo(x) = —g Yo(1) = ! (3.2.6)

€
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So that, the residual of equation (3.2.1) at x = 0 vanishes. Then substitute equation

(3.2.6) into equation (3.2.5),

dY; . dYy =
Sl [ty Bl
Y
:>6Y1E—£:O
dx €
dY,
:>6Y1—1:E
dz €

Integrating both sides, we get

:>62Y—12:l2—|—c
2 2
= Y2 =2? + 2
Va?+2c
A —
=Y = Va2 + 2 (7)

Putting the initial condition ¥1(1) =1—-Yy =141,

1
$6(1+_):m
€

=14+e=+v1+2c
=14+ +2=1+2¢
N €2 + 2¢
c =
2

Now, putting this value in equation (3.2.7) we get
1
Yi = Va2 + 2+ €2
€
Substitute this value in equ™(3.2.3) ,
1
= Y (2) = Yo(z) + Yi(z) = - <—:c + Va2 + 2+ 62) 8)
€

Which is the exact solution of equ™(3.2.1).
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CHAPTER 4

4 Application Of Homotopy Perturbation Method

4.1 Derivation of Blasius Equation

For a two-dimensional flow, steady state, incompressible flow with zero pressure gradient

over a flat plate, governing equation are simplified to

ou v,
or Oy
ou  Ou 0u
U™+ V7 =

ox oy~ Vo2

subjected to boundary conditions

y:O s u =
Ju
y=00 , u 3y
Take
YTy U U pUZ

take the stream function ¢ defined by

=/ vrUsf(n)

f is a dimensionless function of the similarity variable 7 .

Y

= Ve /Uy
Now,
_ 9 _9¢ on

YTy T ooy

— 1
= ]ja’/‘l/ ! —_—
7o) Ve /Uy
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similarly,
_ 0[O i) + Tl
v=—om= B vaeUs f(n) + Vono%f(m}
[ vU,

B 1 o af , 1 ya:_%
= - f(n)§ . +\/qu00%(—§) Tl

B :1 vUs  1Usydf(n)
= - E,f(n) 92 2 dﬁ]

1 _/VUOO df
=5\ [nd_n — f} (4.1.7)

ou f oy 1
—_— = UOO_ —
ox dn? V/UOO(Q)L
Ul &

2z ! dn?

Now,

(NI

(4.1.8)

ou  d*f 1

dy A o fUs

U, &*f

- o (4.1.9)

Pu_ 0 Us &F
Oy Oy \ \Jvz/Us dn?

UL [(#F 1
v Ug \ A0\ v U
U dBf

= — 4.1.1
ve dn? ( 0)

Putting this value in equation (4.1.2), we get

’ g[ s, dQ_f}Jrl VU {nﬁ—f} U @f _ Usrd'f
Fdn | 2z dn? 2V v /Uy dn? vr dn3
U2 df f UL [ df | 2f UL dPf
1 1! =
ndf &f ndf &f 1, df df
2°dn dng? T 2°dy dn2 27 dn?  di?
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= 4.1.11
~ dn? * 2f dn? 0 ( )
With boundary condition,
df
n=0 , f= d_TZ =0
n— oo 4 1 (4.1.12)
dn

4.2 Solution of Blasius Equation By Homotopy Perturbation
Method

So, to get a solution of equation (4.1.11) by the homotopy technique, we construct a
homotopy
v(r,p): Q2 x [0,1] — R,
Which satisfies,
H(v,p) = (1 = p)[L(v) = L(uo)] + p[A(v) = f(r)] =0, pe0,1], reQ
or

H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)] = 0 (4.2.1)

Where, 1y is an initial approximation of equation (4.2.1), which satisfies the boundary

condition.
Now, from equation (4.1.11)

PE 03f, PFEF  O*F
10 (GG ) o (G o 5) =0

or,

PF Bf, »Bfy F PR\
(8_173_ 8773>+p<8773 +§+8—772)—0 (4.2.2)

Suppose that the solution of the equation (4.2.2) to be in the following form
F=Fy+pF +p*F+ ... (4.2.3)
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Substituting equ™(4.2.3) in (4.2.2) we get,

D Fy P CLOPFy,  O%fy P fo
g TP5g P 5 g P
on on on n an

B (0F | PRN R (PR PRY ]
P15 on? p6772 P on? p8772 Tl

Re-arranging the co-efficient of the terms with identical powers of p, we have

o . PR Pfo _
L o3 O
S P F n Pl | Fo 0Ky _
ooy o3 2 On?
PFE, F0°F, F0*F
P 832+—1 S+ =0
n 2 On 2 0On
PF. Fy 0*F, Fy 0% I Fy O*F:
3 3 107k 2 07 kg 00" F3
: L L L 1.24
b 8n3+28n2+28n2+28n2 ( )

First we take Fy = fy. We start iteration by defining fy as a Taylor series of order two

near ) = 0, so that it could be accurate near n = 0.

f”( ) 2

= fo="—"1"+ f(0)n + f(0)

Let us take f”(0) = 0.332057, [5] and from the given boundary condition f = 0 and
f'=0. So,

0.332057
Jo= 9 772

= 0.16602857*

Now, taking this value to solve F from (4.2.4)
PFPr Pl | R PPF
on? on? 2 On?

33F1 F() 82F0

=0

ond 2 on?
0.1660285 , 02
= 16602
A —(0.1660285)n
P
87731 = —(0.1660285)%.1°
2 "75
Fy = —(0.1660285)>.
1 = —(0.1660285)%. 5~ —

= F| = f; = —0.00045942n°
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Similarly from (4.2.4) we can easily calculate the value of f, f3,... as

For the assumption p=1, we get

f(n) = 0.16602851> — 0.000459427° + 0.000002491° — 0.000000017"!

Results:

f(n)
n | HP.M | Blasius
0 |0 0
0.5 | 0.0415 | 0.0415
1 |0.16550 | 0.1656
1.5 | 0.3701 | 0.3701
2 10.6500 | 0.6500
2.5 [ 0.9962 | 0.9963
3 |1.3964 | 1.3968
3.5 1.8350 | 1.8377
4.0 | 2.2897 | 2.3057

25

fo = 0.000002497°

fs = —0.000000017"

o]

H.P.M.

Blasius

(4.2.5)

(4.2.6)

Figure 1: The comparison of answers obtained by H.P.M and Blasius’s results for f(n).
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['(n)
n | H.LP.M | Blasius
0 10 0

0.5 ] 0.1658 | 0.1659
1 10.3298 | 0.3298
1.5 | 0.4867 | 0.4868
2 1 0.6297 | 0.6298
2.5 0.7511 | 0.7513
3 | 0.8445 | 0.8430
3.5 0.9027 | 0.9130
4.0 0.9028 | 0.9555

0.9F

Daf

0.7F

06F

0AF

H.P.M.
< Blasisu(exact)

04F

0.3F

0.2F

0F

=1
=i

Figure 2: The comparison of answers obtained by H.P.M and Blasius’s results for f'(n).

24



5 Conclusion

In this research project paper, we have studied a well known Blasius boundary layer
equation. We have applied homotopy perturbation method to solve this non-linear differ-
ential equation. From fig. 1 we conclude that the obtained results for f(n) have excellent
accuracy with the Blasius solution of Howarth [2]. Similarly in fig. 2 we also have approx-
imate accuracy for f’(n). The proposed method does not require small parameters in the
equations, so the limitation of the traditional perturbation technique can be eliminated.
The initial approximation can be freely selected with possible unknown constants. The
approximation obtained by this method are valid not only for small parameter, but also
for every large parameters. So, the homotopy perturbation method can applied to various
non-liner differential equation. In this project paper, I came to know about perturbation
method and homotopy perturbation method to solve various non-linear differential equa-
tion. I also learned the latex software to write mathematical code. In my future work I

will employed all this methods so that I can solve any non-linear problems easily.

25



References

1]
2]

Nayfeh, A.H., Introduction to perturbation technique, Wiley, New York, 1981.

Howarth, L., On the solution of the Laminar Boundary-Layer Equations, Proceedings

of the Royal Society of London, A.164:1983, 547-549 .

He, J.H., Homotopy perturbation technique, Computer Methods in Applied Mechanics
and Engineering. Vol.178, 1999, 257-262 .

He, J.H., Homotopy perturbation method for solving boundary value problems.

Physics letters A Vol.350, 2006, 87-88, .

Ganji, D.D., Soleimani, S., Gorji, M., New application of homotopy perturbation
method, International journal of nonlinear science and numerical simulation Vol.8(3):

2007, (319) .

Ganji, D.D., Babazadeh, H., Noori F., Pirouz, M.M., Janipour M., An application of
homotopy perturbation method for non-linear Blasius equation to boundary layer flow

over a flat plate, International Journal of Non-linear Science, Vol.7, 2009, 399-404 .

Babolian E., Saeidian J., Azizi A., Application of homotopy perturbation method to
solve non-linear problems, Applied Mathematical sciences, Vol.3, 2009, 2215-2226 .

Taghipour R., Application of homotopy perturbation method on some linear and non-

linear periodic equations, World Applied Sciences Journal, Vol.10, 2010, 1232-1235

26



