Green’s Function and the
Boundary Value Problems

unctions provide an important tool in the study of boundary val
insic value for a mathematician. We begin o

h a brief discussion of the Dirac delta functic

Green’s {
problems. They also have intr

study of Green’s functions wit

8.1 The Dirac Delta Function °

8.1.1 Motivation and background

The Dirac-delta function can be regarded as as the generalization of the Kr

necker delta d;;, when the discrete integer variables 1, j are replaced by t
continuous variables z, z’.

indexDirac delta function! properties of The Kronecker delta §ij has the f

lowing two well-known properties.

1 (5{:: J
B 6 {0 i # j

(i) A = A

These propert*
form.

. - :ﬂﬂ
S are passed over to the Dirac delta function in the foll”

z—-t)=0, t#z
dz—t)=o00, t=g
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[ 8(z — t)f(t)dt = f(z)

where the point z lies in the interval of integration and f(z) is a continuous
function.

To understand the significance of the Dirac delta function in physical situations
we consider those situations in which a large effect lasting for a short duration

or acting over 2 small stretch of length. The examples are an impulsive force
or a load over a very small part of a beam.

From a rigorous mathematical point of view the Dirac delta function is a
| particular case of a class of functions known as generalized functions.

Here we will introduce it in an intuitive way.

Consider the sequence of functions, { fn(x)}, defined over the interval (—oo, +
W 00) as follows. -

n/2, « el[—l/n, +1/n]
ax fa(z) = { 0, z ¢ [-1/n, +1/n]

Then the integral [*° fn(z)dax is the total area under the graph of the function
fn(z) and can be written as

+00 +1/n
fo(z)dz = / —dz =1
—00 -1/n 2

M.

Before proceeding further we make use of the mean-value theorem for an in-
tegral.

It states that under certain suitable conditions on a function defined over the
interval [a, b], there exists a point &n € [a, b] such that

/ e = e i (8.1.1)

Using this mean-value theorem

+o0 n +1/n n 2 ¥ 1 9
' 2)dr = = | $d$=“x—xg(§n)—'9(§n) (8.1.2;
L fale)g(z)de = [_ 4 g(x) sl
 where &, €€ [~1/n, +1/n]

. Taking the limit as 7 — 0o, we note that & = 0 because the interval [—1/7, 4
- 1/n] shrinks to zero. Hence from (11.1.2)
L [ ()g(e)ds = limg(6n) = 9(0) (8.1.3

n—o0 [~q

_



ate the integral

+ 00 9 9
/ cosx 6(z* — 7°) dx

,1on

we note that the range of integration is from it 0 to 2m ra‘ther than —og
o. Therefore out of the two zeros of the Dirac delta function at z = £

se consider only the zero at x = 7.

Sl — m2) = (1/27) [6(x — 7) + &6(z + 7)]

>fore
2n 1 +00 2
/ cosz §(x? — 7?)dx = — / 5z +2/3)z° dx
0 21 [ oo

¢ = — is outside the interval of integration we can write
S ik il 5 J 1 1
= — - = — COST = —+—
given integra - /0 cosz 6(x — m)dx e =

6 Exercises

alculate the integral [ sin'a: é(x — m/2) dz. |
alculate the integral [ (5z — 4z + 2) 6[(z — 2)/3) exp(2z)] dz.
alculate the integral [ 2% d(x + 7/3) da.

alculate the integral f06°(5$ — 4z + 2) §(z? — 5z + 6) exp(—3z)] dz
alculate the integral f(;'(a:2 -~ 21 + 7) 6(z® — 16)dz

alculate the integral f_'_":f (3z% — Tx + 2) 6(z2 — 5z + 6) exp(—3z)] dz

Green’s Functions

1 Motivation for Green’s function

sically Green’s function (also called response function) is the response 0%
>onding to unit source. For example in electromagnetic theory the potentlf"l.

s field point r due to a unit charge (unit source) at a point r’ is the Gree?
ction G(r, r’), defined by
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G(r, r') =kq/lr —r'|

where ¢ 18 the charge at the field point, Sirni]

= . ar . [ 14 sk
o B8 point due to a unit mass ( ly the gravitational potentia)

unit g ).ia |
Source) is the Green function in this cose

ok

8.2.2 Formal definition and connecti , _ '
£ ‘tion with Y OMOTa

neous DEs 62 linear inhomoge-

Let L bf’ a linear dl.fferential operator (of order 2 or more), I = L(z ), acting
on a point ¢, Qf the interval of definition, which may be taken as [a, b]. Then
Green’s function for the operator L, denoted by G(z, t), is any solution of

LG(z, t) = 5(z — 1) (8.2.1)

where 0(z — t) is the Dirac delta function. This defining property of Green’s
function can be used to solve the inhomogeneous linear equation

LG(z, t) = f(z) (8.2.2)

Because of d(x — t), we note that. like the Dirac delta function, Green’s
functions are generalized functions rather than ordinary functions.

Green’s functions are useful tools in solving initial-boundary value problems
associated with heat and wave equations.

Sometimes a Green’s function is defined by LG(z, t) = —6(z — t) with a
negative sign on the right side, but this does not significantly change any of

the properties of the Green’s function.

If the operator L is invariant under translation, which will be the case when
the coefficients are constant w.r.t. z, then Green’s function can be written as
as G(z, t) = G(z — t), i.e. a convolution operator.

8.2.3 Solution of the inhomogeneous linear ODE in terms of

Green’s function

operator L exists, then we can mul-

Green’s function corresponding to the t. ¢ (over the interval of definition)

ply (8.2.1) with f(¢) and integrate W.I.
and obtain

[LG(z, t) f(t)dt = [L(z 1) f(t)dt = f(z)

: %&m—- ‘iﬂ’.‘ o= o o - =W MR TR SRS r.’l“ Therefore



Lu(z) = [ LG(z, t) f(t)dt (8.2.3)

r::(::,hthe o.perator L = L(z) is linear and acts on the variable z alone (an
ot the variable ), we can take the operator L out of the integral on the righ

de of (3), thereby obtaining
Lu(z) =L ([ G(z, t) f(t)dt)
hich suggests that

wls) = [ Glx, t) f(t)dt (8.2.4)

\

he above equation shows that we can obtain the solution u(z) on the bas
f our knowledge of Green’s function in (8.2.1), and the source term on t
ight side in (8.2.2). This process depends on the linearity of the operator

Green’s function may not exist for every operator L. A Green’s function c
also be thought of as a right inverse of L. Apart from the difficulties of findi
a Green’s function for a particular operator, it may not be easy to evalus
the integral in equation (8.2.4). However the method gives an exact solutic

8.2.4 Green’s function for solving inhomogeneous BV Pro
lems

The foremost use of Green’s functions in Applied Mathematics is to solve inl
mogeneous boundary value problems. Let L be the Sturm-Liouville operat

L) = (d/dz) {p(z) d/ dI} + q(z)

and let B, the boundary condition operator be defined by

L gurd i u(a) + ag v/(a)
Bu={ fralty + et (h

Wg suppose that the function f(z) is continuous on the interval [a, b].
also suppose that the B.V. problem defined by the equations
Lu(z) = f(z), Bu=0

s a | Hie : |
the ;;‘t:lmm REsams:, Fhie roquires that only the trivial solution will exist
¢ associated homogeneous system.

e following ‘theorem gives the relationshi
& for 2 regular SI, system. he solution a
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ue solution f
There iS & uniq b thfp Problem defined by the equ

Lu(x) Je)y By 0

ations

and is given by

= J G(z, t) f(t)dt
where G(z, t) is Green’s function. It possesses the following properties.

(i) G(z, t) is continuous in z and t.

(if) For = # t, it satisfies the DE LG(z, t). In other words in each of the
subintervals [a, t) and (¢, b]. _

(iii) It satisfies the BCs BG(z, t) = 0 for = +# t.

(iv) DE G'(x, t), considered as a function of z has a jump discontinuity at
z =t. This result can be stated as follows:

G'(t+0, t)-G'(t-0, t)=1/p(t)

(v) It has the symmetry property: G(z, t) = G(t, =), (when G(z, t) is real).

8.3 Green’é Functions for Initial/Boundary Value

Problems ;
A
5
We consider the SL equation J )'\0
# {p(fv) -‘-‘-"i} +q()y = 1) (831

utions of the homogeneous DE associatec

If t sol
Y1, y2 are linearly independent s 1l be complementary function of the DE

with (8.3, 1), then y = c1y1 + c2y2 W1
(83.1). |

cular solutior

p = vl "’W

£(©)y2(t) 8.3.2)
+ () / N OLAO) - :
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where W(t) is the Wrnskian of the functions y;(t), y(t).

We now discuss initial and boundary value problems. For each type of problem.
we will show that its solution can be written as

b
y(z) = a1 (z) + coy(z) ~'r/ G(z, t) f(t)dt (8.3.3)
a

where (z, t) will be found to be Green’s function. The knowledge of Green’s
function in each type of problem will enable us to determine the solution.

8.3.1 Green’s function for the initial-value problem

Here we start with the same DE, viz.. (8.3.1) but with initial conditions y(0) =
0, ¥'(0) = vp We have taken the DE in the form of an 5 L equation because
every second order linear ODE can be written in this form.

We first recall that any linear inhomogeneous ODE of the form Ly = iz
where L is a linear differential operator of S L type, then its general solution
will be y = y. + y, where y. (complementary function) is general solution of
the associated homogeneous ODE Ly = 0 and y, is a particular solution of
the given inhomogeneous ODE: Ly = f(z).

Because of this general result, we can reduce this I.V. problem to two separate
I.V. problems. To do that we will assume that the homogeneous S L equation

satisfies the original initial conditions. In other words we will first solve the
following problem: :

E‘j_v {p(a:) %} +q(z)¥e =0, ¥(0) =yo, v (0) =w

We further assume that particular solution y, is a solution of the following
problem

2P R} +d@w = 1@, wO =0, oy =0 @3

The above 1.Cs. for yp can be obtained from the original 1.Cs. for y(z}
follows. .

~ ¥(0) = yc(0) + ,(0) = yo + y,(0) wherefrom y,(0) = 0

. i b y(0) = y.(0) + y;(O) = vg + y,(0) wherefrom ;;,(0) = (.

. _fﬁéﬁ,m?lemmm function we have y. = cjy; + s o~
iy ly independent solution of the homogeneous S L. equation Iy *TH 8




e ———— 1Y Value Problems g

Jext we will determine particular integra] Yp, and ys
of Yp determine the associated Green’s function_ To find Y
arintion of parameters and start with Yp = v1(z) y) () + v2(%) y2(x), where

v, are unknown functions to be determin )

N

hat
1 v (z) = — ¥2(2) f(z) v (z) = Y1(2) f(z)

p(x) W(x) ™2
wherefrom we can obtain expressions for v (
Ny — y21/, is the Wronkian of the solutions
n Yp = V1 (z) yl(a:) ' Uz(-’E) yz(x), we obtain

z), va(z). (The function W(z)

Y1, Y2). Therefore on substitution

PR
—_—

—Y2(z)f(z z) f(x)
Yp(Z) = y1(z) / p%i()d/f(i)) dz + yo(z) / ";zg(:)w(x) dzx

which can also be put in the form

® ()1 (8) * ya(t)£(8) 4
() =) / 1 ;’Zt()w(t) e / e 6

where the lower limits can be determined from the initial'vconditions 0=
0, ¥,(0) = 0. To do this we put z = 0 in (8.3.5) and obtain
» Ip -

% 41(0) f () Y p®f) 4, (8.3.6)
Yp(0) = y2(0) /;.,- i ﬁ,}ﬁ)‘)wt) dt — 41(0) », POW ()

| 0w (0)f() ,, (8.3.7)
 yp(0) = y2(0) /m%]mjdt

| ' D) = 0.
In (8.3.7), if we put z; =0, we get yp(0)

' : /(0) = 0. Then from (8.3.5) by qiﬁeren-
Next we will consider the case when yp(

Hation we obtain

- o) g @l ((f))%g
I e
R ® f(t)ya(t) 4y y1() p(z)W (z)

- (=) /x (DWW |

“hich on simplification becomes



wIETre we have used Leibnitz formula for differentiation under the integral

d a(x)
- fo f(t)dt = o/ (z) f(a(z))

If we put 2 = 0 op both sides of (8.3.8), we have

t)y2 t)
= 0 will give 75 = 0, provided that y1(0) # 0.

The condition y,(0)

Therefore we have found that

i yi(t) f(t f(t )yz(t)
yp(x) yg(.’l?) / (t W(t ( ) / (t)W(t)
which can also be put in the form
“y1(V)y2(z) — y1(x) ya(t)
(o) = [ 2 w0

The above expression for particular function Yp(x) can also be written as

(8.3.

bo(z) = /0 "Gz, 8) /() dt -

where

' 1 AL ) — ) ys(t
Gz, 1) = L ;(i)wy(ltg L5al0) (8.3.

is Green’s function associated with the initial value problem.
Summary

The material discussed above can be summarized in the following theore
which contains the procedure for constructing Green’s function.

| Theorem

[ -

The solution of the initial-value problem (8.3.4) is given by

e y(2) = ye(z) + [D "G, ) £(t) dt (8.3.1

where

T y1(t)y2(r) — yi(x) Y2 (1)
, 1) =
e, Y p(OW (t)
and solution of the homogeneous DE is Ye = a1y + ¢
mnditiqns yé(o) Yo, yc(o) = Ug.

%mwrat@ the methnd 1'\" ST e el T

(8.3.14

. : itia
Y2 subject to init



e

mogene

d () dy
de |7V g { THE = M), acn b (8.3.15)

with B.Cs. in the form y(a) = 0, y(b) = 0.

It may be pointed out that general theory will be applicable to other forms
of homogeneous B.Cs. We start with the solution in the form y = y. + y, =
a1 + cay2 + Yp, or written in full p =

=it | S8 a- [ 20

We will absorb the coefficients c¢;, c; into the integrals with limits z;, =
in such a way that the solution can be written as a single integral involving
Green’s function. In other words

y1(t ya(t) f(t) (t)
y(z) = ya(z) / t)W(t) dt— 1(z) / (t)W(t) (8.3.16)

In this form the constants z;, zo are new constants.

Next we will impose conditions on the solutlons of the homogeneous S L equa
tion such that y;(a) = 0, y2(b) =0 and ya(a) # 0, n(b) # 0.

From (8.3.16) .
IO . o [*2OfO
V) = wlo) | “——*iéf)iv(t) -0 [ e
- v (S 5 (8.3.17)
= ya(a) / p—%t)W(t)

A When ¢ — b we find that

| OO 4,
y(b) = —y1(b) / wt)w )

. The two equations for y(a), y(b) will vanish when Z1 = ¢ 9
Of these results we can write

y(z) = m(:x:)- /'” ;y-}-g-t')—;{:—%% dt — y1(z)

1) 4 (8.3.18)
/ p(t)W (t) /
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Now we construct Green’s function in such a way that the solution can be
xpressed as a single integral. From (8.3.18) with interchange of limits in the
iecond integral on the right side, we have

T b b o(t) f(t
yl(t)f(t) dt+y1(13) / M 14

\\r { y(z) = yz.(:v)/a SOW D) | sowa
i

i : 3.3.19)

b ~ B /a G(z, t) f(t)dt (8.3.18
where x

yl(t)yz(:c)/p(t)W(t), a<t<® (8.3.20)

| Lok { v (2)y2(t)/pPO)W (), =< t<b

8.3.3 Illustrative examples

In this subsection we will illustrate the method of constructing Green'’s func-

tion for initial and boundary value problems,
above. ; A W

Example 1 \:,

"
/

Find the solution of the forced harmonic oscillator problem. ?

y"(t) + y(t) = 2cost subject to the initial conditions y(0) = 4, ¥'(0) =0
where dash denotes differentiation w.r.t. time .

Solution

The problem can be solved by one of the standard methods of solving a linear
inhomogeneous ODE. However we will the method based on Green’s function:

This method consists of two parts. First we solve the associated homogeneows
DE, viz. y’(t) + y.(t) = 0 subject to the given initial conditions ye(0) =
{4

General solution of the homogeneous DE g/ (t) + yc(t) = 0 is y. = €100
jo == ELERERY

czs'%nt. Applying the 1.C. y.(0) = 4 we get ¢; = 4. Therefore y. = 4.co8
czsint. The 1.C. y.(0) = 0 gives ¢y = 0. Therefore y. = 4cost.

N 3 . . Wil
ext we construct Green'’s function associated with the homogenous pl")bl“m‘
el

l - e—
| gﬂl;?)[; [;; t)y(O) : (:: ¥'(0) = 0. For this we need two linearly indep ond xﬂs
SRS () = @D t) = AR A _ i
%n(0) =0, 1(0) = 0.-’ ya(t) cost. These should satisfy the cond!

discussed in the subgjaﬁtddns (;‘\

Wi
Sc
Wi

sol
We
Th
the
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N1y — Y2¥1 = —1. Therefore

6, 3 & EMMQ

p(t)W(t) = 8int cos 7 — cog¢ sint - <}" f/

Green’s function of the given Inhomogeneoug problem is

yp(t)

o ek R

vy

Example 2

Solution

t
t
/0 G, 7 f(t)dt :/0 (sin¢ cos 7 — cogt sinT)(2cos7)dr

¢
t
: 2
2smt/ COS TdT——2cost/ SIN7T cos T dr
0

0
t
y 1+ cos 2r t
2sint / dr — 2cost sin 27 dr
0 2 0

. ‘ £
sin t (t + sn;Zt) — cost _C;b o

0

: ke 1
tsint + 5 (sint sin 2t + cost cos 2) — 5 cost

! 1
tsint + 3 cos(2t — t) — 5 cost

tsint

Solve the problem

y"(z) = 22 with B.Cs. y(0) =0, y(1) = 0, using the Green function associated
with S L boundary value problem..

; i
We first solve the homogeneous B.V. problem. The homogeneous y" = 0<he;s
solutions y = ¢1z + ¢p in each of the subintervals 0 < z <tandt <z < 1.

We need two linearly independent solutions y1, y2, one for each SUb_i?tfrvag
The B.C. y;(0) = 0 gives c; = 0. Therefore y1 = c;z. We take ¢; = 1 an
therefore y; = . o

: = (0 gives
Again for the interval t < z < 1, y2 = az + o Thef-(;-t si,x(ll) B 1%’_ ns
ko = —¢;. Therefore y; = c1(z — 1). We take ¢ = —1 a0d obtain 3

' : . B . f
- For the given DE p(z) =1 and W(z) =n yhy — y2yp = 1. Therefore

G(z, t)={ —ao(l 1), #<tg]



-
—‘ﬁ
o
.
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e solution is given by

1
yo) = [ Gl DIBE
0 . ,
- —/ t(1~:c)t2d.f,—~] o(l — t)t* dt
B x ;
B YO L ("‘3t3/3"%‘4/4)|gc
(z* — x)/12 '
Example 37

Construct Green’s function the following B.V. problem
) = 0, using the method

/() + Ky(a) = f(=) with B.Cs. y(0) =0, y(l
discussed in subsection R3.x.

Solution
(x) for the intervals

We first find two linearly im_iependent solutions ¥1(x), Y2
g<r<tandt<T< ¢. Then G(z, t) = y1(t) ya(x) [p(t) W (t)

_ 1 and the DE LG(z, t) = §(z — t) shows that
f this equation can be written as

Bee L = &/ds® + k2, p(z)
" + kiy =0for = + 0. General solution o

. Therefore we can write

yo(z) = c1(t) cos kx4 c}(t) sink

y; = ca(t) cos kx4 caft) sinks, 0 S @ < t -
and
(
| yo(z) = ca(t) cos kz + ca(t) sinkz, t < < 4 (
The B.C. y1(0) = 0 gives ¢1 = 0, therefore y; = cz(t) sin kx. (¢
The B.C. y2(£) = 0 gives c3 coS kf + cqsinkl =0 2
wherefrom ¢4 = —cs(cos k€)/(sin k£). le
On substitution for ¢4 we obtain (a
ya = (cs/ sinke) sink(z — €) = d(t) sink(z — £) - w
Using the formula '
G(z, t) = { n(t) wE)/pOW(E), 0<z <t /3.
: i (z) y2(t) /p(x) W(z), t<z <t Gre
we obtain

i § aglt) sinks, p<<t
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New we apply the continuity condition at z = ¢ and Vobtain
c2(t) sinkt = d(t) sink(t — £) which can be expressed as
Q) oo dlt)
sink(t —¢) sinkt

where the constant A can be used to express each of the constants ¢y, d in
terms of it. We obtain ¢; = Asink(t — €), d = Asinkt. Hence Green’s
function can be written as :

' Asinkzx sink((t—¢), 0<z <t
G = v A o
Gt { Asink((x — £) sinkt, t<x<¥

To determine the constant A we use the jump discontinuity and obtain
Ak[cos k(t — €) sinkt — sin k(¢ — £) cos kt] =1 or Aksin(kt — kt + k€) =1
wherefrom A = 1/(k sin k£). Therefore finally

Gla, 1) = | Sinkz simk((t —0/1/(ksinke), 0<z <t
» ¥ 7\ sink((z — €) sinkt/1/(ksinke), t<z <¢

We note that g(z, t) = G(t, x). This symmetry property has followed from
the continuity property and is not an independent property.

8.3.4/ Exercises ¢ - ,@)

1. Use the formula of Green’s functions associated with initial value problems,
discussed in subsections 8.3.1, to solve the following problems.

@ v+ -8y =2ep(3), y(0) = 1, ¥(0) = ~2/7
(b)) ¥"+2y +y=exp(2z), ¥(0) =0, ¥/(0) =0
(e) =y’ -3y =4r—6, y(1) =0, y(1)=1

“2. Use the formula of Green’s functions associated with boundary value prob-
lems, discussed in subsections 8.3.2, to solve the following problems.

V' +y=f(z), y(0) =0, y(b) =0
happens in the case when b = n, where n is an integer?

> the Green'’s function obtained above to solve the problem ¥’ + Yy =
0) =‘01 y(vr/2) =(

Find the sblm;ion of the foﬂowing initial value problems, by method of

gl

( ; reen’s funct-_ion.
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ly' + 2y =20 expl -2x), y\m =0, y'(0) =6.
y = 2sin3dzx, y(0) =5, y'(0) =0.

y=1+2cosz, y(0) =2, y'(0)=0.

EO S o . '
22y +2y =3 ~ z, y(1)=mx ¥y (1) =0

the problem y” = sinx, ¥'(0) =5, y(« =10

| the solution of the problem by direct integrating and then using the

ermine the associated Green’s function and then solve the problem.

hen the above B.Cs. are replaced with y'(0) = 5, y(m) = =3I then

he calculations of (1) and (ii).

n the problem

;2 = 8(z — mo), (8G/9z) (0, xo) =0, G(w, xg) = 0.

ve by direct integration.

1d Green’s function and compare it to that determined in part (i) of

e 4 above.

en the B.V. problem y" —y = x with B.Cs. y(0) =0, y(1) =0.

nd a solution in closed form without using Green’s function.

ind Green's function and compare it to that determined in part (i) of

se 4 above.

Green’s Function in the General Case

associated with the specific initial and

1ave constructed Green'’s functions
las of subsections (8.3.1) and (8.3.2):

\dary value problems, using the formu

now extend this method to the case of an SL system of the form y + AY =

) where L = (d/dz) [p(z)d/dx] + q(x)

i "_’ ; e that if A = 0, the problem becomes y Ay =
rator L. If the solution of the associated homogeneous proble
R o 1o oo b flnet wepiting the general 80

f(z) with the Game S‘ L

m 18 Lrivid

Jution a8
2 s
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that A = 018 not an eigenvalue of the problem,
Then the general theorem which guarantees the

existence of the (e
in such problems is stated below.

en functio

Theorem

If the homogeneous problem associated with the SL problem

PY) +ga)y = f(a)

with usual B.Cs, has trivial solution, then Green's function exists,

In other words if \ .

U, is not an eigenvalue for L(y)+Ar(z)y = 0, with usua
B.Cs.,

then Green's function exists.
We have to solve the problem associated with nonhomogeneous differential
equation

L{iv(x)} + Ar(x) y(a) = f(x) (8.4.1)

where L = (d/dx) [p(x)d/dx] + q(x) and y(x) satisfies suitable boundary con-

ditions.

The solution of the nonhomogeneous differential equation (8.2.2) sul)_)ect-to
B.Cs. is closely related to the existence of Green’s function associated with
the homogeneous equation.

L(y) + Ar(x)y = 0

Ifa function G'(x, ¢, \) which does not depend on the source function f(z)
' F AL o UL
. o~ { ) q
eXists, then the solution of (8.4.1) can be written as

(@) =[2Gz, t, A) f(t) dt

s . ) = pwet).
Gz, ¢, A) is called Green’s function and satisfies the equation L(G) = d(x~t)

-

' e s . system
841 Green’s function associated with regular S.L. sy
- Let

(8.4.2)
i L{y) + Ar(z)y =0
:‘l’{‘,. the 8.1 “quation with endpoint conditions

| s (5.4.3)
@) + agy'(a) = 0, fy(b) +Pay'(B) =0




WNRRRIAN, P

RERAE B (d/d:t:) [p(g;)(d/da:)] + q(z) and B is the boundary condit;

tor.

o + g (8/6z) and Bay = P+ P2 9/ Oz)

Bi(y)
) and (8.4.2) define a regular S. L. system, |

\ The equations (8.4.1
assumption that X=0
ial solution, the Green 1
following properties.

1. Glam, t) considered as a function of z satisfies the differenti)
L{G(z, t)} =0in each of the subintervals [a, t) and (¢, b].

2. G(z, t) is continuous for each value of = in the whole interva]
if we take limit as z approaches ¢ for each piece of the solution i [(
subintervals, then the limits should be equal. .

3. G(z, t) as a function of ' ]
po e of z satisfies the end-point conditions B,

4 e is disconti
G’ = dG(z, t)/dx is discontinuous as £ — t and moreover

i € T 1
S G la, 4~ lip s, t):;(_t_)_

8.4.2 Illustrative examples

Example 1 \4

| ¥'+dy=0 %
| , y(0) =
i y(0) =0, y(1)=0

H
.tiere p(z) =1, therefore p(t) =1 |

: (i)- First we Verify if A 8 2
al ' = iSan T y : Ve
v'=0 Wwhich gives ¢y — Az 4 BJ\ eigenvalue. With A = 0 w¢ ha
o | :
; PPly the B f
S 1 'CS, ',6'
il 3(1) =0 gives Az‘};’ 8L ¥(0) = 0 gives 0="0 +
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Thereforegi = 0 is the solution of the problem corresponding to A = 0. Th
fore A = 0'is not an eigenvalue. _ °

(ii). G(z, t) satisfies the differential equation [d%2G(z, t)/dz?| = 0, in e
of the subintervals [0, t] and (f, 1]. Therefore we have

J Az +B, 0<z<t
G(=z, t) = 1 s
(2, t) {A’m+B’, t<z<1
(iii). G(z, t) is continuous everywhere and in particular at r = ¢. Theref

At+B=At+B or B'= (A - A} + B. The Green function therefore
be written as

s, )= Az + B, 0<z<t
a4 Az + (A - At + B, t<p Y

(iv). G(z, t) satisfies the endpoint conditions G(0, t) = 0 and G(1, t) =
These give A X 0+ B=0ie B=0.
and A'+(A— A)t=00r A=[(t—1)/t] A"

- Therefore on substitution for A and A’, we have

_ J A - Dz, 0<
G(z, t) = {A’x+(-A’/t)t = Alm s A, o &

(v). The discontinuity condition for G’ (z, t) gives

G'(t+0, t) - G'(t -0, t) = [1/p(t)]
or A" — (A'/t) (£ —1) =1/p(t) or A't — At + A' =t ie A =t
On substitution we get

_fa-9z, o<z<t
g lt)"'{t(l—a:), t<z<l

Exm*hple 2

~onstruct Green’s function associated with the problem
¥ +k*y=0, y(0)=0, y(r/2k)=0
tion |

P(“’) =1, L = 0%/8z2 + k2. Green’s function G(z, t) for the line:
L is defined as solution to the DE



R — B

cal 1'1,}-,‘:34'?4

i 'Y ,"(l
M(‘.thOtlS ﬂfl”mhi i -
- 379w, §) O f)
Allw b) 4 R (s, :
G,
0o JO N (0 Bines Alr | |
~ G0, t) = G(r/28, ©) = g 1)+ f'/’ 7 1oy £
withs B4 Sl alent to the DI G (#F, ¥) ALTRI Y i

above equation 18 ROLLIAL
<

it/ 2k|
the sul_)int;ervn,ls

[0, t) and (1.

' x ‘i '0"’ "’ " " ’lu ‘ /
|1 solution for each .k:ulnul,m\.tl will | ' 'Y= f
(General S '

Dsinkz.
b " {
we tako general solution as /(s l) & gy

interval [0, 1) Thiia ¢
For the subinte [ G0, t) = 0 to it Uhis gives ¢4 =6, fay

¢ sinkx and apply the B.C.

G(z, t) = cysinka, US T t

For the subinterval (t, 7/2k| we Lake general solution as (a1 »

cq sin kx and apply the B.C. G(r/2k, t) = 0 to it. This gives

c3 cos(1/2) + eqsin(m/2) = 0, wherelrom ¢4 = 0 Henee
G(z, t) =cgcoskz, t< o < n/2k

The above two solutions can be combined in Lhe (orin

G(:U, t) ____{ C2 Slllk:l), o

cgcos kz, x> ¢

To determine the unknown constants ¢g, € wo will use the conbimity o
and the jump discontinuity condition.

13

The continuit liti : | "
Y condition BIVES eg 8in kit == ¢4 cos ki, wherelratn (37 &

)

Therefore
G(z, t) = { iy ¢ < {
Cp tan kt cog ko, z.s¢
Finally we 5 4
PPly the digacmitmed U
I/P(t) and obtaiirx C: li dlm'l(mt'“"“".y condition /(1 + 0, ) .(}’1}‘##
Badia (C()H A,)/A Henco we obibain CGroen'® fiane

problem as

Gz, £} s { *(coslkt 81n ka)/k
~(sin k¢ Cog km)/k:

& <t
& >4
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- AR o "’,
tXample 3 ¢
“ind Creen's function associated with the problem

ry +Ar(z)y=0, y(0) is finite and y(1) =0

solution

This is a singular SL- system with p(z)

s

\i) FH\\I \\'t\ (‘:{10\\‘1\ “‘ \ — 0 ]\ an t Luell\ alue

A = 0 implies that zy” + v’ = 0 or (d/dz) (zy') = 0 which gives
)
gy' = Aory = A/z or y = Alnx + B, where A, B are constants.
Now we apply the B.Cs. The B.C. y(0) is finite gives A = 0. The B.C. y( 1) =8
gives B = 0.

Therefore y = 0 is the only possible solution. Hence A = 0 is not an eigenvalue.
(i1). G(z, t), regarded as a function of z satisfies the given DE. ie
26" 4+ G' = 0 in each of the sub-intervals (0, t] and (¢, 1]. There-
fore we can write

Clziils. <Lz <t
it 2 by

A + Blnrz, 0
e Al E e

fili). G(z, t) as a function of = satisfies the B.Cs. G(0, t) is finite, and
G(l’ t) = “
The first condition gives B = 0, and the second condition gives A'+B'-0 =

0 or A" = 0. Hence

~ / “‘13 0 T T t
Gz, t) = Bling, t<z<1

| ). G(x, t) as a function of 7 is continuous at all points and in particular
@ = t. This gives A = B Int.
: f#/lnt = B'/1 = p which gives A = p Int, B' = p.

B " pint, B<Bs?
(1\1.-\1) = { ’) lnr‘ f\r;\: 1

~0, t) - G'(t+0, t) = = 1/p(t) or 0 p/t= 1/t
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o o 1,
{ <

G.(I:a t) i { s lniU,
nple 4 \

ruct Green’s function for the B.V.P.

¥y —(n?/z)y+ Ar(z)y =0, y(0) is finite and y(1) = 0.
tion

p(z) =z, q(z)=-n’/z.

) construct Green’s function we first check if A = 0 is an eigenvalue of the
geneous problem (obtained by putting A =0 in the given problem).

-y — (n?/z)y =0o0r 22 y" +'?:y7l ny =0, (n >‘O)

L is the Euler - Cauchy equation. To solve it we make the transformation
P and obtain on substitution

{pp—-1)+p—n?}z? = 0
1 gives p=+n
e the general solution can be written as y = Az™ + Bz™.

we apply the B.Cs. We find that the condition y(0) is finite gives B = 0,
(1) = 0 gives A = 0.

e the only possible solution is the trivial solution y = 0, and therefore

) is not an eigenvalue. Therefore we can associate Green’s function to the
m.

Green’s function G(z, t) regarded as a function of z satisfies the DE
ZG" + G — (n?/2)G = 0

ch of the subintervals [0, t] and (¢, 1]. Therefore it can be written as

i Ax™ + Bz ™, 8 €. 2 < 3
N - { A + Bs?, t<z<l

G(z, t) regarded as a function of z satisfies the given B.Cs.

) is finite and G(1, t) = 0. These B.Cs. give B = 0 and B' = — A"

o o -] A" Bt
4 et 2™, t<gsl

01

Tt
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(iv). G(z, t) as a function of z is continuous at all points and in particular
at z =1. So

" — 1 t2n —1

or A=A

At =A(t" -t™) or At"= A’
tn $2n

Hence we write

Aa™(l -, 0<nsd
Glw, 1) = y e
@2 { A (g™ -3, tcg<l

(v). G'(t-0,t)-G'(t+0, t) =1/p(t). Or

which on simplification gives A’ = —t"/2n.

Therefore ﬁnally
L Lo T e VEs S

AR { i) (@ ~ )", t<z<]
Example 5
Construct Green’s function for the B.V.P.
(d/dz){(1 - z2)y’} — [(K*/(1 — z)]y + Ar(z)y =0, y(I1) are finite.
Solution | |
This is a singular SL system with p(z) =1 - 2.

A(i) First we check if A = 0 is an eigenvalue, i.e. we solve the DE

2

d h
3_:;{(1 ~ z%)y'} = g e

or h2

D T e =0
(—=a)y" — 20y — 7=V

Making the substitution
t = ln[(l + :L‘)/(l i :17)] = ln(l + 11?) o ln(l o 37):. we have




ted. R & 18 Y

. d & - (1 - 2
dr .’112 dt dt 2
d’y d dy

p—, ——

[

dr? dx di

g4 -1 &

1 s 4t 129 4
2 2 d%y
1] ~a2 1~2z% dt*
ax 4 2 oy
dt dr 1-2z° dt
2 2 . v

1 — 22 1— 22 dt?
+ dx dz\* dy
(1—-a2)2 \ dt dt

n substituting the value of dxz/dt we have

d*y 2 2. . &y
dz? 1—2%2 1-22 di?
_*‘_ 4z (1-22%)? dy
s (1~x22%)? 4 dt
& 4 [(Fy dy]

I

I

I

(1 —=22)z | dt? +£:i-£

tituting for .dy/dt and d?y/dt? in the given DE, and simplifyi ‘
, , 3 plifying, #
!zy/dt? —(h?/4)y = 0.

solution of this equation can be written as

T Aexj::(ht/E) + B exp(—ht/2)
= AlA+9)/0 -2 + B[(1 - 2)/(1 + 2)?




