Willer men

$$B_{1(y)} = 0$$
, and $B_{2(y)} = 0$

where L = (d/dx) [p(x)(d/dx)] + q(x) and \mathcal{B} is the boundary condition.

tor.
$$\mathcal{B}_{1(y)} = \alpha_1 + \alpha_2 (\partial/\partial x) \text{ and } \mathcal{B}_{2(y)} = \beta_1 + \beta_2 (\partial/\partial x)$$

$$\mathcal{B}_{1(y)} = \alpha_1 + \alpha_2 (\partial/\partial x) \text{ and } \mathcal{B}_{2(y)} = \beta_1 + \beta_2 (\partial/\partial x)$$

- The equations (8.4.1) and (8.4.2) define a regular S. L. system. It assumption that $\lambda = 0$ is not an eigenvalue of this system, i.e. it goes ial solution, the Green function G(x, t) associated with the system following properties.
 - 1. G(x, t) considered as a function of x satisfies the differential $L\{G(x, t)\} = 0$ in each of the subintervals [a, t) and (t, b].
 - 2. G(x, t) is continuous for each value of x in the whole interval [a if we take limit as x approaches t for each piece of the solution in the subintervals, then the limits should be equal.
 - 3. G(x, t) as a function of x satisfies the end-point conditions \mathcal{B}_1 and $\mathcal{B}_2(G) = 0$.
 - 4. $G' \equiv dG(x, t)/dx$ is discontinuous as $x \to t$ and moreover

$$\lim_{x \to t+0} G'(x, t) - \lim_{x \to t-0} G'(x, t) = \frac{1}{p(t)}$$

8.4.2 Illustrative examples

Example 1

Construct Green's function associated with the problem

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(1) = 0$

Solution

Here p(x) = 1, therefore p(t) = 1.

(i). First we verify if $\lambda = 0$ is an eigenvalue. With $\lambda = 0$ we have y'' = 0 which gives y = Ax + B

Now we apply the B.Cs. The B.C. $\psi(0) = 0$ gives $0 = 0 + B^{i\theta}$. Similarly $\psi(1) = 0$ gives A = 0.

Therefore $\alpha = 0$ is the solution of the problem corresponding to $\lambda = 0$. The fore $\lambda = 0$ is not an eigenvalue.

(ii). G(x, t) satisfies the differential equation $[d^2G(x, t)/dx^2] = 0$, in e of the subintervals [0, t] and (t, 1]. Therefore we have

$$G(x, t) = \begin{cases} Ax + B, & 0 \le x \le t \\ A'x + B', & t < x \le 1 \end{cases}$$

(iii). G(x, t) is continuous everywhere and in particular at x = t. Therefore At + B = A't + B' or B' = (A - A')t + B. The Green function therefore be written as

$$G(x, t) = \begin{cases} Ax + B, & 0 \le x < t \\ A'x + (A - A')t + B, & t < x \le 1 \end{cases}$$

(iv). G(x, t) satisfies the endpoint conditions G(0, t) = 0 and G(1, t) = 0. These give $A \times 0 + B = 0$ i.e. B = 0.

and
$$A' + (A - A')t = 0$$
 or $A = [(t - 1)/t]A'$.

Therefore on substitution for A and A', we have

$$G(x, t) = \begin{cases} A'(t-1)x/t, & 0 \le x < t \\ A'x + (-A'/t)t = A'x - A', & t < x \le 1 \end{cases}$$

(v). The discontinuity condition for G'(x, t) gives

$$G'(t+0, t) - G'(t-0, t) = [1/p(t)]$$

or
$$A' - (A'/t)(t-1) = 1/p(t)$$
 or $A't - A't + A' = t$ i.e. $A' = t$.

On substitution we get

$$G(x, t) = \begin{cases} (1-t)x, & 0 \le x \le t \\ t(1-x), & t < x \le 1 \end{cases}$$

Example 2

Construct Green's function associated with the problem

$$y'' + k^2 y = 0$$
, $y(0) = 0$, $y(\pi/2k) = 0$

Solution

Here p(x) = 1, $L \equiv \partial^2/\partial x^2 + k^2$. Green's function G(x, t) for the lines operator L is defined as solution to the DE

$$G''(x, t) + k^2 G(x, t) = \delta(x - t)$$

with B.Cs. G(0, t) = 0, $G(\pi/2k, t) = 0$. Since $\delta(x - t) = 0$ for t = 0 above equation is equivalent to the DE $G''(x, t) + k^2 G(x, t) = 0$ the subintervals [0, t) and $(t, \pi/2k]$.

General solution for each subinterval will be of the form y = 0. $D \sin kx$.

For the subinterval [0, t) we take general solution as $G(x, t) = c_1 c_2 \sin kx$ and apply the B.C. G(0, t) = 0 to it. This gives $c_1 = 0$. Here

$$G(x, t) = c_2 \sin kx, \quad 0 \le x < t$$

For the subinterval $(t, \pi/2k]$ we take general solution as $G(x, t) = c_0 c_4 \sin kx$ and apply the B.C. $G(\pi/2k, t) = 0$ to it. This gives

 $c_3\cos(\pi/2) + c_4\sin(\pi/2) = 0$, wherefrom $c_4 = 0$. Hence

$$G(x, t) = c_3 \cos kx, \quad t < x \le \pi/2k$$

The above two solutions can be combined in the form

$$G(x, t) = \begin{cases} c_2 \sin kx, & x < t \\ c_3 \cos kx, & x > t \end{cases}$$

To determine the unknown constants c_2 , c_3 we will use the continuity and the jump discontinuity condition.

The continuity condition gives $c_2 \sin kt = c_3 \cos kt$, wherefrom $c_3 = 0$.

Therefore

$$G(x, t) = \begin{cases} c_2 \sin kx, & x < t \\ c_2 \tan kt \cos kx, & x > t \end{cases}$$

Finally we apply the discontinuity condition G'(t+0, t) = G(t+1)/p(t) and obtain $c_2 = -(\cos kt)/k$. Hence we obtain Green's function problem as

$$G(x, t) = \begin{cases} -(\cos kt \sin kx)/k, & x < t \\ -(\sin kt \cos kx)/k, & x > t \end{cases}$$

Example 3

Find Green's function associated with the problem

$$xy'' + y' + \lambda r(x)y = 0$$
, $y(0)$ is finite and $y(1) = 0$

Solution

This is a singular SL- system with p(x) = x.

(i). First we check if $\lambda = 0$ is an eigenvalue.

 $\lambda = 0$ implies that xy'' + y' = 0 or (d/dx)(xy') = 0 which gives

xy' = A or y' = A/x or $y = A \ln x + B$, where A, B are constants.

Now we apply the B.Cs. The B.C. y(0) is finite gives A = 0. The B.C. y(1) = 0 gives B = 0.

Therefore y = 0 is the only possible solution. Hence $\lambda = 0$ is not an eigenvalue.

(ii). G(x, t), regarded as a function of x satisfies the given D.E. i.e. xG'' + G' = 0 in each of the sub-intervals (0, t] and (t, 1]. Therefore we can write

$$G(x, t) = \begin{cases} A + B \ln x, & 0 < x < t \\ A' + B' \ln x, & t < x \le 1 \end{cases}$$

(iii). G(x, t) as a function of x satisfies the B.Cs. G(0, t) is finite, and G(1, t) = 0.

The first condition gives B = 0, and the second condition gives $A' + B' \cdot 0 = 0$ or A' = 0. Hence

$$G(x, t) = \begin{cases} A, & 0 < x \le t \\ B' \ln x, & t < x \le 1 \end{cases}$$

(iv). G(x, t) as a function of x is continuous at all points and in particular at x = t. This gives $A = B' \ln t$.

or $A/\ln t = B'/1 = \rho$ which gives $A = \rho \ln t$, $B' = \rho$.

Therefore

$$G(x,t) = \begin{cases} \rho \ln t, & 0 < x \le t \\ \rho \ln x, & t < x \le 1 \end{cases}$$

(v).
$$G'(t-0, t) - G'(t+0, t) = 1/p(t)$$
 or $0 - \rho/t = 1/t$ i.e. $\rho = -1$.

01

M

t =

Th

efinally

$$G(x, t) = \begin{cases} -\ln t, & 0 < x < t \\ -\ln x, & t < x \le 1 \end{cases}$$

nple 4

cruct Green's function for the B.V.P.

$$y' - (n^2/x)y + \lambda r(x)y = 0$$
, $y(0)$ is finite and $y(1) = 0$.

tion

$$p(x) = x, \quad q(x) = -n^2/x.$$

construct Green's function we first check if $\lambda = 0$ is an eigenvalue of the geneous problem (obtained by putting $\lambda = 0$ in the given problem).

$$-y' - (n^2/x)y = 0$$
 or $x^2y'' + xy' - n^2y = 0$, $(n > 0)$

is the Euler-Cauchy equation. To solve it we make the transformation p, and obtain on substitution

$${p(p-1)+p-n^2}x^p \doteq 0$$

gives $p = \pm n$

e the general solution can be written as $y = Ax^n + Bx^{-n}$.

we apply the B.Cs. We find that the condition y(0) is finite gives B = 0, y(1) = 0 gives A = 0.

be the only possible solution is the trivial solution y = 0, and therefore is not an eigenvalue. Therefore we can associate Green's function to the m.

Green's function G(x, t) regarded as a function of x satisfies the DE

$$xG'' + G' - (n^2/x)G = 0$$

ch of the subintervals [0, t] and (t, 1]. Therefore it can be written as

$$G(x, t) = \begin{cases} Ax^{n} + Bx^{-n}, & 0 \leq x \leq t \\ A'x^{n} + B'x^{-n}, & t < x \leq 1 \end{cases}$$

G(x, t) regarded as a function of x satisfies the given B.Cs.

t) is finite and G(1, t) = 0. These B.Cs. give B = 0 and B' = -A'. refore

$$G(x, t) = \begin{cases} Ax^n, & 0 \le x \le t \\ A'(x^n - x^{-n}), & t < x \le 1 \end{cases}$$

(iv). G(x, t) as a function of x is continuous at all points and in particular at x = t. So

$$At^n = A'(t^n - t^{-n})$$
 or $At^n = A'\frac{t^{2n} - 1}{t^n}$ or $A = A'\frac{t^{2n} - 1}{t^{2n}}$

Hence we write

$$G(x, t) = \begin{cases} A' x^{n} (1 - t^{-2n}), & 0 \le x \le t \\ A' (x^{n} - x^{-n}), & t < x \le 1 \end{cases}$$

(v).
$$G'(t-0, t) - G'(t+0, t) = 1/p(t)$$
. Or

$$n A' t^{n-1} t^{-2n} - n A' (t^{n-1} + t^{-n-1}) = \frac{1}{t}$$

which on simplification gives $A' = -t^n/2n$.

Therefore finally

$$G(x, t) = \begin{cases} -(1/2n) (t^n - t^{-n}) x^n, & 0 \le x \le t \\ -(1/2n) (x^n - x^{-n}) t^n, & t < x \le 1 \end{cases}$$

Example 5

Construct Green's function for the B.V.P.

$$(d/dx)\{(1-x^2)y'\} - [(h^2/(1-x^2)]y + \lambda r(x)y = 0, y(\pm 1) \text{ are finite.}$$

Solution

This is a singular SL system with $p(x) = 1 - x^2$.

(i) First we check if $\lambda = 0$ is an eigenvalue, i.e. we solve the DE:

$$\frac{d}{dx}\{(1-x^2)y'\} - \frac{h^2}{1-x^2}y = 0$$

or

$$(1-x^2)y''-2xy'-\frac{h^2}{1-x^2}y=0$$

Making the substitution

$$t = \ln[(1+x)/(1-x)] = \ln(1+x) - \ln(1-x)$$
, we have

$$\frac{dt}{dx} = \frac{1}{1+x} - (-1)\frac{1}{1-x} = \frac{2}{1-x^2}$$

Therefore

L L w

$$\frac{d}{dx} = \frac{2}{1-x^2} \frac{d}{dt} \text{ or } \frac{dx}{dt} = \frac{1}{2} (1-x^2)$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \frac{dy}{dx}
= \frac{2}{1 - x^{2}} \frac{d}{dt} \frac{2}{1 - x^{2}} \frac{dy}{dt}
= \frac{2}{1 - x^{2}} \frac{2}{1 - x^{2}} \frac{d^{2}y}{dt^{2}}
+ \frac{dx}{dt} \frac{d}{dx} \frac{2}{1 - x^{2}} \frac{dy}{dt}
= \frac{2}{1 - x^{2}} \frac{2}{1 - x^{2}} \frac{d^{2}y}{dt^{2}}
+ \frac{4x}{(1 - x^{2})^{2}} \left(\frac{dx}{dt}\right)^{2} \frac{dy}{dt}$$

n substituting the value of dx/dt we have

$$\frac{d^2y}{dx^2} = \frac{2}{1-x^2} \frac{2}{1-x^2} \frac{d^2y}{dt^2} + \frac{4x}{(1-x^2)^2} \frac{(1-x^2)^2}{4} \frac{dy}{dt} = \frac{4}{(1-x^2)^2} \left[\frac{d^2y}{dt^2} + x \frac{dy}{dt} \right]$$

stituting for dy/dt and d^2y/dt^2 in the given DE, and simplifying, where $d^2y/dt^2 - (h^2/4)y = 0$.

solution of this equation can be written as

$$y = A \exp(ht/2) + B \exp(-ht/2)$$

= $A [(1+x)/(1-x)]^{h/2} + B [(1-x)/(1+x)]^{h/2}$

apply the B.Cs.

C.
$$y(1) = \text{finite gives } A = 0, \text{ and } y(-1) = \text{finite gives } B = 0.$$

u = 0 is the only solution for the associated homogeneous RV problem

(ii) The associated Green function G(x, t) satisfies the DE

$$\frac{d}{dx}\{(1-x^2)G'\} - \frac{h^2}{1-x^2}G = 0$$

in each of the subintervals $-1 \le x < t$ and $t < x \le 1$. Therefore we can write

$$G(x, t) = \begin{cases} A[(1+x)/(1-x)]^{h/2} + B[(1-x)/(1+x)]^{h/2}, & x < t \\ A'[(1+x)/(1-x)]^{h/2} + B'[(1-x)/(1+x)]^{h/2}, & x > t \end{cases}$$

(iii) The Green function G(x, t) satisfies the B.Cs.: $G(\pm 1, t)$ are finite in each of the two subintervals [-1, t) and (t, 1]. In view of these conditions, we must have

$$G(x, t) = \begin{cases} A[(1+x)/(1-x)]^{h/2}, & -1 \le x < t \\ B'[(1-x)/(1+x)]^{h/2}, & t < x \le 1 \end{cases}$$

(iv) G(x, t) is continuous at each value of x in the interval [-1, 1]. In particular it is continuous at x = t. This condition gives

$$A\left(\frac{1+t}{1-t}\right)^{h/2} = B'\left(\frac{1-t}{1+t}\right)^{h/2} = \rho,$$
 (say)

Therefore

$$A = \rho \left(\frac{1-t}{1+t}\right)^{h/2}, \quad B' = \rho \left(\frac{1+t}{1-t}\right)^{h/2}$$

Hence

$$G(x, t) = \begin{cases} \rho [(1-t)/(1+t)]^{h/2} (1+x)/(1-x)]^{h/2}, & x < t \\ \rho [(1+t)/(1-t)]^{h/2} (1-x)/(1+x)]^{h/2}, & x > t \end{cases}$$

(v) To apply the discontinuity condition, we first calculate

$$G'(t-0, t) = \lim_{x \to t-0} G'(x, t)$$

$$= \rho \left(\frac{1-t}{1+t}\right)^{h/2} \left[\frac{h}{2} \cdot \left(\frac{1+x}{1-x}\right)^{h/2-1} \cdot \frac{2}{(1-x)^2}\right]\Big|_{x=t}$$

$$= \rho h \frac{1-t}{1+t} \cdot \frac{1}{(1-t)^2} = h \rho/(1-t^2)$$

and

$$G'(t+0, t) = \lim_{x \to t+0} G'(x, t)$$

$$= -\rho h \frac{1+t}{1-t} \cdot \frac{1}{(1+t)^2} = -\frac{h\rho}{1-t^2}$$

fore
$$G'(t-0, t) - G'(t+0, t) = 1/p(t)$$

$$\rho/(1-t^2) = 1/(1-t^2)$$
; which gives $\dot{\rho} = 1/(2h)$.

$$(x, t) = \begin{cases} (1/2h) \left[(1-t)/(1+t) \right]^{h/2} \left[(1-x)/(1-x) \right]^{h/2}, & x \le t \\ (1/2h) \left[(1+t)/(1-t) \right]^{h/2} \left[(1-x)/(1+x) \right]^{h/2}, & x > t \end{cases}$$

ple 6

reen's function for the B.V.P. defined by the equations

$$y(0) = 0$$
, $y(0) + y'(1) = 0$, $y(1) + 2y'(0) = 0$

n

$$a(x) = 1$$
, $a = 0$, $b = 1$, $q(x) = 0$, $r(x) = 1$.

onstruct Green's function we first check if $\lambda = 0$ is an eigenvalue. The 0 obtained by substituting $\lambda = 0$ in the given DE has the solution + Bx.

the given B.Cs., we obtain A + B = 0 and A + B + 2B = 0.

se two equations we obtain A = B = 0. Therefore y = 0 is the only olution possible. Hence $\lambda = 0$ is not an eigenvalue.

en's function G(x, t) satisfies the equation G'' = 0 in each of the [0, t) and [0, t]. Therefore we can write

$$G(x, t) = \begin{cases} A + Bx, & 0 \le x \le t \\ A' + B'x, & t < x \le 1 \end{cases}$$

(x, t) as a function of x satisfies the given B.Cs.

$$G'(1, t) = 0$$
, and $G(1, t) + 2G'(0, t) = 0$. Now

A and
$$G(1, t) = A' + B'$$
, $G'(0, t) = B$, $G'(1, t) = B'$.

the boundary condition G(0, t) + G'(1, t) = 0 gives B' = -A, and G'(0, t) + 2G'(0, t) = 0 gives A' = A - 2B.

II

$$(A-2B-Ax, t < x \le 1)$$

iv). G(x, t) as a function of x is continuous at all points and in particula at x = t. So

$$A + Bt = A - 2B - At$$
 or $B(t + 2) = -At$.

Cutting
$$B(t+2) = -At = \rho$$
, we obtain $A = -(\rho/t)$, $B = \rho/(t+2)$.

Therefore on substitution for constants, we have

$$G(x, t) = \begin{cases} -\rho/t + \rho x/(2+t), & 0 \le x \le t \\ -\rho/t - 2\rho/(t+2) + \rho x/t, & t < x \le 1 \end{cases}$$

v). Next the discontinuity condition G'(t+0, t) - G'(t-0, t) = -1/p(t) yields $\rho/(2+t) - \rho/t = 1$ wherefrom $\rho = -t(t+2)/2$. Hence finally or substitution and simplification

$$G(x, t) = \begin{cases} -(tx+t+2)/2, & 0 \le x \le 1 \\ -(tx+2x-3t-2)/2, & t < x < 1 \end{cases}$$

Example 7

Find Green's function for the problem defined by the equations

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y(1) = 0$

Solution

Here
$$p(x) = 1$$

i). To construct Green's function G(x, t) we first check if $\lambda = 0$ is an eigenvalue. In this case we have to solve the the DE $D^2u = 0$ subject to the same boundary conditions.

This gives y = A + Bx and y' = B.

Now we apply the B.Cs. The B.C. y'(0) = 0 gives B = 0, and the B.C. y'(1) = 0 gives $A + B \cdot 1 = 0$ i.e. A = 0.

Hence we obtain the trivial solution u = 0, which implies that $\lambda = 0$ is not an igenvalue.

ii). Green's function G(x, t) as a function of x satisfies the equation G'' = 0 in each of the subintervals [0, t] and [0, t]. Therefore we can write

$$G(x, t) = \begin{cases} A + Bx, & 0 \le x < t \\ A' + B'x, & t < x \le 1 \end{cases}$$

N

col

Ne

(iii), G(x, t) as a function of x satisfies the given B.Cs G'(0, t) = 0 and G(1, t) = 0.

Now the condition G'(0, t) = 0 gives B = 0, and the condition G(1, t) = 0 gives A' + B' = 0 i.e. B' = -A'.

Therefore we can write

$$G(x, t) = \left\{ \begin{array}{ll} A, & 0 \leq x \leq t \\ A'(1-x), & t < x \leq 1 \end{array} \right.$$

(iv). G(x, t) as a function of x is continuous at all points and in particular at x = t. This condition gives A = A' - A't. Hence

$$G(x, t) = \begin{cases} A'(1-t), & 0 \le x \le t \\ A'(1-x), & t < x \le 1 \end{cases}$$

(v) The discontinuity condition

$$G'(t-0, t) - G'(t+0, t) = 1/p(t)$$

gives 0 + A' = 1. Hence finally we have

$$G(x, t) = \begin{cases} 1 - t, & 0 \le x < t \\ 1 - x, & t < x \le 1 \end{cases}$$

1.4.3 Exercises

. Verify the property

$$\lim_{\epsilon \to 0} [G'(x, x + \epsilon) - G'(x, x - \epsilon)] = \frac{1}{p(x)}$$

Green's functions where p(x) = 1 and prime denotes differentiation will and the Green function is given by

$$G(z, z') = \begin{cases} z^3 z'/2 + z z'^3/2 - 9z z'/5 + z, & 0 \le z < z' \\ z^3 z'/2 + z z'^3/2 - 9z z'/5 + z', & z' \le z \le 1 \end{cases}$$
the inverse

Verify the property

$$\lim_{\epsilon \to 0} [G'(x, x + \epsilon) - G'(x, x - \epsilon)] = \frac{1}{p(x)}$$

Green's functions where $p(x) = 1 - x^2$ and prime denotes differentiation $x \in \mathbb{R}$, and the Green function is given by

$$G(x, x') = \begin{cases} (-1/2) \ln|1-x| |1+x'| + \log 2 - 1/2, & -1 \le x < x' \\ (-1/2) \ln|1+x| |1-x'| + \log 2 - 1/2, & x' \le x \le 1 \end{cases}$$

and the solution of the I.V. problem using Green's function y''(t) - y(t) = 0 with B.Cs. y(0) = 0, y'(0) = 0.

Find the solution of the B.V. problem using Green's function y'' - y = x h B.Cs. y(0) = 0, y(1) = 0.

and the solution of the B.V. problem using Green's function y'' + y/4 = f(x) in B.Cs. y(0) = 0, $y(\pi) = 0$.

o solve the problem when $f(x) = \sin 2x$ and f(x) = x/2. $f(x) = \sin 2x$

Find the solution of the B.V. problem using Green's function y'' = f(x) h B.Cs. y(0)0, y'(1) = 0.

to solve the problem when $f(x) = \sin 2x$ and f(x) = x/2. $f(x) = \sin 2x$

Find the solution of the B.V. problem using Green's function $y'' + y = \ln 2\pi x$ with B.Cs. y(0) = 0, y'(1) = 0.

Solution of the B.V. Problem with Inhomogeneous B.Cs.

5.1 Solution of S L system with homogeneous B.Cs.

start with the equations

5

$$Ly = f(x) \tag{8.5.1}$$

$$Ly = \delta(x - t) \tag{8.5.2}$$

ere $L \equiv (d/dx) \{p(x) d/dx\} + q(x)$.

altiplying (8.5.1) with G(x, t) and (8.5.2) with y(x), and subtracting we can

$$GLy - yLG(x, t) = G(x, t)f(x) - \delta(x - t)y(x)$$

w we integrate both sides of the last equation w.r.t. x from a to b, and

$$\int_{a}^{b} [GLy - yLG(x, t)] dx = \int_{a}^{b} G(x, t) f(x) dx - \int_{a}^{b} \delta(x - t) y(x)$$
 (8.5.3)

ext we simplify both sides of (8.5.3).

L.H.S. of (3) =
$$\int_a^b [GLy - yLG(x, t)] dx$$

$$y(x) = \int_a^b f(t)G(x, t) dt - \beta p(b)G(x, b) + \alpha p(a)G'(x, a)$$

e illustrate the problems with inhomogeneous B.Cs. with examples in the xt subsection.

5.4 Illustrative examples

cample 1

lve the problem

$$+y=f(x), y(0)=0, y(1)=0$$
 using Green's function.

lution

est we will find the associated Green's function. Regarded as a function of t satisfies the homogeneous DE G''(x, t) + G(x, t) = 0, where dash denotes rivative w.r.t. x. On solving the DE, we can write

$$G(x, t) = \begin{cases} c_1(t)\cos x + c_2(t)\sin x & 0 \le x \le t \\ c_3(t)\cos x + c_4(t)\sin x & t \le x \le 1 \end{cases}$$

e B.C. G(0, t) = 0 gives $c_1 =$ and the B.C. G(1, t) = 0 gives $c_3 \cos 1 +$ $\sin 1 = 0$ wherefrom $c_4 = -(c_3/\sin 1) \sin(x-1)$. Therefore we can write

$$G(x, t) = \begin{cases} A(t)\sin x & 0 \le x < t \\ B(t)\sin(x-1) & t \le x \le 1 \end{cases}$$

plying the continuity condition we obtain $A(t) \sin t = B(t) \sin(t-1)$ or $(t)/\sin(t-1) = B(t)/\sin t = \lambda$, say. Because of this we obtain the symmetric m of G(0, t) as

$$G(x, t) = \begin{cases} \lambda \sin x \sin(t-1) & 0 \le x < t \\ \lambda \sin t \sin(x-1) & t \le x \le 1 \end{cases}$$

e discontinuity condition gives $\lambda = -1/\sin 1$. Therefore

$$G(x, t) = \begin{cases} -\sin x \sin(t-1)/\sin 1, & 0 \le x < t \\ -\sin t \sin(x-1)/\sin 1, & t \le x \le 1 \end{cases}$$

ng the formula

=
$$\int_0^1 G(x, t) f(t) dt$$
, we obtain the solution as

$$y(x) = \frac{\sin(x-1)}{\sin 1} \int_0^x \sin t \, f(t) \, dt + \frac{\sin x}{\sin 1} \int_0^1 \sin(t-1) \, f(t) \, dt$$

8.5

H

O

8.6

8.6.

Whe

tem

is no

defin

Solve the problem

 $y'' = x^2$, y(0) = 1, y(1) = 2 using associated Green's function.

Solution

The problem can be solved by first general solution $y = x^4/12 + c_1x + c_2$ through direct integration. The constants c_1 , c_2 can be determined with the help of B.Cs.

Here we will solve the problem to illustrate the use of Green's function. The associated Green function is found to be

$$y(x) = \begin{cases} t(x-1), & 0 \le t \le x \\ x(t-1), & x \le t \le 1 \end{cases}$$
 (1)

The solution is given by [equation (8.5.6)]

$$y(x) = \int_{a}^{b} f(t)G(x, t) dt$$

$$- [p(t) \{y(t)G'(x, t) - G(x, t)y'(t)\}]\Big|_{a}^{b}$$

Here a - 0, b = 1, $f(t) = t^2$, p(t) = 1, $\alpha = 1$, $\beta = 2$.

On substituting the value of f(t) and of different constants, we have

$$y(x) = \int_0^1 t^2 G(x, t) dt - [y(1)G'(x, 1) - G(x, 1)y'(1)] + [y(0)G'(x, 0) - G(x, 0)y'(0)]$$

8.5.5 Exercises

8.6 Modified Green's Function

8.6.1 Why modified Green's function?

When the solution of homogeneous B.V. problem associated with an S L system L[y] = f(x), $\mathcal{B}_1(y) = 0$, $\mathcal{B}_2(y) = 0$

is nontrivial; or in other words when $\lambda = 0$ is an eigenvalue of the SL system defined by

$$[] + \lambda r(x) y = 0, \quad \mathcal{B}_1(y) = 0, \quad \mathcal{B}_2(y) = 0$$

en the associated Green's function is called modified Green's function. It not be constructed by the method used in the earlier examples.

e modified Green's function, to be denoted by $G_M(x, t)$, will exist if a tain solvability condition is satisfied by the source term f(x). First we te this condition and then outline the method of its construction.

 $y_0(x)$ be the nontrivial solution of the homogeneous problem

$$b_0 = 0$$
, $B_1(y_0) = 0$, $B_2(y_0) = 0$

en

$$< y$$
, $Ly_0 > = < Ly$, $y_0 > = < f$, $y_0 >$ i.e. $\int_a^b f(x) y_0(x) dx = 0$.

ich is the solvability condition.

e above observations can be summarized in the form of a theorem.

eorem (Fredholm's alternative for the S L system)

Either the problem Ly = f(x), $B_1(y) = 0$, $B_2(y) = 0$ has exactly ontion,

There is a nontrivial solution of the corresponding homogeneous problem = 0, $\mathcal{B}_1(y_0) = 0$, $\mathcal{B}_2(y_0) = 0$.

ase of alternative (ii) a solution exists if and only if the solvability conditist, $y_0 >= 0$ is satisfied. The solution in this case will be undetermined unde

thod of constructing modified Green's function

Let $y_0(x)$ be the normalized eigenfunction corresponding to λ

$$y_0 > = \int_a^b y_0(x) y_0(x) dx = 1$$

The modified Green function $G_M(x, t)$ satisfies the equation

 $M(x, t) = y_0(x)y_0(t)$ in each of the subintervals [a, t), (t, b]

 $G_{M}(x, t)$, considered as a function of x, satisfies the B.Cs.

$$G_M(a, t)] = 0, \ B_2[G_M(b, t)] = 0$$

these cor

Sol

T

8.1

Ex

Con

y" -

 $\lambda = 0$ Now

condi trivia

Norm

(ii).

 $G_M^{\prime\prime}(x,$ $G_M^{\prime\prime}(x,$

- (iv). $G_M(x, t)$ is continuous everywhere in the interval [a, b], and in particular at x = t.
- (v). The modified Green function satisfies the discontinuity condition

$$G'_{M}(t+0, t) - G'_{M}(t-0, t) = 1/p(t)$$

(vi). The modified Green function satisfies the orthogonality condition

$$\int_a^b G_M(x, t) y_0(x) dx = 0$$

The above conditions uniquely determine the modified Green function.

8.6.2 Illustrative examples

Example 1

Construct Green's function associated with the system

$$y'' + \lambda r(x) y = 0, \quad y'(0) = 0 = y'(1)$$

Solution

1. First we check if $\lambda = 0$ is an eigenvalue.

$$\lambda = 0$$
 which implies $y'' = 0$, $y = Ax + B$

Now we apply the B.Cs. The B.C. u'(0) = 0 gives A = 0. The other boundary condition does not yield additional information. Therefore y = B is the (non-trivial) solution corresponding to the eigenvalue $\lambda = 0$.

Normalized eigenfunction is therefore $y_0(x) = 1$.

(ii).
$$G_M(x, t)$$
 satisfies the DE

 $G_M''(x, t) = y_0(x) y_0(t)$ in each of the intervals [0, t] and (t, 1]. On integration

$$G_M''(x, t) = x + A$$
 and $G_M(x, t) = (x^2/2) + Ax + B$. Therefore we can write

$$G_M(x, t) = \begin{cases} x^2/2 + Ax + B, & 0 \le x < t \\ x^2/2 + A'x + B', & t < x \le 1 \end{cases}$$

iii). $G_M(x, t)$ satisfies the B.Cs. G'(0, t) = 0 = G'(1, t). On applying hese conditions we obtain A = 0, A' = -1.

fore we can write

$$G_M(x, t) = \begin{cases} x^2/2 + B, & 0 \le x \le t \\ x^2/2 + A'x + B', & t < x \le 1 \end{cases}$$

 $G_M(x, t)$ is continuous at each point of the interval, and in particular t. This condition gives

$$t^2 + B = (1/2)t^2 - t + B'$$
 or $B' = B + t$.

$$G_M(x, t) = \begin{cases} x^2/2 + B, & 0 \le x \le t \\ x^2/2 - x + B + t, & t < x \le 1 \end{cases}$$

The discontinuity condition does not help in determining the unknown ants.

Using the orthogonality condition $\int_0^1 G_M(x, t) y_0(x) dx = 0$,

ve

$$(x^2-x+B] dx + \int_t^1 [(1/2)x^2 + B + t] dx = 0$$

$$((x^3/6) + Bx)|_0^t + ((x^3/6) - (x^2/2) + Bx + tx)|_t^1 = 0$$

$$Bt + 1/6 - 1/2 + B + t - t^3/6 + t^2/2 - Bt - t^2 = 0$$

$$t + t - (t^2/2) + 1/6 - 1/2 = 0$$

$$+(6t-3t^2+1-3)/6=0 \text{ or } B=-t+t^2/2+1/3.$$

finally after simplification

$$G_M(x, t) = \begin{cases} x^2/2 + t^2/2 - t + 1/3, & 0 \le x \le t \\ t^2/2 + x^2/2 - x + 1/3, & t < x \le 1 \end{cases}$$

ple 2

reen's function associated with the problem

$$y'' + \lambda y = 0$$
, $y(0) = y(1)$, $y'(0) = y'(1)$

e that this is a periodic SL system.

on

T

(--

0.

or

In this problem a = 0, b = 1, p(x) = 1.

- (i) $\lambda = 0$ implies that y'' = 0 whose general solution is y = Ax + B.
- Applying the B.C. y(0) = y(1), we obtain B = A + B, which gives A = 0, and the solution reduces to y = 0.
- Now the second boundary condition y'(0) = y'(1) leads to A = A, which does not give any new information. So in general $B \neq 0$.
- Therefore we obtain a nontrivial solution corresponding to $\lambda = 0$. We denote the normalized eigenfunction corresponding to $\lambda = 0$ by $y_0(x) = 1$.
- ii) The modified Green function $G_M(x, t)$ satisfies the equation
- $G_M''(x, t) = u_0(x) u_0(t)$ in each of the subintervals [0, t) and (t, 1]. Hence we an write

$$G_{\mathcal{M}}(x, t) = \begin{cases} x^2/2 + Ax + B, & 0 \le x \le t \\ x^2/2 + A'x + B', & t < x \le 1 \end{cases}$$

iii) $G_M(x, t)$ satisfies the given end-point conditions

$$G_M(0, t) = G_M(1, t), G'_M(0, t) = G'_M(1, t)$$

These give B = 1/2 + A' + B', A = 1 + A'. From these equations we obtain B' = B - 1/2 - A', A' = A - 1. Substituting for A' we have B' = B - A + 1/2.

herefore we can write

$$G_M(x, t) = \begin{cases} x^2/2 + Ax + B, & 0 < x < t \\ x^2/2 + (A-1)x + B - A + 1/2, & t < x \le 1 \end{cases}$$

w) $G_M(x, t)$ is continuous for all x and in particular at x = t. After applification we obtain A = 1/2 - t and

$$G_M(x, t) = \begin{cases} x^2/2 + (1/2 - t)x + B, & 0 \le x \le t \\ x^2/2 - (1/2 + t)x + t + B, & t < x \le 1 \end{cases}$$

the discontinuity condition does not help because when we take derivative of u(x, t) the constant b disappears.

To determine B we use the orthogonality condition $\int_0^1 G_M(x, t)u_0(x) dx =$

$$\int_0^t \left(\frac{1}{2}x^2 + \frac{1}{2}x - tx + B\right) dx$$

$$+ \int_{t}^{1} \left(\frac{1}{2}x^{2} - \frac{1}{2}x - tx + B + t \right) dx = 0$$

$$/4-t^3/2+Bt+1/6-1/4-t/2+B+t-t^3/6+t^2/4+t^3/2-Bt-t^2=0$$

simplification $B=t^2/2-t/2+1/12$

$$A(x, t) = \begin{cases} x^2/2 + (1/2 - t)x + t^2/2 - t/2 + 1/12, & 0 \le x \le t \\ x^2/2 - (1/2 + t)x + t/2 + t^2/2 + 1/2, & t < x \le 1 \end{cases}$$

le 3

een's functions for the following problem

$$y(-1) = y(1), y'(-1) = y'(1)$$

periodic SL system.)

on

construct Green's function we first check if $\lambda = 0$ is an eigenvalue.

inplies y'' = 0, whose solution is given by y = Ax + B.

we apply the B.Cs. The B.C. yu(-1) = y(1) gives A = 0. The (-1) = y'(1) also gives A = 0, which means that $B \neq 0$. Hence the eneous problem y = B, i.e. nontrivial solution.

 $\lambda = 0$ is an eigenvalue, and the normalized eigenfunction over the [-1, 1] is given by $y_0(x) = 1/\sqrt{2}$.

M(x, t) satisfies the DE

$$G_M''(x, t) = y_0(t) y_0(x) = 1/2$$

of the intervals [-1, t) and (t, 1].

$$(1/2) x + A$$
 and therefore $G_M(x, t) = (1/4) x^2 + Ax + B$.

$$G_M(x, t) = \int x^2/4 + Ax + B, \quad -1 \le x \le t$$

Chapte

on sub

which g

or on si

$$-t^2/2 +$$

 G_M

Examp

Find Gr

Solutio

It is a re

(i) Witl

Now we

$$\int x^2/4 + (A-1)x + B - 2A + 1, \quad t < x \le 1$$

The continuity condition at x = t gives A = (1 - t)/2. Hence on tution

$$G_M(x, t) = \begin{cases} x^2/4 + x(1-t)/2 + B, & -1 \le x \le t \\ x^2/4 - x(1+t)/2 + B + t, & t < x \le 1 \end{cases}$$

The discontinuity condition does not help in finding the value of B'.

In order to determine B, we use the condition $\int_{-1}^{+1} G_M(x, t)y_0(x)dx = 0$ gives

$$\int_{-1}^{t} (x^{2}/4 + x/2 - xt/2 + B) dx$$

$$+ \int_{1}^{t} (x^{2}/4 - x/2 - xt/2 + B + t) dx = 0$$

$$[t^{3}/6 + x^{2}/4 - x^{2}t/4 + Bx]|_{0}^{t}$$

$$+ [x^{3}/12 - x^{2}/4 + x^{2}t/4 + Bx + tx] = 0$$

n simplification

$$(2+t+2B-1/3=0 \text{ or } B=(3t^2-6t+2)/12$$
. Hence finally

$$G_M(x, t) = \begin{cases} x^2/4 + t^2/4 - xt/2 + x/2 - t/2 + 1/6, & -1 \le x \le t \\ x^2/4 + t^2/4 - xt/2 - x/2 - t/2 + 1/6, & t < x \le 1 \end{cases}$$

ample 4

d Green's function associated with the problem

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y(2) = 0$

ution

s a regular SL system with p(x) = 1.

With $\lambda = 0$, the DE becomes y'' = 0 whose solution is y = Ax + B.

w we apply the B.Cs. The B.C. y'(0) = 0 gives A = 0, and the B.C. y'(0) = 0 gives A = 0, and the B.C. y'(0) = 0 gives A = 0, and A = 0.

nce u=0 is the only solution of the homogeneous problem. Therefore $\lambda=0$ not an eigenvalue.

$$G(x, t) = \begin{cases} Ax + B, & 0 \le x \le t \\ A'x + B', & t < \le 2 \end{cases}$$

G(x, t) satisfies the B.Cs. G'(0, t) = 0 and G(2, t) = 0.

est condition gives A = 0. The second gives 2A' + B' = 0 or B' = -2A'.

we can write

$$G(x, t) = \begin{cases} B, & 0 \le x \le t \\ A'(x-2), & t < x \le 2 \end{cases}$$

G(x, t) is continuous for all values of x, and in particular at x = t fore we have B = A't - 2A'. and

$$G(x, t) = \begin{cases} A'(t-2), & 0 \le x < t \\ A'(x-2), & t < x \le 2 \end{cases}$$

he discontinuity condition

$$(0, t) - G'(t+0, t) = [1/p(t)]$$
 gives $(0, t) - A' = 1$ or $A' = -1$.

finally

$$G(x, t) = \begin{cases} 2-t, & 0 \le x \le t \\ 2-x, & t < x \le 2 \end{cases}$$

Exercises

d modified Green's function for the B.V. problem.

$$y(0) = 0, y(1) - y'(1) = 0$$

s.

$$G(x, t) = \begin{cases} x^3t/2 + xt^3/2 - 9xt/5 + x, & 0 \le < t \\ x^3t/2 + xt^3/2 - 9xt/5 + t, & t \le < x \le 1 \end{cases}$$

d Green's function for the B.V. problem.

$$y''=0, y(0)=0, y(1)=0$$

$$y'' = 0$$
, $y(-1) = 0$, $y(1) = 0$

as. (a) $G(x, t) = \begin{cases} x & x \le < t \\ t, & x > t \end{cases}$

(1

1.

3.

4.

5. "

xy

y"

(

7.

8. (

9. S

(a)

(p)

(c)

10.

the

11. defin

-y'(

$$G(x, t) = \begin{cases} -(t - x + xt - 1)/2, & x \le t \\ -(x - t + xt - 1)/2, & x > t \end{cases}$$

Green's function for the BV problem.

$$y' = 0$$
, $y(1) = 0$, $|y(0)| < \infty$.

d Green's function for the BV problem.

$$y' - \mu^2 y/x = 0$$
, $y(1) = 0$, $|y(0)| < \infty$.

d Green's function for the BV problem.

$$y(-1)-y(1)=0, \quad y(-1)-y'(1)=0.$$

astruct Green's function for the problem:

$$y/4 = 0$$
, $y(0) = 0$, $y'(1) = 0$

as.
$$G(x, t) = \begin{cases} \sin 2x, & x < t \\ \cos 2(1-x), & x > t \end{cases}$$

nstruct Green's function for the problem:

$$(xy')' = 0$$
, $y(0) = 0$, $y'(1) = 0$

nstruct Green's function for the problem:

$$y'' + y/4 = 0$$
, $y(0) = 0$, $y'(1) = 0$

ns.
$$G(x, t) = \begin{cases} \sin 2x, & x < t \\ \cos 2(1-x), & x > t \end{cases}$$

lve each problem.

$$y'' = f(x), \ y'(0) = a, \ y(1) = b$$

$$y'' - k^2y = f(x), \ y(0) - y'(0) = a, \ y(1) = b$$

$$(xy')' = f(x), \ y(0) = 0, \ y'(1) = b$$

Find Green's for the problem defined by the DE $y'' + k^2y = 0$ subject to

B.Cs: y(0) = y(1), y'(0) = y'(1).

Explain that it is not possible to find Green's function for the problem ned by the DE $y'' + k^2y = 0$ subject to the B.Cs. y(0) = y(1), y'(0) = y(1)

(1).