WNRRRIAN, P

RERAE B (d/d:t:) [p(g;)(d/da:)] + q(z) and B is the boundary condit;

tor.

o + g (8/6z) and Bay = P+ P2 9/ Oz)

Bi(y)
) and (8.4.2) define a regular S. L. system, |

\ The equations (8.4.1
assumption that X=0
ial solution, the Green 1
following properties.

1. Glam, t) considered as a function of z satisfies the differenti)
L{G(z, t)} =0in each of the subintervals [a, t) and (¢, b].

2. G(z, t) is continuous for each value of = in the whole interva]
if we take limit as z approaches ¢ for each piece of the solution i [(
subintervals, then the limits should be equal. .

3. G(z, t) as a function of ' ]
po e of z satisfies the end-point conditions B,

4 e is disconti
G’ = dG(z, t)/dx is discontinuous as £ — t and moreover

i € T 1
S G la, 4~ lip s, t):;(_t_)_

8.4.2 Illustrative examples

Example 1 \4

| ¥'+dy=0 %
| , y(0) =
i y(0) =0, y(1)=0

H
.tiere p(z) =1, therefore p(t) =1 |

: (i)- First we Verify if A 8 2
al ' = iSan T y : Ve
v'=0 Wwhich gives ¢y — Az 4 BJ\ eigenvalue. With A = 0 w¢ ha
o | :
; PPly the B f
S 1 'CS, ',6'
il 3(1) =0 gives Az‘};’ 8L ¥(0) = 0 gives 0="0 +
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R

Thereforegi = 0 is the solution of the problem corresponding to A = 0. Th
fore A = 0'is not an eigenvalue. _ °

(ii). G(z, t) satisfies the differential equation [d%2G(z, t)/dz?| = 0, in e
of the subintervals [0, t] and (f, 1]. Therefore we have

J Az +B, 0<z<t
G(=z, t) = 1 s
(2, t) {A’m+B’, t<z<1
(iii). G(z, t) is continuous everywhere and in particular at r = ¢. Theref

At+B=At+B or B'= (A - A} + B. The Green function therefore
be written as

s, )= Az + B, 0<z<t
a4 Az + (A - At + B, t<p Y

(iv). G(z, t) satisfies the endpoint conditions G(0, t) = 0 and G(1, t) =
These give A X 0+ B=0ie B=0.
and A'+(A— A)t=00r A=[(t—1)/t] A"

- Therefore on substitution for A and A’, we have

_ J A - Dz, 0<
G(z, t) = {A’x+(-A’/t)t = Alm s A, o &

(v). The discontinuity condition for G’ (z, t) gives

G'(t+0, t) - G'(t -0, t) = [1/p(t)]
or A" — (A'/t) (£ —1) =1/p(t) or A't — At + A' =t ie A =t
On substitution we get

_fa-9z, o<z<t
g lt)"'{t(l—a:), t<z<l

Exm*hple 2

~onstruct Green’s function associated with the problem
¥ +k*y=0, y(0)=0, y(r/2k)=0
tion |

P(“’) =1, L = 0%/8z2 + k2. Green’s function G(z, t) for the line:
L is defined as solution to the DE



R — B

cal 1'1,}-,‘:34'?4

i 'Y ,"(l
M(‘.thOtlS ﬂfl”mhi i -
- 379w, §) O f)
Allw b) 4 R (s, :
G,
0o JO N (0 Bines Alr | |
~ G0, t) = G(r/28, ©) = g 1)+ f'/’ 7 1oy £
withs B4 Sl alent to the DI G (#F, ¥) ALTRI Y i

above equation 18 ROLLIAL
<

it/ 2k|
the sul_)int;ervn,ls

[0, t) and (1.

' x ‘i '0"’ "’ " " ’lu ‘ /
|1 solution for each .k:ulnul,m\.tl will | ' 'Y= f
(General S '

Dsinkz.
b " {
we tako general solution as /(s l) & gy

interval [0, 1) Thiia ¢
For the subinte [ G0, t) = 0 to it Uhis gives ¢4 =6, fay

¢ sinkx and apply the B.C.

G(z, t) = cysinka, US T t

For the subinterval (t, 7/2k| we Lake general solution as (a1 »

cq sin kx and apply the B.C. G(r/2k, t) = 0 to it. This gives

c3 cos(1/2) + eqsin(m/2) = 0, wherelrom ¢4 = 0 Henee
G(z, t) =cgcoskz, t< o < n/2k

The above two solutions can be combined in Lhe (orin

G(:U, t) ____{ C2 Slllk:l), o

cgcos kz, x> ¢

To determine the unknown constants ¢g, € wo will use the conbimity o
and the jump discontinuity condition.

13

The continuit liti : | "
Y condition BIVES eg 8in kit == ¢4 cos ki, wherelratn (37 &

)

Therefore
G(z, t) = { iy ¢ < {
Cp tan kt cog ko, z.s¢
Finally we 5 4
PPly the digacmitmed U
I/P(t) and obtaiirx C: li dlm'l(mt'“"“".y condition /(1 + 0, ) .(}’1}‘##
Badia (C()H A,)/A Henco we obibain CGroen'® fiane

problem as

Gz, £} s { *(coslkt 81n ka)/k
~(sin k¢ Cog km)/k:

& <t
& >4



undary Value Problems 383

- AR o "’,
tXample 3 ¢
“ind Creen's function associated with the problem

ry +Ar(z)y=0, y(0) is finite and y(1) =0

solution

This is a singular SL- system with p(z)

s

\i) FH\\I \\'t\ (‘:{10\\‘1\ “‘ \ — 0 ]\ an t Luell\ alue

A = 0 implies that zy” + v’ = 0 or (d/dz) (zy') = 0 which gives
)
gy' = Aory = A/z or y = Alnx + B, where A, B are constants.
Now we apply the B.Cs. The B.C. y(0) is finite gives A = 0. The B.C. y( 1) =8
gives B = 0.

Therefore y = 0 is the only possible solution. Hence A = 0 is not an eigenvalue.
(i1). G(z, t), regarded as a function of z satisfies the given DE. ie
26" 4+ G' = 0 in each of the sub-intervals (0, t] and (¢, 1]. There-
fore we can write

Clziils. <Lz <t
it 2 by

A + Blnrz, 0
e Al E e

fili). G(z, t) as a function of = satisfies the B.Cs. G(0, t) is finite, and
G(l’ t) = “
The first condition gives B = 0, and the second condition gives A'+B'-0 =

0 or A" = 0. Hence

~ / “‘13 0 T T t
Gz, t) = Bling, t<z<1

| ). G(x, t) as a function of 7 is continuous at all points and in particular
@ = t. This gives A = B Int.
: f#/lnt = B'/1 = p which gives A = p Int, B' = p.

B " pint, B<Bs?
(1\1.-\1) = { ’) lnr‘ f\r;\: 1

~0, t) - G'(t+0, t) = = 1/p(t) or 0 p/t= 1/t
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o o 1,
{ <

G.(I:a t) i { s lniU,
nple 4 \

ruct Green’s function for the B.V.P.

¥y —(n?/z)y+ Ar(z)y =0, y(0) is finite and y(1) = 0.
tion

p(z) =z, q(z)=-n’/z.

) construct Green’s function we first check if A = 0 is an eigenvalue of the
geneous problem (obtained by putting A =0 in the given problem).

-y — (n?/z)y =0o0r 22 y" +'?:y7l ny =0, (n >‘O)

L is the Euler - Cauchy equation. To solve it we make the transformation
P and obtain on substitution

{pp—-1)+p—n?}z? = 0
1 gives p=+n
e the general solution can be written as y = Az™ + Bz™.

we apply the B.Cs. We find that the condition y(0) is finite gives B = 0,
(1) = 0 gives A = 0.

e the only possible solution is the trivial solution y = 0, and therefore

) is not an eigenvalue. Therefore we can associate Green’s function to the
m.

Green’s function G(z, t) regarded as a function of z satisfies the DE
ZG" + G — (n?/2)G = 0

ch of the subintervals [0, t] and (¢, 1]. Therefore it can be written as

i Ax™ + Bz ™, 8 €. 2 < 3
N - { A + Bs?, t<z<l

G(z, t) regarded as a function of z satisfies the given B.Cs.

) is finite and G(1, t) = 0. These B.Cs. give B = 0 and B' = — A"

o o -] A" Bt
4 et 2™, t<gsl

01

Tt
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(iv). G(z, t) as a function of z is continuous at all points and in particular
at z =1. So

" — 1 t2n —1

or A=A

At =A(t" -t™) or At"= A’
tn $2n

Hence we write

Aa™(l -, 0<nsd
Glw, 1) = y e
@2 { A (g™ -3, tcg<l

(v). G'(t-0,t)-G'(t+0, t) =1/p(t). Or

which on simplification gives A’ = —t"/2n.

Therefore ﬁnally
L Lo T e VEs S

AR { i) (@ ~ )", t<z<]
Example 5
Construct Green’s function for the B.V.P.
(d/dz){(1 - z2)y’} — [(K*/(1 — z)]y + Ar(z)y =0, y(I1) are finite.
Solution | |
This is a singular SL system with p(z) =1 - 2.

A(i) First we check if A = 0 is an eigenvalue, i.e. we solve the DE

2

d h
3_:;{(1 ~ z%)y'} = g e

or h2

D T e =0
(—=a)y" — 20y — 7=V

Making the substitution
t = ln[(l + :L‘)/(l i :17)] = ln(l + 11?) o ln(l o 37):. we have




ted. R & 18 Y

. d & - (1 - 2
dr .’112 dt dt 2
d’y d dy

p—, ——

[

dr? dx di

g4 -1 &

1 s 4t 129 4
2 2 d%y
1] ~a2 1~2z% dt*
ax 4 2 oy
dt dr 1-2z° dt
2 2 . v

1 — 22 1— 22 dt?
+ dx dz\* dy
(1—-a2)2 \ dt dt

n substituting the value of dxz/dt we have

d*y 2 2. . &y
dz? 1—2%2 1-22 di?
_*‘_ 4z (1-22%)? dy
s (1~x22%)? 4 dt
& 4 [(Fy dy]

I

I

I

(1 —=22)z | dt? +£:i-£

tituting for .dy/dt and d?y/dt? in the given DE, and simplifyi ‘
, , 3 plifying, #
!zy/dt? —(h?/4)y = 0.

solution of this equation can be written as

T Aexj::(ht/E) + B exp(—ht/2)
= AlA+9)/0 -2 + B[(1 - 2)/(1 + 2)?
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(1) The nssociated Green function (/(x, ) satisfies the DE

7/ : h2
R Y. !
{I.’: {(l I' )(I } - ';—l- G C’;Z

G=0

in each of the subintervals - 1 <z <tandt <z <1 Therefore we can write

G, t) [ Al +z)/(1 = z)]H2 + Bl1-z)/Q+z)"?, z<t
IAWUleU-UMWW+RK1~@A1+mPﬂ,z>t

(i) 'l'.h(e Green function G(x, L) satisfies the B.Cs.: G(+1, t) are finite in
each of the two subintervals (-1, t) and (¢, 1]. In view of these conditions,
we must have

Wz, t) = A[(l +5’3)/(1_-’5)]h/2, =& Lt &
((-,’) {B’[(l—'—m)/(l-kw)]h/z, tﬁxSl

(iv) G(z, t) is continuous at each value of z in the interval [—1, 1. © In
particular it is continuous at z = ¢. This condition gives

/

TR | i
Al — = Bl S+ g
(l—t) <1+t) p,  (say)

Theref;)re . ok
L=z y oo B
A“”(H%) ’B_p(L4)
Hence
. . -
W A T A o P it R S
e, D= (1 370 O (1 (L1 PP, 5 5 ¢
(v) To apply the discontinuity conditién, we first calculate
G . e P / t
G'(t-0, t)= lim Gz, t)
. T e ) ]:+m)hﬂ'1_ 2
:P(1+t) 2 ¢ 9 (l_m)z o9

o e L l; s
B = hpf(l- )
Ph T (L5 e

and

G'(t+0, t)= lim G(z, 1)

r—t+



FE R TRy . s S \LTJJ)—,:L':t
1+1¢ 1 hp

-
1-t 1+t "1-¢

ore G'(t -0, t) - G'(t 40, t) = 1/p(t)

/(1 — %) = 1/(1 - ¢2); which gives p = 1/(2h).

. (1/28) [(1 - 0)/(1 + 12 (1M 2) /(1 - )2, 4 <,
g Aot { A/2R) (1 +6)/(1 - V2 (1 - 2) /(1 + D)2 55

ple 6

een’s function for the B.V.P. defined by the equations

=0, ¥(0)+y(1) =0, ¥(1) +2¢/(0) = 0
n

z)=1,a=0 b= 1, g(z) = 0, r{z) =1.
onstruct Green’s functio

0 obtained by substitu
| + Bz.

n we first check if \ — 0is

an eigenvalue. The
ting \

= 0 in the given DE has the solution

*n’s function G(z, ¢

) satisfies the equation G”
1 [0, t) and it 11

= 0 in each of the
Therefore we can write

o
g

t) asa function of satisfies thé given B.(s.
5'(1, ) =0, and G(1, ¢) +2G6/(0, t) = 0. Now
A and G(1, t)= A" 4 B, G'(0, t) = B, ¢’'(1, i) = B
the boundary Coudition G(0, t) + G'(1, £) =

| 0 gives B’ = — A, and
L ) 4260, #) = ¢ gives A'=A-2p :



C ALl > M. 1 & m o= 1

—

iv). G(z, t) as a function of z is contin

uous at all points and in particula
k&= 1. 50

1+Bt:A—QB—AtorB(t+2)=-_At.

utting B(t +2) = — At = p, we obtain 4 — ~{p/t), B = p/(t+2).

"herefore on substitution for constants, we have

Gz, t) = {4 “PIt+pz/(2+1), 0<z<t
’ P/t =2p/(t+2)+pz/t, t<z<1

v). Next the discontinuity condition G'(t+0, t)—G'(t-0, t) = —1/p(t

rields p/(2 +1) — p/t = 1 wherefrom p = —¢(¢t + 2)/2. Hence finally or
ubstitution and simplification

L o=l 7 4 22, Bl
G, t) & {-(tm+2x—3t-2)/2, L <ip-<3%

/

xample 7 \//
Find Green'’s function for the problem defined by the equations
/' + 2y =0, ¥(0)=0, y(1)=0

Solution

dere p(z) =1

i). To construct Green’s function G(z, t) we first check if A = 0 is ar
;igenvalue. In this case we have to solve the the DE D2u = 0 subject to the

ame boundary conditions.
Chis gives y = A + Bz and y' = B.

e B.C
ow we apply the B.Cs. The B.C. 3/(0) = 0 gives B = 0, and the
(1) =0gives A+ B-1=0ie A=0.

‘ ich i i )\ = 0 is not an
lence we obtain the trivial solution u = 0, which 1mp11e§ that

igenvalue.

1z satisfies the equation G =90

- s : i f’
) : e ~ t) as a function 0 :
) Green s function G(w3 ) erefore we can write

0 each of the subintervals [0, t] and (t, 1 Th
‘ | B e, D REE
G(ZZI, t) = { A’+BIZ: | t < BER



Mot houds of Matbemnatca Fhves

(), G: nn.md--‘-thwﬂﬁc'(& l)...*
{1, ) =0

Now the condition C'(0. 1) = 0 gves B = 0, and the condition G(1, ‘)n.
ra A+ Bl o oA

Therefore we can wrile
, A Pszst
. ”'{ A -2), t<zs]

v q-l).omdnhm-ldlmﬁ-m
et Ths condition pves A « A" - At Hence

Al 1), 0<z<t
. 0= Al -2), t<eg)

v The dexostamty conditsmn
CU~00-GCU+0 1)= 1/pl1)
poas 04 A = | Hence Snally we have

- i~ 0<e<t
. 9 {l-l. tce<)
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ind the solution of the I.V. problem using Green’s function y/"(t)

= - { " o
with B.Cs. y(0) =0, /(0) = 0. yit)

‘ind the solution of the B.V. problem usin ’ '
5, g Green’s funct '~y =
h B.Cs. y(0) =0, y(1) = 0. s 1,

'ind the solution of the B.V problem usin = : > :
V. | g Green’s function ¢’ +y/4 =

0 solve the problem when f(z) = sin2z and f(z) = z/2. f(z) =sin2z

“ind the solution of the B.V. problem using Green’s function ¥’ = f(z)
h B.Cs. y(0)0, ¥'(1) =0.

o solve the problem when f(z) =sin2z and f(z) = z/2. f(z) =sin2z

Find the solution of the B.V. problem using Green’s function " + y =
n 27z with B.Cs. y(0) =0, v'(1) =0. :

5 Solution of the B,V. Problem with Inhomoge-
neous B.Cs.

5.1 Solution of S L system with homogeneous B.Cs.

start with the equations

Ly = f(=) (8.5.1)
| Ly = 6(z—t) (8.5.2)
ere L = (d/dz) {p(z) d/dz} + q(z)-

ltiplying (8.5.1) with G(z, t) and (8.5.2) with y(z), and subtracting we
ain

. GLy — yLG(z, t) = G(z, t)f(z) — 8(z - t)y(z)

w we integrate both sides of the last equation w.rt. z from a to b, and

.aln

g b b
f (GLy - yLG(z, t)]dz = / G(z, t)f(z)dz - f., 5(z - ty(z) (8.5.3)
xt: we simplify both sides of (8.5.3)-

%
- LHS.of (3) = / [GLy — yLG(z, t) dx
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o= [ 106(e, 1dt=BrOG(a, B +ap(e)C (e, o

—— 9

e illustrate the problems with inhomogeneous B.Cs. with exampleg W the

xt subsection.

5.4 Illustrative examples

cample 1

lve the problem

+y = f(z), y¥(0)=0, y(1) =0 using Green’s function.

lution

st we will find the associated Green’s function. Regarded as a function of
. satisfies the homogeneous DE G”(z, t)+G(z, t) = 0, where dash denotes
ivative w.r.t. z. On solving the DE, we can write

Clansiiye ci(t)cosz + cp(t)sinz 0< z <t
"7 | es(t)cosz 4 ey(t)sine t<z <1

e B.C. G(0, t) = 0 gives ¢; = and the B.C. G(1, t) = 0 gives czcosl+
in1= 0 wherefrom ¢4 = —(c3/sin 1) sin(x — 1). Therefore we can write
' A(t)sinzx D o<t
Gz, 1) = , &

i 1) { B(t)sin(z—-1) t<z<1

plying the continuity condition we obtain A(t)sint — B(t) sin(t - 1) o

)/sin(t—1) = B(t)/sint = ), say. Because of this we obtain the symmetr¢
m of G(0, t) as

B o Asinz sin(t—1) 0<z <
, : A sint sin(z — 1) s <]

e discontinuity condition gives A = —1/sin 1. Therefore

Gz, t) = { —Sinz sin(t —1)/sin1, 0 S2
: ok TEmiamls —1)/ein], (< gy
ng the formula %

ar,
» fg G(z, t) f (t)dt, we obtain the solution as

) = Sin(z — 1) r= i ?
T) = — ]
y(z) Spre /0 sint f(t)dt + 2-2—-?— sin(t — 1) f(t)dt

H

8.5
8.¢€

8.6.

Whe
tem

is no
deﬁm



Example 2

Solve the problem

v'=2% y0)=1, y(1)=2 using associated Green’s function.

Solution

The problem can be solved by first general solution v = 2*/12 + oiw + e
through direct integration. The constants ¢y, cy can be determined with th
help of B.Cs.

Here we will solve the problem to illustrate the use of Green’s function. Th
associated Green function is found to be

ti~1, 0<t<g
y("’)={ x((t—lg, z<t<1 (1)

The solution is given by [equation (8.5.6)]
b |
V@) = [ 106G na

- [0 {y06'@ 0 - 6@ WO,

Herea -0, b=1, f(t)=12 p(t)=1, a=1, 8=2.

On substituting the value of f(t) and of different constants, we have

y(z) = / lt?‘ G(z, t)dt — [y(1)G'(z, 1) — G(z, 1)y (1))
0
+ [w(0)G'(x, 0) — G(z, 0)y'(0)]

8.5.5 Exercises

8.6 Modified Green’s Function

i
|
;

861 Why modified Green’s function /s

4

- When the solution of homogeneous B.V., prqblem associated with an

tem Lly) = f(z), Bi(y) =0, Ba(y) =0

- i of the SL systen
I nontrivial; or in other words when A = 0 is an eigenvalue

"* efined by
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} 4+ Ar(z)y =0, By(y) =0, Baly) =

on the associated Green's function is called rrmd;ﬁadGmthm l
;muwurmbytbemhodmedmthchﬂenmph

» modified Green's function, to be denoted by Gar(x, t), will exist

ain solvability condition is satisfied by the source term J(z). 'h ‘
e this condition and then outline the method of its construction.

wolz) be the nontrivial solution of the homogeneous problem j(

=0, Bi(w) =0, By(w)=0 .

n

<y, Ly >=< Ly, p >=</, > Le. [*(z)w(z)dz =0. w

ch is the solvability condition

» above observations can be summarized in the form of a theorem. -

eorem (Fredholm's alternative for the S L system) -

l:::-thpmbl-n Ly = [(z), By(y) = 0, By(y) = 0 has exactly o :o;
5 3
A ==

=0, Bi(w) =0, Baw) =0 e

ase of alternative (ii) a solution exists if and only um..oxv.bmyﬂ"
.pb-ﬂh-iﬂd Thcduiuhthhmvmbo




}1',1? FEk e ¢ s B 8
3 : PN & !t”l{‘ ! 0 : .;““,1r’ . ’lvﬁi‘u i "‘»?t”“-
- . S —— < 17 ]
£ -
iv¥ ! ¥y R 2418 : R
\ § s miin TRy 4 | 16 T4 nih integ A ] ) il “‘”“‘7"
LHAT At 2 {
v J}& modified riv Fravved . ;
itil . » i1 ‘Al i 18 114 th (lis l;i]?A’,‘:!":‘, r.-,“l“f'“,“
o
('A.f“’ i} { ['l_q’ ¢ 4 1/;
\ ¥ 3 sl ! :
i) I he modihed Green inect N Satishes !2," orthogonality itlilulif’,utt
D
Cra : I ; {7 ()
j,j \ 4 iJ

determine the modified Green function

8.6.2 lllustrative examples

Example 1

Construct Green's function assod iated with the svstem

.

V' 4+ Ar(z)y =0, ¢'(0) =0 y'(1)
Solution

1. First we check if A = 0 is an eigenvalue

s

A = 0 which implies y" =0, y= Az + B

Now we apply the B.Cs. The B.C. «'(0) = 0 gives A = 0. The other boundary
condition does not yield additional information. Therefore y = B is the (non-

Lrivial) solution corresponding to the eigenvalue A = ()

Normalized eigenfunction is therefore yy(r) !
). Gun(z, t) satisfies the DE
Tu(x, 1) = yol(z) yo(t) in each of thy intervals [0, t] and (t, 1]. On integration

3'"4(‘. t) =z + A and Gz, t) (z%/2) + Az + B. Therefore we can write

*2 4+ Az+ B, 0<z<i

¢

. .L'L &
GM(‘I' ” I",-‘lz + A'j ' 1;1, i< 2 -~ l

-

). Gz, t) satisfies the B.Cs. G'(0, t) = 0 = G'(1, t). On applying
hese conditions we obtain A =0, A" = -1




398

ds of Mathematical Physics 198

fore we can write

z2/2 + B, 0z <t
Gum(z, t) = { 2/2+A’1:+B' t<z <l

Gp(z, t) is continuous at each point of the interval, and in particular

- t. This condition gives
24+ B=(1/2)t* ~t+ B or B'= B +1t.

I2/2+B) Osxst
Gum(z, t) = {x2/2-$+3+t' tLosl]

The discontinuity condition does not help in determining the unknown
ants.
Using the orthogonality condition fol Gm(z, t) yo(z) dz = 0,

ve

/2)x? ——:L'+B]da:+ft [(1/2)2? +B+tldz =0

((z°/6) + Bx)|, + ((z°/6) - (£?/2) + Bz + tz) |} =
,

Bt+1/6-1/24+B+t-13/6+12/2 - Bt — 12 = ¢
Ft~ (62/2) +1/6 - 1/2 =0
t-(ﬁt—,3t2+1—-3)/6=00rB=-—t+t2/2+l/3.

finally after simplification

Gu(a:,t)={a;/2+t2/2“‘t+1/3 0€c<t
AV 242 2 -041/3, tezey

: 2

function associated with the problem

+ Ay =0, ¥(0) =y(1), y(0) = y’(l)
! ‘vdic SL systom




Chapter 8.

N | A b ' >
_f:l":‘“_"“‘\_l”“}“‘li)lltllltl the Boundax y Value Problems

[n this problem a = 0, p - 1, p(z) = 1

3 an 0) § - Ll :
\1) A = 0 implies that V' = 0 whose general solution is y= Az + B

Applying the B.C. y(0) = y(1), we obtain B =

: A+ B, which gives A = 0, snd
he solution reduces to y = (.

Now the second boundary condition Y'(0) =

. ! y,(I) l(‘iiulb‘ to /] - A, which does
10t give any new information.

So in general B # ()

N " s il -
['herefore we obtain a nontrivial solution corresponding to A = (

: 3 ). We denote
he normalized eigenfunction corresponding to A

=0 by yo(z) = 1.

ii) The modified Green function ¢ Mm(z, t) satisfies the equation

"M (2, t) = uo(z) ug(t) in each of the subintervals [O,- t) and (t, 1]. Hence we
an write

S An+ B O<u<t
G ’t g :E/ 3 STS
M. ) {$2/2+A':c+B', t<ae <1

i) Gum(z, t) satisfies the given end-point conditions
Gm(0, t) =Gum(1, t), Gy(0, t) =G, 1)

‘hese give B =1/2+ A’ + B', A= 1+ A’. From these equations we obtain
' =B~1/2—A', A’ = A-1. Substituting for A’ we have B’ = B— A+1/3

herefore we can write

G t-' z2/2 + Az + B, 0<z<t
m(z, t) = z2/2+(A-1)z+B-A+1/2, t<z<l

v) Gum(z, t) is continuous for all z and in particular at = = 1 Afie
mplification we obtain A = 1/2 — t and

_ z2/2 4+ (1/2 — t)z + B, 0<a&<t
Gm(, ,t) & { z?/2 - (1/2+t)z+t+ B, t<z <]

e discontinuity condition does not help because when we take derivative o
1(z, t) the constant b disappears.

i sy s 1‘! (o) A -
- To determine B we use the orthogonality condition [y Gy (7, (2] 4
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1 ,
+ ixg—lwﬁt:nJrBﬁ--t) de =0
| : R 2

/4—t3/2+Bt+1/6— 1/4~—t/2+B+t_t:‘/ﬁ-—i—t2/4+ta/2-— Bt-12 =

simplification B = t2/2 — t/2 + 1/12

22/2+ (1/2 —t)z +t%/2-t/2+1/12, O0<z <t
i 1)~ { 22/2 — (1/2+ )z +t/2+t2/24+1/2, t<z<]
le 3
een’s functions for the following problem
=0, y(-1)=y(1), ¥(-1) $y(1)
veriodic SL system.) |
n
construct Green’s function we first check if A = 0 is an eigenvalue.
nplies y” = 0, whose solution is given by y = Az + B.

r we apply the B.Cs. The B.C. yu(—1) = y(1) gives A = 0. The
(—1) = y/(1) also gives A = 0, which means that B # 0. Hence the
neous problem y = B, i.e. nontrivial solution.

A = 0 is an eigenvalue, and the normalized eigenfunction over the
[-1, 1] is given by yo(z) = 1/v/2.

v (z, t) satisfies the DE
m (T, 1) = yo(t) yo(z) = 1/2

of the intervals [-1, t) and (¢, 1].

fﬁﬂ‘ (1/2)z + A and therefore Gp(z, t) = (1/4)22 + Az + B.

£

J e+ Az +B, -1<z<t

(,“h;z.pf,f:

on sub

(iv)

substit

vy 8

(vi) Ir
which g

Or on si
Gum
Examp

Find Gr

Solutio

.|
T
(

(i) Wit

NOW we

A I



B ailn 1 T Wity Sl

s - s ey N W
L 2/44+ (A= 1)z + B - 94 4 |, t<z <]

The continuity condition at 7 = ¢ gives A (1
fution ' ’ |

2 b
e, 1) = { xz/[l‘ +a(1-1t)/2+ B, | <z <t
/4 —z(1+t)/24+ B+t, t<z<]

['he discontinuity condition does not, help in finding the value of B’

Iniorder to determine B, we use the condition [’} Culz, tyyolz)dz
| gives

t F
/ (x2/4+-’17/2—-$t/2+/3) dz
=)

t
it / (132/4—3:/2—-:0:‘,/2 +B+t)de=0
1

[t3/6 + 22 /4 — & t/4 + Bz|,
+ [23/12 - 2*/4+2°t/4+ Bz +tz| =0

1 simplification

24+t+2B—1/3=00r B = (3t2 — 6t + 2)/12. Hence finally

2 2a—xt/2+2/2-t/2+1/6, sl SEST
Gule, t): ; $2/4+t2/4—:ct/2—a:/2-—t/2+1/6, i<z<]

imple 4

] Green’s function assbciated with the problem
e 3 /\y =g g =0 y2)="0

ution

2 reguisr SL system with p(z) = 1.

y" =0 whose solution 18 ¥ = Az + B.

With )\ = 0, the DE becomes
| 1 /
v we apply the B.Cs. The B.C. V/( 3
) = 0 gives 2A+ B=0o0r B =0.
1ce u = 0 is the only solution of the homogeneous Pro
0t an eigenvalue.

' "}'/2 Henes:

31

0) = 0 gives A = 0, and the B.C.

lem. T herefore A = U
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Az + B, <z <t

7z, t)z{AII+BI, {3
t
G’(O, t)—_:()and G(z’ t)zo (

| Y

G(z, t) satisfies the B.Cs.
st condition gives A = 0. The second gives 24’ + B’ = 0 or B — o

we can write 3
B. 0<z<t |
G, 1) = {A’(m—?), e <2 .
' 4.
G(z, t) is continuous for all values of z, and in particular at 7 = Ty
ore we have B = A’'t — 2A’. and :
A/(t_z)’ Q< B<y =
o e {A’(:c—2), tits <.2 .
6.
he discpntinuity condition y"
0,t)—G'(t+0, t)=[1/p(t)] gives0 — A’ =1o0r A" = —1. (
Gl |
e RS fw
G, 1) —,{ L Sy
_ 8. (
Exercises -
1 modified Green’s function for the B.V. problem. (
: 4
' 9. &
i | ,
‘ | (a)
Gits 4 < { 'xzt/z + xtz/z —-9zt/5+x, 0<<t (b)
\ z°t/2+2t°/2 -9t /54+t, t<<z <1
(c)
d Green’s function for the B.V. problem. 30, ]
' =0 y(0) = 0, y(1) = 0 = ' the
| : defir
-, M.‘.y’(

s. (a) Gz, t):{ g x-_g<tt
SR : L. &%
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G(z, t) | (L =2+ ot L1/2: 2 €1
(T-t+mt-1)/2, 2>t '

| Green's function for the BV problem.
y =0, y(1) =0, ly(0)| < oo.
1 Green’s function for the BV problem
y - ply/z =0, y(1):

< ) U(l) . ()1 |'l}(())l < 00.
d Green’s function for the BV problem.
) ¥(=1) - ¥(1) =0, y(~1) - ¥(1) =0,
wstruct Green’s function for the problem:
J4=0, y(0) =0, y(1)=0

sin2z, <t
S. G ,t = )
: R {cos2(1——:c), m >t )

nstruct Green’s function for the problem:
(zy’) =0, y(0)=0, y'(1)=0
he problem:

nstruct Green'’s function for t

' +y/a=0, y(©0) =0 y(1)=0

Ive each problem.

it = f(x), y"(O) =a, y(1
0) — y'(0) = a, y(1

=

=b
y” i kzy s f(x), y( )

(zy') = f(x), ¥(0) = 0, ¥
oblem defi
)y =y (1)

/(1) = b
A, the DE yn o K2y = 0 subject to y

7ind Green’s for the pr
B.Cs: y(0) = y(1); y'(0

Green'’s fun
Explain that it 15 not po : : ;}?e B.Cs. ¥
red by the DE " + k%Y _ ( subject t0 ;
43, | |

ction for the problem
(0) = y(1), ¥ =




