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Lecture Notes #11
July 19, 2017The Normal Distribution

Based on a chapter by Chris Piech

The single most important random variable type is the normal (a.k.a. Gaussian) random variable,
parametrized by a mean (µ) and variance (σ2). If X is a normal variable, we write X ∼ N(µ, σ2).
The normal is important for many reasons: it is generated from the summation of independent
random variables and as a result it occurs often in nature.

Many things in the world are not quite distributed normally, but data scientists and computer
scientists model them as normal distributions anyways. Why? Essentially, the normal is what we
use if we know mean and variance, but nothing else. In fact, it is the most conservative1 modeling
decision that we can make for a random variable while still matching a particular expectation
(average value) and variance (spread).

The probability density function (PDF) for a normal X ∼ N(µ, σ2) is:
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σ
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Notice the x in the exponent of the PDF function. When x is equal to the mean (µ), then e is raised
to the power of 0 and the PDF is maximized.

By design, a normal has E[X] = µ and Var(X ) = σ2.

Linear Transform
If X is a normal RV such that X ∼ N (µ, σ2) and Y = aX + b (Y is a linear transform of X), then Y
is also a normal RV where:

Y ∼ N (aµ + b, a2σ2)

Projection to Standard Normal
For any normal RV X we can find a linear transform from X to the standard normal N (0, 1). That
is, if you subtract the mean (µ) of the normal and divide by the standard deviation (σ), the result is
distributed according to the standard normal. We can prove this mathematically. Let W = X−µ

σ :

W =
X − µ
σ

transform X : subtract µ and divide by σ

=
1
σ

X −
µ

σ
use algebra to rewrite the equation

= aX + b where a =
1
σ
, b = −

µ

σ

∼ N (aµ + b, a2σ2) the linear transform of a normal is another normal

∼ N (
µ

σ
−
µ

σ
,
σ2

σ2 ) substituting values in for a and b

∼ N (0, 1) the standard normal

1Formally, it has the highest entropy H (X ) = −
∫

dx f (x) log f (x) of any distribution given the mean and variance.
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An extremely common use of this transform is to express FX (x), the CDF of X , in terms of the
CDF of Z , FZ (x). Since the CDF of Z is so common it gets its own Greek symbol: Φ(x)

FX (x) = P(X ≤ x)

= P
(

X − µ
σ

≤
x − µ
σ

)
= P

(
Z ≤

x − µ
σ

)
= Φ

( x − µ
σ

)
Why is this useful?Well, in the days when we couldn’t call scipy.stats.norm.cdf (or on exams,
when one doesn’t have a calculator), people would look up values of the CDF in a table (see the
last page of these notes). Using the standard normal means you only need to build a table of one
distribution, rather than an indefinite number of tables for all the different values of µ and σ!

We also have an online calculator on the CS 109 website. You should learn how to use the normal
table for the exams, however!

How to Remember that Crazy PDF
What is the PDF of the standard normal Z? Let’s plug it in:
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This gets even better if we realize that 1√
2π

is just a constant to make the whole thing integrate to 1.
Call that constant C:

f Z (z) = Ce−
1
2 z2

Not so scary anymore, is it? In fact, this equation can be a rather helpful mnemonic: the normal
distribution PDF is just the exponential of a parabola. What does that look like?

f (z) = −1
2 z2 f (z) = e−

1
2 z2

As it turns out, the exponential of a (downward) parabola is a familiar shape: the “bell curve”. Now
bring back the fact that Z = X−µ

σ , and you can see that µ determines where the “peak” of the bell
curve will be, while σ tells you how wide it is. (Don’t forget that C changes too!)
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Example 1
Let X ∼ N(3, 16), what is P(X > 0)?

P(X > 0) = P
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4
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4
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3
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)
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3
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) = 0.7734

What is P(2 < X < 5)?
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Example 2
You send voltage of 2 or -2 on a wire to denote 1 or 0. Let X = voltage sent and let R = voltage
received. R = X + Y , where Y ∼ N (0, 1) is noise. When decoding, if R ≥ 0.5 we interpret the
voltage as 1, else 0. What is P(error after decoding|original bit = 1)?

P(X + Y < 0.5) = P(2 + Y < 0.5) = P(Y < −1.5) = Φ(−1.5) = 1 − Φ(1.5) ≈ 0.0668

Binomial Approximation
Imagine this terrible scenario. You need to solve a probability question on a binomial random vari-
able (see the chapter on discrete distributions) with a large value for n (the number of experiments).
You quickly realize that it is way too hard to compute by hand. Recall that the binomial probability
mass function has an n! term. You decide to turn to you computer, but after a few iterations you
realize that this is too hard even for your GPU boosted mega computer (or your laptop).

As a concrete example, imagine that in an election each person in a country with 10 million people
votes in an election. Each person in the country votes for candidate A, with independent probability
0.53. You want to know the probability that candidate A gets more than 5 million votes. Yikes!

Don’t panic (unless you are candidate B, then sorry, this election is not for you). Did you notice
how similar a normal distribution’s PDF and a binomial distributions PMF look? Lets take a side
by side view:
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Lets say our binomial is a random variable X ∼ Bin(100, 0.5) and we want to calculate P(X ≥ 55).
We could cheat by using the closest fit normal (in this case Y ∼ N (50, 25)). How did we chose
that particular Normal? I simply selected one with a mean and variance that matches the Binomial
expectation and variance. The binomial expectation is np = 100 · 0.5 = 50. The Binomial variance
is np(1 − p) = 100 · 0.5 · 0.5 = 25.

Since Y ≈ X then P(X ≥ 55) seems like it should be ≈ P(Y ≥ 55). That is almost true. It turns out
that there is a formal mathematical reason why the normal is a good approximation of the binomial
as long as the Binomial parameter p is reasonable (eg in the range [0.3 to 0.7]) and n is large
enough. However! There was an oversight in our logic. Let’s look a bit closer at the binomial we
are approximating.

Since we want to approximate P(X ≥ 55), our goal is to calculate the sum of all of the columns
in the Binomial PMF from 55 and up (all those dark columns). If we calculate the probability that
the approximating Normal random variable takes on a value greater than 55 P(Y ≥ 55) we will
get the integral starting at the vertical dashed line. Hey! That’s not where the columns start. Really
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we want the area under the curve starting half way between 54 and 55. The correct approximation
would be to calculate P(X ≥ 54.5).

Yep, that adds an annoying layer of complexity. The simple idea is that when you approximate a
discrete distribution with a continuous one, if you are not careful your approximating integral will
only include half of one of your boundary values. In this case we were only adding half of the
column for P(X = 55)). The correction is called the continuity correction.

You can use a Normal distribution to approximate a Binomial X ∼ Bin(n, p). To do so define
a normal Y ∼ (E[X],V ar (X )). Using the Binomial formulas for expectation and variance, Y ∼
(np, np(1− p)). This approximation holds for large n and moderate p. Since a Normal is continuous
and Binomial is discrete we have to use a continuity correction to discretize the Normal.

P(X = k) ∼ P
(
k −

1
2
< Y < k +

1
2

)
= Φ *

,

k − np + 0.5√
np(1 − p)

+
-
− Φ *

,

k − np − 0.5√
np(1 − p)

+
-

You should get comfortable deciding what continuity correction to use. Here are a few examples
of discrete probability questions and the continuity correction:

Discrete (Binomial) probability question Equivalent continuous probability question
P(X = 6) P(5.5 < X < 6.5)
P(X ≥ 6) P(X > 5.5)
P(X > 6) P(X > 6.5)
P(X < 6) P(X < 5.5)
P(X ≤ 6) P(X < 6.5)

Example 3
100 visitors to your website are given a new design. Let X = # of people who were given the new
design and spend more time on your website. Your CEO will endorse the new design if X ≥ 65.
What is P(CEO endorses change|it has no effect)?

E[X] = np = 50. V ar (X ) = np(1 − p) = 25. σ =
√

(V ar (X )) = 5. We can thus use a Normal
approximation: Y ∼ N (50, 25).

P(X ≥ 65) ≈ P(Y > 64.5) = P
(
Y − 50

5
>

64.5 − 50
5

)
= 1 − Φ(2.9) = 0.0019

Example 4
Stanford accepts 2480 students and each student has a 68% chance of attending. Let X = # students
who will attend. X ∼ Bin(2480, 0.68). What is P(X > 1745)?

E[X] = np = 1686.4. V ar (X ) = np(1 − p) = 539.7. σ =
√

(V ar (X )) = 23.23. We can thus use a
Normal approximation: Y ∼ N (1686.4, 539.7).

P(X > 1745) ≈ P(Y > 1745.5) = P
(
Y − 1686.4

23.23
>

1745.5 − 1686.4
23.23

)
= 1 − Φ(2.54) = 0.0055


