
ST 516

Experimental Statistics for Engineers II

The General 2k−p Design

To construct a 2−p fraction of the 2k full factorial design, we require
p independent generators (such as D = AB).

Each generator contributes a word to the defining relation (here,
I = ABD).

The defining relation consists of these words and their products
(generalized interactions); 2p − 1 in total (2p including I ).

Each effect has 2p − 1 aliases; find them by multiplying the given
effect by all words in the defining relation.
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Design Criteria

High resolution = length of shortest word in full defining relation.

Low aberration = number of words with that length.

Appendix X gives maximum resolution, minimum aberration designs
for many 2k−p designs with k ≤ 15 and n = 2k−p ≤ 64.
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Example

27−2
IV design; defining relation contains at least one 4-letter word.

Each 4-letter word introduces 4 aliases of a main effect with a
3-factor interaction, and 6 aliases of 2-factor interactions with each
other.

Three choices (among many):

I = ABCF = BCDG = ADFG

I = ABCF = ADEG = BCDEFG

I = ABCDF = ABDEG = CEFG has minimum aberration.
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Blocking a Fractional Factorial

Needed, as always, when the design has more runs than can be
carried out under homogeneous conditions.

E.g. for 2 blocks, choose an effect to be confounded with blocks.

All of its aliases are then also confounded–choose carefully!

Appendix X has recommended choices (but some are questionable).
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Example

26−2 (24 = 16 runs) in two blocks (each of 8 runs).

Treat “Blocks” as a seventh 2-level factor, G ; find a design for 27−3.

Appendix X(i) suggests generators E = ABC ,F = BCD,G = ACD
with defining relation

I = ABCE = BCDF = ADEF

= ACDG = BDEG = ABFG = CEFG

and hence resolution IV.
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Rewrite the defining relation as

I = ABCE = BCDF = ADEF ,

G = ACD = BDE = ABF = CEF .

The first line is the defining relation for a 26−2
IV design.

The second line defines the two blocks, and shows which interactions
are confounded with blocks.

This is not the design recommended in Appendix X(f) for 26−2 in two
blocks, but it has similar confounding: four 3-factor interactions
confounded with blocks.
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Another example

25−1, also in two blocks of 8 runs.

Find a design for 26−2.

Appendix X(f) suggests generators E = ABC , F = BCD, with
defining relation

I = ABCE = BCDF = ADEF .

Rewrite as
I = ABCE ,F = BCD = ADE

and use F to define the blocks.
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This blocked design is of resolution IV:

two 3-factor interactions, BCD and ADE , are confounded with
blocks;

the 2-factor alias chains are AB = CE and AC = BE .

The recommended design in Appendix X(d) is generated by
E = ABCD, with defining relation I = ABCDE , and is of
resolution V.

But with the two recommended blocks:

AB = CDE is confounded with blocks;

if interactions of blocks with treatments were present, A would
be confounded with the B × block interaction.

Which design is better?
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Resolution III Designs

Main effects are aliased with 2-factor interactions, so these designs
are useful for suggesting active factors, but may be ambiguous.

For example, if A, B , and D are identified by the half-normal plot,
but D = AB , which factors are active?

Designs exist for K = N − 1 factors in only N runs, when N is a
multiple of 4; saturated designs.

E.g. 23−1
III , 27−4

III , 215−11
III , 231−26

III .
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Example: 27−4
III has 27−4 = 8 runs, and can estimate main effects of 7

factors.

Begin with basic design in A, B, C:

Basic Design

Run A B C

1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +
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Add columns for interactions:

Basic Design

Run A B C AB AC BC ABC

1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +
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Alias D, E, F, and G with the four interactions:

Basic Design

Run A B C D = AB E = AC F = BC G = ABC

1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +
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Design is generated by

D = AB , E = AC , F = BC , G = ABC

which imply that

I = ABD = ACE = BCF = ABCG

Full defining relation is

I = ABD = ACE = AFG = BCF = BEG = CDG = DEF

= ABCG = ABEF = ACDF = ADEG = BCDE = BDFG = CEFG

= ABCDEFG

Every main effect is aliased with three 2-factor interactions, four
3-factor interactions, and one 6-factor interaction.
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Example

Response is “eye focus time”.

Seven factors, with the above 27−4
III design.

R commands
table8p21 <- within(MakeTwoLevel(3), {

G <- A * B * C;

F <- B * C;

E <- A * C;

D <- A * B

})

table8p21$Time <- c(85.5, 75.1, 93.2, 145.4, 83.7, 77.6, 95.0, 141.8)

summary(lm(Time ~ A + B + C + D + E + F + G, table8p21))

# Time ~ . is short-hand for this formula.

library(gplots)

qqnorm(aov(Time ~ ., table8p21), label = TRUE)
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The half-normal plot identifies A, B , and D as interesting.

I = ABD means that A = BD, B = AD, and D = AB .

So the half-normal plot is consistent with any of:

A + B + D;

A + B + A : B ;

A + D + A : D;

B + D + B : D.

More runs are needed to distinguish among these possibilities.
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Sequential Experiments: Fold Over

Begin with the principal fraction for a resolution III design.

If one factor is of special interest, follow up with the alternate
fraction in which signs for that factor are reversed.

Combined experiment, a single-factor fold over, gives:

main effect for that factor free of 2-factor and 3-factor aliases;

all its 2-factor interactions free of 2-factor aliases.

To achieve that for all factors, we would need a resolution V design,
which would require more runs; the fold over is more efficient.
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Or, if all main effects are of interest, follow up with the alternate
fraction in which signs for all factors are reversed.

Combined experiment, a full fold over, or reflection, gives all main
effects free of 2-factor aliases ⇒ a resolution IV design.

Often the two fractions should be treated as blocks, with those
effects in the complete defining relation that change sign confounded
with blocks.
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Example, continued

In the “eye focus time” example, no single factor is of principal
interest, so the full fold over idea was used to construct a second
fraction.

R commands
table8p22 <- -table8p21

table8p22$Time <- c(91.3, 126.7, 82.4, 73.4, 94.1, 143.8, 87.3, 71.9)

fullFoldOver <- rbind(table8p21, table8p22)

summary(lm(Time ~ .^2, fullFoldOver))

qqnorm(aov(Time ~ .^2, fullFoldOver), label = TRUE)

The half-normal plot clarifies that the large effects are B , D, and
B : D, so B and D appear to be the only active factors.
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Example, with Blocks
table8p21$Block <- 1

table8p22$Block <- 2

fullFoldOverBlocked <- rbind(table8p21, table8p22)

summary(lm(Time ~ Block + (. - Block)^2, fullFoldOverBlocked))

qqnorm(aov(Time ~ Block + (. - Block)^2, fullFoldOverBlocked), label = TRUE)

The single degree of freedom for blocks takes out the single degree of
freedom for residuals, so the other estimated effects are all
unchanged.
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Plackett-Burman Designs

Two-level fractional factorial designs for k = N − 1 factors in N runs
(saturated designs), with N a multiple of 4.

When N is a power of 2, say N = 2q, these are 2k−p
III designs with

k = 2q − 1 and p = k − q for q = 2, 3, 4, . . . .

Plackett-Burman designs for other N have more complicated aliasing
structure.
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Example

A 12-run Plackett-Burman design was used in a study of the factors
that affect injection molding of plastic components.

The design can produce estimates of the main effects of up to 11
factors, but only 8 (A – H) were used in this study.

The response is R1, “cycle time”.

The design was extended by adding 4 center point runs, which we
ignore.
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Run A B C D E F G H J K L R1

1 + - + - - - + + + - + 15.4
2 + + - + - - - + + + - 17.3
3 - + + - + - - - + + + 19.3
4 + - + + - + - - - + + 17.4
5 + + - + + - + - - - + 21.3
6 + + + - + + - + - - - 19.3
7 - + + + - + + - + - - 17.3
8 - - + + + - + + - + - 21.4
9 - - - + + + - + + - + 21.3

10 + - - - + + + - + + - 19.4
11 - + - - - + + + - + + 15.3
12 - - - - - - - - - - - 15.3
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The design has resolution III, because main effects are not aliased
with each other, but are aliased with 2-factor interactions:

pb12plus <- read.csv("data/Plackett-Burman-12.csv")

pb12 <- pb12plus[1:12,]

alias(lm(R1 ~ (A + B + C + D + E + F + G + H)^2, pb12))

Estimate all main effects
summary(lm(R1 ~ A + B + C + D + E + F + G + H, pb12))

Stepwise regression

Use step-wise regression to explore main effects and 2-factor
interactions (k controls over-fitting; default is k = 2):

summary(step(lm(R1 ~ 1, pb12),

scope = ~ (A + B + C + D + E + F + G + H)^2, k = 4))
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The step-wise regression indicates that D and E have strong effects,
and B is marginally significant.

Projection

In D and E , the design is three replicates of the full 22 factorial.

In B , D, and E , the design is a single replicate of the full 23 factorial
design, plus the one-half fraction with BDE = −I .

Fitting R1 ~ B * D * E shows that no interactions are significant.
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Supersaturated Designs

The additive model in k factors has p = k + 1 parameters:

the intercept;

k main effects.

A saturated design has N = p runs, so that all parameters can be
estimated, but with zero degrees of freedom for error.

A supersaturated design,with N < p runs, cannot provide estimates
of all p parameters.

Modern methods focus on identifying a subset of parameters that
appear to be non-zero, and providing estimates of them.
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