RESPONSE SURFACE METHODOLOGY (RSM)

A Brief Introduction

Statistical modeling strategies for dealing with what engineers call processes:

$$
y=\eta\left(\xi_{1}, \xi_{2}, \ldots, \xi_{f}\right)+\epsilon
$$

- $y=$ response
- $\xi^{\prime} s=$ factors, independent variables, now explicitly continuous
- modeling via regression and experimental design

Emphasis is on local approximations of η and/or estimates of its important characteristics, e.g.

- Which ξ 's are most important?
- Which values of ξ 's produced greatest/least response values?

Example: Chemical yield (y) as a function of process time $\left(\xi_{1}\right)$ and operating temperature $\left(\xi_{2}\right)$.

- Focus on estimating $E[$ yield $]$ if process contains randomness.
- The Region of Operability is the $\boldsymbol{\xi}$-space in which the system could realistically be operated; in this case, perhaps:

$$
0 \mathrm{hr} \leq \xi_{1} \leq 7 \mathrm{hr} \quad 100^{\circ} \mathrm{C} \leq \xi_{2} \leq 800^{\circ} \mathrm{C}
$$

- Note that in this notation, ξ 's are values with physical units.
- η may be complex globally, over the entire region of operability.
- In most applications, we don't really need a model that holds for all conditions in the region of operability ... maybe just need to know (for example):
- $\boldsymbol{\xi}$ that maximizes or minimizes η
- $\boldsymbol{\xi}$-region for which $\eta>\eta_{\text {min }}$
- $\boldsymbol{\xi}$-region where η is unstable (i.e. large derivatives)

Rather than focusing on the exact physical representation of the system (which is often not fully known), RSM generally relies on local approximations of η within smaller Regions of Experimentation

$$
y \approx p^{*}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{f}\right)+\epsilon
$$

- p^{*} usually a low-order polynomial
- $\epsilon=$ additive random error/noise

$$
E[y]=\eta \approx p^{*}(-) \quad \operatorname{Var}[y]=\operatorname{Var}[\epsilon]=\sigma^{2}
$$

Example (continued)

- Local approximation in a region of experimentation:

$$
2.5 \mathrm{hr} \leq \xi_{1} \leq 3 \mathrm{hr} \quad 500^{\circ} \mathrm{C} \leq \xi_{2} \leq 600^{\circ} \mathrm{C}
$$

- Approximating model $p^{*}=$ first-order polynomial:

$$
\eta \approx p^{*}=\beta_{0}^{*}+\beta_{1}^{*} \xi_{1}+\beta_{2}^{*} \xi_{2}
$$

- Physical units are:
- $\eta, y=\%$ yield (i.e. \% of raw material converted)
$-\xi_{1}=\mathrm{hr}$
$-\xi_{2}={ }^{\circ} \mathrm{C}$
- Physical units must be the same in every term in the model, so:
$-\beta_{0}^{*}=\%$
$-\beta_{1}^{*}=\% / \mathrm{hr}$
$-\beta_{2}^{*}=\% /{ }^{\circ} \mathrm{C}$

Often, factors are re-expressed in an equivalent scaled or unitless form so that the fitted coefficients are more comparable.

- Scaled variables: $x=\left(\xi\right.$ - mid-value) $/ \frac{1}{2}$ (high - low $)$
$-x_{1}=\left(\xi_{1}-2.75\right) / \frac{1}{2}(3.0-2.5)$
$-x_{2}=\left(\xi_{2}-550\right) / \frac{1}{2}(600-500)$
- So: $-1 \leq x_{1} \leq 1 \quad-1 \leq x_{2} \leq 1$
- Approximating model in scaled variables:

$$
\eta \approx p\left(x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \quad \text { (no "*" now) }
$$

- Units are:
- $\eta, y=\%$ yield $\quad \beta_{0}=\beta_{0}^{*}=\%$
$-x_{1}=$ unitless, so $\beta_{1}=\%$
$-x_{2}=$ unitless, so $\beta_{2}=\%$
- Can also standardize each ξ by std. dev. of the values actually used in the experimental runs, rather than half-range.

Some elements of RSM:

- Design for 1st- and 2nd-order polynomial regression models
- Analysis of fitted surfaces, e.g.
- lack-of-fit
- gradients
- "ridge" characterization
- Strategies for sequential experiments
- usually for finding values of ξ 's that maximize or minimize the expected response

Designs for First-Order Polynomial Models

Good news! You've already seen most of them:

- full 2^{f} designs
- regular 2^{f-s} fractions of resolution at least III
- Placket-Burman irregular fractions

In each case, inputs tested at only two levels are used to make interpolative inference across the interval of values for each variable.

Even though these designs are also used for 2^{f} factorial studies, the modeling problem is fundamentally different here, e.g.:

- experiment with $x_{i}= \pm 1$
- predict y or estimate $E(y)$ at $x_{1}=0.25, x_{2}=0.60, \ldots$

And some first-order RSM designs aren't just "on the corners":

Saturated First-Order Designs: Simplex Designs

- A design is "saturated" if the number of unique runs is equal to the number of model parameters, and \mathbf{X} is of full column rank.
- Minimal P-B designs are saturated when $f+1$ is a multiple of 4 , and "near-saturated" for other values of f; the number of distinct treatments is never more than 3 larger than $f+1$.
- Simplex designs are saturated for first-order models for every value of f :
- the unique design points are the $f+1$ corners of a f-dimensional simplex, a geometric figure with all edges of equal length.
- examples:
* $f=2$, the 3 corners of an equilateral triangle
* $f=3$, the 4 corners of a tetrahedron
- The "design matrix" \mathbf{D} is the N-row by f-column matrix for which

$$
\{\mathbf{D}\}_{i, j}=x_{i, j}
$$

the value of the independent variable x_{i} in the j th experimental run.

- One way to generate a design matrix for a simplex design in f variables is:

$$
\mathbf{D}=\sqrt{f+1}\left(\begin{array}{ccccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{12}} & \cdots & \frac{1}{\sqrt{f^{2}+f}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{12}} & \cdots & \frac{1}{\sqrt{f^{2}+f}} \\
0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{12}} & \cdots & \frac{1}{\sqrt{f^{2}+f}} \\
0 & 0 & \frac{-3}{\sqrt{12}} & \cdots & \frac{1}{\sqrt{f^{2}+f}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \frac{-f}{\sqrt{f^{2}+f}}
\end{array}\right)
$$

- Examples:

$$
f=2:\left(\begin{array}{cc}
\sqrt{\frac{3}{2}} & \sqrt{\frac{3}{2}} \\
-\sqrt{\frac{3}{2}} & \sqrt{\frac{3}{2}} \\
0 & -\sqrt{2}
\end{array}\right) \quad f=3:\left(\begin{array}{ccc}
\sqrt{2} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
-\sqrt{2} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
0 & -2 \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\
0 & 0 & -\frac{3}{\sqrt{3}}
\end{array}\right)
$$

- Notes:
- not 2-level
- scaling here is by SD rather than Range/2, but each x is still centered on zero
- can rotate the simplex in f-space to get a different design matrix
- Saturation $\rightarrow \hat{y}=y$, 0 error d.f., no L.O.F. check ...

Center Points and First-Order Diagnostics

- All first-order designs we've discussed in n_{f} points are such that:

$$
\sum_{u=1}^{n_{f}} x_{i u}=0 \quad \sum_{u=1}^{n_{f}} x_{i u} x_{j u}=0, i \neq j \quad \sum_{u=1}^{n_{f}} x_{i u}^{2}=n_{f}
$$

- If, as we assume, a first-order model is correct, the average of responses at these points has expectation $E\left(\bar{y}_{f}\right)=\beta_{0}$.
- But suppose the model is actually second-order:

$$
E(y)=\beta_{0}+\sum_{i=1}^{f} \beta_{i} x_{i}+\sum_{i<j}^{f} \beta_{i j} x_{i} x_{j}+\sum_{i=1}^{f} \beta_{i i} x_{i}^{2}
$$

- Then $E\left(\bar{y}_{f}\right)=\beta_{0}+\sum_{i=1}^{f} \beta_{i i}$
- Now, suppose we also add n_{c} center-points $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{f}\right)^{\prime}=\mathbf{0}$.

- Regardless of the appropriate polynomial model, $E\left(\bar{y}_{c}\right)=\beta_{0}$.
- So, $\operatorname{Hyp}_{0}: \sum_{i=1}^{f} \beta_{i i}=0$ can be tested with:

$$
\frac{\bar{y}_{f}-\bar{y}_{c}}{s_{c} \sqrt{n_{f}^{-1}+n_{c}^{-1}}}: t\left(n_{c}-1\right)
$$

where s_{c} is the sample s.d. of center-point responses

Center point test is a "one-degree-of-freedom" special case of lack-of-fit testing. Quick overview/review:

- Use, as an example, simple linear regression:

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i j}
$$

with $N=8,5$ unique values of x, and $y_{i j}=j$ th value in the i th group, e.g.:

- Variance decomposition, with M for "model" and E for "error":

source	df	sum-of-squares
model	1	$\begin{aligned} & S S_{M}\left(\beta_{1} \mid \beta_{0}\right)=S S_{M}\left(\beta_{0}, \beta_{1}\right)-S S_{M}\left(\beta_{0}\right) \\ & \quad=S S_{E}\left(\beta_{0}\right)-S S_{E}\left(\beta_{0}, \beta_{1}\right) \end{aligned}$
residual	6	$S S_{E}\left(\beta_{0}, \beta_{1}\right)$
LOF	3	$\begin{aligned} & S S_{M}\left(\text { groups } \mid \beta_{0}, \beta_{1}\right)=S S_{M}(\text { groups })-S S_{M}\left(\beta_{0}, \beta_{1}\right) \\ & \quad=S S_{E}\left(\beta_{0}, \beta_{1}\right)-S S_{E}(\text { groups }) \end{aligned}$
replication	3	$S S_{E}($ groups $)=\sum_{i, j}\left(y_{i j}-\bar{y}_{i}\right)^{2}$
c.t.	7	$S S_{E}\left(\beta_{0}\right)$

First-Order Analysis: Steepest Ascent/Decent

- Used when the goal is to find a "path" of experimental conditions that lead toward a maximum(minimum) response, and this is clearly outside of the current experimental region.
- Most often used where the response function is at least approximately locally linear; suppose:

$$
E(y)=\beta_{0}+\sum_{i} \beta_{i} x_{i}
$$

- New notation:
$-\underline{x}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{f}\right)$, e.g. a row from \mathbf{D}
$-\mathbf{x}^{\prime}$, e.g. a row from the model matrix ... "extended" \underline{x}^{\prime}
- Starting at the center of the current experimental region, $\underline{x}_{0}^{\prime}=(0,0, \ldots, 0)$, which direction should we go in the design space to maximize the resulting increase/decrease in $E(y)$ for a fixed stepsize r ?
- More formally, what $\underline{x}_{r}^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{f}\right)$ satisfies:

$$
\begin{aligned}
& \operatorname{maximize}\left[\beta_{0}+\sum_{i} \beta_{i} x_{i}\right]-\left[\beta_{0}\right]=\sum_{i} \beta_{i} x_{i} \\
& \text { subject to } \sum_{i} x_{i}^{2}=r^{2}
\end{aligned}
$$

- Solve this with Method of Lagrangian Multipliers ...
- Define $\phi(\underline{x}, \lambda)=\sum_{i} \beta_{i} x_{i}-\lambda\left[\sum_{i} x_{i}^{2}-r^{2}\right]$
- Take derivatives, set equal to zero, solve:

$$
\begin{aligned}
& -\frac{\partial}{\partial x_{i}} \phi=\beta_{i}-2 \lambda x_{i}=0 \\
& -\frac{\partial}{\partial \lambda} \phi=\sum_{i} x_{i}^{2}-r^{2}=0
\end{aligned}
$$

- Derivatives w.r.t. $\underline{x}_{r} \rightarrow x_{i}$ must be proportional to β_{i}
- Then derivative w.r.t. $\lambda \rightarrow x_{i}=\frac{\beta_{i}}{\sqrt{\sum_{i} \beta_{i}^{2}}} r$
- For steepest descent, the sign on the objective function is reversed, and so is the sign on the solution.

- The value of r used in the above argument is arbitrary - in fact, "The Method of Steepest Ascent" is generally based on taking a series of new observations along the "path", usually at evenly spaced steps.
- Some practitioners advocate scaling the actual step so that the incremental change in one of the independent variables is ± 1. If this is done for the variable with the largest (absolute) β, it assures that the first step will not be outside of the present region of experimentation:
- Let $M=\max _{i}\left|\beta_{i}\right|$
- Then define $\Delta_{i}=\beta_{i} / M, i=1,2,3, \ldots, f$
- New design points (in current coding of variables) are then

$$
\underline{\Delta}, 2 \Delta, 3 \Delta, \ldots
$$

- Basic strategy:
- Use a first-order design; augment with center-points.
- Test for lack-of-fit; if no evidence of second-order terms ...
- Fit a first-order model.
- Estimate a path of steepest ascent, using $\hat{\boldsymbol{\beta}}$ in place of of $\boldsymbol{\beta}$.
- Conduct experimental runs along the path until the response no longer increases. (Unless the global response surface has no maximum, this will eventually happen ...)
- Use this point (or one nearby) as the centerpoint of a new experimental region, and plan and execute a new experiment.

Effect of Scaling: Suppose in truth, $E(y)=100+2 \xi_{1}+1 \xi_{2}$

- Experimenter \#1:
- E.R.: $10 \leq \xi_{1} \leq 20,10 \leq \xi_{2} \leq 50$
$-E(y)=[-]+[2 \times 5] \frac{\xi_{1}-15}{5}+[1 \times 20] \frac{\xi_{2}-30}{20}$
$-\underline{\Delta}$ is proportional to $(10,20)$, say $\left(\frac{1}{2}, 1\right)$
- First step in uncoded variables is

$$
\left(\Delta_{1} \times 5+15, \Delta_{2} \times 20+30\right)=(17.5,50)
$$

- Experimenter \#2:
- E.R.: $5 \leq \xi_{1} \leq 25,10 \leq \xi_{2} \leq 50$
$-E(y)=[-]+[2 \times 10] \frac{\xi_{1}-15}{10}+[1 \times 20] \frac{\xi_{2}-30}{20}$
$-\underline{\Delta}$ is proportional to $(20,20)$, say $(1,1)$
- First step in uncoded variables is

$$
\left(\Delta_{1} \times 10+15, \Delta_{2} \times 20+30\right)=(25,50)
$$

- So the path of steepest ascent is not scale-invariant ... it depends on the range of values set for each ξ in the experiment
- Why? Recall, the path is defined by the direction in which $E(y)$ is most increased for a step of fixed size in the coded variables.
- If scaling of ξ_{1} is changed so that $x_{1} \in[-1,+1]$ is larger on the physical scale, this increases β_{1} relative to $\beta_{2} \ldots$
- Even so, the steepest ascent path in either coding does lead to increased responses (at least within the region where the first-order approximation is accurate).

How would Steepest Ascent work if you wanted to base it on a model with main effects and two-factor interactions (sometimes called "bilinear" terms)?

- Lagrangian Multipliers ...

$$
\begin{aligned}
& \operatorname{maximize}\left(\beta_{0}+\sum_{i} x_{i} \beta_{i}+\sum_{i<j} x_{i} x_{j} \beta_{i j}\right)-\left(\beta_{0}\right) \\
& \text { subject to } \sum_{i} x_{i}^{2}=r^{2}
\end{aligned}
$$

- $\phi=\sum_{i} x_{i} \beta_{i}+\sum_{i<j} x_{i} x_{j} \beta_{i j}-\lambda\left[\sum_{i} x_{i}^{2}-r^{2}\right]$
- $\frac{\partial}{\partial x_{i}}=\beta_{i}+\sum_{j \neq i} x_{j} \beta_{i j}-2 \lambda x_{i}=0$

$$
\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\ldots \\
\beta_{k}
\end{array}\right)=\left(\begin{array}{ccccc}
2 \lambda & -\beta_{12} & -\beta_{13} & \ldots & -\beta_{1 k} \\
-\beta_{12} & 2 \lambda & -\beta_{23} & \ldots & -\beta_{2 k} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
-\beta_{1 k} & -\beta_{2 k} & -\beta_{3 k} & \ldots & 2 \lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{k}
\end{array}\right)
$$

- λ controls the step size.. large $\lambda=$ small step

Example:

- $E(y)=10+2 x_{1}+3 x_{2}-1 x_{1} x_{2}$:
$\binom{2}{3}=\left(\begin{array}{cc}2 \lambda & 1 \\
1 & 2 \lambda\end{array}\right)\binom{x_{1}}{x_{2}}$

λ	∞	5	2	1	0.75	0.65
x_{1}	0	0.17	0.33	0.33	0	-0.58
x_{2}	0	0.28	0.67	1.33	2	2.75

Central Composite Designs for Second-Order Models

- As optimization nears the "top of the hill," first-order and bilinear models become ineffective ... need full quadratic:

$$
E(y)=\beta_{0}+\sum_{i=1}^{f} \beta_{i} x_{i}+\sum_{i<j}^{f} \beta_{i j} x_{i} x_{j}+\sum_{i=1}^{f} \beta_{i i} x_{i}^{2}
$$

- Most parameters are estimable using designs we've already discussed, even in the presence of the $\beta_{i i}$ terms:
$-\beta_{0}$: e.g. any design with center points
$-\beta_{i}$: e.g. Resolution IV fraction
$-\beta_{i j}$: e.g. Resolution V fraction
- Q: What is the simplest additional collection of design points that would allow estimation of the $\beta_{i i}$, given the presence of the lower-order parameters in the model?
- A: Set of $2 f$ "star" or "axial" points, in conjunction with center points (already in the design):

$$
\left(\begin{array}{cccc}
+\alpha & 0 & \ldots & 0 \\
-\alpha & 0 & \ldots & 0 \\
0 & +\alpha & \ldots & 0 \\
0 & -\alpha & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & +\alpha \\
0 & 0 & \ldots & -\alpha
\end{array}\right)
$$

- This gives 3 collinear points in the direction of each of the f design axes, allowing assessment of "curvature" (i.e. estimate $\beta_{i i}$) e.g. in x_{1},

$$
(-\alpha, 0,0, \ldots, 0), \quad(0,0,0, \ldots, 0), \quad(+\alpha, 0,0, \ldots, 0)
$$

- Center points +2 -level fraction (Res $\geq \mathrm{V}$) + axials $=$ Central Composite Design (CCD), Box and Wilson (1951) JRSSB.

- "Design parameters" generally refer to the values of
$-\alpha=1$-dim distance from origin to each axial point (in scaled units)
$-n_{c}=$ number of center points (assuming other points are unreplicated)
- Complete specification also requires selection of a particular Resolution V 2-level design; variance properties depend only on n_{f}, the number of points in the factorial portion of the design, not the specific fraction. (But bias properties are a different matter ...)
- One nice feature of CCD's is the potential for sequential construction based on need, e.g.:
- begin with Res III fraction, but if 1-st order fit isn't acceptable,
- augment to Res V fraction, but if bi-linear fit isn't acceptable,
- add axial points for CCD.

Dividing columns into intercept, first-order, bi-linear, and pure quadratic terms:

| $\mathbf{X}^{\prime} \mathbf{X}=$ | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 0 | \ldots | 0 | 0 | \ldots | 0 | $n_{f}+2 \alpha^{2}$ | \ldots | $n_{f}+2 \alpha^{2}$ |
| 0 | $n_{f}+2 \alpha^{2}$ | \ldots | 0 | 0 | \ldots | 0 | 0 | \ldots | 0 |
| \ldots |
| 0 | 0 | \ldots | $n_{f}+2 \alpha^{2}$ | 0 | \ldots | 0 | 0 | \ldots | 0 |
| 0 | 0 | \ldots | 0 | n_{f} | \ldots | 0 | 0 | \ldots | 0 |
| \ldots |
| 0 | 0 | \ldots | 0 | 0 | \ldots | n_{f} | 0 | \ldots | 0 |
| $n_{f}+2 \alpha^{2}$ | 0 | \ldots | 0 | 0 | \ldots | 0 | $n_{f}+2 \alpha^{4}$ | \ldots | n_{f} |
| \ldots |
| $n_{f}+2 \alpha^{2}$ | 0 | \ldots | 0 | 0 | \ldots | 0 | n_{f} | \ldots | $n_{f}+2 \alpha^{4}$ |$)$

Non-zeros are diagonal elements, $\left(\beta_{0}, \beta_{i i}\right)$ pairs, and ($\beta_{i i}, \beta_{j j}$) pairs.

Design Moments are often used to characterize estimation properties of CCD's. A design moment is a normalized (by N) element of $\mathbf{X}^{\prime} \mathbf{X}$, denoted using the subscripting system we use for elements of $\boldsymbol{\beta}$. Let $x_{i u}$ be the value of x_{i} in run $u \ldots$ then, e.g.:

- $[i]=\frac{1}{N} \sum_{u} x_{i u}$, "first moments"
- $[i j]=\frac{1}{N} \sum_{u} x_{i u} x_{j u}$, "second mixed moments"
- $[i i i i]=\frac{1}{N} \sum_{u} x_{i u}^{4}$, "fourth pure moments"

Moments through order 4 are needed to describe all the precision characteristics of a design used to fit a quadratic model. For a CCD, the non-zero moments through order 4 are:

- $[i i]=\left(n_{f}+2 \alpha^{2}\right) / N$
- $[$ iiii $]=\left(n_{f}+2 \alpha^{4}\right) / N$
- $[i i j j]=n_{f} / N$

Rotatability:

- A design is said to be rotatable if $\operatorname{Var}(\hat{y}(\underline{x}))$ is the same for all \underline{x} satisfying $\underline{x}^{\prime} \underline{x}=r^{2}$ for any radius r.
- For a simple start, suppose we are just fitting a first-order model using our central composite design:

$$
\mathbf{X}^{\prime} \mathbf{X}=N\left(\begin{array}{c|ccc}
1 & 0 & \ldots & 0 \\
\hline 0 & {[11]} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & {[f f]}
\end{array}\right)
$$

- Since all $[i i]$ are equal for this design, and because $\mathbf{X}^{\prime} \mathbf{X}$ is diagonal:

$$
\operatorname{Var}(\hat{y}(\underline{x}))=\sigma^{2} \mathbf{x}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}=\frac{\sigma^{2}}{N}\left(1+\underline{x}^{\prime} \underline{x} /[i i]\right)=\frac{\sigma^{2}}{N}\left(1+r^{2} \frac{N}{n_{f}+2 \alpha^{2}}\right)
$$

so any CCD is rotatable for a first-order model. (Also true of all the other 1st order orthogonal designs we've talked about.)

- Rotatability for 2 nd order models is a bit messier, since the algebra requires inversion of a non-diagonal matrix, but the (general) bottom line is:
- A design is rotatable w.r.t. full 2nd order polynomial models iff:
- all odd moments* through 4th order are zero, and
$-[i i i i] /[i i j j]=3$ for all $i \neq j$
*: Any moment with an odd number of letters, whether distinct or not, e.g. through 4th order,

$$
[i]=[i j k]=[i i j]=[i i i]=0 .
$$

- For central composite designs, this is satisfied by setting:

$$
\begin{gathered}
{[i i i i] /[i i j j]=\frac{n_{f}+2 \alpha^{4}}{n_{f}}=3} \\
\alpha=n_{f}^{1 / 4}
\end{gathered}
$$

A Weakness in the Rotatability Argument:

- Consider $f=2, n_{f}=4, \alpha=\sqrt{2}$ for rotatability.
- Suppose we include no center points in the design:

$$
\mathbf{X}=\left(\begin{array}{c|cc|c|cc}
1 & +1 & +1 & +1 & 1 & 1 \\
1 & +1 & -1 & -1 & 1 & 1 \\
1 & -1 & +1 & -1 & 1 & 1 \\
1 & -1 & -1 & +1 & 1 & 1 \\
1 & +\sqrt{2} & 0 & 0 & 2 & 0 \\
1 & -\sqrt{2} & 0 & 0 & 2 & 0 \\
1 & 0 & +\sqrt{2} & 0 & 0 & 2 \\
1 & 0 & -\sqrt{2} & 0 & 0 & 2
\end{array}\right)
$$

- The design is singular because $x_{1}^{2}+x_{2}^{2}=2$ in each run.
- Same thing happens for $f=4$, and "almost" for $f=3$.
- This can be fixed by adding center points, but it may take several of them to produce good predictive variances near the origin.

Practical rules of thumb for CCD's:

- For spherical experimental regions:
$-\alpha=\sqrt{f}$
$-n_{c}=3$-to-5 (or more if σ is relatively large)
- For cubic experimental regions:
$-\alpha=1$ (sometimes called a "face-centered design")
- more freedom to set n_{c}

Orthogonal Blocking for CCD's

- Because CCD's are often constructed sequentially, they may need to be analyzed as blocked experiments.
- A goal in this case should be to avoid losing efficiency due to the need to simultaneously estimate (nuisance) block effects:

$$
E(y)=\delta_{l}+\beta_{0}+\sum_{i} x_{i} \beta_{i}+\sum_{i<j} x_{i} x_{j} \beta_{i j}+\sum_{i} x_{i}^{2} \beta_{i i}
$$

for an observation at \underline{x} in the l-th block.

- Partitition the model as:

$$
E(\mathbf{y})=\left(\begin{array}{ccc|c}
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{X}_{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{X}_{2} \\
\cdots & \cdots & \cdots & \ldots \\
\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{X}_{b}
\end{array}\right)\binom{\boldsymbol{\delta}}{\boldsymbol{\beta}}
$$

- ... where \mathbf{X}_{l} is the piece of the original \mathbf{X} matrix executed as the l-th block, of n_{l} runs.
- Note the first $b+1$ columns (blocks and intercept) are linearly dependent. This can be eliminated by replacing the b block columns with $b-1$ weighted differences:

$$
E(\mathbf{y})=\left(\begin{array}{cccc|c}
\frac{1}{n_{1}} \mathbf{1} & \mathbf{0} & \ldots & \mathbf{0} & \mathbf{X}_{1} \\
-\frac{1}{n_{2}} \mathbf{1} & \frac{1}{n_{2}} \mathbf{1} & \ldots & \mathbf{0} & \mathbf{X}_{2} \\
\mathbf{0} & -\frac{1}{n_{3}} \mathbf{1} & \ldots & \mathbf{0} & \mathbf{X}_{3} \\
\ldots & \ldots & \ldots & \ldots & \\
\mathbf{0} & \mathbf{0} & \ldots & -\frac{1}{n_{b}} \mathbf{1} & \mathbf{X}_{b}
\end{array}\right)\binom{\boldsymbol{\delta}^{*}}{\boldsymbol{\beta}}=(\mathbf{W} \mid \mathbf{X})\binom{\boldsymbol{\delta}^{*}}{\boldsymbol{\beta}}
$$

- Blocking is orthogonal if $\mathbf{W}^{\prime} \mathbf{X}=\mathbf{0}$, so the "reduced normal equations" for $\boldsymbol{\beta}$ are $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}$, as if the experiment were not blocked.

Following the model just derived, orthogonal blocking requires:

1. from multiplying \mathbf{W}^{\prime} by the intercept column:

$$
\frac{1}{n_{1}} \sum_{b l k 1} 1=\frac{1}{n_{2}} \sum_{b l k 2} 1=\ldots=\frac{1}{n_{b}} \sum_{b l k b} 1
$$

... true due to my selection of "weights".
2. from multiplying \mathbf{W}^{\prime} by the 1 -st order columns:

$$
\frac{1}{n_{1}} \sum_{b l k 1} x_{i u}=\frac{1}{n_{2}} \sum_{b l k 2} x_{i u}=\ldots=\frac{1}{n_{b}} \sum_{b l k b} x_{i u}, \text { any } i
$$

3. from multiplying \mathbf{W}^{\prime} by the bi-linear columns:

$$
\begin{gathered}
\frac{1}{n_{1}} \sum_{b l k 1} x_{i u} x_{j u}=\frac{1}{n_{2}} \sum_{b l k 2} x_{i u} x_{j u}=\ldots=\frac{1}{n_{b}} \sum_{b l k b} x_{i u} x_{j u}, \\
\text { any } i \neq j
\end{gathered}
$$

... both (2) and (3) are true if each block is an orthogonal main-effects design
4. from multiplying \mathbf{W}^{\prime} by the pure quadratic columns:

$$
\frac{1}{n_{1}} \sum_{b l k 1} x_{i u}^{2}=\frac{1}{n_{2}} \sum_{b l k 2} x_{i u}^{2}=\ldots=\frac{1}{n_{b}} \sum_{b l k b} x_{i u}^{2}, \text { any } i
$$

- Note that the above conditions are really about design moments computed individually for each block.
- Restrict attention to blocking schemes for which each block is an orthogonal main-effects plan (to satisfy (2) and (3)), and achieve (4) by selection of α and the number of center points in each block.
- Example: $f=2, b=2, n_{c 1}$ and $n_{c 2}$ center points per block:
Block 1, $\left(\begin{array}{cc}+1 & +1 \\ +1 & -1 \\ -1 & +1 \\ -1 & -1 \\ \mathbf{0} & \mathbf{0}\end{array}\right) \quad$ Block 2, $\left(\begin{array}{cc}+\alpha & 0 \\ -\alpha & 0 \\ 0 & +\alpha \\ 0 & -\alpha \\ \mathbf{0} & \mathbf{0}\end{array}\right)$

Need: $\quad \frac{4}{4+n_{c 1}}=\frac{2 \alpha^{2}}{4+n_{c 2}} \quad \rightarrow \quad \alpha=\sqrt{\frac{16+4 n_{c 2}}{8+2 n_{c 1}}}$

- Example: $f=4, b=3$, split 2^{4} into two 2^{4-1} fractions (with center points) in blocks 1 and 2, and axials (with center points) in block 3
- Need: $\frac{8}{8+n_{c 1}}=\frac{8}{8+n_{c 2}}=\frac{2 \alpha^{2}}{8+n_{c 3}}$
- Clearly, $n_{c 1}$ must be the same as $n_{c 2}$.
- Then: $\alpha=\sqrt{\frac{64+8 n_{c 3}}{16+2 n_{c 2}}}$
- Can also pick α and find n_{c} 's that work, but this also usually requires some adjustment of α.

"Small" Composite Designs

- For situations in which each run is very expensive
- Construction as with regular Central Composite, but using a Res III* 2-level design for the factorial portion (rather than Res V).
- *: Not just any Res III fraction. Must be such that no word of length 4 is used in the defining relation, e.g.

$$
\begin{gathered}
I=A B C=D E F(=A B C D E F) \text { is } \mathrm{OK}, \text { but not } \\
I=A B C=C D E(=A B D E)
\end{gathered}
$$

- Previous logic of using Res V was to avoid confounding between mixed quadratic coefficients. So, why does this work?
- $A B C D E$ is OK , because 2nd order terms aren't confounded
- $A B C D$ isn't OK, because $A B$ and $C D$ are confounded, et cetera
- $A B C$ is OK , because first-order effects are confounded with bilinear terms in only the factorial section of the design. The first-order terms $\left(\beta_{i}\right)$ are also estimable, along with the pure quadratic terms $\left(\beta_{i i}\right)$ in the axial portion.
- Example: $f=4$, use $I=A B C$ (can't use $A B C D$), 4 runs fewer than comparable CC.
- Note: Statistical performance is substantially worse for these designs than for regular Central Composite Designs, especially for larger values of f.

Box-Behnken Designs

- Based on Balanced Incomplete Block Designs (BIB's ... quick review)
- Setting:
- compare t treatments
- in b blocks, each of size $m<t$, in such a way that
- every treatment appears once in each of r blocks (first-order balance), and
- every pair of treatments appears together in each of λ blocks (second-order balance)
- Example: $t=3, b=3, m=2:$| 1 | 1 | 2 |
| :--- | :--- | :--- |
| 2 | 3 | 3 |
- here $r=2$, generally $r=\frac{b m}{t}$, and
- here $\lambda=1$, generally $\lambda=\frac{b m(m-1)}{t(t-1)}$
- so, these expressions don't have to yield integers (and BIB's don't exist) for every combination of t, b, and m values.
- Now for Box-Behnken Designs:

1. Select a BIB design with $t(\mathrm{BIB})=f(\mathrm{BB})$
2. For each block in the BIB , generate 2^{m} runs for the BB which constitute:

- the full 2-level factorial design in just the factors associated with the treatments in the BIB block
- setting all other factors to zero (coded central value) in all runs

3. Augment with center points.

- Continuing the example:

- Another example: $f=6$ is an odd case ... because of limitations on the BIB's available, a Partially Balanced Incomplete Block Design is used:

1	2	3	1	2	1
2	3	4	4	5	3
4	5	6	5	6	6

- First-order balance requirement is satisfied as with BIB's, but:
- Treatment pairs $(1,4),(2,5)$, and $(3,6)$ are called "first associates" and appear together in 2 blocks each, and all other treatment pairs are called "second associates" and appear together in only 1 block each.
- Note that in this case, each PBIB block contributes $2^{3}=8$ runs to the BB design, because the block size is 3 .

BB design matrix:

$$
\left(\begin{array}{cccccc}
\pm & \pm & 0 & \pm & 0 & 0 \\
0 & \pm & \pm & 0 & \pm & 0 \\
0 & 0 & \pm & \pm & 0 & \pm \\
\pm & 0 & 0 & \pm & \pm & 0 \\
0 & \pm & 0 & 0 & \pm & \pm \\
\pm & 0 & \pm & 0 & 0 & \pm \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

- Orthogonal Blocking: Recall (from CCD development) that when each block is considered as an independent design, each must have the same:

1. $[i]$
2. $[i j]$
3. $[i i]$

- Call the BB runs that come from any one BIBD block a "group".
- The first and second requirements are automatically satisfied if we keep each group of runs together in a common block (... all main-effect column sums within such groups are zero ... also inner products between any two such columns ...)
- The third is satisfied if these "groups" are combined in such a way that each factor is "active" in the same number of groups, in each block.
- Example: $f=5$

$$
\begin{aligned}
& \text { block } 1\left(\begin{array}{ccccc}
\pm \mathbf{1} & \pm \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\pm \mathbf{1} & \mathbf{0} & \pm \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \pm \mathbf{1} & \pm \mathbf{1} \\
\mathbf{0} & \pm \mathbf{1} & \mathbf{0} & \pm \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \pm \mathbf{1} & \mathbf{0} & \pm \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\pm \mathbf{1} & \mathbf{0} & \mathbf{0} & \pm \mathbf{1} & \mathbf{0} \\
\pm \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \pm \mathbf{1} \\
\mathbf{0} & \pm \mathbf{1} & \pm \mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \pm \mathbf{1} & \mathbf{0} & \mathbf{0} & \pm \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \pm \mathbf{1} & \pm \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right)
\end{aligned}
$$

- Note, the number of center points needs to be the same in each block for this to work.

Analysis for Second-Order Models

- Now suppose we've designed and modeled assuming:

$$
E(y)=\beta_{0}+\sum_{i=1}^{f} \beta_{i} x_{i}+\sum_{i<j}^{f} \beta_{i j} x_{i} x_{j}+\sum_{i=1}^{f} \beta_{i i} x_{i}^{2}
$$

- Continuing to focus on questions of:
- Where is the maximum located?
- Which direction should I go to find the maximum?
- Within what region is the surface approximately maximized?

$$
\hat{\boldsymbol{\beta}}_{1}=\left(\begin{array}{c}
\hat{\beta}_{1} \\
\hat{\beta}_{2} \\
\hat{\beta}_{3} \\
\ldots \\
\hat{\beta}_{f}
\end{array}\right) \quad \hat{\mathbf{B}}_{2}=\left(\begin{array}{ccccc}
\hat{\beta}_{11} & \hat{\beta}_{12} / 2 & \hat{\beta}_{13} / 2 & \ldots & \hat{\beta}_{1 f} / 2 \\
\hat{\beta}_{12} / 2 & \hat{\beta}_{22} & \hat{\beta}_{23} / 2 & \ldots & \hat{\beta}_{2 f} / 2 \\
\hat{\beta}_{13} / 2 & \hat{\beta}_{23} / 2 & \hat{\beta}_{33} & \ldots & \hat{\beta}_{3 f} / 2 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\hat{\beta}_{1 f} / 2 & \hat{\beta}_{2 f} / 2 & \hat{\beta}_{3 f} / 2 & \ldots & \hat{\beta}_{f f}
\end{array}\right)
$$

- $\hat{y}=\hat{\beta}_{0}+\underline{x}^{\prime} \hat{\boldsymbol{\beta}}_{1}+\underline{x}^{\prime} \hat{\mathbf{B}}_{2} \underline{x}$
- $\frac{\partial}{\partial \underline{x}^{\prime}}=\hat{\boldsymbol{\beta}}_{1}+2 \hat{\mathbf{B}}_{2} \underline{x}$
- Setting the derivative vector to $\mathbf{0}$ yields the stationary point:

$$
\underline{x}_{s}=-\frac{1}{2} \hat{\mathbf{B}}_{2}^{-1} \hat{\boldsymbol{\beta}}_{1}
$$

- This may be a maximum, minimum, or saddle point of the fitted surface. The eigenvalues (call them λ s here) and eigenvectors of $\hat{\mathbf{B}}_{2}$ are the key to characterizing the shape. \underline{x}_{s} is a:
- point of maximum if all λ 's are negative
- point of minimum if all λ 's are positive
- saddle point if λ 's are of mixed sign
- More careful consideration admits that \underline{x}_{s} is an estimate and therefore uncertain, leading to standard errors and confidence regions.
- In any case, identification of the stationary point is nearly always just a first step. "Ridges" and gradients are often even more important.

Practical point about small (absolute) eigenvalues of $\hat{\mathbf{B}}_{2}$, "Ridges":

- Suppose λ_{1} (the largest eigenvalue) is only slightly less than zero, and \mathbf{p}_{1} is its associated eigenvector.
- Consider points along a line: $\underline{x}^{*}=\underline{x}_{s}+c \mathbf{p}_{1}$
- \hat{y} changes very little along this line (because λ_{1} is close to zero).
- That is, coded inputs of form:

$$
\underline{x}=\underline{x}_{s}+c_{1} \mathbf{p}_{1}
$$

should all approximately maximize \hat{y}, for some range of positive and negative values of $c_{1} \ldots$ sometimes called a "ridge".

- If λ_{2} and λ_{1} are both close to zero:

$$
\underline{x}=\underline{x}_{s}+c_{1} \mathbf{p}_{1}+c_{2} \mathbf{p}_{2}
$$

should all approximately maximize \hat{y}...

- Systems like this allow choice in near-optimal operating conditions ... sometimes allows simultaneous consideration of other factors (e.g. time, cost ...)

Interesting Special Case: Mixtures Experiments

- Regression problems in which the x 's represent proportions (by weight, volume, ...) of the components in a mixture.
- e.g. components of gasoline, recipes, alloys
- Implications for modeling:
$-0<x_{i}<1, i=1,2,3, \ldots, q$ (" q " is often used for " f " in the literature on mixture designs)
$-\sum_{i}^{q} x_{i}=1$
- First-order model:
- Usual regression form: $E(y)=\beta_{0}+\sum_{i=1}^{q} \beta_{i} x_{i}$, but in this case, there is always a linear dependency among terms, so:
- Mixture form: $E(y)=\sum_{i=1}^{q} \beta_{i} x_{i}$
- Interpretation:
- β_{i} is the expected response of the i th pure blend
- $E(y)$ for all other blends can be gotten by linearly interpolating these, e.g. a 50:50 blend has expected response half-way between the responses for the two pure blends.
- Second-order model:
- Here, $\sum_{j=1}^{q} x_{j} x_{i}=\left(\sum_{j=1}^{q} x_{j}\right) x_{i}=x_{i}$
- We can eliminate this dependency by removing x_{i}^{2}
- Mixture form:

$$
E(y)=\sum_{i=1}^{q} \beta_{i} x_{i}+\sum_{i<j} \beta_{i j} x_{i} x_{j}
$$

- Interpretation:
- β_{i} is (still) the expected response at the i th pure blend
- $\beta_{i j}$ is the nonlinear effect between pure- i and pure- j
- "Special" third-order model (models are often of higher order than in unconstrained RSM ...):
- Now, besides earlier relationships, $\sum_{k} x_{i} x_{j} x_{k}=x_{i} x_{j}$
- We can eliminate this dependency by removing $x_{i} x_{k}^{2}$ and $x_{j} x_{k}^{2}$
- "Special" mixture form:

$$
E(y)=\sum_{i=1}^{q} \beta_{i} x_{i}+\sum_{i<j} \beta_{i j} x_{i} x_{j}+\sum_{i<j<k} \beta_{i j k} x_{i} x_{j} x_{k}
$$

- Note: Response function along any $x_{i}: x_{j}$ "edge" is quadratic, since all 3rd-order terms are zero here
- The above model is called "special" because it's overconstrained; we dropped two terms to eliminate each linear dependency, when one would have sufficed. So in the full 3rd order mixture model:
- Drop both $x_{i}^{2} x_{j}$ and $x_{i} x_{j}^{2}$, but put back $x_{i} x_{j}\left(x_{i}-x_{j}\right)$
- The following form looks a little odd, but allows us to maintain symmetry in all the x 's

$$
\begin{aligned}
& E(y)=\sum_{i=1}^{q} \beta_{i} x_{i}+ \sum_{i<j} \beta_{i j} x_{i} x_{j}+\sum_{i<j} \delta_{i j} x_{i} x_{j}\left(x_{i}-x_{j}\right)+ \\
& \sum_{i<j<k} \beta_{i j k} x_{i} x_{j} x_{k}
\end{aligned}
$$

- Analysis to find response maxima or minima often rely on graphical representations of the fitted model, but Lagrangian multipliers can also be used.

Experimental Designs for Mixture Experiments:

- Simplex Lattice: $\{q, m\}$ refers to the the collection of points for which:
- q proportions are represented
- all combinations of $x_{i}=\frac{0,1,2, \ldots}{m}$ are included such that
$-\sum_{i=1}^{q} x_{i}=1$
- e.g. $\{3,2\},\{3,3\},\{4,2\},\{4,3\}$
- $\{q, m\}$ allows the fit of a full (mixture) polynomial of order m
- Simplex-Centroid: Centroid (center) point of the full experimental region and each lower-dimensional simplex:

$$
\left.\begin{array}{c}
\left.\begin{array}{c}
\left(\frac{1}{q}, \frac{1}{q}, \ldots, \frac{1}{q}\right) \\
\left(0, \frac{1}{q-1}, \ldots, \frac{1}{q-1}\right) \\
\ldots \\
\left(\frac{1}{q-1}, \frac{1}{q-1}, \ldots, 0\right)
\end{array}\right\} \\
\ldots \\
(0,0, \ldots, 1) \\
\ldots \\
(1,0, \ldots, 0)
\end{array}\right\} \quad \begin{gathered}
q \text {-dimensional simplex } \\
\\
\ldots \\
\end{gathered}
$$

- allows the fit of "special" polynomial of order $q \ldots$ all possible monomials made up of a product of a subset of x_{i} 's

