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RESPONSE SURFACE METHODOLOGY (RSM)

A Brief Introduction

Statistical modeling strategies for dealing with what engineers call

processes:

y = η(ξ1, ξ2, ..., ξf ) + ε

• y = response

• ξ’s = factors, independent variables, now explicitly continuous

• modeling via regression and experimental design

Emphasis is on local approximations of η and/or estimates of its

important characteristics, e.g.

• Which ξ’s are most important?

• Which values of ξ’s produced greatest/least response values?
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Example: Chemical yield (y) as a function of process time (ξ1) and

operating temperature (ξ2).

• Focus on estimating E[yield] if process contains randomness.

• The Region of Operability is the ξ-space in which the system

could realistically be operated; in this case, perhaps:

0 hr ≤ ξ1 ≤ 7 hr 100 ◦C ≤ ξ2 ≤ 800 ◦C

• Note that in this notation, ξ’s are values with physical units.

• η may be complex globally, over the entire region of operability.

• In most applications, we don’t really need a model that holds for

all conditions in the region of operability ... maybe just need to

know (for example):

– ξ that maximizes or minimizes η

– ξ-region for which η > ηmin

– ξ-region where η is unstable (i.e. large derivatives)
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Rather than focusing on the exact physical representation of the

system (which is often not fully known), RSM generally relies on local

approximations of η within smaller Regions of Experimentation

y ≈ p∗(ξ1, ξ2, ..., ξf ) + ε

• p∗ usually a low-order polynomial

• ε = additive random error/noise

E[y] = η ≈ p∗(−) V ar[y] = V ar[ε] = σ2
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Example (continued)

• Local approximation in a region of experimentation:

2.5 hr ≤ ξ1 ≤ 3 hr 500 ◦C ≤ ξ2 ≤ 600 ◦C

• Approximating model p∗ = first-order polynomial:

η ≈ p∗ = β∗0 + β∗1ξ1 + β∗2ξ2

• Physical units are:

– η, y = % yield (i.e. % of raw material converted)

– ξ1 = hr

– ξ2 = ◦C

• Physical units must be the same in every term in the model, so:

– β∗0 = %

– β∗1 = %/hr

– β∗2 = %/◦C
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Often, factors are re-expressed in an equivalent scaled or unitless form so

that the fitted coefficients are more comparable.

• Scaled variables: x = (ξ −mid-value)/ 1
2
(high− low)

– x1 = (ξ1 − 2.75)/ 1
2
(3.0− 2.5)

– x2 = (ξ2 − 550)/ 1
2
(600− 500)

• So: -1 ≤ x1 ≤ 1 -1 ≤ x2 ≤ 1

• Approximating model in scaled variables:

η ≈ p(x1, x2) = β0 + β1x1 + β2x2 (no ”*” now)

• Units are:

– η, y = % yield β0 = β∗0 = %

– x1 = unitless, so β1 = %

– x2 = unitless, so β2 = %

• Can also standardize each ξ by std. dev. of the values actually used in

the experimental runs, rather than half-range.
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Some elements of RSM:

• Design for 1st- and 2nd-order polynomial regression models

• Analysis of fitted surfaces, e.g.

– lack-of-fit

– gradients

– “ridge” characterization

• Strategies for sequential experiments

– usually for finding values of ξ’s that maximize or minimize the

expected response
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Designs for First-Order Polynomial Models

Good news! You’ve already seen most of them:

• full 2f designs

• regular 2f−s fractions of resolution at least III

• Placket-Burman irregular fractions

In each case, inputs tested at only two levels are used to make

interpolative inference across the interval of values for each variable.

Even though these designs are also used for 2f factorial studies, the

modeling problem is fundamentally different here, e.g.:

• experiment with xi = ±1

• predict y or estimate E(y) at x1 = 0.25, x2 = 0.60, ...

And some first-order RSM designs aren’t just “on the corners”:
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Saturated First-Order Designs: Simplex Designs

• A design is “saturated” if the number of unique runs is equal to

the number of model parameters, and X is of full column rank.

• Minimal P-B designs are saturated when f + 1 is a multiple of 4,

and “near-saturated” for other values of f ; the number of distinct

treatments is never more than 3 larger than f + 1.

• Simplex designs are saturated for first-order models for every value

of f :

– the unique design points are the f + 1 corners of a

f -dimensional simplex, a geometric figure with all edges of

equal length.

– examples:

∗ f = 2, the 3 corners of an equilateral triangle

∗ f = 3, the 4 corners of a tetrahedron
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• The “design matrix” D is the N -row by f -column matrix for which

{D}i,j = xi,j

the value of the independent variable xi in the jth experimental

run.

• One way to generate a design matrix for a simplex design in f

variables is:

D =
√
f + 1



1√
2

1√
6

1√
12

... 1√
f2+f

−1√
2

1√
6

1√
12

... 1√
f2+f

0 −2√
6

1√
12

... 1√
f2+f

0 0 −3√
12

... 1√
f2+f

... ... ... ... ...

0 0 0 ... −f√
f2+f
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• Examples:

f = 2 :


√

3
2

√
3
2

−
√

3
2

√
3
2

0 −
√

2

 f = 3 :



√
2

√
2
3

1√
3

−
√

2
√

2
3

1√
3

0 −2
√

2
3

1√
3

0 0 − 3√
3


• Notes:

– not 2-level

– scaling here is by SD rather than Range/2, but each x is still

centered on zero

– can rotate the simplex in f -space to get a different design

matrix

• Saturation → ŷ = y, 0 error d.f., no L.O.F. check ...
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Center Points and First-Order Diagnostics

• All first-order designs we’ve discussed in nf points are such that:∑nf
u=1 xiu = 0

∑nf
u=1 xiuxju = 0, i 6= j

∑nf
u=1 x

2
iu = nf

• If, as we assume, a first-order model is correct, the average of

responses at these points has expectation E(ȳf ) = β0.

• But suppose the model is actually second-order:

E(y) = β0 +
∑f
i=1 βixi +

∑f
i<j βijxixj +

∑f
i=1 βiix

2
i

• Then E(ȳf ) = β0 +
∑f
i=1 βii
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• Now, suppose we also add nc center-points

(x1, x2, x3, ..., xf )′ = 0.

• Regardless of the appropriate polynomial model, E(ȳc) = β0.

• So, Hyp0 :
∑f
i=1 βii = 0 can be tested with:

ȳf−ȳc
sc
√
nf−1+n−1

c

: t(nc − 1)

where sc is the sample s.d. of center-point responses
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Center point test is a “one-degree-of-freedom” special case of

lack-of-fit testing. Quick overview/review:

• Use, as an example, simple linear regression:

yij = β0 + β1xi + εij

with N = 8, 5 unique values of x, and yij = jth value in the ith

group, e.g.:
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• Variance decomposition, with M for “model” and E for “error”:

source df sum-of-squares

model 1 SSM (β1|β0) = SSM (β0, β1)− SSM (β0)

= SSE(β0)− SSE(β0, β1)

residual 6 SSE(β0, β1)

LOF 3 SSM (groups|β0, β1) = SSM (groups)− SSM (β0, β1)

= SSE(β0, β1)− SSE(groups)

replication 3 SSE(groups) =
∑

i,j
(yij − ȳi)2

c.t. 7 SSE(β0)
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First-Order Analysis: Steepest Ascent/Decent

• Used when the goal is to find a “path” of experimental conditions

that lead toward a maximum(minimum) response, and this is

clearly outside of the current experimental region.

• Most often used where the response function is at least

approximately locally linear; suppose:

E(y) = β0 +
∑
i βixi

• New notation:

– x′ = (x1, x2, ..., xf ), e.g. a row from D

– x′, e.g. a row from the model matrix ... “extended” x′

• Starting at the center of the current experimental region,

x′0 = (0, 0, ..., 0), which direction should we go in the design space

to maximize the resulting increase/decrease in E(y) for a fixed

stepsize r?
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• More formally, what x′r = (x1, x2, ..., xf ) satisfies:

maximize [β0 +
∑
i βixi]− [β0] =

∑
i βixi

subject to
∑
i x

2
i = r2

• Solve this with Method of Lagrangian Multipliers ...

• Define φ(x, λ) =
∑
i βixi − λ[

∑
i x

2
i − r2]

• Take derivatives, set equal to zero, solve:

– ∂
∂xi

φ = βi − 2λxi = 0

– ∂
∂λφ =

∑
i x

2
i − r2 = 0

• Derivatives w.r.t. xr → xi must be proportional to βi

• Then derivative w.r.t. λ → xi = βi√∑
i
β2
i

r

• For steepest descent, the sign on the objective function is

reversed, and so is the sign on the solution.
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• The value of r used in the above argument is arbitrary – in fact,

“The Method of Steepest Ascent” is generally based on taking a

series of new observations along the “path”, usually at evenly

spaced steps.

• Some practitioners advocate scaling the actual step so that the

incremental change in one of the independent variables is ±1. If

this is done for the variable with the largest (absolute) β, it

assures that the first step will not be outside of the present region

of experimentation:

– Let M = maxi|βi|
– Then define ∆i = βi/M, i = 1, 2, 3, ..., f

– New design points (in current coding of variables) are then

∆, 2∆, 3∆, ...
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• Basic strategy:

– Use a first-order design; augment with center-points.

– Test for lack-of-fit; if no evidence of second-order terms ...

– Fit a first-order model.

– Estimate a path of steepest ascent, using β̂ in place of of β.

– Conduct experimental runs along the path until the response

no longer increases. (Unless the global response surface has no

maximum, this will eventually happen ...)

– Use this point (or one nearby) as the centerpoint of a new

experimental region, and plan and execute a new experiment.
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Effect of Scaling: Suppose in truth, E(y) = 100 + 2ξ1 + 1ξ2

• Experimenter #1:

– E.R.: 10 ≤ ξ1 ≤ 20, 10 ≤ ξ2 ≤ 50

– E(y) = [−] + [2× 5] ξ1−15
5 + [1× 20] ξ2−30

20

– ∆ is proportional to (10, 20), say ( 1
2 , 1)

– First step in uncoded variables is

(∆1 × 5 + 15,∆2 × 20 + 30) = (17.5, 50)

• Experimenter #2:

– E.R.: 5 ≤ ξ1 ≤ 25, 10 ≤ ξ2 ≤ 50

– E(y) = [−] + [2× 10] ξ1−15
10 + [1× 20] ξ2−30

20

– ∆ is proportional to (20, 20), say (1, 1)

– First step in uncoded variables is

(∆1 × 10 + 15,∆2 × 20 + 30) = (25, 50)
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• So the path of steepest ascent is not scale-invariant ... it depends

on the range of values set for each ξ in the experiment

• Why? Recall, the path is defined by the direction in which E(y) is

most increased for a step of fixed size in the coded variables.

• If scaling of ξ1 is changed so that x1 ∈ [−1,+1] is larger on the

physical scale, this increases β1 relative to β2 ...

• Even so, the steepest ascent path in either coding does lead to

increased responses (at least within the region where the

first-order approximation is accurate).
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How would Steepest Ascent work if you wanted to base it on a model

with main effects and two-factor interactions (sometimes called

“bilinear” terms)?

• Lagrangian Multipliers ...

maximize (β0 +
∑
i xiβi +

∑
i<j xixjβij)− (β0)

subject to
∑
i x

2
i = r2

• φ =
∑
i xiβi +

∑
i<j xixjβij − λ[

∑
i x

2
i − r2]

• ∂
∂xi

= βi +
∑
j 6=i xjβij − 2λxi = 0

β1

β2

...

βk

 =


2λ −β12 −β13 ... −β1k

−β12 2λ −β23 ... −β2k

... ... ... ... ...

−β1k −β2k −β3k ... 2λ




x1

x2

...

xk


• λ controls the step size ... large λ = small step
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Example:

• E(y) = 10 + 2x1 + 3x2 − 1x1x2: 2

3

 =

 2λ 1

1 2λ

 x1

x2


λ ∞ 5 2 1 0.75 0.65

x1 0 0.17 0.33 0.33 0 −0.58

x2 0 0.28 0.67 1.33 2 2.75
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Central Composite Designs for Second-Order Models

• As optimization nears the “top of the hill,” first-order and bilinear

models become ineffective ... need full quadratic:

E(y) = β0 +
∑f
i=1 βixi +

∑f
i<j βijxixj +

∑f
i=1 βiix

2
i

• Most parameters are estimable using designs we’ve already

discussed, even in the presence of the βii terms:

– β0 : e.g. any design with center points

– βi : e.g. Resolution IV fraction

– βij : e.g. Resolution V fraction

• Q: What is the simplest additional collection of design points that

would allow estimation of the βii, given the presence of the

lower-order parameters in the model?
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• A: Set of 2f “star” or “axial” points, in conjunction with center

points (already in the design):

+α 0 ... 0

−α 0 ... 0

0 +α ... 0

0 −α ... 0

... ... ... ...

0 0 ... +α

0 0 ... −α


• This gives 3 collinear points in the direction of each of the f

design axes, allowing assessment of “curvature” (i.e. estimate βii)

e.g. in x1,

(−α, 0, 0, ..., 0), (0, 0, 0, ..., 0), (+α, 0, 0, ..., 0)
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• Center points + 2-level fraction (Res ≥ V) + axials

= Central Composite Design (CCD),

Box and Wilson (1951) JRSSB.

a

f f

a

f f

a c a

f f

f f

a

a
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mmorris
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mmorris
Line
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Line

mmorris
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mmorris
Line

mmorris
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• “Design parameters” generally refer to the values of

– α = 1-dim distance from origin to each axial point (in scaled

units)

– nc = number of center points (assuming other points are

unreplicated)

• Complete specification also requires selection of a particular

Resolution V 2-level design; variance properties depend only on

nf , the number of points in the factorial portion of the design, not

the specific fraction. (But bias properties are a different matter ...)

• One nice feature of CCD’s is the potential for sequential

construction based on need, e.g.:

– begin with Res III fraction, but if 1-st order fit isn’t acceptable,

– augment to Res V fraction, but if bi-linear fit isn’t acceptable,

– add axial points for CCD.
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Dividing columns into intercept, first-order, bi-linear, and pure
quadratic terms:

X′X =

N 0 ... 0 0 ... 0 nf + 2α2 ... nf + 2α2

0 nf + 2α2 ... 0 0 ... 0 0 ... 0

... ... ... ... ... ... ... ... ... ...

0 0 ... nf + 2α2 0 ... 0 0 ... 0

0 0 ... 0 nf ... 0 0 ... 0

... ... ... ... ... ... ... ... ... ...

0 0 ... 0 0 ... nf 0 ... 0

nf + 2α2 0 ... 0 0 ... 0 nf + 2α4 ... nf

... ... ... ... ... ... ... ... ... ...

nf + 2α2 0 ... 0 0 ... 0 nf ... nf + 2α4


Non-zeros are diagonal elements, (β0, βii) pairs, and (βii, βjj) pairs.



STAT 512 Introduction to Response Surface Methodology 30

Design Moments are often used to characterize estimation properties

of CCD’s. A design moment is a normalized (by N) element of X′X,

denoted using the subscripting system we use for elements of β. Let

xiu be the value of xi in run u ... then, e.g.:

• [i] = 1
N

∑
u xiu, “first moments”

• [ij] = 1
N

∑
u xiuxju, “second mixed moments”

• [iiii] = 1
N

∑
u x

4
iu, “fourth pure moments”

Moments through order 4 are needed to describe all the precision

characteristics of a design used to fit a quadratic model. For a CCD,

the non-zero moments through order 4 are:

• [ii] = (nf + 2α2)/N

• [iiii] = (nf + 2α4)/N

• [iijj] = nf/N
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Rotatability:

• A design is said to be rotatable if V ar(ŷ(x)) is the same for all x

satisfying x′x = r2 for any radius r.

• For a simple start, suppose we are just fitting a first-order model using

our central composite design:

X′X = N


1 0 ... 0

0 [11] ... 0

... ... ... ...

0 0 ... [ff ]


• Since all [ii] are equal for this design, and because X′X is diagonal:

V ar(ŷ(x)) = σ2x′(X′X)−1x = σ2

N
(1 + x′x/[ii]) = σ2

N
(1 + r2 N

nf+2α2 )

so any CCD is rotatable for a first-order model. (Also true of all the

other 1st order orthogonal designs we’ve talked about.)
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• Rotatability for 2nd order models is a bit messier, since the

algebra requires inversion of a non-diagonal matrix, but the

(general) bottom line is:

• A design is rotatable w.r.t. full 2nd order polynomial models iff:

– all odd moments∗ through 4th order are zero, and

– [iiii]/[iijj] = 3 for all i 6= j

*: Any moment with an odd number of letters, whether distinct or

not, e.g. through 4th order,

[i] = [ijk] = [iij] = [iii] = 0.

• For central composite designs, this is satisfied by setting:

[iiii]/[iijj] =
nf+2α4

nf
= 3

α = n
1/4
f
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A Weakness in the Rotatability Argument:

• Consider f = 2, nf = 4, α =
√

2 for rotatability.

• Suppose we include no center points in the design:

X =



1 +1 +1 +1 1 1

1 +1 −1 −1 1 1

1 −1 +1 −1 1 1

1 −1 −1 +1 1 1

1 +
√
2 0 0 2 0

1 −
√
2 0 0 2 0

1 0 +
√
2 0 0 2

1 0 −
√
2 0 0 2


• The design is singular because x2

1 + x2
2 = 2 in each run.

• Same thing happens for f = 4, and “almost” for f = 3.

• This can be fixed by adding center points, but it may take several

of them to produce good predictive variances near the origin.



STAT 512 Introduction to Response Surface Methodology 34

Practical rules of thumb for CCD’s:

• For spherical experimental regions:

– α =
√
f

– nc = 3-to-5 (or more if σ is relatively large)

• For cubic experimental regions:

– α = 1 (sometimes called a “face-centered design”)

– more freedom to set nc
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Orthogonal Blocking for CCD’s

• Because CCD’s are often constructed sequentially, they may need

to be analyzed as blocked experiments.

• A goal in this case should be to avoid losing efficiency due to the

need to simultaneously estimate (nuisance) block effects:

E(y) = δl + β0 +
∑
i xiβi +

∑
i<j xixjβij +

∑
i x

2
iβii

for an observation at x in the l-th block.

• Partitition the model as:

E(y) =


1 0 0 X1

0 1 0 X2

... ... ... ...

0 0 1 Xb


 δ

β
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• ... where Xl is the piece of the original X matrix executed as the

l-th block, of nl runs.

• Note the first b+ 1 columns (blocks and intercept) are linearly

dependent. This can be eliminated by replacing the b block

columns with b− 1 weighted differences:

E(y) =


1
n1

1 0 ... 0 X1

− 1
n2

1 1
n2

1 ... 0 X2

0 − 1
n3

1 ... 0 X3

... ... ... ...

0 0 ... − 1
nb

1 Xb


(

δ∗

β

)
= (W|X)

(
δ∗

β

)

• Blocking is orthogonal if W′X = 0, so the “reduced normal

equations” for β are (X′X)−1β̂ = X′y, as if the experiment were

not blocked.
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Following the model just derived, orthogonal blocking requires:

1. from multiplying W′ by the intercept column:

1
n1

∑
blk 1 1 = 1

n2

∑
blk 2 1 = ... = 1

nb

∑
blk b 1

... true due to my selection of “weights”.

2. from multiplying W′ by the 1-st order columns:

1
n1

∑
blk 1 xiu = 1

n2

∑
blk 2 xiu = ... = 1

nb

∑
blk b xiu, any i

3. from multiplying W′ by the bi-linear columns:

1
n1

∑
blk 1 xiuxju = 1

n2

∑
blk 2 xiuxju = ... = 1

nb

∑
blk b xiuxju,

any i 6= j

... both (2) and (3) are true if each block is an orthogonal

main-effects design

4. from multiplying W′ by the pure quadratic columns:

1
n1

∑
blk 1 x

2
iu = 1

n2

∑
blk 2 x

2
iu = ... = 1

nb

∑
blk b x

2
iu, any i
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• Note that the above conditions are really about design moments

computed individually for each block.

• Restrict attention to blocking schemes for which each block is an

orthogonal main-effects plan (to satisfy (2) and (3)), and achieve

(4) by selection of α and the number of center points in each

block.

• Example: f = 2, b = 2, nc1 and nc2 center points per block:

Block 1,



+1 +1

+1 −1

−1 +1

−1 −1

0 0


Block 2,



+α 0

−α 0

0 +α

0 −α
0 0


Need: 4

4+nc1
= 2α2

4+nc2
→ α =

√
16+4nc2
8+2nc1
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• Example: f = 4, b = 3, split 24 into two 24−1 fractions (with

center points) in blocks 1 and 2, and axials (with center points) in

block 3

– Need: 8
8+nc1

= 8
8+nc2

= 2α2

8+nc3

– Clearly, nc1 must be the same as nc2.

– Then: α =
√

64+8nc3
16+2nc2

• Can also pick α and find nc’s that work, but this also usually

requires some adjustment of α.
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“Small” Composite Designs

• For situations in which each run is very expensive

• Construction as with regular Central Composite, but using a Res

III∗ 2-level design for the factorial portion (rather than Res V).

• *: Not just any Res III fraction. Must be such that no word of

length 4 is used in the defining relation, e.g.

I = ABC = DEF (= ABCDEF ) is OK, but not

I = ABC = CDE(= ABDE).
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• Previous logic of using Res V was to avoid confounding between

mixed quadratic coefficients. So, why does this work?

– ABCDE is OK, because 2nd order terms aren’t confounded

– ABCD isn’t OK, because AB and CD are confounded, et

cetera

– ABC is OK, because first-order effects are confounded with

bilinear terms in only the factorial section of the design. The

first-order terms (βi) are also estimable, along with the pure

quadratic terms (βii) in the axial portion.

• Example: f = 4, use I = ABC (can’t use ABCD), 4 runs fewer

than comparable CC.

• Note: Statistical performance is substantially worse for these

designs than for regular Central Composite Designs, especially for

larger values of f .
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Box-Behnken Designs

• Based on Balanced Incomplete Block Designs (BIB’s ... quick

review)

• Setting:

– compare t treatments

– in b blocks, each of size m < t, in such a way that

– every treatment appears once in each of r blocks (first-order

balance), and

– every pair of treatments appears together in each of λ blocks

(second-order balance)
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• Example: t = 3, b = 3, m = 2:
1 1 2

2 3 3

– here r = 2, generally r = bm
t , and

– here λ = 1, generally λ = bm(m−1)
t(t−1)

– so, these expressions don’t have to yield integers (and BIB’s

don’t exist) for every combination of t, b, and m values.
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• Now for Box-Behnken Designs:

1. Select a BIB design with t (BIB) = f (BB)

2. For each block in the BIB, generate 2m runs for the BB which

constitute:

– the full 2-level factorial design in just the factors associated

with the treatments in the BIB block

– setting all other factors to zero (coded central value) in all

runs

3. Augment with center points.
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• Continuing the example:

BIBD:
1 1 2

2 3 3
→ BB design matrix:



+ + 0

+ − 0

− + 0

− − 0

+ 0 +

+ 0 −
− 0 +

− 0 −
0 + +

0 + −
0 − +

0 − −
0 0 0
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• Another example: f = 6 is an odd case ... because of limitations

on the BIB’s available, a Partially Balanced Incomplete Block

Design is used:

1 2 3 1 2 1

2 3 4 4 5 3

4 5 6 5 6 6

• First-order balance requirement is satisfied as with BIB’s, but:

• Treatment pairs (1,4), (2,5), and (3,6) are called “first associates”

and appear together in 2 blocks each, and all other treatment

pairs are called “second associates” and appear together in only 1

block each.

• Note that in this case, each PBIB block contributes 23 = 8 runs

to the BB design, because the block size is 3.
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BB design matrix: 

± ± 0 ± 0 0

0 ± ± 0 ± 0

0 0 ± ± 0 ±
± 0 0 ± ± 0

0 ± 0 0 ± ±
± 0 ± 0 0 ±
0 0 0 0 0 0
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• Orthogonal Blocking: Recall (from CCD development) that when

each block is considered as an independent design, each must

have the same:

1. [i]

2. [ij]

3. [ii]

• Call the BB runs that come from any one BIBD block a “group”.

• The first and second requirements are automatically satisfied if we

keep each group of runs together in a common block ( ... all

main-effect column sums within such groups are zero ... also inner

products between any two such columns ... )

• The third is satisfied if these “groups” are combined in such a way

that each factor is “active” in the same number of groups, in each

block.
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• Example: f = 5

block 1



±1 ±1 0 0 0

±1 0 ±1 0 0

0 0 0 ±1 ±1
0 ±1 0 ±1 0

0 0 ±1 0 ±1
0 0 0 0 0



block 2



±1 0 0 ±1 0

±1 0 0 0 ±1
0 ±1 ±1 0 0

0 ±1 0 0 ±1
0 0 ±1 ±1 0

0 0 0 0 0


• Note, the number of center points needs to be the same in each

block for this to work.
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Analysis for Second-Order Models

• Now suppose we’ve designed and modeled assuming:

E(y) = β0 +
∑f
i=1 βixi +

∑f
i<j βijxixj +

∑f
i=1 βiix

2
i

• Continuing to focus on questions of:

– Where is the maximum located?

– Which direction should I go to find the maximum?

– Within what region is the surface approximately maximized?

β̂1 =



β̂1

β̂2

β̂3

...

β̂f


B̂2 =



β̂11 β̂12/2 β̂13/2 ... β̂1f/2

β̂12/2 β̂22 β̂23/2 ... β̂2f/2

β̂13/2 β̂23/2 β̂33 ... β̂3f/2

... ... ... ... ...

β̂1f/2 β̂2f/2 β̂3f/2 ... β̂ff
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• ŷ = β̂0 + x′β̂1 + x′B̂2x

• ∂
∂x′ = β̂1 + 2B̂2x

• Setting the derivative vector to 0 yields the stationary point:

xs = − 1
2B̂
−1
2 β̂1

• This may be a maximum, minimum, or saddle point of the fitted

surface. The eigenvalues (call them λs here) and eigenvectors of

B̂2 are the key to characterizing the shape. xs is a:

– point of maximum if all λ’s are negative

– point of minimum if all λ’s are positive

– saddle point if λ’s are of mixed sign
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• More careful consideration admits that xs is an estimate and

therefore uncertain, leading to standard errors and confidence

regions.

• In any case, identification of the stationary point is nearly always

just a first step. “Ridges” and gradients are often even more

important.

Practical point about small (absolute) eigenvalues of B̂2, “Ridges”:

• Suppose λ1 (the largest eigenvalue) is only slightly less than zero,

and p1 is its associated eigenvector.

• Consider points along a line: x∗ = xs + cp1

• ŷ changes very little along this line (because λ1 is close to zero).
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• That is, coded inputs of form:

x = xs + c1p1

should all approximately maximize ŷ, for some range of positive

and negative values of c1 ... sometimes called a “ridge”.

• If λ2 and λ1 are both close to zero:

x = xs + c1p1 + c2p2

should all approximately maximize ŷ ...

• Systems like this allow choice in near-optimal operating conditions

... sometimes allows simultaneous consideration of other factors

(e.g. time, cost ...)
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Interesting Special Case: Mixtures Experiments

• Regression problems in which the x’s represent proportions (by

weight, volume, ...) of the components in a mixture.

• e.g. components of gasoline, recipes, alloys

• Implications for modeling:

– 0 < xi < 1, i = 1, 2, 3, ..., q (“q” is often used for “f” in the

literature on mixture designs)

–
∑q
i xi = 1
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• First-order model:

– Usual regression form: E(y) = β0 +
∑q
i=1 βixi, but in this

case, there is always a linear dependency among terms, so:

– Mixture form: E(y) =
∑q
i=1 βixi

• Interpretation:

– βi is the expected response of the ith pure blend

– E(y) for all other blends can be gotten by linearly interpolating

these, e.g. a 50:50 blend has expected response half-way

between the responses for the two pure blends.
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• Second-order model:

– Here,
∑q
j=1 xjxi = (

∑q
j=1 xj)xi = xi

– We can eliminate this dependency by removing x2
i

– Mixture form:

E(y) =
∑q
i=1 βixi +

∑
i<j βijxixj

• Interpretation:

– βi is (still) the expected response at the ith pure blend

– βij is the nonlinear effect between pure-i and pure-j
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• “Special” third-order model (models are often of higher order than

in unconstrained RSM ...):

– Now, besides earlier relationships,
∑
k xixjxk = xixj

– We can eliminate this dependency by removing xix
2
k and xjx

2
k

– “Special” mixture form:

E(y) =
∑q
i=1 βixi +

∑
i<j βijxixj +

∑
i<j<k βijkxixjxk

– Note: Response function along any xi : xj “edge” is quadratic,

since all 3rd-order terms are zero here
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• The above model is called “special” because it’s overconstrained;

we dropped two terms to eliminate each linear dependency, when

one would have sufficed. So in the full 3rd order mixture model:

– Drop both x2
ixj and xix

2
j , but put back xixj(xi − xj)

– The following form looks a little odd, but allows us to maintain

symmetry in all the x’s

E(y) =
∑q

i=1
βixi +

∑
i<j

βijxixj +
∑

i<j
δijxixj(xi − xj) +∑

i<j<k
βijkxixjxk

• Analysis to find response maxima or minima often rely on

graphical representations of the fitted model, but Lagrangian

multipliers can also be used.
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Experimental Designs for Mixture Experiments:

• Simplex Lattice: {q,m} refers to the the collection of points for

which:

– q proportions are represented

– all combinations of xi = 0,1,2,...
m are included such that

–
∑q
i=1 xi = 1

• e.g. {3, 2}, {3, 3}, {4, 2}, {4, 3}

• {q,m} allows the fit of a full (mixture) polynomial of order m
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• Simplex-Centroid: Centroid (center) point of the full experimental

region and each lower-dimensional simplex:

( 1
q
, 1
q
, ..., 1

q
) q-dimensional simplex

(0, 1
q−1

, ..., 1
q−1

)

...

( 1
q−1

, 1
q−1

, ..., 0)

 (q − 1)-dimensional simplices

... ...

(0, 0, ..., 1)

...

(1, 0, ..., 0)

 1-dimensional simplices

• allows the fit of “special” polynomial of order q ... all possible

monomials made up of a product of a subset of xi’s


