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Introduction

 Response surface methodology, or RSM, is a collection of 

mathematical and statistical techniques in which a response of 

interest is influenced by several variables and the objective is to 

optimize this response.

 For example, suppose that a chemical engineer wishes to find the 

levels of temperature (xl) and pressure (x2) that maximize the yield 

(y) of a process.  The process yield is a function of the levels of 

temperature and pressure, say

where  represents the noise or error observed in the response y.  

Then the surface represented by                            , which is called a 

response surface
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Objective of RSM

 We usually represent the response surface graphically, where  is 

plotted versus the levels of x1 and x2.  To help visualize the shape of a 

response surface, we often plot the contours of the response surface 

as well.  In the contour plot, lines of constant response are drawn in 

the x1, x2 plane.  Each contour corresponds to a particular height of 

the response surface.

 Objective is to 

optimize the response
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Steps in RSM

1. Find a suitable approximation 
for y = f(x) using Least 
Square Method using Low-
order polynomial}

2. Move towards the region of 
the optimum 

3. When curvature is found find 
a new approximation for  y = 
f(x) (generally a higher order 
polynomial) and perform the 
“Response Surface Analysis” 
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Response Surface Methodology

For (1) Screening and (2) Steepest ascent, we use 

first order model 

For (3) Optimization, we use second order model -
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Least Square Method

 Least Square Method is typically used for the Estimation of the 

Parameters (β)

 We may write the model equation in terms of the observations

 The equation is rewritten in matrix form as follows.
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Estimation of the Parameters (β)

 L, the least square estimator to be minimized, is

 L is minimized by taking derivatives with respect to the model 

parameters and equating to zero
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Fitted Regression Model

Fitted regression model is 

In scalar notation the fitted model is

The residual is 

Square sum of residual is

8DOE and Optimization



Validation of Regression Model

Sum of square of  total 
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If R2 and Adjusted R2 differ dramatically, there is a 

good chance of including non-significant terms 9DOE and Optimization



Example of Least Square Method
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Example of Least Square Method
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Example of Least Square Method
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Example of Least Square Method
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Example of Least Square Method



The Method of Steepest Ascent

 A procedure for moving 

sequentially from an initial “guess” 

towards to region of the optimum

 Based on the fitted first-order 

model 

 Steepest ascent is a gradient 

procedure
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The Method of Steepest Ascent

 Points on the path of steepest ascent are proportional to the magnitudes 
of the model regression coefficients

 The direction depends on the sign of the regression coefficient

 Step-by-step procedure:
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Chemical Processing Example

 A chemical engineer is interested in determining the operating 
conditions that maximize the yield of a process.  Two controllable 
variables influence process yield: reaction time and reaction 
temperature.  The engineer is currently operating the process with 
a reaction time of 35 minutes and a temperature of 155°F, which 
result in yields of around 40 percent. Since it is unlikely that this 
region contains the optimum, she fits a first-order model and 
applies the method of steepest ascent.

 The engineer decides that the region of exploration for fitting the 
first-order model should be (30, 40) minutes of reaction time and 
(150, 160)°F. To simplify the calculations, the independent variables 
will be coded to the usual (-1, 1) interval. 
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Chemical Processing Example

 The experimental design is shown in the table. Note that the design 

used to collect the data is a 22 factorial augmented by five center 

points.  Replicates at the center are used to estimate the 

experimental error and to allow for checking the adequacy of the 

first-order model. Also, the design is centered about the current 

operating conditions for the process.
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Chemical Processing Example

 A first-order model is                                                      by Least 

Square Method

 To move away from the design center, the point (x1 = 0, x2 = 0), 

along the path of steepest ascent, we would move 0.775 units in the 

x1 direction for every 0.325 units in the x2 direction 

 Thus, the path of steepest ascent passes through the point (x1 = 0, 

x2 = 0) and has a slope 0.325/0.775.

 The engineer decides to use 5 minutes of reaction time as the basic 

step. Using the relationship of natural and coded variable

1 2
ˆ 40.44 0.775 0.325y x x

1 1 2 2

1 1 2
2 1

2 2 1

5 ,       5

5 0.325
,     ( ) (5 min) 2.1

5 0.775

d dx d dx

d dx dx
d d F

d dx dx
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Chemical Processing Example

0 1x1=-1

x2=-1

1

0.775

0.325

40ξ 1=30

ξ2=150

160

5

2.1

(35, 155)

Next point 

of experiment

20DOE and Optimization

Coded variable space Natural variable space



Chemical Processing Example
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Chemical Processing Example
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Second-Order Models in RSM

• These models are used widely in practice

• The Taylor series analogy ->  Fitting the model is easy, some nice designs are available

• Optimization is easy ->  There is a lot of empirical evidence that they work very well
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Examples of Second-Order Models
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Examples of Second-Order Models
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Examples of Second-Order Models
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Characterization of the Response Surface

• Find out where our stationary point is 

• Find what type of surface we have

– Graphical Analysis 

– Canonical Analysis 

• Determine the sensitivity of the response variable to 

the optimum value

– Canonical Analysis
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Finding the Stationary Point

 After fitting a second order model take the partial derivatives 

with respect to the xi’s and set to zero

xs =

• Stationary point represents… 

– Maximum Point 

– Minimum Point 

– Saddle Point 
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Stationary Point

General mathematical solution for the location of the stationary point is obtained 

as follows.
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Canonical Analysis

• Used for sensitivity analysis and stationary point 

identification

• Based on the analysis of a transformed model called: 

canonical form of the model

• Canonical Model form: 

• y = ys + λ1w1
2 + λ2w2

2 + . . . + λkwk
2

• {i} are just the eigenvalues or characteristic 

roots of the matrix B.
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Eigenvalues

• The nature of the response can be 

determined by the signs and 

magnitudes of the eigenvalues

– {e} all positive: a minimum is found

– {e} all negative: a maximum is found 

– {e} mixed: a saddle point is found

• Eigenvalues can be used to determine 

the sensitivity of the response with 

respect to the design factors 

• The response surface is steepest in the 

direction (canonical) corresponding to 

the largest absolute eigenvalue
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Chemical Processing Example
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 A second-order model is to be set 

at the tenth point (1 = 85, 2 = 

175) in Example 6-1. The 

experimenter decides to augment 

the 22-and-central-point design in 

order to have enough points for 

fitting a second-order model. She 

obtains four observations at (x1 = 

0, x2 = 1.414) and (x1 = 1.414, 

x2 = 0). The design is displayed in 

the left figure. (Central 

Composite Design – CCD) 



Chemical Processing Example
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 The complete experiment is shown in the table.



Example of Second-order Model
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 Using MINITAB, we fist a response surface and to construct the contour 

plots. The second-order model in terms of the coded variables is 

2 2

1 2 1 2 1 2
ˆ 79.940 0.995 0.515 1.376 1.001 0.250y x x x x x x

Optimum point



Chemical Processing Example

 Finding the location of the stationary point using the general 

solution. 

1

1.376 0.125 0.995
,      

0.125 1.001 0.515

0.7345 0.0917

0.0917 1.0096

The stationary point is 

0.7345 0.0917 0.995 0.3891 1
X

0.0917 1.0096 0.515 0.2 2
s

So

-1

B b

B

B b

1 2

1

2

o

1 2

306

0.389, 0.306

The stationary point in natural variable space is

85
0.389

5

175
0.306

5

which yield 86.95 (min),   176.53( F)

ˆPredicted response at the stationary point as 80.2

s s

s

x x

y 1.
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Chemical Processing Example

 Performing Canonical Analysis.

 The eigenvalues 1 and 2 are the roots of the determinant 

equation

B - I = 0  or

which reduces to  

 The roots of this quadratic equation are 1 = -0.9641 and 2 = -

1.4147. Thus, the canonical form of the fitted model is

 Since both 1 and 2 are negative, we conclude that the stationary 

point is a maximum.

1.377 0.125
0

0.125 1.0018

2 2.3788 1.3639 0

2 2

1 2
ˆ 80.21 0.9641 1.4147y w w

36DOE and Optimization



Central Composite Design - CCD
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 The central composite design or CCD is the most popular 

class of designs used for fitting the second-order models. Generally, 

the CCD consists of a 2k factorial  with nj runs, 2k axial or star runs, 

and nc center runs. Figure shows the CCD for k = 2 and k = 3 

factors.



Central Composite Design
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 The practical deployment of a CCD often arises through 
sequential experimentation. A 2k design is first used to fit a 
first-order model. If this model has exhibited lack of fit, and the 
axial runs are then added to allow the quadratic terms to be 
incorporated into the model. The CCD is a very efficient design for 
fitting the second-order model. 

 There are two parameters in the CCD design that must be specified; 
the distance  of the axial runs from the design center, and the 
number of center points nc. Generally, three to five center runs 
are recommended.

 The distance  should ensure that a second-order response surface 
design be rotable. 



The Rotatable CCD 
1/4

    2k

F

where F

 


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The Box-Behnken Design
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