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Introduction

® Response surface methodology, or RSM, is a collection of
mathematical and statistical techniques in which a response of
interest is influenced by several variables and the objective is to

optimize this response.

® For example, suppose that a chemical engineer wishes to find the
levels of temperature (x)) and pressure (x,) that maximize the yield
() of a process. The process yield is a function of the levels of

temperature and pressure, say Yy=f X,X, +¢

where Erepresents the noise or error observed in the response y.
Then the surface represented by N = f X, X, which is called a
response surface
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Objective of RSM

® We usually represent the response surface graphically, where 7 s
plotted versus the levels of x; and x,. To help visualize the shape of a

response surface, we often plot the contours of the response surface
as well. In the contour plot, lines of constant response are drawn in

the x,, x, plane. Each contour corresponds to a particular height of

the response surface.

® Objective is to

=n

optimize the response

Expected yield E(y)

operating
conditians

x, = Temperature {°c}
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Steps in RSM

1.  Find a suitable approximation

for y = f(x) using Least

Square Method using Low- / N

order polynomial } 5,;,\ coion |
-\{ -

| “=———— Region of
operability
for the
process

| . \. of the /
||'85 \ { optimum

2. Move towards the region of |

Contours
of constant
response

the optimum

90 Path of
a5 improvement

80

3. When curvature is found find

a new approximation for y = | o / lf."'
f(x) (generally a higher order conitions *|
polynomial) and perform the _— ) y

“Response Surface Analysis”
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Response Surface Methodology

For (1) Screening and (2) Steepest ascent, we use

first order model
k
y= 60 +Zﬁixi +€

For (3) Optimization, we use second order model -

y =0, _l_Z/BiXi "‘Z:Biixi2 +zzﬂijxixj Te

i<]j
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Least Square Method

® [east Square Method is typically used for the Estimation of the
Parameters ([3)

* We may write the model equation in terms of the observations

Vi = Bo T Bixy + By o By t+ € y * *2 *t

& Vi X1 X12 X1k

— - -5 ¥z K21 X2z Xk

— ﬁﬂ —|_ 2 ,GJ,-IIJ —|_ Ef I - ] 1111111 H . : .
j=1

Va Xal Xa2 e Xk

o The equation is rewritten in matrix form as follows.

y=XB +e€
where
Vi X, X, Xk B €,
Vs 1 x5 Xsn X5 €
y=|"7 X=[. " 7 *1. B= Piland e=|%
| Va 1 X Xk | | By | | €,
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Estimation of the Parameters (B)

® L, the least square estimator to be minimized, is

"
L=2¢€ =¢€e=(y—XB)(y—XB
i=1
Note that L may be expressed as
L=y'y - B'X'y —y'XB + B'X'XB
=y'y — 28X’y + B'X'XB
® [ is minimized by taking derivatives with respect to the model
parameters and equating to zero
JL
Jp

= —2X'y + 2X'XB = 0

B

X'XB = X'y

‘ B=(X'X)"'Xy

\DOE and Optimization
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Fitted Regression Model

"y

Fitted regression model is

In scalar notation the fitted model is

KDOE and Optimization

a5

= XB

The residual is e=v —v
Square sum of residual is .

— - a2

S5 = 2 (i — Y =

N kK .
:»-‘:=ﬁﬂ+§]ﬁjx;_,- i=1,2.....n

=
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Validation of Regression Model

) 2
Sum of square of total [Z yi]
SS, =y'y — =

n

Sum Of square Of regression

SS. =SS, —SS.

Coefticient of multiple determination

R2 _ SS 1 SS¢
SS; SS;
SS. /(n—p)
Adjusted R? statistics R:dj =1- SSET /(n—1)

If R?and Adjusted R? differ dramatically, there is a
kDOE and Optimization good chance of including non-significant terms

©
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Example of Least Square Method

m TABLE 10.2
Viscosity Data for Example 14.1 (viscosity in centistokes @ 100°¢)

Temperature Catalyst Feed
Observation (xq, “C) Rate (x3, Ib/h) Viscosity
1 80 8 2256
2 93 9 2340
3 100 10 2426
4 82 12 2293
5 90 11 2330
6 99 8 2368
7 81 8 2250
8 96 10 2409
9 94 12 2364
10 03 11 2379
11 97 13 2440
12 95 11 2364
13 100 8 2404
14 85 12 2317
15 86 9 2309
16 87 12 2328
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Sixteen observations on the viscosity of a polymer (v) and
two process variables—reaction temperature (x;) and cata-
lyst feed rate (x;}—are shown in Table 10.2. We will fit a
multiple linear regression model

V=0t B + Box; + €

to these data. The X matrix and y vector are

[1 80 8] 2256 |

1 93 9 2340

1 100 10 2426

1 82 12 2293
190 11 2330

1 99 8§ 2368

1 81 8 2250
196 10 2409
X=11 o1 12| y=[2364
193 11 2379

1 97 13 2440

1 95 11 2364

I 100 8 2404

1 85 12 2317

I 8 9 2309

1 87 12 2328

14.176004 —0.129746
—0.129746 1.429184 x 1077
—0.223453 —4,763047 X 107

W
[l
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Example of Least Square Method
exampLE 10.1 I

The X'X matrix is

Ty . [t %0 8
X'X=[8 93 --- 87 1: 93: 9
| 39 o 21 47 12

16 1458 164
= | 1458 133,560 14946
164 14946 1.726

and the X'y vector is

L1 o1 gizg 37,577
X'y=[8 93 -+ 87 “7|= 3429550
8 9 o 1200 385,562

The least squares estimate of B is

B = (X'X)" X'y
or
—0.223453 37,577 1566.07777
—4.763947 X 107%]| 3.4209,550| = |  7.62129
2222381 x 1072| 385,562 8.58485
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The least squares fit, with the regression coetficients reported
to two decimal places. is

v = 1566.08 + 7.62x, + 8.58x,

The first three columns of Table 10.3 present the actu-
al observations v,, the predicted or fitted values y,, and the
residuals. Figure 10.1 is a normal probability plot of the
residuals. Plots of the residuals versus the predicted

99 - | -

95 |- —]
20

80
70

50

30
20

10
B

MNormal percent probability

‘I - —

| | | | | | |
-21.50 -13.68 -5.85 1.97 9.79 17.61 25.43
Residual
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Example of Least Square Method

values V; and versus the two variables x, and x, are shown
in Figures 10.2, 10.3, and 10.4, respectively. Just as in
designed experiments, residual plotting is an integral part
of regression model building. These plots indicate that the
variance of the observed viscosity tends to increase with
the magnitude of viscosity. Figure 10.3 suggests that the
variability in wviscosity is increasing as temperature
increases.

26.43H +] .
+
1761 —
L +
9.79 - + + —
E +
[15]
=
3 7 | _
& + +
+
_5.85 | —
.|_
_13.68} —
+
-2150 | | | | R C

2244 2273 2302 233 2389 2388 2417
Predicted viscosity in centistokes
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25.43 H
1761}
9.79 |- +

1.97 =

Residuals

-58E—

-1368—

2150 | | |

_'_

L+

-+

80.0 833 86.7

(temperature), Example 10.1
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90.0

93.3

xq, temperature

96.7

100.0

m FIGURE 10.3 Plot of residuals versus x,

Example of Least Square Method

25.43 [H !

1761
+

9.79 - +
+

1.97 =

Residuals

-5.85 -

-13.68 -

+

+ e
| | | ]

8.00 8183 9.67 1060 1133 12.17 13.00

xz;

m FIGURE 10.4
(feed rate), Example 10.1

catalyst feed rate

Plot of residuals versus x,




Example of Least Square Method

m TABLE 10.4
Minitab Output for the Viscosity Regression Model, Example 10.1

Regression Analysis

The regression equation is
Viscosity=1566 + 7.62 Temp + 8.58 Feed Rate

Predictor Coef Std. Dev. T P
Ctonstant 1566.08 61.59 25.43 0.000
Temp 7.6213 0.6184 12.32 0.000
Fead Rat 8.585 2.439 3.52 0.004
S=16.36 R-Sq=92.7% R-Sq (adj)=91.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 44157 22079 8§2.50 0.000
Residual Error 13 3479 268

Total 15 47636

Source DF Seq SS

Temp 1 40841

Feed Rat 1 3316
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The Method of Steepest Ascent

o A procedure for moving
sequentially from an initial “guess”

towards to region of the optimum

e Based on the fitted first-order

model
oy k A o
9 E : . Region of fitted
y — 60 _|_ /Bi Xi firs:oglrggroreslpgnse
i—1 surf|ace
° Steepest ascent is a gradient ¢/
procedure

Path of steepest ascent

KDOE and Optimization
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The Method of Steepest Ascent

® Points on the path of steepest ascent are proportional to the magnitudes

of the model regression coefficients

® The direction depends on the sign of the regression coefficient

° Step-by-step procedure:

L

. Choose a step size in one of the process variables, say Ax;. Usually. we would select

the variable we know the most about. or we would select the variable that has the
largest absolute regression coefficient |3

The step size in the other variables is

-

Bi

Ax, = =
,Sjﬂ'rﬂﬁlfj

i

i=1,2.....k i#j

. Convert the Ax; from coded variables to the natural variables.

KDOE and Optimization
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Chemical Processing Example

® A chemical engineer is interested in determining the operating
conditions that maximize the yield of a process. Two controllable
variables intfluence process yield: reaction time and reaction
temperature. The engineer is currently operating the process with
a reaction time of 35 minutes and a temperature of 155°F, which
result in yields of around 40 percent. Since it is unlikely that this
region contains the optimum, she fits a first-order model and
applies the method of steepest ascent.

® The engineer decides that the region of exploration for fitting the
tirst-order model should be (30, 40) minutes of reaction time and
(150, 160)°F. To simplify the calculations, the independent variables
will be coded to the usual (-1, 1) interval.

KDOE and Optimization
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operating conditions for the process.

Chemical Processing Example

Cndeg

Natural

variables variables Eesponse
£l £ X1 X2 ¥
30 150 -1 -1 393
30 160 -1 1 40.0
40 130 1 -1 409
40 160 1 1 41.5
35 155 0 0 403
35 135 0 0 403
35 155 0 0 40.7
35 155 0 0 402
35 135 0 0 40.6

kDOE and Optimization

g_ (gmax + gmin) /2

® The experimental design is shown in the table. Note that the design
used to collect the data is a 27 factorial augmented by five center
points. Replicates at the center are used to estimate the
experimental error and to allow for checking the adequacy of the

first-order model. Also, the design is centered about the current

™~

X1:

(fmax o fmin) /2

(51 _ 35) ’

5

_ (£ —155)

5 =

5




Chemical Processing Example

* A first-order modelis ¥ =40.444-0.775%, +0.325x, by Least
Square Method

* To move away from the design center, the point (x; = 0, x, = 0),
along the path of steepest ascent, we would move 0.775 units in the

x, direction for every 0.325 units in the x, direction

® Thus, the path of steepest ascent passes through the point (x; = 0,
x, = 0) and has a slope 0.325/0.775.

o The engineer decides to use 5 minutes of reaction time as the basic

step. Using the relationship of natural and coded variable
d§ =5dx, d¢&, =5dx,

dg, _ 5dx dgzzg_z(d&):oszs

0.775

x(5min)=21F

d&,  5dx,

KDOE and Optimization
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Chemical Processing Example

x1=-1

N

X
S
0
S

0.775

\\

\\\

Coded vari

kDOE and Optimization

able space

Next point
of experiment

\

160
3
3 ‘59060
9
%@eﬁ
2.1
5
=30 (35 5) 40

£2=150

Natural variable space
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Chemical Processing Example

m TABLE 11.3
Steepest Ascent Experiment for Example 11.1

Coded Variables Natural Variables Response
Steps Xy X & o ¥
Origin 0 0 35 155
A 1.00 042 5 2
Origin + A 1.00 042 40 157 41.0
Origin + 2A 2.00 0.84 45 159 429
Origin + 3A 3.00 1.26 50 161 47.1
Origin + 4A 4.00 1.68 55 163 49.7
Origin + 5A 5.00 2.10 60 165 53.8
Origin + 6A 6.00 252 635 167 59.9
Origin + 7A 7.00 294 70 169 65.0
Origin + 8A 8.00 3.36 75 171 70.4
Origin + 9A 9.00 3.78 80 173 77.6
Origin + 10A 10.00 4.20 85 175 80.3
Origin + 11A 11.00 4.62 90 179 76.2
Origin + 12A 12.00 5.04 05 181 75.1
_____________________________________________________________________________________________________________________________________________________|
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Chemical Processing Example

90 —

10—

Id

[ 1 1 [ | | |
1T 2 3 4 5 6 7 8 9 10 11 12
Steps
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Second-Order Models in RSM

V=00 4D 0%+ 0+ D Bxx;te or

<]

y=03,+xb+xBx+e
Xl -ﬁl- -/811 ﬁ12/2 61k/2-

X, 52 622 ﬁzk/z

where x= b= cand B =

Sym
_Xk_ _ﬁk_ i ﬁkk ]

These models are used Widely in practice

The Taylor series analogy -> Fitting the model is easy, some nice designs are available

Optimization is easy -> There is a lot of empirical evidence that they work very well

KDOE and Optimization @
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Examples of Second-Order Models

103.04
92.03
81.02
70.01

59

L
-1.00 -0.50 0.00 0.50 1.00

(z) Response surface (&) Contour plot

m FIGURE 11.6 Response surface and contour plot illustrating a surface with a maximum
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Examples of Second-Order Models

1.00 9 9
123
129
118]
121.428 103
113.855 0.50 I
106.283 108]
9871
< 0.00
1.00 050 |-
1.00
~1.00@ ' ' 'Y
-1.00 -0.50 0.00 0.50 1.00
-1.00 ¥ -1.00 xy
() Response surface (b) Contour plot

m FIGURE 11.7 Response surface and contour plot illustrating a surface with a minimum
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132
108
84

60

36

kDOE and Optimization

Examples of Second-Order Models

0.560

' 0.00

-0.650

-1.00

&
-1.00

(a) Response surface

-0.650 0.00

]
0.50 1.00
x4

(&) Contour plot

m FIGURE 11.8 Response surface and contour plot illustrating a saddle point (or minimax)
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Characterization of the Response Surface

» Find out where our stationary point is

» Find what type of surface we have
- Graphical Analysis

— Canonical Analysis

* Determine the sensitivity of the response variable to

the optimum value

— Canonical Analysis

KDOE and Optimization @
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Finding the Stationary Point

o After fitting a second order model take the partial derivatives

with respect to the x.’s and set to zero
oy _9y _  _9y _
ox,  O0X, OX,

Xs_

0

. Stationary point represents. ..

— Maximum Point

— Minimum Point

— Saddle Point

KDOE and Optimization
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Stationary Point

General mathematical solution for the location of the stationary point is obtained
as follows.
y = 3, +x'b+x'Bx

@=6+2|§x:o

OX
Therefore, Stationary point x, = - B~'b
Bl Bll 312/2 B\lk/2
Wherelf):ﬁz,andéz O o Pul2
Sym
_Bk_ I Bkk ]
: : ) n 1 .
Predicted response at the stationary J. = ﬁo —I——Xsb

points

kDOE and Optimization
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Canonical Analysis

« Used for sensitivity analysis and stationary point

identification

- Based on the analysis of a transformed model called:

canonical form of the model

« Canonical Model form:
o y=y. tAwA AW AW

- {A} are just the eigenvalues or characteristic
roots of the matrix B.

KDOE and Optimization
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Eigenvalues

* The nature of the response can be
determined by the signs and
magnitudes of the eigenvalues

— {e} all positive: a minimum is found
— {e} all negative: a maximum is found

— {e} mixed: a saddle point is found

° Eigenvalues can be used to determine
the sensitivity of the response with

respect to the design factors

* The response surface is steepest in the
direction (canonical) corresponding to

the largest absolute eigenvalue

kDOE and Optimization
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Chemical Processing Example

® A second-order model is to be set

at the tenth point (&, =85,¢, =
175) in Example 6-1.The

experimenter decides to augment
-1, 1)

the 22—and—central—point design in

order to have enough points for |

X2

(0, 1.414)

(1, 1)

X4

-2 (-1.414,0)

fitting a second-order model. She

obtains four observations at (x; = T
0, x, = x1.414) and (x, = £1.414,

x, = 0). The design is displayed in

the left figure. (Central

Composite Design — CCD)

kDOE and Optimization
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Chemical Processing Example

® The Complete experiment is shown in the table.

L =

Natural

Variables Coded Variables Responses
& & Xy X3 ¥ (yield) ¥, (viscosity) v; (molecular weight)
80 170 —1 -1 76.5 62 2940
80 180 — 1 | 71.0 60 3470
90 170 1 -1 78.0 66 3680
90 180 1 1 79.5 59 3890
85 175 0 0 79.9 72 3480
85 175 0 0 80.3 69 3200
85 175 0 0 80.0 68 3410
85 175 0 0 79.7 70 3290
85 175 0 0 79.8 71 3500
92.07 175 1.414 0 78.4 68 3360
77.93 175 —1414 0 75.6 71 3020
85 182.07 0 1.414 78.5 58 3630
85 167.93 0 —1.414 77.0 57 3150

KDOE and Optimization
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Example of Second-order Model

® Using MINITAB, we fist a response surface and to construct the contour

plots. The second-order model in terms of the coded variables is

§ = 79.940 4+ 0.995x, +0.515x, —1.376x” —1.001x5 +0.250%,X,

182.1 —
e \\,\
179.7 / 2 AN
76.00 ' t‘:‘\\k‘\;}{%
SN
ot
. 177.4 ‘%‘t:“‘\\\\\\\x_-.,,_
= W
!g 175.0
3
'—
172.6 9207
76.00 6024
70318 N o0 _
7 c-o\ \
16?.9?\ | I 167.9 7793
7793 8029 8264 8500 8736 8971 9207 : :
Time
{a) The contour plot (b)The response surface plot
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Chemical Processing Example

© Finding the location of the stationary point using the general

solution.

0.125 —1.001| 0.515

—1.376 0.125 ] b— [0.995]

So

_1_

—0.7345 —-0.0917
—0.0917 —1.0096

The stationary point is

w __ Llgu 1 —0.7345 —0.0917][0.995
N N —0.0917 —1.0096//0.515

0.389
’ 2 2 [0.306}
X, = 0.389, x,, = 0.306
The stationary point in natural variable space is

0.389 :51;85

¢, —175

0.306 =

which yield & =86.95 (min), &, =176.53(°F)
Predicted response at the stationary point as y, = 80.21.

kDOE and Optimization
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Chemical Processing Example

© Performing Canonical Analysis.

® The eigenvalues ﬂ,l and ﬁ,z are the roots of the determinant

equation
B-AI=0 or
which reduces to
A? +2.3788)\+1.3639 =0

® The roots of this quadratic equation are A, =-09641and A, = -
1.4147. Thus, the canonical form of the fitted model is

§y =80.21—0.9641w; —1.4147w;,

® Since both A, and A, are negative, we conclude that the stationary

—1.377—\ 0125 |
0.125 —1.0018— )|

point 1S a maximum.

kDOE and Optimization @
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Central Composite Design - CCD

* The central composite design or CCD is the most popular
class of designs used for fitting the second-order models. Generally,
the CCD consists of a 2* factorial with n, runs, 2k axial or star runs

and n_ center runs. Figure shows the CCD for k=2 and k= 3

4 {D;ﬂ'] .‘f'z
-1, +1) (+1, +1) /;/
/ * 1
& =+ 2 4
(~ct, O] 0,00 | (e, 0) / /
=1,-1) e (+1,-1)

¢ (0, —cx)

factors.

KDOE and Optimization
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Central Composite Design

® The practical deployment of a CCD often arises through
sequential experimentation. A Dk design is first used to fit a
first-order model. If this model has exhibited lack of fit, and the
axial runs are then added to allow the quadratic terms to be
incorporated into the model. The CCD is a very efficient design for
fitting the second-order model.

® There are two parameters in the CCD design that must be specified;

the distance @ of the axial runs from the design center, and the

number of center points n . Generally, three to five center runs

are recommended.

® The distance & should ensure that a second-order response surface
design be rotable.

KDOE and Optimization
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The Rotatable CCD

o = F1/4

Temperature

where

0.3019

F=2"

182.1 /“‘ 07

/@55
179.7 /
177.4
1750
172.6

Ty

0.207a, 0.2090 y

167.0 \3.348N \""T-...___ I /|/ /
77.93 80,29 8264 8500 87.36 B9.71 92.07
Time
(a) Contours of + V[y(x)]
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0.3949 ¢
0.3020 |-\ . “A”“’
\) ”"H*"J ;
AT e 0
020011\ \‘ﬁé Sl
g
\ .
0.1161 KX o
182.1
179.2

167.9 77.93

{b) The response surface plot
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The Box-Behnken Design

m TABLE 11.8

A Three-Variable Box—Behnken Design

Run X X X3

I

—_
I I
_ = =

I

= o

I
o O O = = = = O O O O
I

=

to
O 00000 O =

O

KDOE and Optimization

=
|
+1— Ii
L 4 ®
| o
i | |
L e —— +1
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-1L » 1

m FIGURE 11.22 A Box-Behnken

design for three factors




