Stat 602 The Design of Experiments

Yuqing Xu

Department of Statistics University of Wisconsin Madison, WI 53706, USA

April 21, 2016

Yuqing Xu (UW-Madison)

Stat 602 Week 13

April 21, 2016 1 / 11

Daniel's Method for Testing in 2^k Model

Some Facts by Normal Assumption

- Our original data are independent and normally distributed with constant variance.
- Effects contrasts in Table 10.3 gives us results that are also independent and normally distributed with constant variance.
- The expected value of any of these contrasts is zero if the corresponding null hypothesis is true.

Table 10.3: All contrasts for a 2^3 design.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Α	В	С	AB	AC	BC	ABC
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1)	_	-	_	+	+	+	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	+	-	_	-	-	+	+
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b	-	+	_	_	+	_	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ab	+	+	_	+	-	_	-
bc - + + + -	c	-	-	+	+	-	_	+
	ac	+	_	+	_	+	_	-
abc + + + + + +	bc	-	+	+	_	-	+	-
	abc	+	+	+	+	+	+	+

Daniel's Method for Testing in 2^k Model

Technique of Daniel's Plot

• The main effect α can be estimated by:

$$\hat{\alpha} = \frac{1}{8} [(y_a + y_{ab} + y_{ac} + y_{abc}) - (y_{(1)} + y_b + y_c + y_{bc})]$$

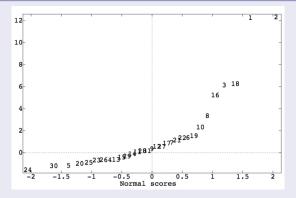
• Let $\hat{A} = 2\hat{\alpha}$.

- Contrasts corresponding to null effects should look like a sample from a normal distribution with mean zero and fixed variance.
- Contrasts corresponding to non-null effects will have different means and should look like outliers
- Key Assumption: We assume that we will have mostly null results, with a few non-null results that should look like **outliers**.

Note: These techniques will work poorly if there are many non-null effects.

Daniel's Method for Testing in 2^k Model

Example of Normal Plot



- Numbers indicates standard order
- Effect 1 and 2 the main effect of A, B, appears as a clear outlier, and the rest appear to follow a line.

Yuqing Xu (UW-Madison)

Stat 602 Week 13

Cont. Normal Plot

- What about changing the positive A, B, C... to negative ones?
- It is supposed to be working too...
- The whole plot changes! No uniqueness.

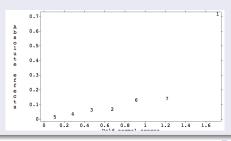
Lenth's Method

- Let $\hat{\theta}_1, \ldots, \hat{\theta}_l$ denotes estimated effects.
- First, let s_0 be 1.5 times the median of the absolute values of the contrast $\hat{\theta}$'s.
- Second, delete any contrasts results whose absolute values are greater than $2.5s_0$.
- Third, let the PSE be 1.5 times the median of the remaining absolute contrast results.
- Treat the PSE as a standard error for the contrasts with $(2^k 1)/3$ degrees of freedom, and do t-tests.

Lenth's Method for Testing in 2^k Model

Example

- To use Lenth's method, we first need the median of the absolute factorial effects, 0.068 for these data.
- delete any absolute effects greater than $2.5 \times 0.068 = 0.17$; only the the main effect of A meets this cutoff.
- The median of the remaining absolute effects is 0.065
- The PSE is $1.5 \times 0.065 = 0.098$.



Yuqing Xu (UW-Madison)

Stat 602 Week 13

Example

- Consider the vitamin A content of baby food carrots.
- We go to the grocery store and select **4 jars of carrots** at random **from each of the 3 brands** of baby food.
- We then take two samples from each jar and measure the vitamin A in every sample for a total of 24 responses.
- There is variation between the brands, variation be-tween individual jars for each brand, and variation between samples for every jar.

Why this example different?

- It does not make sense to consider jar main effects and brand by jar interaction.
- Jar 1 for brand A has absolutely nothing to do with jar 1 for brand B.

Framework of Nested Model

- Factor B is nested in factor A if there is a completely different set of levels of B for every level of A.
- Thus the jars are nested in the brands and not crossed with the brands, because we have a completely new set of jars for every brand.
- We write nested models using parentheses in the subscripts to indicate the nesting.
- If brand is factor A and jar (nested in brand) is factor B, then the model is written

$$y_{jki} = \mu + \alpha_j + \beta_{k(j)} + \epsilon_{i(jk)}$$

- The k(j) indicates that the factor corresponding to k = 1, 2, 3, 4 (factor B) is nested in the level j of factor A: j = 1, 2, 3.
- There is a different β_k for each level j of A.

Extra Topic: Nested Model

Skeleton of ANOVA

$$y_{jki} = \mu + \alpha_j + \beta_{k(j)} + \epsilon_{i(jk)}$$

Source	df	EMS		
A	a — 1	$\sigma^2 + n\sigma_b^2 + nb\sigma_a^2$		
B(A)	a(b-1)	$\sigma^2 + n\sigma_b^2$		
Error	ab(n-1)	σ^2		

- The sum of squares and degrees of freedom for B(A) are the totals of those quantities for B and AB from the factorial.
- Similarly, the estimated effects are found by addition:

$$\hat{\beta_{k(j)}} = \hat{\beta}_k + (\hat{\alpha\beta})_{jk}$$

< □ > < 同 > < 三</p>

Why Nested Model

- Subsampling produces small units by one or more layers of selection from larger batchs of units.(baby carrots example)
- In other experiments, nesting is the only available method.
- e.g. consider a genetics experiment with females nested in males. We need to be able to identify the father of the female offsprings ...
- Hence we do not choose to use a nested model for an experiment. We use a nested model because the treatment structure of the experiment was nested.