Unreplicated Experiments

When exploring the effects of many factors, you may not have the resources required for replication.

Degrees of freedom for pure error are $(n-1) \times 2^k$, so n = 1 means zero degrees of freedom.

"Sparsity of effects" principle

Most systems are dominated by some main effects and low-order interactions, and most high-order interactions are negligible.

イロト 不得 トイヨト イヨト

3

Possible approaches

- assume some high-order interactions are zero, and fit a model that excludes them; degrees of freedom go into error, so testing is possible;
- graphical methods-normal and half-normal probability plots; no formal tests;
- others.

First approach is not recommended, as it depends on knowing that certain effects are negligible.

イロト 不得 トイヨト イヨト

э.

Example: Filtration rate

Response: filtration rate (gal/h);

Factors:

- A temperature;
- *B* pressure;
- C concentration of formaldehyde;
- D stirring rate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Data filtration.txt:

45 + 71 - + 48	
+ 71 - + 48	
- + 48	
+ + 65	
+ - 68	
+ - + - 60	
- + + - 80	
+ + + - 65	
+ 43	
+ + 100	
- + - + 45	
+ + - + 104	
+ + 75	
+ - + + 86	
- + + + 70	
+ + + + 96	

Analysis (all factors were coded)

```
filtration <- read.table("data/filtration.txt", header = TRUE)
for (j in 1:4)
    filtration[, j] <- coded(filtration[, j])
summary(lm(Rate ~ A * B * C * D, filtration))
summary(aov(Rate ~ A * B * C * D, filtration))</pre>
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Output of Im()

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	70.0625		NA		NA	NA	
A	10.8125		NA		NA	NA	
В	1.5625		NA		NA	NA	
С	4.9375		NA		NA	NA	
D	7.3125		NA		NA	NA	
A:B	0.0625		NA		NA	NA	
A:C	-9.0625		NA		NA	NA	
B:C	1.1875		NA		NA	NA	
A:D	8.3125		NA		NA	NA	
B:D	-0.1875		NA		NA	NA	
C:D	-0.5625		NA		NA	NA	
A:B:C	0.9375		NA		NA	NA	
A:B:D	2.0625		NA		NA	NA	
A:C:D	-0.8125		NA		NA	NA	
B:C:D	-1.3125		NA		NA	NA	
A:B:C:D	0.6875		NA		NA	NA	

Residual standard error: NaN on O degrees of freedom

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Output of aov()

	Df	Sum Sq	Mean Sq
Α	1	1870.6	1870.6
В	1	39.1	39.1
С	1	390.1	390.1
D	1	855.6	855.6
A:B	1	0.1	0.1
A:C	1	1314.1	1314.1
B:C	1	22.6	22.6
A:D	1	1105.6	1105.6
B:D	1	0.6	0.6
C:D	1	5.1	5.1
A:B:C	1	14.1	14.1
A:B:D	1	68.1	68.1
A:C:D	1	10.6	10.6
B:C:D	1	27.6	27.6
A:B:C:D	1	7.6	7.6

Exclusion approach

Include only main effects and two-factor interactions:

summary(aov(Rate ~ (A + B + C + D)^2, filtration))

Output

	\mathtt{Df}	Sum Sq	Mean Sq	F value	Pr(>F)	
Α	1	1870.56	1870.56	73.1760	0.0003596	***
В	1	39.06	39.06	1.5281	0.2712969	
С	1	390.06	390.06	15.2592	0.0113371	*
D	1	855.56	855.56	33.4694	0.0021718	**
A:B	1	0.06	0.06	0.0024	0.9624777	
A:C	1	1314.06	1314.06	51.4059	0.0008208	***
A:D	1	1105.56	1105.56	43.2494	0.0012200	**
B:C	1	22.56	22.56	0.8826	0.3906126	
B:D	1	0.56	0.56	0.0220	0.8878710	
C:D	1	5.06	5.06	0.1980	0.6749089	
Residuals	5	127.81	25.56			
Signif. cod	es:	0 *** (0.001 **	0.01 * (0.05 . 0.1	1

QQ-plot (probability plot) of effects

library(gplots)
qqnorm(aov(Rate ~ A * B * C * D, filtration), full = TRUE)

< /₽> < ∃>

< ∃⇒

æ

Half-normal plot of effects

qqnorm(aov(Rate ~ A * B * C * D, filtration))

・ロン ・聞と ・ 聞と ・ 聞と

Э.

Design Projection

Active effects are identified as A, C, D, AC, AD.

Factor B (pressure) not involved in any active effect.

Ignoring *B* projects the 2^4 unreplicated design onto a replicated 2^3 design.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

ANOVA as a replicated 2^3 design in A, C, and D:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Α	1	1870.56	1870.56	83.3677	1.667e-05	***
C	1	390.06	390.06	17.3844	0.0031244	**
D	1	855.56	855.56	38.1309	0.0002666	***
A:C	1	1314.06	1314.06	58.5655	6.001e-05	***
A:D	1	1105.56	1105.56	49.2730	0.0001105	***
C:D	1	5.06	5.06	0.2256	0.6474830	
A:C:D	1	10.56	10.56	0.4708	0.5120321	
Residuals	8	179.50	22.44			
Signif. code	es:	0 *** (0.001 **	0.01 * 0	0.05 . 0.1	1

Estimate of error based on "hidden replication"; not pure error.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Interaction plots:

```
with(filtration, interaction.plot(A, C, Rate))
with(filtration, interaction.plot(A, D, Rate))
with(filtration, interaction.plot(A, C * D, Rate))
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Other Methods

In any QQ plot, the slope of the line gives an estimate of σ^2 .

In the half-normal plot, an estimate could be found from the slope of the line involving the small effects.

Lenth's method is related; implemented in JMP, and in the rsm package for $\mathsf{R}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○