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Chapter 11 

Fractional Replications 

Consider the set up of complete factorial experiment, say 2k .  If there are four factors, then the total 

number of plots needed to conduct the experiment is 42 16.   When the number of factors increases to 

six, then the required number of plots to conduct the experiment becomes 62 64  and so on. 

Moreover,  the number of treatment combinations also become large when the number of factors 

increases. Sometimes, it is so large that it becomes practically difficult to organize such a huge 

experiment. Also, the quantity of experimental material needed, time, manpower etc. also increase and 

sometimes even it may not be possible to have so many resources to conduct a complete factorial 

experiment.  The non-experimental type of errors also enters in the planning and conduct of the 

experiment.  For example, there can be a slip in numbering the treatments or plots or they may be 

wrongly reported if they are too large in numbers. 

 

About the degree of freedoms, in the 62  factorial experiment there are 62 1 63   degrees of freedom 

which are  divided as 6 for main effects,  15 for two-factor interactions and rest 42 for three or higher-

order interactions.  In case, the higher-order interactions are not of much use or much importance, then 

they can possibly be ignored. The information on main and lower-order interaction effects can then be 

obtained by conducting a fraction of complete factorial experiments.  Such experiments are called as 

fractional factorial experiments.   The utility of such experiments becomes more when the 

experimental process is more influenced and governed by the main and lower-order interaction effects 

rather than the higher-order interaction effects. The fractional factorial experiments need less number 

of plots and lesser experimental material than required in the complete factorial experiments. Hence it 

involves less cost,  less manpower, less time etc. 

 

It is possible to combine the runs of two or more fractional factorials to assemble sequentially a larger 

experiment to estimate the factor and interaction effects of interest. 

 

To explain the fractional factorial experiment and its related concepts, we consider here examples in 

the set up of  2k  factorial experiments. 

 

One-half fraction of 32  factorial experiment  

First, we consider the set up of 32  factorial experiment and consider its one-half fraction. This is a 

very simple set up to understand the basics, definitions, terminologies and concepts related to the 

fractional factorials.    
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Consider the setup of  32  factorial experiment consisting of three factors, each at two levels. There is a 

total of 8 treatment combinations involved.  So 8 plots are needed to run the complete factorial 

experiment. 

 

Suppose the material needed to conduct the complete factorial experiment in 8 plots is not available or 

the cost of total experimental material is too high. The experimenter has material or money which is 

sufficient only for four plots. So the experimenter decides to have only four runs, i.e., ½ fraction of  32  

factorial experiment. Such an experiment contains a one-half fraction of a 32  experiment and is called 

3 12   factorial experiment.  Similarly, 21/ 2  fraction  of 32  factorial experiment requires only 2 runs 

and contains 21/ 2  fraction  of 32  factorial experiment and is called as 3 22   factorial experiment.  In 

general, 1/ 2 p  fraction of a 2k  factorial experiment requires only 2k p  runs  and is denoted as 2k p  

factorial experiment. 

 

We consider the case of ½ fraction of 32  factorial experiment to describe the various issues involved 

and to develop the concepts.  The first question is how to choose four out of eight treatment 

combinations for conductive the experiment.  In order to decide this, first we have to choose an 

interaction factor which the experimenter feels can be ignored.  Generally, this can be a higher-order 

interaction which is usually difficult to interpret. We choose ABC  in this case.  Now we create the 

table of treatment combinations as in the following table.  

 

Arrangement of treatment combinations for one-half fraction of  32  factorial experiment 

Factors 

 

Treatment 

combinations 

I A  B  C  AB AC  BC  ABC  
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This table is obtained by the following steps. 

 Write down the factor to be ignored which is ABC  in our case. We can express ABC as  

( ) ( (1)).ABC a b c abc ab ac bc         

 Collect the treatment combinations with plus (+) and minus (–) signs together; divide the eight 

treatment combinations into two groups with respect to the + and – signs. This is done in the 

last column corresponding to  .ABC  

 Write down the symbols + or – of the other factors , , , ,A B C AB AC  and BC  corresponding to 

( , , , )a b c abc  and ( ,  , ,  (1)).ab ac bc  

 

This provides the arrangement of treatments as given in the table. Now consider the column of ABC. 

The treatment combinations corresponding to + signs of treatment combinations in  ABC provide one-

half fraction of 32  factorial experiment. The remaining treatment combinations corresponding to the – 

signs in ABC will constitute another one-half fractions of 32  factorial experiment.  Here one of the 

one-half fractions corresponding to + signs contains the treatment combinations , ,a b c  and abc . 

Another one-half fraction corresponding to - signs contains the treatment combinations , ,ab ac bc  and 

(1).  Both the one-half fractions are separated by a  starred line in the Table. 

 

Generator: 

The factor which is used to generate the one-half fractions is called as the generator. For example, 

ABC  is the generator of a  fraction in the present case and we have two one-half fractions. 

 

Defining relation: 

The defining relation for a fractional factorial is the set of all columns that are equal to the identity 

column .I  The identity column I always contains all the + signs. So in our case, I ABC  is called the 

defining relation of this fractional factorial experiment.   

 

The number of degrees of freedom associated with a one-half fraction of  32  factorial experiment, i.e., 

3 12   factorial experiment is  3 which is essentially used to estimate the main effects. 

 

Now consider the one-half fraction containing the treatment combinations , ,a b c  and abc  

(corresponding to + signs in the column of  ).ABC  
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The factors ,  , , ,A B C AB AC  and BC  are now estimated from this block as follows: 

 

,

,

,

,

,

.

A a b c abc

B a b c abc

C a b c abc

AB a b c abc

AC a b c abc

BC a b c abc

   

    

    

    

    

     

 

Aliases: 

We notice that the estimates of A  and are same.BC    So it is not possible to differentiate between 

whether A  is being estimated or  BC  is being estimated. As such,  .A BC   Similarly, the estimates 

of  B  and of  AC  as well as the estimates of C  and of  AB  are also the same. We write this as 

andB AC C AB  . So it is not possible to differentiate between B  and AC  as well as between C  

and AB  in the sense that which one is being estimated.  Two or more effects that have this property 

are called aliases. Thus 

 

 A  and BC  are aliases, 

 B and AC  are aliases and  

 C and AB  are aliases. 

 

Note that the estimates of , , , , , andA B C AB BC AC ABC  are obtained are one-half fraction set up. 

These estimates can also be obtained from the complete factorial set up. A question arises that how the 

estimate of an effect in the two different setups are related? The answer is as follows: 

 

In fact, when we estimate ,  A B  and  C  in 3 12   factorial experiment, then we are essentially 

estimating  ,A BC B AC   and C AB , respectively in a complete 32  factorial experiment.  To 

understand this, consider the setup of a complete  32  factorial experiment in which A  and BC  are 

estimated by  

 
(1) ,

(1) .

A a b ab c ac bc abc

BC a b ab c ac bc abc

        
       

 

Adding A  and   BC  and ignoring the common multiplier, we have 

 A BC a b c abc      

which is the same as A  or BC  is a one-half fraction with  I ABC .   
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Similarly, considering the estimates of  B  and AC  in 23 factorial experiment, adding them together 

and ignoring the common  multiplier, we have 

 

(1) ,

(1) ,

,

B a b ab c ac bc abc

AC a b ab ac bc abc

B AC a b c abc

        
      

     
 

which is same B  or AC  in one-half fraction with I ABC  

 

The estimates of C and AB  in 23 factorial experiment and their sum is as follows:  

 

(1) ,

(1) ,

,

C a b ab c ac bc abc

AB a b ab c ac bc abc

C AB a b c abc

        
       

     
 

which is same as C  or AB  in one-half fraction with I ABC . 

 

Determination of alias structure: 

The alias structure is determined by using the defining relation. Multiplying any column (or effect) by 

the defining relation yields the aliases for that column (or effect). For example, in this case, the 

defining relation is  I ABC .  Now multiply the factors on both sides of  I ABC  yields 

2

2

2

( ) ( ) ,

( ) ( ) ,

( ) ( ) .

A I A ABC A BC BC

B I B ABC AB C AC

C I C ABC ABC AB

    

    

    

 

 

The systematic rule to find aliases is to write down all the effects of a 3 1 22 2   factorial in a standard 

order and multiply each factor by the defining contrast. 

 

Alternate or complementary one-half fraction: 

We have considered up to now the one-half fraction corresponding to + signs of treatment 

combinations in ABC  column in the table.  Now suppose we choose other one-half fraction, i.e., 

treatment combinations with – signs in ABC  column in the table.    This  is called an alternate or 

complementary one-half fraction.  In this case, the effects are estimated as  

 

(1),

(1),

(1),

(1),

(1),

(1),

A ab ac bc

B ab ac bc

C ab ac bc

AB ab ac bc

AC ab ac bc

BC ab ac bc

   
   
    
   
    
    
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In this case, we notice that , , ,A BC B AC C AB       so the same  factors remain aliases again 

which are aliases in the one-half fraction with + sign in .ABC   If we consider the setup of the 

complete  32  factorial experiment,  then in case of complete fractional 

 
(1)

(1) ,

A a b ab c ac bc abc

BC a b ab c ac bc abc

        
       

 

we observe that A BC  in the complete 32  factorial experiment the same as A  or  BC  in the one-

half fractional with  I ABC   (ignoring the common multiplier).  In order to find the relationship 

between the estimates under this one-half fraction and a complete factorial, we find that what we 

estimate in the one-half fraction with – sign in ABC  is the same as of estimating A BC  from a 

complete 32  factorial experiment.  Similarly, using B AC   in the complete 32  factorial, is the same 

as using B  or AC  is a one-half fraction with . Using - inI ABC C AB a complete 32  factorial 

experiment is the same using as C  or AB  in one-half fraction with I ABC  (ignoring the common 

multiplier). 

 
Now there are two one-half fractions corresponding to + and – signs of treatment combinations in

ABC .  Based on that, there are now two sets of treatment combinations. A question arises that which 

one to use? 

 
In practice, it does not matter which fraction is actually used. Both the one-half fractions belong to the 

same family of 32  factorial experiment. Moreover, the difference of negative signs in aliases of both 

the halves becomes positive while obtaining the sum of squares in the analysis of variance. 

 

Use of more than one defining relations: 

Further, suppose we want to have 21/ 2  fraction of  32  factorial experiment with one more defining 

relation, say I BC  along with .I ABC   So the one-half with + signs of  ABC  can further be 

divided into two halves. In this case, each half fraction will contain two treatments corresponding to 

-   sign of  ,BC  (viz., a  and abc ) and 

-  - sign of  ,BC  (viz.,  b  and c ). 

These two halves will constitute the one-fourth fraction of  32  factorial experiment. Similarly, we can 

consider the other one-half fraction corresponding to – sign of .ABC   Now we look for + and – sign 

corresponding  to I BC  which constitute the two one-half fractions consisting of the  treatments 

- (1),  bc  and 

- ,ab ac . 

This will again constitute the one-fourth fraction of  32  factorial experiment. 
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Example in 62  factorial experiment: 

In order to have more understanding of the fractional factorial, we consider the setup of  62   factorial 

experiment. Since the highest order interaction, in this case, is ABCDEF , so we construct the one-half 

fraction using I ABCDEF  as defining relation. Then we write all the factors  of  6 1 52 2   factorial 

experiment in the standard order. Then multiply all the factors with the defining relation.  

 

For example,   

            2

    

            

or  

I A ABCDEF A

A BCDEF

A BCDEF

  




 

                         

Similarly,  

  2 2             

or  etc.

I ABC ABCDEF ABC

A B CDEF

ABC CDEF

  




 

 

All such operations are illustrated in the following table. 

 

One-half fraction of  62  factorial experiment using I ABCDEF  as defining relation 

I ABCDEF  D ABCEF  E ABCDF  DE ABCF  

A BCDEF  AD BCEF  AE BCDF  ADE BCF  

B ACDEF  BD ACEF  BE ACDF  BDE ACF  

AB CDEF  ABD CEF  ABE CDF  ABDE CF  

C ABDEF  CD ABEF  CE ABDF  CDE ABF  

AC BDEF  ACD BEF  ACE BDF  ACDE BF  

BC ADEF  BCD AEF  BCE ADF  BCDE AF  

ABC DEF  ABCD EF  ABCE DF  ABCDE F  

     

  In this case, we observe that 

- all the main effects have 5 factor interactions as aliases, 

- all the 2 factor interactions have 4 factor interactions as aliases and 

- all the 3 factor interactions have 3 factor interactions as aliases. 
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Suppose a completely randomized design is adopted with blocks of size 16.  There are 32 treatments 

and abcdef  is chosen as the defining contrast for half replicate.  Now all the 32 treatments cannot be 

accommodated. Only 16 treatments can be accommodated. So the treatments are to be divided and 

allocated into two blocks of size 16 each.  This is equivalent to saying that one factorial effect (and its 

alias)  are confounded with blocks. Suppose we decide that the three-factor interactions and their 

aliases (which are also three factors interactions in this case) are to be used as an error. So choose one 

of the three-factor interaction, say  ABC  (and its alias )DEF  to be confounded.  Now one of the 

blocks contains all the treatment combinations having an even number of letters ,  a b  or c .  These 

blocks are constructed in the following table. 

 

One-half replicate of 62  factorial experiment in the blocks of size 16 

     Block 1    Block 2

(1)

de

df

ef

ab

ac

bc

abde

abdf

abef

acde

acdf

acef

bcde

bcdf

bcef
 

ab

ae

af

bd

be

bf

cd

ce

cf

adef

bdef

cdef

abcd

abce

abcf

abcdef  

 

There are total 31 degrees of freedom, out of which 6 degrees of freedom are used by the main effects, 

15 degrees of freedom are used by the two-factor interactions and 9 degrees of freedom are used by 

the error (from three-factor interactions). Additionally, one more division of degree of freedom arises 

in this case which is due to blocks. So the degree of freedom carried by blocks is 1. That is why the 

error degrees of freedom are 9 (and not 10) because one degree of freedom goes to block. 
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- Suppose the block size is to be reduced further and we want to have blocks of size 8 in the 

same setup. This can be achieved by 21/ 2  fraction of  62  factorial experiment. In terms of 

confounding setup, this is equivalent to saying that the two factorial effects are to be 

confounded. Suppose we choose ABD  (and its alias )CEF  in addition to ABC  (and its alias 

).DEF   When we confound two effects, then their generalized interaction also gets 

confounded. So the interaction 2 2ABC ABD A B CD CD      (or  

2 2 )DEF CEF CDE F CD    and its alias ABEF  also get confounded.  One may note that a 

two-factor interaction is getting confounded in this case which is not a good strategy.  A good 

strategy in such cases where an important factor is getting confounded is to choose the least 

important two-factor interaction.  The blocks arising with this plan are described in the 

following table. These blocks are derived by dividing each block of the earlier table of a one-

half replicate of 62  factorial experiment in the blocks of size 16  into two halves.  These halves 

contain respectively an odd and even number of the letters c  and  d .  

 

Block 1 Block 2 Block 3 Block 4

(1)

ef

ab

abef

acde

acdf

bcde

bcdf

 

de

df

ac

bc

abde

abdf

acef

bcef

 

ae

af

be

bf

cd

abcd

cdef

abcdef

 

ad

bd

ce

cf

abce

abcf

adef

bdef

 

 

The total degrees  of freedom, in this case, is 31 which are divided as follows: 

- the blocks carry 3 degrees of freedom, 

- the main effect carries 6 degrees of freedom. 

- the two-factor interactions carry 14 degrees of freedom and 

the error carries 8 degrees of freedom. 

The analysis of variance in the case of fractional factorial experiments is conducted in the usual way,  

as in the case of any factorial experiment.  The sums of squares for blocks, main effects and two-factor 

interactions are  computed in the usual way. 
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Resolution: 

The criterion of resolution is used to compare the fractional factorial designs for overall quality of the 

statistical inferences which can be drawn. It is defined as the length of the shortest word (or order of 

the lowest-order effect) aliased with “I” in the generating relationship. 

 

A fractional factorial design with the greater resolution is considered to be better than a design with 

lower resolution. An important objective in the designs is to find a fractional factorial design that has 

the greatest resolution for a given number of runs and numbers of factors. The resolution of design is 

generally denoted by a subscripted roman numeral. For example, a fractional factorial design 

constructed by using  " ( )"I ABCD ABEF CDEF      is denoted as 6 22IV
  fractional factorial plan. 

In practice, the designs with resolution III, IV and V are used in practice. 

 

When the design is of resolution II, it means that, e.g., “I = +AB”.  It means that in this case “A = + 

B” which indicates that at least some pairs of main effects are aliased. 

 

When the design is of resolution III, the generating relation is like e.g., “I = +ABC”. In this case “A = 

+BC =…”  This means that the main effects will not be aliased with each other but some of them will 

be aliased with two-factor interaction. Thus such design can estimate all main effects if all interactions 

are absent. 

 

When the design is of resolution IV, then the generating relationship is like   “I = +ABCD”.  Then the 

main effects will not be aliased with each other or with two-factor interactions but some will get 

aliased with three-factor interaction, e.g., “A = +BCD”.  Some pairs of two-factor interactions will also 

get aliased, e.g., ., “AB = +CD =…”.   So this type of design unbiasedly estimates all the main effects 

even when two-factor interactions are present. 

 

Similarly, the generating relations like ., “I = +ABCDE” are used in resolution V designs. In this case, 

all main effects can be estimated unbiasedly in the absence of all interactions of the order less them 

five. The two-factor interactions can be estimated if no effects of higher-order are present.  So 

resolution V design provides a complete  estimation of the second-order model. 

 

The designs of resolution II or higher than resolution V are not used in practice. Reason being that 

resolution II design cannot separate the influence of main effects and design of resolution VI or higher 

require a large number of units which may not be feasible all the times. 

 


