Two-Factor Design: Estimating Model Parameters

Recall the model:

$$\mathbf{y}_{i,j,k} = \mu + \tau_i + \beta_j + (\tau\beta)_{i,j} + \epsilon_{i,j,k}$$

For balanced data, with the *natural* constraints:

$$E (\bar{y}_{...}) = \mu$$

$$E (\bar{y}_{i..}) = \mu + \tau_i$$

$$E (\bar{y}_{.j.}) = \mu + \beta_j$$

$$E (\bar{y}_{i,j.}) = \mu + \tau_i + \beta_j + (\tau\beta)_{i,j}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

So the natural parameter estimates are

$$\begin{aligned} \hat{\mu} &= \bar{y}_{\dots} \\ \hat{\tau}_i &= \bar{y}_{i\dots} - \hat{\mu} \\ &= \bar{y}_{i\dots} - \bar{y}_{\dots} \\ \hat{\beta}_j &= \bar{y}_{\cdot j \dots} - \hat{\mu} \\ &= \bar{y}_{\cdot j \dots} - \bar{y}_{\dots} \\ \widehat{(\tau\beta)}_{i,j} &= \bar{y}_{i,j \dots} - \left(\hat{\mu} + \hat{\tau}_i + \hat{\beta}_j\right) \\ &= \bar{y}_{i,j \dots} - \bar{y}_{i\dots} - \bar{y}_{\cdot j \dots} + \bar{y}_{\dots} \end{aligned}$$

These are also least squares estimates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Standard packages use the "reference level" constraints.

```
E.g., the battery life data
```

R commands

```
# for more compact output:
batteryLife$M <- factor(batteryLife$Material)
batteryLife$T <- factor(batteryLife$Temperature)
summary(lm(Life ~ M * T, batteryLife))
```

Output

```
Call:
lm(formula = Life ~ M * T, data = batteryLife)
```

Residuals:

Min	1Q	Median	ЗQ	Max
-60.750	-14.625	1.375	17.938	45.250

Output, continued

Coefficients:

	Estimate	Std. Er	ror t	value	Pr(> t)	
(Intercept)	134.75	12	2.99 1	0.371	6.46e-11	***
M2	21.00	18	3.37	1.143	0.263107	
M3	9.25	18	3.37	0.503	0.618747	
T70	-77.50	18	3.37 -	4.218	0.000248	***
T125	-77.25	18	3.37 -	4.204	0.000257	***
M2:T70	41.50	25	5.98	1.597	0.121886	
M3:T70	79.25	25	5.98	3.050	0.005083	**
M2:T125	-29.00	25	5.98 -	-1.116	0.274242	
M3:T125	18.75	25	5.98	0.722	0.476759	
Signif. cod	es: 0 ***	0.001	** 0.0)1 * 0.	05 . 0.1	1

Residual standard error: 25.98 on 27 degrees of freedom Multiple R-squared: 0.7652, Adjusted R-squared: 0.6956 F-statistic: 11 on 8 and 27 DF, p-value: 9.426e-07

R note

For convenience, you can get the same output using:

But this way does not add the variables M and T to batteryLife.

If you use within() instead of with(), the new variables are added:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Additive Model: No Interactions

Model is

$$y_{i,j,k} = \mu + \tau_i + \beta_j + \epsilon_{i,j,k}$$

Use with care-first test significance of interactions;

In ANOVA table *without interactions*, "Error" line results from pooling Df and SS for "Interactions" and "Error" from the table *with* interactions.

With balanced data, main effect sums of squares and mean squares do not change, but F-ratios and P-values generally do change.

(本間) (本語) (本語) (

э

Example: Battery life

```
# Interaction model
summary(aov(Life ~ M * T, batteryLife))
           Df Sum Sq Mean Sq F value Pr(>F)
М
            2 10684 5341.9 7.9114 0.001976 **
т
            2 39119 19559.4 28.9677 1.909e-07 ***
M:T
          4 9614 2403.4 3.5595 0.018611 *
Residuals 27 18231 675.2
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
# Additive model
summary(aov(Life ~ M + T, batteryLife))
           Df Sum Sq Mean Sq F value Pr(>F)
М
            2 10684 5341.9 5.9472 0.006515 **
т
            2 39119 19559.4 21.7759 1.239e-06 ***
Residuals
           31
               27845
                      898.2
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

One Observation per Cell

Only a *single* replicate:

$$y_{i,j} = \mu + \tau_i + \beta_j + (\tau\beta)_{i,j} + \epsilon_{i,j}$$

Degrees of freedom for error = ab(n-1) = 0, so we cannot test the usual hypotheses about main effects and interactions.

Additive (no-interaction) model may still be fitted, and we can test for a less general form of interactions.

- 本間を 本語を 本語を 一語

Tukey's One Degree of Freedom for Non-Additivity Assumes *structured* interactions $(\tau\beta)_{i,j} = \gamma \tau_i \beta_j$.

Can fit with one observation per cell, and test $H_0: \gamma = 0$.

Sum of squares is

$$SS_N = \frac{\left[\sum_{i=1}^{a} \sum_{j=1}^{b} y_{i,j} y_{i,j} y_{j,j} - y_{..} \left(SS_A + SS_B + \frac{y_{..}^2}{ab}\right)\right]^2}{abSS_A SS_B}$$

Break this out as a separate line in the ANOVA table.

Tukey's ODOFNA is not implemented in some packages; ANOVA table can be found by including *squared fitted values* in model, *after* the other effects.

Example: impurity data

impurity.txt; the ANOVA line for I(fitted(a)^2) is the same as that for "Nonadditivity" in Example 5.2:

```
impurity <- read.table("data/impurity.txt", header = TRUE)
a <- aov(Impurity ~ factor(Temperature) + factor(Pressure), impurity)
summary(a)</pre>
```

 Df
 Sum Sq
 Mean
 Sq
 F value
 Pr(>F)

 factor(Temperature)
 2
 23.333
 11.667
 46.667
 3.885e-05

 factor(Pressure)
 4
 11.600
 2.900
 11.600
 0.002063
 **

 Residuals
 8
 2.000
 0.250
 0.250
 0.02063
 **

 summary(aov(Impurity ~ factor(Temperature) + factor(Pressure)
 + I(fitted(a)^2), impurity))
 0
 Df
 Sum Sq
 Mean Sq
 F value
 Pr(>F)

 factor(Temperature)
 2
 23.333
 11.6667
 42.9491
 0.0001174

 factor(Pressure)
 4
 11.6000
 2.9000
 10.6759
 0.0042006
 **

 I(fitted(a)^2)
 1
 0.0985
 0.3627
 0.5660026

Residuals 7 1.9015 0.2716

General Factorial Design

More than two factors.

Terms in model:

- main effects A, B, C, ...;
- two-factor interactions *AB*, *AC*, ...;
- three-factor interactions ABC, ...;
- and so on.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

E.g. three factor statistical model:

 $y_{i,j,k,l} = \mu + \tau_i + \beta_j + \gamma_k + (\tau\beta)_{i,j} + (\tau\gamma)_{i,k} + (\beta\gamma)_{j,k} + (\tau\beta\gamma)_{i,j,k} + \epsilon_{i,j,k,l}$

Example: Soft drink bottling (soft-drink-bottling.txt),

Carbonation	Pressure	Speed	Height
10	25	200	-3
10	25	200	-1
10	25	250	-1
10	25	250	0
10	30	200	-1
10	30	200	0
10	30	250	1
10	30	250	1
12	25	200	0
12	25	200	1
12	25	250	2

イロト 不得下 不同下 不同下

э

R commands

Output

	\mathtt{Df}	Sum Sq	Mean Sq	F value	Pr(>F)	
C	2	252.750	126.375	178.4118	1.186e-09	***
Р	1	45.375	45.375	64.0588	3.742e-06	***
S	1	22.042	22.042	31.1176	0.0001202	***
C:P	2	5.250	2.625	3.7059	0.0558081	•
C:S	2	0.583	0.292	0.4118	0.6714939	
P:S	1	1.042	1.042	1.4706	0.2485867	
C:P:S	2	1.083	0.542	0.7647	0.4868711	
Residuals	12	8.500	0.708			
Signif. cod	es:	0 *** (0.001 **	0.01 * 0.	.05 . 0.1	1

Interaction plot

with(softDrinkBottling, interaction.plot(Carbonation, Pressure, Height))

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Response Curves

When one or more factors is *quantitative*, a regression model can help in understanding the relationship.

Example: battery life

Temperature is quantitative; fit quadratic equations, separately by material:

```
1 <- lm(Life ~ M * (Temperature + I(Temperature<sup>2</sup>)), batteryLife)
summary(1)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Call: lm(formula = Life ~ M * (Temperature + I(Temperature 2)), data = batteryLife) Residuals: Min 10 Median 30 Max -60.750 -14.625 1.375 17.938 45.250 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 169.380165 20.567656 8.235 7.66e-09 *** Μ2 -9.756198 29.087058 -0.335 0.73991 MЗ -36.61776929.087058 -1.259 0.21884 -2.501446 0.755148 -3.313 0.00264 ** Temperature I(Temperature²) 0.012851 0.005260 2.443 0.02139 * M2:Temperature 2.328099 1.067941 2.180 0.03815 * M3:Temperature 3.404339 1.067941 3.188 0.00361 ** M2:I(Temperature²) -0.018512 0.007439 -2.488 0.01929 * M3:I(Temperature²) -0.023099 0.007439 -3.105 0.00443 ** ___ Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 25.98 on 27 degrees of freedom Multiple R-squared: 0.7652, Adjusted R-squared: 0.6956 F-statistic: 11 on 8 and 27 DF, p-value: 9.426e-07

Plot the three curves:

In this case, because Temperature has only 3 levels, and a quadratic can interpolate any 3 points, the response curves are just smoother versions of the interaction plot.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー のなべ

Response Curves and Surfaces

Response Surface

When two factors are quantitative, the regression model can include polynomial functions of both.

Example: cutting tool lifetime

The lifetime of a cutting tool is affected by two factors:

- Total tool angle;
- Cutting speed.

Data: tool-life.csv (Lifetimes are coded)

イロト 不得 トイヨト イヨト

= 900

Interaction plots show that the effects of angle and speed are complicated:

```
toolLife <- read.csv("data/tool-life.csv")</pre>
```

```
with(toolLife, interaction.plot(Angle, Speed, Life))
with(toolLife, interaction.plot(Speed, Angle, Life))
```

Try a complete second-order model:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Output

```
Call:
lm(formula = Life ~ Angle + Speed + Angle:Speed + I(Angle^2) +
I(Speed^2), data = toolLife)
```

Residuals:

Min 1Q Median 3Q Max -3.5000 -1.3750 -0.0833 1.1250 3.8333

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-1.000e+02	4.972e+01	-2.011	0.0673	
Angle	4.567e+00	2.133e+00	2.141	0.0535	
Speed	6.933e-01	5.804e-01	1.195	0.2553	
I(Angle^2)	-8.000e-02	4.702e-02	-1.701	0.1146	
I(Speed^2)	-1.600e-03	1.881e-03	-0.851	0.4116	
Angle:Speed	-8.000e-03	6.650e-03	-1.203	0.2522	
Signif. code	es: 0 *** (0.001 ** 0.0	01 * 0.05	5.0.1	1

Residual standard error: 2.351 on 12 degrees of freedom Multiple R-squared: 0.4651, Adjusted R-squared: 0.2422 F-statistic: 2.086 on 5 and 12 DF, p-value: 0.1377

Lack of fit

The model does not fit well:

- No parameter is really significant;
- R^2 is low.

Test for lack of fit in the ANOVA table:

```
summary(aov(Life ~ Angle + Speed + Angle : Speed + I(Angle^2) + I(Speed^2)
+ factor(Angle) * factor(Speed), toolLife))
```

The last term (factor(Angle) * factor(Speed)) breaks up the 12 degrees of freedom for Residuals into:

- 9 d.f. for "pure error";
- 3 d.f. for "lack of fit".

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Output

Analysis of Variance Table

Response: Life

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Angle	1	8.333	8.3333	5.7692	0.039772	*
Speed	1	21.333	21.3333	14.7692	0.003948	**
I(Angle^2)	1	16.000	16.0000	11.0769	0.008824	**
I(Speed^2)	1	4.000	4.0000	2.7692	0.130451	
Angle:Speed	1	8.000	8.0000	5.5385	0.043065	*
<pre>factor(Angle):factor(Speed)</pre>	3	53.333	17.7778	12.3077	0.001548	**
Residuals	9	13.000	1.4444			
Signif. codes: 0 *** 0.001	**	0.01 *	0.05 . 0	0.1 1		

The Residuals line is now pure error, and the factor(Angle) * factor(Speed) line is lack of fit; it is highly significant.

イロト イ押ト イヨト イヨト

= nar

Response surface

Even though the model does not fit well, we can use it as an example of a response surface:

```
ngrid <- 20
Angle <- with(toolLife, seq(min(Angle), max(Angle), length = ngrid))
Speed <- with(toolLife, seq(min(Speed), max(Speed), length = ngrid))
grid <- expand.grid(Angle = Angle, Speed = Speed)
yhat <- predict(1, grid)
yhat <- matrix(yhat, length(Angle), length(Speed))
persp(Angle, Speed, yhat, theta = -45, expand = 0.75, ticktype = "detailed")
```

We could use the same steps to plot the response surface for other models, such as:

```
1 <- lm(Life ~ (Angle + I(Angle<sup>2</sup>)) * (Speed + I(Speed<sup>2</sup>)), toolLife)
```

イロト 不得 トイヨト イヨト

= nar

Response surface for the complete second-order model:

Blocking in a Factorial Design

For a single nuisance factor, use a *blocked* design:

- The design has *abc*... treatments;
- A *randomized complete block design* has all *abc*... treatments in each block;
- The RCBD may be infeasible: too many treatments per block;
- *Incomplete* block designs provide the alternative.

イロト 不得下 不良下 不良下

э.

Statistical model for blocked two-factor design (no interaction between block and experimental factors):

$$y_{i,j,k} = \mu + \tau_i + \beta_j + (\tau\beta)_{i,j} + \delta_k + \epsilon_{i,j,k}$$

With two (or more) nuisance factors, use *Latin Square* (or hyper-square) design:

- $\bullet\,$ E.g. for a 3 $\times\,2$ factorial design, use a 6 $\times\,6$ Latin Square.
- Statistical model:

$$y_{i,j,k,l} = \mu + \tau_i + \beta_j + (\tau\beta)_{i,j} + \delta_k + \theta_l + \epsilon_{i,j,k,l}$$

イロト 不得 トイヨト イヨト

= 900