
ST 516

Experimental Statistics for Engineers II

Two-Factor Design: Estimating Model Parameters

Recall the model:

yi ,j ,k = µ + τi + βj + (τβ)i ,j + εi ,j ,k

For balanced data, with the natural constraints:

E (ȳ···) = µ

E (ȳi ··) = µ + τi

E (ȳ·j ·) = µ + βj

E (ȳi ,j ·) = µ + τi + βj + (τβ)i ,j

1 / 27 Factorial Designs Two-Factor Design



ST 516

Experimental Statistics for Engineers II

So the natural parameter estimates are

µ̂ = ȳ···

τ̂i = ȳi ·· − µ̂

= ȳi ·· − ȳ···

β̂j = ȳ·j · − µ̂

= ȳ·j · − ȳ···

(̂τβ)i ,j = ȳi ,j · −
(
µ̂ + τ̂i + β̂j

)
= ȳi ,j · − ȳi ·· − ȳ·j · + ȳ···

These are also least squares estimates.

2 / 27 Factorial Designs Two-Factor Design



ST 516

Experimental Statistics for Engineers II

Standard packages use the “reference level” constraints.

E.g., the battery life data

R commands
# for more compact output:

batteryLife$M <- factor(batteryLife$Material)

batteryLife$T <- factor(batteryLife$Temperature)

summary(lm(Life ~ M * T, batteryLife))

Output
Call:

lm(formula = Life ~ M * T, data = batteryLife)

Residuals:

Min 1Q Median 3Q Max

-60.750 -14.625 1.375 17.938 45.250
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Output, continued
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 134.75 12.99 10.371 6.46e-11 ***

M2 21.00 18.37 1.143 0.263107

M3 9.25 18.37 0.503 0.618747

T70 -77.50 18.37 -4.218 0.000248 ***

T125 -77.25 18.37 -4.204 0.000257 ***

M2:T70 41.50 25.98 1.597 0.121886

M3:T70 79.25 25.98 3.050 0.005083 **

M2:T125 -29.00 25.98 -1.116 0.274242

M3:T125 18.75 25.98 0.722 0.476759

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 25.98 on 27 degrees of freedom

Multiple R-squared: 0.7652, Adjusted R-squared: 0.6956

F-statistic: 11 on 8 and 27 DF, p-value: 9.426e-07
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R note

For convenience, you can get the same output using:

with(batteryLife, {M <- factor(Material);

T <- factor(Temperature);

summary(lm(Life ~ M * T))})

But this way does not add the variables M and T to batteryLife.

If you use within() instead of with(), the new variables are added:

batteryLife <- within(batteryLife, {M <- factor(Material);

T <- factor(Temperature)})

summary(lm(Life ~ M * T, batteryLife))
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Additive Model: No Interactions

Model is
yi ,j ,k = µ + τi + βj + εi ,j ,k

Use with care–first test significance of interactions;

In ANOVA table without interactions, “Error” line results from
pooling Df and SS for “Interactions” and “Error” from the table with
interactions.

With balanced data, main effect sums of squares and mean squares
do not change, but F -ratios and P-values generally do change.
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Example: Battery life
# Interaction model

summary(aov(Life ~ M * T, batteryLife))

Df Sum Sq Mean Sq F value Pr(>F)

M 2 10684 5341.9 7.9114 0.001976 **

T 2 39119 19559.4 28.9677 1.909e-07 ***

M:T 4 9614 2403.4 3.5595 0.018611 *

Residuals 27 18231 675.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

# Additive model

summary(aov(Life ~ M + T, batteryLife))

Df Sum Sq Mean Sq F value Pr(>F)

M 2 10684 5341.9 5.9472 0.006515 **

T 2 39119 19559.4 21.7759 1.239e-06 ***

Residuals 31 27845 898.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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One Observation per Cell

Only a single replicate:

yi ,j = µ + τi + βj + (τβ)i ,j + εi ,j

Degrees of freedom for error = ab(n − 1) = 0, so we cannot test the
usual hypotheses about main effects and interactions.

Additive (no-interaction) model may still be fitted, and we can test
for a less general form of interactions.
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Tukey’s One Degree of Freedom for Non-Additivity

Assumes structured interactions (τβ)i ,j = γτiβj .

Can fit with one observation per cell, and test H0 : γ = 0.

Sum of squares is

SSN =

[∑a
i=1

∑b
j=1 yi ,jyi ·y·j − y··

(
SSA + SSB + y2

··
ab

)]2
abSSASSB

Break this out as a separate line in the ANOVA table.

Tukey’s ODOFNA is not implemented in some packages; ANOVA
table can be found by including squared fitted values in model, after
the other effects.
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Example: impurity data

impurity.txt; the ANOVA line for I(fitted(a)^2) is the same as
that for “Nonadditivity” in Example 5.2:

impurity <- read.table("data/impurity.txt", header = TRUE)

a <- aov(Impurity ~ factor(Temperature) + factor(Pressure), impurity)

summary(a)

Df Sum Sq Mean Sq F value Pr(>F)

factor(Temperature) 2 23.333 11.667 46.667 3.885e-05 ***

factor(Pressure) 4 11.600 2.900 11.600 0.002063 **

Residuals 8 2.000 0.250

summary(aov(Impurity ~ factor(Temperature) + factor(Pressure)

+ I(fitted(a)^2), impurity))

Df Sum Sq Mean Sq F value Pr(>F)

factor(Temperature) 2 23.3333 11.6667 42.9491 0.0001174 ***

factor(Pressure) 4 11.6000 2.9000 10.6759 0.0042006 **

I(fitted(a)^2) 1 0.0985 0.0985 0.3627 0.5660026

Residuals 7 1.9015 0.2716
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General Factorial Design

More than two factors.

Terms in model:

main effects A, B , C , . . . ;

two-factor interactions AB , AC , . . . ;

three-factor interactions ABC , . . . ;

and so on.

11 / 27 Factorial Designs General Factorial Design



ST 516

Experimental Statistics for Engineers II

E.g. three factor statistical model:

yi ,j ,k,l = µ+τi +βj +γk +(τβ)i ,j +(τγ)i ,k +(βγ)j ,k +(τβγ)i ,j ,k +εi ,j ,k,l

Example: Soft drink bottling (soft-drink-bottling.txt),

Carbonation Pressure Speed Height

10 25 200 -3

10 25 200 -1

10 25 250 -1

10 25 250 0

10 30 200 -1

10 30 200 0

10 30 250 1

10 30 250 1

12 25 200 0

12 25 200 1

12 25 250 2

... ... ... ...
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R commands
softDrinkBottling <- read.table("data/soft-drink-bottling.txt", header = TRUE)

softDrinkBottling <- within(softDrinkBottling,

{C <- factor(Carbonation);

P <- factor(Pressure);

S <- factor(Speed)})

summary(aov(Height ~ C * P * S, softDrinkBottling))

Output
Df Sum Sq Mean Sq F value Pr(>F)

C 2 252.750 126.375 178.4118 1.186e-09 ***

P 1 45.375 45.375 64.0588 3.742e-06 ***

S 1 22.042 22.042 31.1176 0.0001202 ***

C:P 2 5.250 2.625 3.7059 0.0558081 .

C:S 2 0.583 0.292 0.4118 0.6714939

P:S 1 1.042 1.042 1.4706 0.2485867

C:P:S 2 1.083 0.542 0.7647 0.4868711

Residuals 12 8.500 0.708

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Interaction plot
with(softDrinkBottling, interaction.plot(Carbonation, Pressure, Height))
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Response Curves

When one or more factors is quantitative, a regression model can
help in understanding the relationship.

Example: battery life

Temperature is quantitative; fit quadratic equations, separately by
material:

l <- lm(Life ~ M * (Temperature + I(Temperature^2)), batteryLife)

summary(l)
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Call:

lm(formula = Life ~ M * (Temperature + I(Temperature^2)), data = batteryLife)

Residuals:

Min 1Q Median 3Q Max

-60.750 -14.625 1.375 17.938 45.250

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 169.380165 20.567656 8.235 7.66e-09 ***

M2 -9.756198 29.087058 -0.335 0.73991

M3 -36.617769 29.087058 -1.259 0.21884

Temperature -2.501446 0.755148 -3.313 0.00264 **

I(Temperature^2) 0.012851 0.005260 2.443 0.02139 *

M2:Temperature 2.328099 1.067941 2.180 0.03815 *

M3:Temperature 3.404339 1.067941 3.188 0.00361 **

M2:I(Temperature^2) -0.018512 0.007439 -2.488 0.01929 *

M3:I(Temperature^2) -0.023099 0.007439 -3.105 0.00443 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 25.98 on 27 degrees of freedom

Multiple R-squared: 0.7652, Adjusted R-squared: 0.6956

F-statistic: 11 on 8 and 27 DF, p-value: 9.426e-07
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Plot the three curves:

ngrid <- 20

tg <- with(batteryLife, seq(min(Temperature), max(Temperature), length = ngrid))

grid <- expand.grid(Temperature = tg, M = levels(batteryLife$M))

yhat <- predict(l, grid)

yhat <- matrix(yhat, nrow = length(tg))

matplot(tg, yhat, type = "l", xlab = "Temperature")

abline(v = c(15, 70, 125), lty = 2)

legend("topright", legend = paste("Material", levels(batteryLife$M)),

lty = 1:3, col = 1:3)

In this case, because Temperature has only 3 levels, and a quadratic
can interpolate any 3 points, the response curves are just smoother
versions of the interaction plot.
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Response Surface

When two factors are quantitative, the regression model can include
polynomial functions of both.

Example: cutting tool lifetime

The lifetime of a cutting tool is affected by two factors:

Total tool angle;

Cutting speed.

Data: tool-life.csv (Lifetimes are coded)
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Interaction plots show that the effects of angle and speed are
complicated:

toolLife <- read.csv("data/tool-life.csv")

with(toolLife, interaction.plot(Angle, Speed, Life))

with(toolLife, interaction.plot(Speed, Angle, Life))

Try a complete second-order model:

l <- lm(Life ~ Angle + Speed + Angle:Speed + I(Angle^2) + I(Speed^2),

toolLife)

summary(l)
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Output
Call:

lm(formula = Life ~ Angle + Speed + Angle:Speed + I(Angle^2) +

I(Speed^2), data = toolLife)

Residuals:

Min 1Q Median 3Q Max

-3.5000 -1.3750 -0.0833 1.1250 3.8333

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.000e+02 4.972e+01 -2.011 0.0673 .

Angle 4.567e+00 2.133e+00 2.141 0.0535 .

Speed 6.933e-01 5.804e-01 1.195 0.2553

I(Angle^2) -8.000e-02 4.702e-02 -1.701 0.1146

I(Speed^2) -1.600e-03 1.881e-03 -0.851 0.4116

Angle:Speed -8.000e-03 6.650e-03 -1.203 0.2522

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.351 on 12 degrees of freedom

Multiple R-squared: 0.4651, Adjusted R-squared: 0.2422

F-statistic: 2.086 on 5 and 12 DF, p-value: 0.1377
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Lack of fit

The model does not fit well:

No parameter is really significant;

R2 is low.

Test for lack of fit in the ANOVA table:

summary(aov(Life ~ Angle + Speed + Angle : Speed + I(Angle^2) + I(Speed^2)

+ factor(Angle) * factor(Speed), toolLife))

The last term (factor(Angle) * factor(Speed)) breaks up the
12 degrees of freedom for Residuals into:

9 d.f. for “pure error”;

3 d.f. for “lack of fit”.
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Output
Analysis of Variance Table

Response: Life

Df Sum Sq Mean Sq F value Pr(>F)

Angle 1 8.333 8.3333 5.7692 0.039772 *

Speed 1 21.333 21.3333 14.7692 0.003948 **

I(Angle^2) 1 16.000 16.0000 11.0769 0.008824 **

I(Speed^2) 1 4.000 4.0000 2.7692 0.130451

Angle:Speed 1 8.000 8.0000 5.5385 0.043065 *

factor(Angle):factor(Speed) 3 53.333 17.7778 12.3077 0.001548 **

Residuals 9 13.000 1.4444

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The Residuals line is now pure error, and the
factor(Angle) * factor(Speed) line is lack of fit; it is highly
significant.
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Response surface

Even though the model does not fit well, we can use it as an example
of a response surface:

ngrid <- 20

Angle <- with(toolLife, seq(min(Angle), max(Angle), length = ngrid))

Speed <- with(toolLife, seq(min(Speed), max(Speed), length = ngrid))

grid <- expand.grid(Angle = Angle, Speed = Speed)

yhat <- predict(l, grid)

yhat <- matrix(yhat, length(Angle), length(Speed))

persp(Angle, Speed, yhat, theta = -45, expand = 0.75, ticktype = "detailed")

We could use the same steps to plot the response surface for other
models, such as:

l <- lm(Life ~ (Angle + I(Angle^2)) * (Speed + I(Speed^2)), toolLife)
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Response surface for the complete second-order model:
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Blocking in a Factorial Design

For a single nuisance factor, use a blocked design:

The design has abc . . . treatments;

A randomized complete block design has all abc . . . treatments
in each block;

The RCBD may be infeasible: too many treatments per block;

Incomplete block designs provide the alternative.
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Statistical model for blocked two-factor design (no interaction
between block and experimental factors):

yi ,j ,k = µ + τi + βj + (τβ)i ,j + δk + εi ,j ,k

With two (or more) nuisance factors, use Latin Square (or
hyper-square) design:

E.g. for a 3 × 2 factorial design, use a 6 × 6 Latin Square.

Statistical model:

yi ,j ,k,l = µ + τi + βj + (τβ)i ,j + δk + θl + εi ,j ,k,l
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