FINITE DIFFERENCES

Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations.

1. Introduction

When a function f(x) is known explicitly, it is easy to calculate the value (or values) of f(x), corresponding to a fixed given value x. However, when the explicit form of the function f(x) is not known, it is possible to obtain an approximate value of the function up to a desired level of accuracy with the help of finite differences. A function y = f(x), x being an independent variable and y, a dependent variable, is considered. Let x takes equidistant values a, a + h, a + 2h, a + 3h, ... (which are finite in numbers); h is the equal spacing, then f(a), f(a + h), f(a + 2h), f(a + 3h), ... are the corresponding values of y. The values of the independent variable x are termed as **arguments** and the corresponding values of the dependent variable y are called **entries**.

2. Operators $(\Delta, \nabla \text{ and } E)$

Forward Difference: The forward difference, denoted by Δ , is defined as

$$\Delta y = \Delta f(x) = f(x+h) - f(x);$$

h is called the interval of differencing; $\Delta f(x)$ is the first order differences. We get the second order differences (denoted by Δ^2) when Δ is operated twice on f(x), Thus

$$\Delta^2 y = \Delta^2 f(x) = \Delta \left[\Delta f(x)\right] = \Delta \left[f(x+h) - f(x)\right]$$
$$= \Delta f(x+h) - \Delta f(x)$$
$$= \left[f(x+2h) - f(x+h)\right] - \left[f(x+h) - f(x)\right]$$
$$= f(x+2h) - 2f(x+h) + f(x).$$

Similarly, $\Delta^3 y$, $\Delta^4 y$ may be calculated.

Argument <i>x</i>	Entries y	First Differences Δy	Second Differences $\Delta^2 y$	Third Differences $\Delta^3 y$
$x_0 = a$	$y_0 = f(a)$	$\Delta y_0 = y_1 - y_0$		
$x_1 = a + h$	$y_1 = f(a+h)$	$\Delta y_1 = y_2 - y_1$	$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$.2 .2 .2
$x_2 = a + 2h$	$y_2 = f(a+2h)$			$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_0$
$x_3 = a + 3h$	$y_3 = f(a+3h)$	$\Delta y_2 = y_3 - y_2$	$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	

Forward Difference Table with 4 arguments

Note: If f(x) is a polynomial of degree *n* in *x*, then $\Delta^n f(x)$ is a constant and $\Delta^{n+1} f(x)$ is zero. Conversely, if the $(n + 1)^{\text{th}}$ difference is zero, then the polynomial is less or equal to degree *n*.

Example 1: Let $f(x) = x^2 + 8x - 5$, then

$$\Delta f(x) = f(x + h) - f(x)$$

= [(x + h)² + 8(x + h) - 5] - [x² + 8x - 5]
= 2xh + h² + 8h

Now,

$$\Delta^2 f(x) = \Delta f(x + h) - \Delta f(x)$$

= $[2h(x + h) + h^2 + 8h] - [2xh + h^2 + 8h]$
= $2h^2$, which is a constant

Hence,

$$\Delta^3 f(x) = \Delta^2 f(x + h) - \Delta^2 f(x) = 2h^2 - 2h^2 = 0$$

Backward Difference: We now define a difference operator, known as backward difference operator, given by

$$\nabla f(x+h) = f(x+h) - f(x)$$

Please note that the backward difference of f(x + h) is same as the forward difference of f(x), that is,

$$\nabla f(x+h) = \Delta f(x)$$

Argument <i>x</i>	Entries <i>x</i>	First Differences Δy	Second Differences $\Delta^2 y$	Third Differences $\Delta^3 y$
$x_0 = a$	$y_0 = f(a)$	$\nabla y_1 = y_1 - y_0$		
$x_1 = a + h$	$y_1 = f(a+h)$	$\nabla y_2 = y_2 - y_1$	$\nabla^2 y_1 = \nabla y_1 - \nabla y_0$	$\nabla^3 y_1$
$x_2 = a + 2h$	$y_2 = f(a+2h)$			$= \nabla^2 y_1 - \nabla^2 y_0$
$x_3 = a + 3h$	$y_3 = f(a+3h)$	$\nabla y_3 = y_3 - y_2$	$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$	

Backward Difference Table with 4 arguments

E-Operator: We now define the *E* operator as

$$Ef(x) = f(x+h),$$

that is, the operator gives an increment of h to the argument [Note: $E^{-1}f(x) = f(x-h)$].

3. Relation between *E* and Δ

Let y = f(x) be a function of an independent variable x and the dependent variable y. We have $\Delta f(x) = f(x + h) - f(x)$, where h is the interval of differencing = E[f(x)] - f(x)or, $\Delta f(x) = (E - 1) f(x) \Rightarrow \Delta \equiv E - 1 \Rightarrow E \equiv 1 + \Delta$

Relation between operator E of finite differences and differential operator D of differential calculus

We know

$$\frac{d}{dx}f(x) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = Df(x), \text{ where } D \equiv \frac{d}{dx}$$

Now, by Taylor series expansion, we have

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \cdots$$

= $f(x) + hDf(x) + \frac{h^2}{2!}D^2f(x) + \cdots = \left[1 + hD + \frac{h^2}{2!}D^2 + \cdots\right]f(x)$
or, $E[f(x)] = e^{hD}f(x)$
 $\Rightarrow E \equiv e^{hD} \equiv 1 + \Delta$, (since $E = 1 + \Delta$)
or, $hD \equiv \log(1 + \Delta) \equiv \Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \cdots$
or, $D \equiv \frac{1}{h} \left[\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \cdots\right]$

Example 2. Evaluate the following:

(i) $\Delta \log[f(x)]$

Solution:
$$\Delta \log[f(x)] = \log[f(x+h)] - \log[f(x)] = \log\left[\frac{f(x+h)}{f(x)}\right] = \log\left[\frac{Ef(x)}{f(x)}\right]$$
$$= \log\left[\frac{(1+\Delta)f(x)}{f(x)}\right] = \log\left[\frac{f(x)+\Delta f(x)}{f(x)}\right]$$
$$= \log\left[1 + \frac{\Delta f(x)}{f(x)}\right]$$

(ii)
$$\Delta^2(ab^{cx})$$

Solution: $\Delta^2(ab^{cx}) = a\Delta^2(b^{cx}) = a\Delta[b^{c(x+h)} - b^{cx}]$
 $= a\Delta b^{c(x+h)} - a\Delta b^{cx}$
 $= a[b^{c(x+2h)} - b^{c(x+h)}] - a[b^{c(x+h)} - b^{cx}]$
 $= a[b^{c(x+2h)} - 2b^{c(x+h)} + b^{cx}]$
 $= ab^{cx}[b^{2hc} - 2b^{hc} + 1]$
 $= ab^{cx}[b^{hc} - 1]^2$ (the interval of differencing being h).

(iii) $\Delta^2(2^x)$

Solution: $\Delta^{2}(2^{x}) = \Delta[\Delta(2^{x})]$ $= \Delta[2^{x+h} - 2^{x}] = \Delta 2^{x+h} - \Delta 2^{x}$ $= [2^{x+2h} - 2^{x+h}] - [2^{x+h} - 2^{x}]$ $= 2^{x+2h} - 2 \cdot 2^{x+h} + 2^{x}$

(iv) $\nabla^2(2^x)$

Solution: $\nabla^{2}(2^{x}) = \nabla[\nabla(2^{x})]$ $= \nabla[2^{x} - 2^{x-h}] = \nabla 2^{x} - \nabla 2^{x-h}$ $= [2^{x} - 2^{x-h}] - [2^{x-h} - 2^{x-2h}]$ $= 2^{x} - 2 \cdot 2^{x-h} + 2^{x-2h}$

(v) $E^{2}(e^{x})$

Solution: $E^2(e^x) = E[E(e^x)] = E[e^{x+h}] = e^{x+2h}$ (the interval of differencing being h). (vi) $\left(\frac{\Delta^2}{E}\right) f(x)$, where $f(x) = x^3$. Solution: $\left(\frac{\Delta^2}{E}\right) f(x) = \left(\frac{\Delta^2}{E}\right) x^3$ $= \Delta^2 E^{-1} x^3$ $= \Delta^2 (x-h)^3$ $= \Delta[(x)^3 - (x-h)^3] = \Delta(x)^3 - \Delta(x-h)^3$ $= [(x+h)^3 - (x)^3] - [(x)^3 - (x-h)^3]$

$$= 6xh^{2}$$

(vii)
$$\frac{\Delta^2 f(x)}{Ef(x)}$$
, where $f(x) = x^3$.

Solution:

$$\begin{split} \frac{\Delta^2 f(x)}{Ef(x)} &= \frac{\Delta^2 x^3}{Ex^3} = \frac{\Delta [x+h)^3 - (x)^3]}{(x+h)^3} \\ &= \frac{[(x+2h)^3 - (x+h)^3] - [(x+h)^3 - (x)^3]}{(x+h)^3} \\ &= \frac{6h^3 + 6xh^2}{(x+h)^3} \end{split}$$

(viii)
$$\Delta tan^{-1}x$$

Solution: $\Delta tan^{-1}x = tan^{-1}(x+h) - tan^{-1}x$
 $= tan^{-1}\left(\frac{x+h-x}{1+(x+h)x}\right) = tan^{-1}\left(\frac{h}{1+x^2+hx}\right)$

(ix)
$$\Delta^{3}[(1 - ax)(1 - bx)(1 - cx)]$$

Solution: $\Delta^{3}[(1 - ax)(1 - bx)(1 - cx)]$
 $= \Delta^{3}[(1 - (a + b + c)x + (ab + bc + ca)x^{2} - abcx^{3}]$
 $= \Delta^{3}[-abcx^{3}], (since, \Delta^{3}x = 0 = \Delta^{3}x^{2})$
 $= -abc\Delta^{3}(x^{3}) = -(abc)(3!) = -6abc$

(x)
$$\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)]$$

Solution:

$$\begin{split} &\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)] \\ &= \Delta^{10}[1-ax-bx^2+(ab-c)x^3+(ac-d)x^4+(bc+ad)x^5+(bd-abc)x^6 \\ &+(c-ab)x^7-acdx^8-bcx^9+abcdx^{10}] \\ &= \Delta^{10}[abcdx^{10}] \\ (\text{since all differences of order less than 10, vanishes}) \\ &= (abcd)(10!). \end{split}$$

Example 3. Prove the following relations: (i) $E \nabla \equiv \nabla E \equiv \Delta$

Solution:

Let y = f(x) be a function of an independent variable x and the dependent variable y. Now, $E\nabla f(x) = E[f(x) - f(x - h)], h$ being the interval of differencing

$$= Ef(x) - Ef(x - h) = f(x + h) - f(x) = \Delta f(x) \Longrightarrow E \nabla \equiv \Delta$$

Again,

$$\nabla Ef(x) = \nabla f(x+h)$$
$$= f(x+h) - f(x)$$
$$= \Delta f(x) \Longrightarrow \nabla E \equiv \Delta$$
Hence, $E\nabla \equiv \nabla E \equiv \Delta$

(ii) $(1 + \Delta)(1 - \nabla) \equiv 1$

Solution: Let y = f(x) be a function of an independent variable *x* and the dependent variable *y*.

L.H.S. =
$$(1 + \Delta)(1 - \nabla)f(x) = (1 + \Delta)[f(x) - \nabla f(x)]$$

= $(1 + \Delta)[f(x) - \{f(x) - f(x - h)\}]$
= $(1 + \Delta)f(x - h)$
= $f(x - h) + \Delta f(x - h)$
= $f(x - h) + \{f(x) - f(x - h)\}$
= $f(x)$
 $\Rightarrow (1 - \Delta)(1 - \nabla) \equiv 1$

(iii) $(\Delta - \nabla) \equiv \Delta . \nabla$

Solution: Let y = f(x) be a function of an independent variable *x* and the dependent variable *y*.

R.H.S. =
$$\Delta$$
. $\nabla f(x) = \Delta [f(x) - f(x - h)]$
= $\Delta f(x) - \Delta f(x - h)$
= $\Delta f(x) - [f(x) - f(x - h)]$
= $\Delta f(x) - \nabla f(x)$
 $\Rightarrow \Delta$. $\nabla \equiv (\Delta - \nabla)$
Hence, $(\Delta - \nabla) \equiv \Delta$. ∇

Example 4. f(x) is polynomial in *x* with the following functional values: f(2) = f(3) = 27, f(4) = 78, f(5) = 169. Find the function f(x).

Solution: Since four entries (i.e., four functional values) are given, f(x) can be represented by a polynomial of degree 3. Let $f(x) = a+bx+cx^2+dx^3$, where *a*, *b*, *c*, *d* are constants to be determined. Now,

$$f(2) = a + 2b + 4c + 8d = 27$$

$$f(3) = a + 3b + 9c + 27d = 27$$

$$f(4) = a + 4b + 16c + 64d = 78$$

$$f(5) = a + 5b + 25c + 125d = 169$$

Solving these equations, we get, a = 221, $b = \frac{-1051}{6}$, c = 42 and $d = \frac{-11}{6}$

Therefore, the required function is $f(x) = 224 - \frac{1051}{6}x + 42x^2 - \frac{11}{6}x^3$.

	C (1)	•••	•	1 0 11 1 11
Example 5	Compute the	- missing f	erme in	the following table.
Example 5.	compute un	e missing (crins in	the following table:

x	2	3	4	5	6	7	8
f(x)	0.135	-	0.111	0.100	-	0.082	0.074

Solution: Since five entries are given, f(x) can be represented by a polynomial of degree four.

Hence $\Delta^4 f(x) = \text{constant}$ and

$$\Delta^{5} f(x) = 0$$

$$\Rightarrow (E - 1)^{5} f(x) = 0$$

$$\Rightarrow (E^{5} - 5E^{4} + 10E^{3} - 10E^{2} + 5E - 1)f(x) = 0$$

$$\Rightarrow E^{5} f(x) - 5E^{4} f(x) + 10E^{3} f(x) - 10E^{2} f(x) + 5Ef(x) - f(x) = 0$$

$$\Rightarrow f(x + 5) - 5f(x + 4) + 10f(x + 3) - 10f(x + 2) + 5f(x + 1) - f(x) = 0$$

(as the interval of differencing is unity)

Now, putting x = 2 and x = 3, we get

$$f(7) - 5f(6) + 10f(5) - 10f(4) + 5f(3) - f(2) = 0$$

$$f(8) - 5f(7) + 10f(6) - 10f(5) + 5f(4) - f(3) = 0$$

Substituting the values of f(8), f(7), f(5), f(4) and f(2) we get,

$$f(3) - f(6) = 0.0326$$
 and $10f(6) - f(3) = 0.781$;

Solving we get f(3) = 0.123 and f(6) = 0.0904.

Example 6. For a function u_x , $u_0 + u_8 = 1.9243$, $u_1 + u_7 = 1.95590$, $u_2 + u_6 = 1.9843$,

$$u_3 + u_5 = 1.9956$$
; find u_4

Solution: Since eight entries are given, u_x can be represented by a polynomial of degree 7, that

is,
$$\Delta_x^7 u = \text{constant}$$

 $\Rightarrow \Delta_x^8 u = 0$
 $\Rightarrow (E-1)^8 u_x = 0 \text{ (since, } E \equiv 1 + \Delta)$
 $\Rightarrow (E^8 - 8_{c_1}E^7 + 8_{c_2}E^6 - 8_{c_3}E^5 + 8_{c_4}E^4 - 8_{c_5}E^3 + 8_{c_6}E^2 - 8_{c_7}E + 8_{c_8})u_0 = 0$
 $\Rightarrow (E^8 - 8_{c_1}u_7 + 8_{c_2}u_6 - 8_{c_3}u_5 + 8_{c_4}u_4 - 8_{c_5}u_3 + 8_{c_6}u_2 - 8_{c_7}u_1 + 8_{c_8}u_0) = 0$
(assuming the interval of differencing to be unity)
 $\Rightarrow (u_8 + u_0) - 8(u_7 + u_1) + 28(u_6 + u_2) - 56(u_5 + u_3) + 70u_4 = 0$
 $\Rightarrow 1.9243 - 8 \times 1.9590 + 28 \times 1.9843 - 56 \times 1.9956 + 70u_4 = 0$
 $\Rightarrow u_4 = 0.999916$

Exercises

1. Evaluate the following:

(i)
$$\left(\frac{\Delta^2}{E}\right)e^x$$
 (ii) $\frac{Ee^x}{\Delta^2 e^x}$ (iii) $\Delta\left(\frac{2^x}{(x+1)!}\right)$ (iv) $\frac{\Delta^2 x^3}{Ex}$
(v) $\Delta \sin(2x)$ (vi) $\Delta \log(cx)$ (vii) $\Delta \cot(2^x)$ (viii) $\frac{\Delta}{E}\sin(2x)$
(ix) $\Delta^3[(1-ax)(1-bx)(1-cx)]$ (x) $\frac{\Delta^2}{E}\sin(x+h) + \frac{\Delta^2\sin(x+h)}{E\sin(x+h)}$

2. Find f (1.1) from the following table:

x	1	2	3	4	5
f(x)	7	12	29	64	123

- 3. Given, $u_0 = 1$, $u_1 = 11$, $u_2 = 21$, $u_3 = 29$, find $\Delta^4 u_0$.
- 4. Prove that $e^{-hD} \equiv 1 \nabla$

[Hint: Already proved $\nabla E \equiv \Delta$, therefore, $E \equiv 1 + \Delta \equiv 1 + \nabla E$, $\Longrightarrow E - \nabla E$]

- 5. Find u_0 , given $u_0 = -3$, $u_1 = 6$, $u_2 = 8$, $u_3 = 12$.
- 6. Given that u_x is a polynomial of second degree and $u_0 = 1$, $u_1 + u_2 = 10$, $u_3 + u_4 + u_5 = 65$. Find the value of u_{10} .