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5.4 Predictor-Corrector Methods

The Taylor and Runge-Kutta methods are examples of one-step methods for
approximating the solution to initial-value problems. These methods use wi in the
approximation wi+1 to y(ti+1) but do not involve any of the prior approximations
w0, w1, . . . , wi−1. Generally some functional evaluations of f are required at inter-
mediate points, but these are discarded as soon as wi+1 is obtained.

Since |y(tj) − wj | decreases in accuracy as j increases, better approximation
methods can be derived if, when approximating y(ti+1), we include in the method
some of the approximations prior to wi. Methods developed using this philosophy
are called multistep methods. In brief, one-step methods consider what occurred
at only one previous step; multistep methods consider what happened at more than
one previous step.

To derive a multistep method, suppose that the solution to the initial-value
problem

dy

dt
= f(t, y), for a ≤ t ≤ b, with y(a) = α,

is integrated over the interval [ti, ti+1]. Then

y(ti+1) − y(ti) =
� ti+1

ti

y�(t) dt =
� ti+1

ti

f(t, y(t)) dt,

and

y(ti+1) = y(ti) +
� ti+1

ti

f(t, y(t)) dt.

Since we cannot integrate f(t, y(t)) without knowing y(t), which is the solution
to the problem, we instead integrate an interpolating polynomial, P (t), determined
by some of the previously obtained data points (t0, w0), (t1, w1), . . . , (ti, wi). When
we assume, in addition, that y(ti) ≈ wi, we have

y(ti+1) ≈ wi +
� ti+1

ti

P (t) dt.

If wm+1 is the first approximation generated by the multistep method, then
we need to supply starting values w0, w1, . . . , wm for the method. These starting
values are generated using a one-step Runge-Kutta method with the same error
characteristics as the multistep method.

There are two distinct classes of multistep methods. In an explicit method,
wi+1 does not involve the function evaluation f(ti+1, wi+1). A method that does
depend in part on f(ti+1, wi+1) is implicit.

Some of the explicit multistep methods, together with their required starting
values and local error terms, are given next.
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[Adams-Bashforth Two-Step Explicit Method]

w0 = α, w1 = α1,

wi+1 = wi +
h

2
[3f(ti, wi) − f(ti−1, wi−1)],

where i = 1, 2, . . . , N − 1, with local error 5
12y���(µi)h3 for some µi in

(ti−1, ti+1).

[Adams-Bashforth Three-Step Explicit Method]

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h

12
[23f(ti, wi) − 16f(ti−1, wi−1) + 5f(ti−2, wi−2)]

where i = 2, 3, . . . , N − 1, with local error 3
8y(4)(µi)h4 for some µi in

(ti−2, ti+1).

[Adams-Bashforth Four-Step Explicit Method]

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h

24
[55f(ti, wi) − 59f(ti−1, wi−1) + 37f(ti−2, wi−2) − 9f(ti−3, wi−3)]

where i = 3, 4, . . . , N − 1, with local error 251
720y(5)(µi)h5 for some µi in

(ti−3, ti+1).

[Adams-Bashforth Five-Step Explicit Method]

w0 = α, w1 = α1, w2 = α2, w3 = α3, w4 = α4

wi+1 = wi +
h

720
[1901f(ti, wi) − 2774f(ti−1, wi−1)

+ 2616f(ti−2, wi−2) − 1274f(ti−3, wi−3) + 251f(ti−4, wi−4)]

where i = 4, 5, . . . , N − 1, with local error 95
288y(6)(µi)h6 for some µi in

(ti−4, ti+1).
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Implicit methods use (ti+1, f(ti+1, y(ti+1))) as an additional interpolation node
in the approximation of the integral

� ti+1

ti

f(t, y(t)) dt.

Some of the more common implicit methods are listed next. Notice that the local
error of an (m−1)-step implicit method is O(hm+1), the same as that of an m-step
explicit method. They both use m function evaluations, however, since the implicit
methods use f(ti+1, wi+1), but the explicit methods do not.

[Adams-Moulton Two-Step Implicit Method]

w0 = α, w1 = α1

wi+1 = wi +
h

12
[5f(ti+1, wi+1) + 8f(ti, wi) − f(ti−1, wi−1)]

where i = 1, 2, . . . , N − 1, with local error − 1
24y(4)(µi)h4 for some µi in

(ti−1, ti+1).

[Adams-Moulton Three-Step Implicit Method]

w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h

24
[9f(ti+1, wi+1) + 19f(ti, wi) − 5f(ti−1, wi−1) + f(ti−2, wi−2)],

where i = 2, 3, . . . , N − 1, with local error − 19
720y(5)(µi)h5 for some µi in

(ti−2, ti+1).

[Adams-Moulton Four-Step Implicit Method]

w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h

720
[251f(ti+1, wi+1) + 646f(ti, wi) − 246f(ti−1, wi−1)

+ 106f(ti−2, wi−2) − 19f(ti−3, wi−3)]

where i = 3, 4, . . . , N − 1, with local error − 3
160y(6)(µi)h6 for some µi in

(ti−3, ti+1).
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It is interesting to compare an m-step Adams-Bashforth explicit method to an
(m−1)-step Adams-Moulton implicit method. Both require m evaluations of f per
step, and both have the terms y(m+1)(µi)hm+1 in their local errors. In general, the
coefficients of the terms involving f in the approximation and those in the local
error are smaller for the implicit methods than for the explicit methods. This leads
to smaller truncation and round-off errors for the implicit methods.

EXAMPLE 1 Consider the initial-value problem

y� = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

and the approximations given by the explicit Adams-Bashforth Four-Step method
and the implicit Adams-Moulton Three-Step method, both using h = 0.2. The
explicit Adams-Bashforth method has the difference equation

wi+1 = wi +
h

24
[55f(ti, wi) − 59f(ti−1, wi−1) + 37f(ti−2, wi−2) − 9f(ti−3, wi−3)],

for i = 3, 4, . . . , 9. When simplified using f(t, y) = y− t2 +1, h = 0.2, and ti = 0.2i,
it becomes

wi+1 =
1
24

[35wi − 11.8wi−1 + 7.4wi−2 − 1.8wi−3 − 0.192i2 − 0.192i + 4.736].

The implicit Adams-Moulton method has the difference equation

wi+1 = wi +
h

24
[9f(ti+1, wi+1) + 19f(ti, wi) − 5f(ti−1, wi−1)] + f(ti−2, wi−2)],

for i = 2, 3, . . . , 9. This reduces to

wi+1 =
1
24

[1.8wi+1 + 27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i + 4.736].

To use this method explicitly, we can solve for wi+1, which gives

wi+1 =
1

22.2
[27.8wi − wi−1 + 0.2wi−2 − 0.192i2 − 0.192i + 4.736]

for i = 2, 3, . . . , 9. The results in Table 5.9 were obtained using the exact values
from y(t) = (t + 1)2 − 0.5et for α,α1, α2, and α3 in the explicit Adams-Bashforth
case and for α, α1, and α2 in the implicit Adams-Moulton case.



5.4. PREDICTOR-CORRECTOR METHODS 243

Table 5.9

Adams Adams
Bashforth Error Moulton Error

ti yi = y(ti) wi wi

0.0 0.5000000 0.5000000 0 0.5000000 0
0.2 0.8292986 0.8292986 0.0000000 0.8292986 0.0000000
0.4 1.2140877 1.2140877 0.0000000 1.2140877 0.0000000
0.6 1.6489406 1.6489406 0.0000000 1.6489341 0.0000065
0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293
1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527
2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132

In Example 1, the implicit Adams-Moulton method gave considerably better
results than the explicit Adams-Bashforth method of the same order. Although this
is generally the case, the implicit methods have the inherent weakness of first having
to convert the method algebraically to an explicit representation for wi+1. That this
procedure can become difficult, if not impossible, can be seen by considering the
elementary initial-value problem

y� = ey, for 0 ≤ t ≤ 0.25, with y(0) = 1.

Since f(t, y) = ey, the Adams-Moulton Three-Step method has

wi+1 = wi +
h

24
[9ewi+1 + 19ewi − 5ewi−1 + ewi−2 ]

as its difference equation, and this equation cannot be solved explicitly for wi+1.
We could use Newton’s method or the Secant method to approximate wi+1, but
this complicates the procedure considerably.

In practice, implicit multistep methods are not used alone. Rather, they are
used to improve approximations obtained by explicit methods. The combination of
an explicit and implicit technique is called a predictor-corrector method. The
explicit method predicts an approximation, and the implicit method corrects this
prediction.

Consider the following fourth-order method for solving an initial-value problem.
The first step is to calculate the starting values w0, w1, w2, and w3 for the explicit
Adams-Bashforth Four-Step method. To do this, we use a fourth-order one-step
method, specifically, the Runge-Kutta method of order 4. The next step is to calcu-
late an approximation, w

(0)
4 , to y(t4) using the explicit Adams-Bashforth Four-Step

method as predictor:

w
(0)
4 = w3 +

h

24
[55f(t3, w3) − 59f(t2, w2) + 37f(t1, w1) − 9f(t0, w0)].



244CHAPTER 5. NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

This approximation is improved by use of the implicit Adams-Moulton Three-Step
method as corrector:

w
(1)
4 = w3 +

h

24
�
9f



t4, w

(0)
4

�
+ 19f(t3, w3) − 5f(t2, w2) + f(t1, w1)

	
.

The value w4 ≡ w
(1)
4 is now used as the approximation to y(t4). Then the tech-

nique of using the Adams-Bashforth method as a predictor and the Adams-Moulton
method as a corrector is repeated to find w

(0)
5 and w

(1)
5 , the initial and final ap-

proximations to y(t5). This process is continued until we obtain an approximation
to y(tN ) = y(b).

The program PRCORM53 is based on the Adams-Bashforth Four-Step method
as predictor and one iteration of the Adams-Moulton Three-Step method as cor-
rector, with the starting values obtained from the Runge-Kutta method of order
4.

EXAMPLE 2 Table 5.10 lists the results obtained by using the program PRCORM53 for the
initial-value problem

y� = y − t2 + 1, for 0 ≤ t ≤ 2, with y(0) = 0.5,

with N = 10.

Table 5.10

Error
ti yi = y(ti) wi |yi − wi|
0.0 0.5000000 0.5000000 0
0.2 0.8292986 0.8292933 0.0000053
0.4 1.2140877 1.2140762 0.0000114
0.6 1.6489406 1.6489220 0.0000186
0.8 2.1272295 2.1272056 0.0000239
1.0 2.6408591 2.6408286 0.0000305
1.2 3.1799415 3.1799026 0.0000389
1.4 3.7324000 3.7323505 0.0000495
1.6 4.2834838 4.2834208 0.0000630
1.8 4.8151763 4.8150964 0.0000799
2.0 5.3054720 5.3053707 0.0001013

Other multistep methods can be derived using integration of interpolating poly-
nomials over intervals of the form [tj , ti+1] for j ≤ i − 1, where some of the data
points are omitted. Milne’s method is an explicit technique that results when a New-
ton Backward-Difference interpolating polynomial is integrated over [ti−3, ti+1].
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[Milne’s Method]

wi+1 = wi−3 +
4h

3
[2f(ti, wi) − f(ti−1, wi−1) + 2f(ti−2, wi−2)],

where i = 3, 4, . . . , N − 1, with local error 14
45h5y(5)(µi) for some µi in

(ti−3, ti+1).

This method is used as a predictor for an implicit method called Simpson’s
method. Its name comes from the fact that it can be derived using Simpson’s rule
for approximating integrals.

[Simpson’s Method]

wi+1 = wi−1 +
h

3
[f(ti+1, wi+1) + 4f(ti, wi) + f(ti−1, wi−1)],

where i = 1, 2, . . . , N − 1, with local error − 1
90h5y(5)(µi) for some µi in

(ti−1, ti+1).

Although the local error involved with a predictor-corrector method of the
Milne-Simpson type is generally smaller than that of the Adams-Bashforth-Moulton
method, the technique has limited use because of round-off error problems, which
do not occur with the Adams procedure.

The Adams-Bashforth Four-Step Explicit method is available in Maple using
dsolve with the numeric and classical options. Enter the command

>eq:= D(y)(t)=y(t)-t^2+1;

to define the differential equation, and specify the initial condition with

>init:= y(0)=0.5;

The Adams-Bashforth method is activated with the command

>g:=dsolve({eq,init},numeric,method=classical[adambash],y(t),stepsize=0.2);

To approximate y(t) using g(t) at specific values of t, for example at t = 2.0, enter
the command

>g(2.0);

In a similar manner, the predictor-corrector method using the Adams-Bashforth
Four-Step Explicit method with the Adams-Moulton Three-Step Implicit method
is called using

>g:=dsolve({eq,init},numeric,method=classical[abmoulton],y(t),stepsize=0.2);
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EXERCISE SET 5.4

1. Use all the Adams-Bashforth methods to approximate the solutions to the
following initial-value problems. In each case use exact starting values and
compare the results to the actual values.

(a) y� = te3t −2y, for 0 ≤ t ≤ 1, with y(0) = 0 and h = 0.2; actual solution
y(t) = 1

5 te3t − 1
25e3t + 1

25e−2t.

(b) y� = 1 + (t − y)2, for 2 ≤ t ≤ 3, with y(2) = 1 and h = 0.2; actual
solution y(t) = t + 1/(1 − t).

(c) y� = 1 +
y

t
, for 1 ≤ t ≤ 2, with y(1) = 2 and h = 0.2; actual solution

y(t) = t ln t + 2t.

(d) y� = cos 2t + sin 3t, for 0 ≤ t ≤ 1 with y(0) = 1 and h = 0.2; actual
solution y(t) = 1

2 sin 2t − 1
3 cos 3t + 4

3 .

2. Use all the Adams-Moulton methods to approximate the solutions to the
Exercises 1(a), 1(c), and 1(d). In each case use exact starting values and
explicitly solve for wi+1. Compare the results to the actual values.

3. Use each of the Adams-Bashforth methods to approximate the solutions to
the following initial-value problems. In each case use starting values obtained
from the Runge-Kutta method of order 4. Compare the results to the actual
values.

(a) y� =
y

t
−

#y

t

$2

, for 1 ≤ t ≤ 2, with y(1) = 1 and h = 0.1; actual

solution y(t) = t/(1 + ln t).

(b) y� = 1 +
y

t
+

#y

t

$2

, for 1 ≤ t ≤ 3, with y(1) = 0 and h = 0.2; actual

solution y(t) = t tan(ln t).

(c) y� = −(y +1)(y +3), for 0 ≤ t ≤ 2, with y(0) = −2 and h = 0.1; actual
solution y(t) = −3 + 2/(1 + e−2t).

(d) y� = −5y + 5t2 + 2t, for 0 ≤ t ≤ 1, with y(0) = 1/3 and h = 0.1; actual
solution y(t) = t2 + 1

3e−5t.

4. Use the predictor-corrector method based on the Adams-Bashforth Four-Step
method and the Adams-Moulton Three-Step method to approximate the so-
lutions to the initial-value problems in Exercise 1.

5. Use the predictor-corrector method based on the Adams-Bashforth Four-Step
method and the Adams-Moulton Three-Step method to approximate the so-
lutions to the initial-value problem in Exercise 3.
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6. The initial-value problem

y� = ey, for 0 ≤ t ≤ 0.20, with y(0) = 1

has solution
y(t) = 1 − ln(1 − et).

Applying the Adams-Moulton Three-Step method to this problem is equiva-
lent to finding the fixed point wi+1 of

g(w) = wi +
h

24
[9ew + 19ewi − 5ewi−1 + ewi−2 ].

(a) With h = 0.01, obtain wi+1 by functional iteration for i = 2, . . . , 19 us-
ing exact starting values w0, w1, and w2. At each step use wi to initially
approximate wi+1.

(b) Will Newton’s method speed the convergence over functional iteration?

7. Use the Milne-Simpson Predictor-Corrector method to approximate the solu-
tions to the initial-value problems in Exercise 3.

8. Use the Milne-Simpson Predictor-Corrector method to approximate the solu-
tion to

y� = −5y, for 0 ≤ t ≤ 2, with y(0) = e,

with h = 0.1. Repeat the procedure with h = 0.05. Are the answers consistent
with the local error?


