Factorial experiments

Presented by: Tahira Batool

Contents

- Factorial experiments
- Informal way to find effects in Factorial Design
- Formal ways to find effects in Factorial Design
 - 1. Sign method
 - 2. Yates method
 - 3. Algebraic method

Basic Definition

- Many experiments involve the study of the effects of two or more factors.
- Factorial designs most efficient for this type of experiment.
- By a factorial design, we mean that in each complete trial or replicate of the experiment all possible combinations of the levels of the factors are investigated
- If there are a levels of factor A and b levels of factor B, each replicate contains all ab treatment combinations.

Informal way to find effects in Factorial Design

■ FIGURE 5.1 A two-factor factorial experiment, with the response (y) shown at the corners

■ FIGURE 5.3 A factorial experiment without interaction

Definition of a factor effect: The change in the mean response when the factor is changed from low to high

$$A = \overline{y}_{A^{+}} - \overline{y}_{A^{-}} = \frac{40 + 52}{2} - \frac{20 + 30}{2} = 21$$

$$B = \overline{y}_{B^{+}} - \overline{y}_{B^{-}} = \frac{30 + 52}{2} - \frac{20 + 40}{2} = 11$$

$$AB = \frac{52 + 20}{2} - \frac{30 + 40}{2} = -1$$

The Case of Interaction:

60 B* B* B* Factor A

■ FIGURE 5.2 A two-factor factorial experiment with interaction

■ FIGURE 5.4 A factorial experiment with interaction

$$\begin{split} A &= \overline{y}_{A^{+}} - \overline{y}_{A^{-}} = \frac{50 + 12}{2} - \frac{20 + 40}{2} = 1 \\ B &= \overline{y}_{B^{+}} - \overline{y}_{B^{-}} = \frac{40 + 12}{2} - \frac{20 + 50}{2} = -9 \\ AB &= \frac{12 + 20}{2} - \frac{40 + 50}{2} = -29 \end{split}$$

Formal ways to find effects in Factorial Design

• Sign Method:

Effect of factor A = -1 + a - b + abEffect of factor B = -1 - a + b + abInteraction effect = +1 - a - b + ab

Sign Table					
Effec t	1	а	b	ab	
A	-	+	-	+	
В	-	-	+	+	
AB	+	-	-	+	

Sign Table for 2^3 Factorial Experiment								
Effect	1	а	b	ab	С	ac	bc	abc
A	-	+	-	+	-	+	-	+
В	-	-	+	+	-	-	+	+
AB	+	-	-	+	+	-	-	+
C	-	-	-	-	+	+	+	+
AC	+	-	+	-	-	+	-	+
ВС	+	+	-	-	-	-	+	+
ABC	-	+	+	-	+	-	-	+

Yates Method

2 ² Factorial Experiment				
1	a+1	ab+b+a+ 1	Grand effect	
а	ab+b	ab-b+a-1	Effect of factor A	
b	a-1	ab+b-a-1	Effect of factor B	
ab	ab-b	ab-b-a+1	Interaction effect	

2 ³ Factorial Experiment				
1	a+1	ab+b+a+1	abc+bc+ac+c+ab+b+a+1	
а	ab+b	abc+bc+ac+c	abc-bc+ac-c+ab-b+a-1	
b	ac+c	ab-b+a-1	abc+bc-ac-c+ab+b-a-1	
ab	abc+bc	abc-bc+ac-c	abc-bc-ac+c+ab-b-a+1	
c	a-1	ab+b-a-1	abc+bc+ac+c-ab-b-a-1	
ac	ab-b	abc+bc-ac-c	abc-bc+ac-c-ab+b-a+1	
bc	ac-c	ab-b-a+1	abc+bc-ac-c-ab-b+a+1	
abc	abc-bc	abc-bc-ac+c	abe-bc-ac+c-ab+b+a-1	

Algebraic Method

2² Factorial Experiment

Effect of factor
$$A = (a - 1)(b + 1) = ab-b+a-1$$

Effect of factor $B = (a + 1)(b - 1) = ab+b-a-1$
Interaction effect(AB) = $(a - 1)(b - 1) = ab-b-a+1$

2³ Factorial Experiment

Effect of factor
$$A = (a - 1)(b + 1)(c + 1) = abc-bc+ac-c+ab-b+a-1$$

Effect of factor $B = (a + 1)(b - 1)(c + 1) = abc+bc-ac-c+ab+b-a-1$
Effect of $AB = (a - 1)(b - 1)(c + 1) = abc-bc-ac+c+ab-b-a+1$
Effect of factor $C = (a + 1)(b + 1)(c - 1) = abc+bc+ac+c-ab-b-a-1$
Effect of $AC = (a - 1)(b + 1)(c - 1) = abc-bc+ac-c-ab+b-a+1$
Effect of $ABC = (a + 1)(b - 1)(c - 1) = abc-bc-ac-c-ab+b+a-1$

Advantages of Factorials

They are more efficient than one-factor-at-a-time experiments.

A factorial design is necessary when interactions may be present to avoid misleading conclusions.

 Factorial designs allow the effects of a factor to be estimated at several levels of the other factors, yielding conclusions that are valid over a range of experimental conditions.