

Contents

Experimental Design	3
Experiment	3
Observational Study	3
Experimental Unit	3
Treatments	4
Response Measurement	4
Experimental Error	4
Principles of Experimental Design	4
Randomization	4
Replication	5
Local Control	5
Completely Randomized Design(CRD)	5
Experimental Layout	6
Statistical Model and Analysis	6
Advantages of CRD	7
Disadvantages of CRD	7
Estimation of Parameters	7
Expected Mean square Error for CRD	10
Fixed Effect Model	10
Random Effect Model	13
Estimation of Missing Observations	16
Case I: One missing value	16
Case II:Two missing Observations in same treatment	17
Randomized Complete Block Design	18
Experimental Layout	19
Statistical Model and Analysis	19
Advantages of RCBD	20
Disadvantages of RCBD	20
Estimation of Model Parameters	20
Expected Mean Square Error	25
Fixed Effect Model	25
Random Effect Model	29
Mixed Effect Model	22

Estimation of Missing Observations	40
Case I: One Missing Value	40
Case II: Two Missing Values in same treatment but different blocks	41
Efficiency of RCBD relative to CRD	43
Latin Square Design	43
Experimental Layout	44
Statistical Model and Analysis	44
Advantages of LSD	45
Disadvantages of LSD	45
Estimation of Model Prameters	46
Expected Mean Square Error	51
Fixed Effect Model	51
Random Effect Model	57
Mixed Effect Model	62
Estimation of missing values	94
Case I: One missing value in one treatment	94
Case II: Two missing Observations	96
Efficiency of LSD relative to CRD	104
Efficiency of LSD relative to RCBD	104
Greaco Latin Square Design	105
Experimental Layout	105
Statistical Model and Analysis	106
Estimation of Model Parameters	107
Expected Mean Square Error	114
Fixed Effect Model	114
Random Effect Model	120

Experimental Design

Experimental design is the design of any information gathering exercises where variation is present whether under full control of the experimenter or not. However, in statistics these terms are usually used for controlled experiments. In the design of experiments, the experimenter is often interested in the effect of some process or intervention on some objects, which may be people, parts of people, groups of people, plants, animals, materials etc. Design of experiment is thus a discipline that has a very broad application across all the natural and social sciences.

Design means a statistical plan to get observations relevant to the experiment. The plan usually means

- 1- Selection of Treatment
- 2- Specifications of Layout
- 3- Allocation of Treatment
- 4- Collection of data analysis

Thus design is logical structure of experiment for the collection of data in an experimental way. A good experimental design is one i.e.

- 1- Experimental conditions are free from any systematic error.
- 2- Minimum experimental error for free cost.
- 3- The inference have wide range of validity.

There are two types of experimental design.

- 1- Systematic Design
- 2- Randomized Design

The basic randomized designs are

- Completely Randomized Design (CRD)
- Randomized Complete Block Design (RCBD)
- Latin Square Design (LSD)

Experiment

The word experiment is used in quite different sense to mean an investigation where the system under study is under the control of the investigator. This means that the individuals or material investigated, the nature of the treatments or manipulations under study and the measurement procedures used are all settled, in their important features at least by the investigator e.g. clinical study, fertilizer treatments.

Observational Study

The allocation of individuals to treatment groups, are outside the investigator's control e.g. Penal of interviewers, payment, cash withdrawals

Experimental Unit

A unit or experimental unit in a statistical analysis refers to one member of a set of entities being studied. It is the material source for the mathematical abstraction of a random variable. Common examples of a unit would be a single person, animal, plant or manufactured item that belongs to larger collection of such entities being studied. More formally they correspond to the smallest subdivision of the experimental material such that any two different experimental units might receive different treatments.

Treatments

The treatments are clearly defined procedures one of which is to be applied to each experimental unit. In some cases the treatments are an unstructured set of two or more qualitatively different procedures. In others including many investigations in the physical sciences, the treatments are defined by the levels of one or more quantitative variables such as the amounts per square meter of the constituents nitrogen, potash and potassium etc.

Response Measurement

The response measurement specifies the criterion in terms of which the comparison of treatments is to be effected. In many applications there will be several such measures.

Experimental Error

Experimental material is subject to variation. Experimental error is the measure of variation which exists among observations on experimental units treated alike. There are two source of variation

- 1. There is inherent variability persists in the experimental material.
- 2. Variation due to lack of uniformity in the physical conduct of experiment.

Efforts are made to improve the power of the test, decrease the size of the confidence interval and others good results.

Principles of Experimental Design

The three principles of experimental design are:

- randomization, to ensure that this estimate is statistically valid;
- replication, to provide an estimate of experimental error;
- local control, to reduce experimental error by making the experiment more efficient

Randomization

Randomization is the random process of assigning treatments to the experimental units. The random process implies that every possible allotment of treatments has the same probability. An experimental unit is the smallest division of the experimental material and a treatment means an experimental condition whose effect is to be measured and compared. The purpose of randomization is to remove bias and other sources of extraneous variation, which are not

controllable. Another advantage of randomization is that it forms the basis of any valid statistical test. Hence the treatments must be assigned at random to the experimental units. Randomization is usually done by drawing numbered cards from a well shuffled pack of cards or by drawing numbered balls from a well shaken container or by using tables of random numbers.

Replication

By replication we means that repetition of the basic experiments. For example, If we need to compare grain yield of two varieties of wheat then each variety is applied to more than one experimental units. The number of times these are applied on experimental units is called their number of replication. A replication is used:

i. to secure more accurate estimate of experimental error, a term which represents the differences that would be observed if the same treatments were applied several times to the same experimental units.

ii. to decrease the experimental error and thereby to increase precision, which is the measure of variability of experimental error

iii. to obtain more precise estimate of the mean effect of a treatment, since $\sigma_{\bar{y}} = \frac{\sigma^2}{n}$ where n denotes the number of replications.

Local Control

It has been observed that all extraneous source of variation are not removed by randomization and replication, i.e. unable to control extraneous source of variation. Thus we need to a refinement in the experimental technique. In other words we need to choose a design in such a way that all extraneous source of variation are brought under control. For this purpose we make use of local control, a term referring to the amount of (i) balancing, (ii) blocking and (iii) grouping of experimental units.

Balancing:

Balancing means that the treatment should be assigned to the experimental units in such a way that the result is a balanced arrangement of treatment.

Blocking:

Blocking means that the like experimental units should be collected together to far relatively homogeneous groups. A block is also a replicate.

The main objective/ purpose of local control is to increase the efficiency of experimental design by decreasing the experimental error.

Completely Randomized Design(CRD)

A completely randomized design, which is the simplest type of the basic designs, may be defined as a design in which the treatments are assigned to experimental units completely random, that is the randomization is done without restrictions. The design is completely

flexible i.e. any number of treatments and any number of units per treatment may be used. Moreover, the number of units per treatment need not be equal. A CRD is considered to be more useful where

- i. the experimental units are homogenous
- ii. the experiments are small such as laboratory experiments
- iii. some experimental units are likely to be destroyed or fail to respond

Experimental Layout

The layout of an experiment is the actual placement of the treatments on the experimental units, which may certain to time, space or type of material. Suppose we have k treatments and the experimental material is divided into n experimental units. We shall then assign the k treatments at random to the n experimental units in such a way that treatment τ_i is applied r_j times, with $\sum r_i = n$. When each treatment is applied the same number of times, then $r_1 = r_2 = \dots = r_t = r$ and $\sum r_i = rt = n$. Usually each treatment is applied equal number of times.

An example of the experimental layout for a CRD using four treatments A, B, C, D, each repeated 3 times is given below:

C	A	В	D
C	В	C	A
A	D	D	В

The result or response of a treatment which may be a real yield, the gain in weight, the ability etc. is generally called yield and is represented by the letter Y.

Statistical Model and Analysis

Each observation may be written in the form

$$Y_{ij} = \mu + \tau_i + e_{ij}, \quad \begin{cases} j = 1, 2, ..., r \\ i = 1, 2, ..., t \end{cases}$$

where μ represents the true mean effect, τ_i represents the effects of the treatment i and e_{ij} denotes the random error, normally and independently distributed with mean 0 and variance σ^2 .

Formulation of hypotheses:

$$H_0$$
: $\tau_i = 0$
 H_0 : $\tau_i \neq 0$ for all i

Level of significance:

$$\alpha = 0.05$$

Test Statistic:

$$F = \frac{s_t^2}{s_e^2}$$

S.O.V d.f SS MS F
$$t-1 \qquad \qquad SST \qquad \qquad s_t^2 = \frac{SST}{t-1} \qquad \qquad F = \frac{s_t^2}{s_e^2}$$
 Error
$$n-t \qquad SSE \qquad \qquad s_e^2 = \frac{SSE}{n-t}$$

Total
$$n-1$$

$$C.F = \frac{Y_{..}^2}{n}, \quad TSS = \sum \sum Y_{ij}^2 - C.F, \quad SST = \frac{1}{r} \sum Y_{i.}^2 - C.F$$

$$SSE = TSS - SST$$

C.R:

$$F \ge F_{(\alpha,t-1,n-t)}$$

Conclusion:

If calculated value of F falls in the critical region then we reject H_0 .

Advantages of CRD

- Very flexible design (i.e. number of treatments and replicates is only limited by the available number of experimental units).
- Statistical analysis is simple compared to other designs.
- Loss of information due to missing data is small compared to other designs due to the larger number of degrees of freedom for the error source of variation.

Disadvantages of CRD

- If experimental units are not homogeneous and you fail to minimize this variation using blocking, there may be a loss of precision.
- Usually the least efficient design unless experimental units are homogeneous.
- Not suited for a large number of treatments.

Estimation of Parameters

We estimate the parameters of the statistical model of CRD using OLS technique.

$$S = \sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i)^2$$

Differentiate w.r.t $\hat{\mu}$

$$\frac{\partial S}{\partial \hat{\mu}} = -2\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i)(-1)$$

Put
$$\frac{\partial S}{\partial \hat{u}} = 0$$
, we get

$$2\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i}) = 0$$
$$\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i}) = 0$$
$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} - tr\hat{\mu} - r\sum_{i=1}^{t} \hat{\tau}_{i} = 0$$

For unique solutions put $\sum_{i=1}^{t} \hat{\tau}_i = 0$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} - tr\hat{\mu} - r(0) = 0$$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} - tr\hat{\mu} = 0$$

$$tr\hat{\mu} = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}$$

$$\hat{\mu} = \frac{\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}}{tr}$$

$$\hat{\mu} = \frac{Y}{tr} = \overline{Y}$$

$$S = \sum_{j=1}^{r} (Y_{1j} - \hat{\mu} - \hat{\tau}_1)^2 + \sum_{j=1}^{r} (Y_{2j} - \hat{\mu} - \hat{\tau}_2)^2 + \dots + \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i)^2 + \dots$$

$$+ \sum_{j=1}^{r} (Y_{tj} - \hat{\mu} - \hat{\tau}_t)^2$$

Differentiate w.r.t $\tau_1, \tau_2, ..., \tau_i, ... \tau_t$

$$\frac{\partial S}{\partial \hat{\tau}_1} = -2 \sum_{j=1}^r (Y_{1j} - \hat{\mu} - \hat{\tau}_1)(-1)$$

Put $\frac{\partial S}{\partial \hat{\tau}_1} = 0$, we get

$$2\sum_{j=1}^{r} (Y_{1j} - \hat{\mu} - \hat{\tau}_1) = 0$$
$$\sum_{j=1}^{r} (Y_{1j} - \hat{\mu} - \hat{\tau}_1) = 0$$
$$\sum_{j=1}^{r} (Y_{1j} - r\hat{\mu} - r\hat{\tau}_1) = 0$$

$$\sum_{j=1}^{r} Y_{1j} = r\hat{\mu} + r\hat{\tau}_{1}$$

$$Y_{1.} = r\hat{\mu} + r\hat{\tau}_{1} \qquad (1)$$

$$\frac{\partial S}{\partial \hat{\tau}_{2}} = -2\sum_{j=1}^{r} (Y_{2j} - \hat{\mu} - \hat{\tau}_{2})(-1)$$

Put $\frac{\partial S}{\partial \hat{\tau}_2} = 0$, we get

$$2\sum_{j=1}^{r} (Y_{2j} - \hat{\mu} - \hat{\tau}_{2}) = 0$$

$$\sum_{j=1}^{r} (Y_{2j} - \hat{\mu} - \hat{\tau}_{2}) = 0$$

$$\sum_{j=1}^{r} Y_{2j} - r\hat{\mu} - r\hat{\tau}_{2} = 0$$

$$\sum_{j=1}^{r} Y_{2j} = r\hat{\mu} + r\hat{\tau}_{2}$$

$$Y_{2.} = r\hat{\mu} + r\hat{\tau}_{2} \qquad (2)$$

$$\frac{\partial S}{\partial \hat{\tau}_{i}} = -2\sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i})(-1)$$

Put $\frac{\partial S}{\partial \hat{\tau}_i} = 0$, we get

$$2\sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i) = 0$$

$$\sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i) = 0$$

$$\sum_{j=1}^{r} Y_{ij} - r\hat{\mu} - r\hat{\tau}_i = 0$$

$$\sum_{j=1}^{r} Y_{ij} = r\hat{\mu} + r\hat{\tau}_i$$

$$Y_{i.} = r\hat{\mu} + r\hat{\tau}_i \qquad (3)$$

$$\frac{\partial S}{\partial \hat{\tau}_t} = -2\sum_{j=1}^{r} (Y_{tj} - \hat{\mu} - \hat{\tau}_t)(-1)$$

Put $\frac{\partial S}{\partial \hat{\tau}_t} = 0$, we get

$$2\sum_{j=1}^{r} (Y_{tj} - \hat{\mu} - \hat{\tau}_t) = 0$$

$$\sum_{j=1}^{r} \left(Y_{tj} - \hat{\mu} - \hat{\tau}_{t}\right) = 0$$

$$\sum_{j=1}^{r} Y_{tj} - r\hat{\mu} - r\hat{\tau}_{t} = 0$$

$$\sum_{j=1}^{r} Y_{tj} = r\hat{\mu} + r\hat{\tau}_{t}$$

$$Y_{t.} = r\hat{\mu} + r\hat{\tau}_{t} \qquad (t)$$
Adding equation (1),(2),(i),...,(t)
$$Y_{1.} = r\hat{\mu} + r\hat{\tau}_{1} \qquad (1)$$

$$Y_{2.} = r\hat{\mu} + r\hat{\tau}_{2} \qquad (2)$$

$$\vdots \qquad \vdots$$

$$Y_{i.} = r\hat{\mu} + r\hat{\tau}_{i} \qquad (i)$$

$$\vdots \qquad \vdots$$

$$Y_{t.} = r\hat{\mu} + r\hat{\tau}_{t} \qquad (t)$$

$$\sum_{l=1}^{t} Y_{l.} = tr\hat{\mu} + r\sum_{l=1}^{t} \hat{\tau}_{l}$$
From equation (i)
$$Y_{i.} = r\hat{\mu} + r\hat{\tau}_{l}$$

$$\hat{\tau}_{i} = \frac{Y_{i.}}{r} - \frac{r\hat{\mu}}{r}$$

$$\hat{\tau}_{i} = \overline{Y}_{i.} - \overline{Y}$$

Expected Mean square Error for CRD

Fixed Effect Model

Assumptions:

$$1. \quad E(e_{ij}) = 0$$

$$2. \quad E(e_{ij}e_{gh})=0$$

3.
$$\sum_{i=1}^{t} \tau_i = 0$$

$$Y_{ij} = \mu + \tau_i + e_{ij}$$

$$SSE = TSS - SST$$

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^2 - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^2}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_i + e_{ij})\right)^2}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_i + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^2}{tr}$$

$$\begin{split} &=\frac{\left(tr\mu+r(0)+\sum_{l=1}^{t}\sum_{j=1}^{r}e_{ij}\right)^{2}}{tr}\\ &=\frac{\left(tr\mu+\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}\right)^{2}}{tr}\\ &=\frac{\left(tr\mu+\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}\right)^{2}+2tr\mu\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}}{tr}\\ &=\frac{t^{2}r^{2}\mu^{2}+\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}^{2}+2tr\mu\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}+2\sum_{l\neq g}\sum_{j\neq h}e_{lj}e_{gh}}{tr}\\ &=\frac{t^{2}r^{2}\mu^{2}+\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}^{2}+2tr\mu\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}+2\sum_{l\neq g}\sum_{j\neq h}e_{lj}e_{gh}}{tr}\\ &=\frac{t^{2}r^{2}\mu^{2}}{tr}+\frac{\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}^{2}}{tr}+\frac{2tr\mu\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}}{tr}+\frac{2\sum_{l\neq g}\sum_{j\neq h}e_{lj}e_{gh}}{tr}\\ &=tr\mu^{2}+\frac{\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}^{2}}{tr}+2\mu\sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj}+\frac{2\sum_{l\neq g}\sum_{j\neq h}e_{lj}e_{gh}}{tr}\end{split}$$

$$\begin{split} E(C.F) &= E(tr\mu^2) + \frac{\sum_{i=1}^t \sum_{j=1}^r E(e_{ij}^2)}{tr} + 2\mu \sum_{i=1}^t \sum_{j=1}^r E(e_{ij}) + \frac{2\sum_{i\neq g} \sum_{j\neq h} E(e_{ij}e_{gh})}{tr} \\ &= tr\mu^2 + \frac{tr\sigma^2}{tr} + 2\mu(0) + \frac{2(0)}{tr} \\ &= tr\mu^2 + \sigma^2 \\ &\sum_{i=1}^t \sum_{j=1}^r Y_{ij}^2 = \sum_{i=1}^t \sum_{j=1}^r \left(\mu + \tau_i + e_{ij}\right)^2 \\ &\sum_{i=1}^t \sum_{j=1}^r Y_{ij}^2 = \sum_{i=1}^t \sum_{j=1}^r \left(\mu^2 + \tau_i^2 + e_{ij}^2 + 2\mu\tau_i + 2\mu e_{ij} + 2\tau_i e_{ij}\right) \\ &= tr\mu^2 + r \sum_{i=1}^t \tau_i^2 + \sum_{i=1}^t \sum_{j=1}^r e_{ij}^2 + 2r\mu \sum_{i=1}^t \tau_i + 2\mu \sum_{i=1}^t \sum_{j=1}^r e_{ij} + 2\sum_{i=1}^t \sum_{j=1}^r \tau_i e_{ij} \\ &= tr\mu^2 + r \sum_{i=1}^t \tau_i^2 + \sum_{i=1}^t \sum_{j=1}^r e_{ij}^2 + 2r\mu(0) + 2\mu \sum_{i=1}^t \sum_{j=1}^r e_{ij} + 2\sum_{i=1}^t \sum_{j=1}^r \tau_i e_{ij} \\ &= tr\mu^2 + r \sum_{i=1}^t \tau_i^2 + \sum_{i=1}^t \sum_{j=1}^r e_{ij}^2 + 2\mu(0) + 2\mu \sum_{i=1}^t \sum_{j=1}^r e_{ij} + 2\sum_{i=1}^t \sum_{j=1}^r \tau_i e_{ij} \end{split}$$

$$\begin{split} &=tr\mu^2+r\sum_{l=1}^t E(\tau_l^2)+\sum_{l=1}^t \sum_{j=1}^r E(e_{ij}^2)+2\mu\sum_{l=1}^t \sum_{j=1}^r E(e_{ij})+2\sum_{l=1}^t \sum_{j=1}^r \tau_l E(e_{lj})\\ &=tr\mu^2+r\sum_{l=1}^t \tau_l^2+tr\sigma^2+2\mu(0)+2(0)\\ &=tr\mu^2+r\sum_{l=1}^t \tau_l^2+tr\sigma^2\\ &E(TSS)=E\left[\sum_{l=1}^t \sum_{j=1}^r Y_{ij}^2\right]-E(C.F)\\ &=tr\mu^2+r\sum_{l=1}^t \tau_l^2+tr\sigma^2-tr\mu^2-\sigma^2\\ &=r\sum_{l=1}^t \tau_l^2+(tr-1)\sigma^2\\ &SST=\frac{\sum_{l=1}^t Y_{i,l}^2}{r}-C.F\\ &Y_{i.}=\sum_{j=1}^r Y_{ij}=\sum_{j=1}^r (\mu+\tau_i+e_{ij})\\ &=r\mu+r\tau_i+\sum_{j=1}^r e_{ij}\\ &\sum_{t=1}^t (r^2\mu^2+r^2\tau_i^2+\sum_{j=1}^r e_{ij}^2+2r^2\mu\tau_i+2r\mu\sum_{l=1}^r \sum_{j=1}^r e_{ij}+2r\tau_i\sum_{l=1}^r \sum_{j=1}^r e_{ij}+\sum_{j\neq h} e_{ij}e_{gh})\\ &=\frac{tr^2\mu^2+r^2\sum_{l=1}^t \tau_l^2+\sum_{l=1}^t \sum_{j=1}^r e_{ij}^2+2r^2\mu\sum_{l=1}^t \tau_i+2r\mu\sum_{l=1}^t \sum_{j=1}^r e_{ij}+2r\sum_{l=1}^t \sum_{j=1}^r e_{ij}+\sum_{l\neq h} e_{ij}e_{gh}}{r}\\ &=\frac{tr^2\mu^2+r^2\sum_{l=1}^t \tau_l^2+\sum_{l=1}^t \sum_{j=1}^r e_{ij}^2+2r^2\mu(0)+2r\mu\sum_{l=1}^t \sum_{j=1}^r e_{ij}+2r\sum_{l=1}^t \sum_{j=1}^r e_{ij}+\sum_{l\neq h} e_{ij}e_{gh}}{r}\\ &=tr\mu^2+r\sum_{l=1}^t \tau_l^2+\sum_{l=1}^t \sum_{j=1}^r e_{ij}^2+2r^2\mu(0)+2r\mu\sum_{l=1}^t \sum_{j=1}^r e_{ij}+2r\sum_{l=1}^t \sum_{j=1}^r e_{ij}+\sum_{l\neq h} e_{ij}e_{gh}}{r}\\ &=tr\mu^2+r\sum_{l=1}^t \tau_l^2+\sum_{l=1}^t \sum_{j=1}^r e_{ij}^2+2r^2\mu(0)+2r\mu\sum_{l=1}^t \sum_{j=1}^r e_{ij}+2r\sum_{l=1}^t \sum_{j=1}^r e_{ij}+\sum_{l\neq h} e_{ij}e_{gh}}{r}\\ \end{split}$$

$$\begin{split} E\left[\frac{\sum_{i=1}^{t}Y_{i.}^{2}}{r}\right] &= E\left[tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + \frac{\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij}^{2}}{r} + 2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij} + 2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}e_{ij} + \frac{\sum_{i\neq g}\sum_{j\neq h}e_{ij}e_{gh}}{r}\right] \\ &= tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + \frac{\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}^{2})}{r} + 2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}) + 2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}E(e_{ij}) + \frac{\sum_{i\neq g}\sum_{j\neq h}E(e_{ij}e_{gh})}{r} \end{split}$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} \tau_{i}^{2} + \frac{tr\sigma^{2}}{r} + 2\mu(0) + 2(0) + (0)$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} \tau_{i}^{2} + t\sigma^{2}$$

$$E(SST) = E\left[\frac{\sum_{i=1}^{t} Y_{i}^{2}}{r}\right] - E(C.F)$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} \tau_{i}^{2} + t\sigma^{2} - tr\mu^{2} - \sigma^{2}$$

$$= r \sum_{i=1}^{t} \tau_{i}^{2} + (t-1)\sigma^{2}$$

$$E(MSE) = E\left[\frac{SSE}{n-t}\right]$$

$$E(SSE) = E(TSS) - E(SST)$$

$$= r \sum_{i=1}^{t} \tau_{i}^{2} + (tr-1)\sigma^{2} - r \sum_{i=1}^{t} \tau_{i}^{2} - (t-1)\sigma^{2}$$

$$= n\sigma^{2} - \sigma^{2} - t\sigma^{2} + \sigma^{2}$$

$$= (n-t)\sigma^{2}$$

$$E(MSE) = \frac{(n-t)\sigma^{2}}{n-t} = \sigma^{2}$$

$$E(MST) = E\left[\frac{SST}{t-1}\right] = \frac{r \sum_{i=1}^{t} \tau_{i}^{2} + (t-1)\sigma^{2}}{t-1}$$

$$= \frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t-1} + \frac{(t-1)\sigma^{2}}{t-1} = \frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t-1} + \sigma^{2}$$

Random Effect Model

Assumptions:

1.
$$\tau_i \sim iidN(0, \sigma_{\tau}^2)$$

$$2. \quad E(e_{ij}, e_{gh}) = 0$$

3.
$$E(e_{ij}, \tau_i) = 0$$

4.
$$E(\tau_i, \tau_j) = 0$$

$$Y_{ij} = \mu + \tau_i + e_{ij}$$

$$SSE = TSS - SST$$

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^{2}}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_{i} + e_{ij})\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_{i} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu\right)^{2} + r^{2}\left(\sum_{i=1}^{t} \tau_{i}\right)^{2} + \left(\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2} + 2tr^{2}\mu\sum_{i=1}^{t} \tau_{i} + 2tr\mu\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2r\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij}}{tr}$$

$$= \frac{t^{2r^{2}\mu^{2}} + r^{2}\sum_{i=1}^{t} \tau_{i}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 2r^{2}\sum\sum\tau_{i}\tau_{i} + \sum_{i\neq g} \sum_{j\neq h} e_{ij}e_{gh} + 2tr^{2}\mu\sum_{i=1}^{t} \tau_{i} + 2tr\mu\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2r\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij}}{tr}$$

$$= tr\mu^{2} + \frac{r\sum_{i=1}^{t} \tau_{i}^{2}}{t} + \frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2}}{tr} + \frac{2r\sum\sum\tau_{i}\tau_{i}}{t} + \frac{\sum_{i\neq g} \sum_{j\neq h} e_{ij}e_{gh}}{tr} + 2r\mu\sum_{i=1}^{t} \tau_{i} + 2\mu\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + \frac{2\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij}}{t}$$

$$E(C.F) = tr\mu^{2} + \frac{r\sum_{i=1}^{t} E(\tau_{i}^{2})}{t} + \frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij}^{2})}{tr} + \frac{2r\sum_{i=1}^{t} \sum_{j=1}^{t} E(\tau_{i}\tau_{j})}{t} + \frac{\sum_{i\neq g} \sum_{j\neq h} E(e_{ij}e_{gh})}{tr} + 2r\mu \sum_{i=1}^{t} E(\tau_{i})$$

$$+ 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij}) + \frac{2\sum_{i=1}^{t} \sum_{j=1}^{r} E(\tau_{i}e_{ij})}{t}$$

$$= tr\mu^{2} + \frac{rt\sigma^{2}}{tr} + \frac{tr\sigma^{2}}{tr} + 0 + 0 + 0 + 0 + 0 + 0$$

$$= tr\mu^{2} + r\sigma^{2}_{\tau} + \sigma^{2}$$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_{i} + e_{ij})^{2}$$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r} (\mu^{2} + \tau_{i}^{2} + e_{ij}^{2} + 2\mu\tau_{i} + 2\mu e_{ij} + 2\tau_{i}e_{ij})$$

$$= tr\mu^{2} + r\sum_{i=1}^{t} \tau_{i}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 2r\mu \sum_{i=1}^{t} \tau_{i} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij}$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} E(\tau_{i}^{2}) + \sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij}^{2}) + 2r\mu \sum_{i=1}^{t} E(\tau_{i}) + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij})$$

$$+ 2 \sum_{i=1}^{t} \sum_{j=1}^{r} E(\tau_{i}e_{ij})$$

$$= tr\mu^{2} + tr\sigma_{\tau}^{2} + tr\sigma^{2} + 2r\mu(0) + 2\mu(0) + 2(0)$$

$$= tr\mu^{2} + tr\sigma_{\tau}^{2} + tr\sigma^{2}$$

$$\begin{split} E(TSS) &= E\left[\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{2}\right] - E(C.F) \\ &= tr\mu^{2} + tr\sigma_{\tau}^{2} + tr\sigma^{2} - tr\mu^{2} - r\sigma_{\tau}^{2} - \sigma^{2} \\ &= r(t-1)\sigma_{\tau}^{2} + (tr-1)\sigma^{2} \\ SST &= \frac{\sum_{i=1}^{t}Y_{i}^{2}}{r} - C.F \\ Y_{i.} &= \sum_{j=1}^{r}Y_{ij} = \sum_{j=1}^{r}(\mu + \tau_{i} + e_{ij}) \\ &= r\mu + r\tau_{i} + \sum_{j=1}^{r}e_{ij} \\ \frac{\sum_{i=1}^{t}Y_{i.}^{2}}{r} &= \frac{\sum_{i=1}^{t}(r\mu + r\tau_{i} + \sum_{j=1}^{r}e_{ij})^{2}}{r} \\ &= \frac{\sum_{i=1}^{t}(r^{2}\mu^{2} + r^{2}\tau_{i}^{2} + \sum_{j=1}^{r}e_{ij}^{2} + 2r^{2}\mu\tau_{i} + 2r\mu\sum_{j=1}^{r}e_{ij} + 2r\tau_{i}\sum_{j=1}^{r}e_{ij} + \sum_{j\neq h}e_{ij}e_{gh})}{r} \\ &= \frac{tr^{2}\mu^{2} + r^{2}\sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij}^{2} + 2r^{2}\mu\sum_{i=1}^{t}\tau_{i} + 2r\mu\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij} + 2r\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}e_{ij} + \sum_{i\neq g}\sum_{j\neq h}e_{ij}e_{gh}}{r} \\ &= tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + \frac{\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij}^{2}}{r} + 2r\mu\sum_{i=1}^{t}\tau_{i} + 2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij} + 2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}e_{ij} + \sum_{i\neq g}\sum_{j\neq h}e_{ij}e_{gh}}{r} \end{split}$$

$$\begin{split} E\left[\frac{\sum_{i=1}^{t}Y_{i}^{2}}{r}\right] &= E\left[tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + \frac{\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij}^{2}}{r} + 2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij} + 2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}e_{ij} + \frac{\sum_{i\neq g}\sum_{j\neq h}e_{ij}e_{gh}}{r}\right] \\ &= tr\mu^{2} + r\sum_{i=1}^{t}E(\tau_{i}^{2}) + \frac{\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}^{2})}{r} + 2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}) + 2\sum_{i=1}^{t}\sum_{j=1}^{r}E(\tau_{i}e_{ij}) + \frac{\sum_{i\neq g}\sum_{j\neq h}E(e_{ij}e_{gh})}{r} \\ &= tr\mu^{2} + tr\sigma_{\tau}^{2} + \frac{tr\sigma^{2}}{r} + 2\mu(0) + 2(0) + (0) \\ &= tr\mu^{2} + tr\sigma_{\tau}^{2} + t\sigma^{2} \\ E(SST) &= E\left[\frac{\sum_{i=1}^{t}Y_{i}^{2}}{r}\right] - E(C.F) \\ &= tr\mu^{2} + tr\sigma_{\tau}^{2} + t\sigma^{2} - tr\mu^{2} - r\sigma_{\tau}^{2} - \sigma^{2} \\ &= r(t-1)\sigma_{\tau}^{2} + (t-1)\sigma^{2} \\ E(MSE) &= E\left[\frac{SSE}{n-t}\right] \\ E(SSE) &= E(TSS) - E(SST) \end{split}$$

$$= r(t-1)\sigma_{\tau}^{2} + (tr-1)\sigma^{2} - r(t-1)\sigma_{\tau}^{2} - (t-1)\sigma^{2}$$

$$= tr\sigma^{2} - \sigma^{2} - t\sigma^{2} + \sigma^{2}$$

$$= (tr-t)\sigma^{2} = (n-t)\sigma^{2}$$

$$E(MSE) = \frac{(n-t)\sigma^{2}}{n-t} = \sigma^{2}$$

$$E(MST) = E\left[\frac{SST}{t-1}\right] = \frac{r(t-1)\sigma_{\tau}^{2} + (t-1)\sigma^{2}}{t-1}$$

$$= r\sigma_{\tau}^{2} + \sigma^{2}$$

Estimation of Missing Observations

Case I: One missing value

	T_1	T_2		T_i		T_t	
	Y ₁₁	17		$\frac{T_i}{Y_{i1}}$		V	
	<i>Y</i> ₁₂	Y_{22}		Y_{i2}		Y_{t2}	
	:	:		:		:	
	Y_{1j}	Y_{2j}		Y_{ij}		Y_{tj}	
	; V	: <i>V</i>	Y_{cd}	: <i>V</i>		: <i>V</i>	
	$\frac{I_{1r}}{V_{\cdot}}$	$\frac{I_{2r}}{V_{-}}$	$Y'_{-} + Y_{-}$	<i>Y.</i>	•••	Y.	$\frac{Y'_{\cdot\cdot} + Y_{cd}}{2}$
	<u> 1</u> 1.	12.	r	$\frac{1}{v}$) ² (r^t r	$v' + \hat{v}$	2
		$C.F = \frac{\sqrt{2}}{2}$	$\Delta i=1 \Delta j=1$	$\frac{(ij)}{(ij)} = \frac{(ij)}{(ij)}$	$\Delta_{i=1}\Delta_{j=1}$	$I_{ij} + I_{cd}$	_
			tr SSF	T = TSS - T	τ - SST	r	
	t	<u>r</u>		_ +		1	
	$=\sum_{i=1}^{n}$	$\sum_{i=1}^{n} Y_{ij}^2 +$	$-\hat{Y}_{cd}^2 - C.I$	$\left r - \frac{1}{r} \right \sum_{i=1}^{r}$	$Y_{i.}^2 + (Y_{c}^2)$	$(1+\hat{Y}_{cd})^2$	+ C.F
	ι	_t	r	∵t ∵t	v^2 (v'	$(\hat{x})^2$	
		$=\sum_{i=1}^{n}$	$\sum^r Y_{ij}^2 + \widehat{Y}$	$\frac{\sum_{i=1}^{2}}{cd} - \frac{\sum_{i=1}^{2}}{r}$	$\frac{Y_{i.}}{T_{i.}} - \frac{Y_{c}}{T_{c}}$. + 1 _{cd})	
2000		$\overline{i=1}$	j=1	,		•	
$\frac{\partial SSE}{\partial \hat{Y}_{cd}} = 0$							
∂Y_{cd}				,	. ^ \		
		($0+2\hat{Y}_{cd}$ –	$0-\frac{2(Y_0)}{2}$	$\frac{(x_c + Y_{cd})}{r} =$	= 0	
				$\frac{-2(Y'_{c.}+$	•		
			$2(r\hat{Y}_{cd})$	$-(Y'_{c.}+Y'_{c.})$	$\frac{\widehat{Y}_{cd})}{} = 0$		
				,			
				$-Y'_{c.}-\hat{Y}$			
			•	$-1)\hat{Y}_{cd}$:	c.		
			j	$\hat{Y}_{cd} = \frac{Y_c}{r}$	<u>.</u>		
				r –	· 1		

Case II:Two missing Observations in same treatment

00000					<u> </u>		_
	T_1	T_2	•••	T_i		T_t	
	<i>Y</i> ₁₁	<i>Y</i> ₂₁		Y_{i1}		Y_{t1}	
	<i>Y</i> ₁₂	Y_{22}		Y_{i2}		Y_{t2}	
		Y_{22} \vdots Y_{2j} \vdots		: <i>V</i>		: <i>V</i> .	
	11 <i>j</i>	12j :	Y_{cd}	1 i j :		1 t j :	
	•	•	Y_{ef}	•		•	
	Y_{1r}	Y_{2r}		Y_{ir}		Y_{tr}	
	<i>Y</i> _{1.}	<i>Y</i> _{2.}	$Y_{c.}' + Y_{cd} + Y_{ef}$	$Y_{i.}$		$Y_{t.}$	$Y'_{\cdot \cdot} + Y_{cd} + Y_{ef}$
		$C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\sum_{i=1}^t \sum_{j=1}^r Y_{ij}$	$\sum_{i=1}^t \sum_{i=1}^t \sum_{j=1}^t \sum_{j=1}^t \sum_{i=1}^t \sum_{j=1}^t \sum_{i=1}^t \sum_{j=1}^t \sum_{i=1}^t \sum_{j=1}^t \sum_{i=1}^t \sum_{j=1}^t \sum_{j$	$\sum_{j=1}^{r} Y_{i}$	$\hat{Y}_{j} + \hat{Y}_{cd}$	$\frac{Y'_{\cdot \cdot} + Y_{cd} + Y_{ef}}{+ \hat{Y}_{ef})^2}$
		C.F = -	tr	=		tr	
				TSS-S			
	$-\sum_{i}\sum_{j}$	$\sum_{v^2+\hat{v}^2}$	$2 + \hat{V}^2 = C E$	$1\left[\sum_{i=1}^{t} v_{i}\right]$	72 . (x	7/ . 😯	$\left[\hat{\mathbf{v}} \right]^2$
	$=$ $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$	$Y_{ij} + Y_c$	$\hat{Y}_{ef}^2 - C.F - C.F$	$\left \frac{\overline{r}}{r} \right \stackrel{I}{\underset{i=1}{\swarrow}} $	i. + (1	$c. + Y_{cd}$	$+ I_{ef}$) $+ C.F$
	ι-1 <i>J</i> -						-
		$=$ \rangle' \rangle'	$Y_{ij}^2 + \hat{Y}_{cd}^2 + \hat{Y}_{ef}^2 -$	$-\frac{\sum_{i=1}^{I}I}{m}$	$\frac{i}{I}$ – $\frac{I}{I}$	$\frac{c. + I_{cd}}{}$	$+ I_{ef}$
		i=1 $j=1$,	7		1	
$\frac{\partial SSE}{\partial \hat{V}} =$	= 0						
$\frac{1}{\partial \hat{Y}_{cd}}$					^	^ \	
		0 -	$+2\hat{Y}_{cd}+0-0-$	$2(Y'_{c.} +$	Y_{cd} +	$\frac{Y_{ef}}{Y_{ef}} = 0$	0
		o i			,		·
			$2\hat{Y}_{cd} - \frac{2(Y'_{c.})}{2}$	$+Y_{cd}$ +	$\frac{Y_{ef}}{}$ =	= 0	
				-			
			$\frac{2\left(r\hat{Y}_{cd}-\left(Y_{c.}'\right)\right)}{r}$	$+ r_{cd} +$	Y_{ef}	= 0	
			$r\hat{Y}_{cd} - Y'_{c}$				
			0.0	000	٠,		1)
∂SSE			(r-1)	$(1)\hat{Y}_{cd}$ –	$r_{ef} = r$	$^{\prime}c.$	(1)
$\frac{\partial SSE}{\partial \hat{Y}_{ef}} =$	= 0						
or_{ef}				2(1/1	ŵ.	ŵ)	
		0 -	$+0+2\hat{Y}_{ef}-0-$	$2(I_c. +$	$rac{I_{cd} + I_{cd}}{r}$	$\frac{I_{ef}}{}$	0
					•		
			$2\hat{Y}_{ef} - \frac{2(Y'_{c.})}{2}$	r	- ej) =	= 0	
			$2(r\hat{Y}_{cs} - (Y'))$, + Ŷ., +	$\hat{\gamma}_{c}$		
			$\frac{2\left(r\hat{Y}_{ef}-\left(Y_{c.}'\right)\right)}{2}$	c cd cd	*ef])	= 0	
			$r\hat{Y}_{ef} - Y'_{c.}$	$-\hat{Y}_{ad}$ $-\hat{Y}_{ad}$	$\hat{Y}_{af} = 0$)	
			-,	$(1)\hat{Y}_{ef} - \hat{Y}_{ef}$	-,		2)
Multipl	v (1) by n	1 and a	(r-1)	, -,	-ca —	· c.	<i>4)</i>

Multiply (1) by r-1 and add it in equation (2)

$$(r-1)^{2}\hat{Y}_{cd} - (r-1)\hat{Y}_{ef} = (r-1)Y'_{c.}$$

$$-\hat{Y}_{cd} + (r-1)\hat{Y}_{ef} = Y'_{c.}$$

$$(r-1)^{2}\hat{Y}_{cd} - \hat{Y}_{cd} = (r-1)Y'_{c.} + Y'_{c.}$$

$$((r-1)^{2} - 1)\hat{Y}_{cd} = (r-1+1)Y'_{c.}$$

$$(r^{2} - 2r + 1 - 1)\hat{Y}_{cd} = rY'_{c.}$$

$$r(r-2)\hat{Y}_{cd} = rY'_{c.}$$

$$\hat{Y}_{cd} = \frac{rY'_{c.}}{r(r-2)}$$

$$\hat{Y}_{cd} = \frac{Y'_{c.}}{r-2}$$

Exercise

Estimate the two missing observations in different treatments.

Randomized Complete Block Design

The RCBD assumes that a population of experimental units can be divided into a number of relatively homogeneous subpopulations or blocks. The treatments are then randomly assigned to experimental units such that each treatment occurs equally often (usually once) in each block (i.e. each block contains all treatments). Blocks usually represent levels of naturally-occurring differences or sources of variation that are unrelated to the treatments, and the characterization of these differences is not of interest to the researcher. In the analysis, the variation among blocks can be partitioned out of the experimental error (MSE), thereby reducing this quantity and increasing the power of the test.

Blocking technique

The purpose of blocking is to reduce the experimental error by eliminating the contribution of known sources of variation among the experimental units. This is done by grouping the experimental units into blocks such that variability within each block is minimized and variability among blocks is maximized. Since only the variation within a block becomes part of the experimental error, blocking is most effective when the experimental area has a predictable pattern of variability.

An ideal source of variation to use as the basis for blocking is one that is large and highly predictable. An example is soil heterogeneity, in a fertilizer or provenance trial where yield data is the primary character of interest. In the case of such experiments, after identifying the specific source of variability to be used as the basis for blocking, the size and the shape of blocks must be selected to maximize variability among blocks. The guidelines for this decision are (i) When the gradient is unidirectional (*i.e.*, there is only one gradient), use long and narrow blocks. Furthermore, orient these blocks so that their length is perpendicular to the direction of the gradient. (ii) When the fertility gradient occurs in two directions with one gradient much stronger than the other, ignore the weaker gradient and follow the preceding guideline for the case of the unidirectional gradient. (iii) When the fertility gradient occurs in two directions with both gradients equally strong and perpendicular to each other, use blocks that are as square as possible or choose other designs like *latin square design* (Gomez and Gomez, 1980).

Whenever blocking is used, the identity of the blocks and the purpose for their use must be consistent throughout the experiment. That is, whenever a source of variation exists that is beyond the control of the researcher, it should be ensured that such variation occurs among blocks rather than within blocks. For example, if certain operations such as application of insecticides or data collection cannot be completed for the whole experiment in one day, the task should be completed for all plots of the same block on the same day. In this way, variation among days (which may be enhanced by weather factors) becomes a part of block variation and is, thus, excluded from the experimental error. If more than one observer is to make measurements in the trial, the same observer should be assigned to make measurements for all plots of the same block. This way, the variation among observers if any, would constitute a part of block variation instead of the experimental error.

Experimental Layout

Suppose there are k treatments and r blocks in a randomized complete block design, then each block contains k homogenous plots, one of each treatment. An experimental layout for such a design using 6 treatments A,B,C,D,E,F in 3 blocks might be as follows:

BLOCK I	D	В	A	C	F	E
BLOCK II	C	В	E	F	D	A
BLOCK III	С	F	В	D	Α	Е

Statistical Model and Analysis

As each observation in a RCBD is classified by the block to which it belongs and by the treatment it receives, therefore Y_{ij} represents the observation corresponding to block j and treatment i.

The linear statistical model for RCBD is as:

$$Y_{ij} = \mu + \tau_i + \beta_j + e_{ij}$$

$$\begin{cases} i = 1, 2, 3, \dots, t \\ j = 1, 2, 3, \dots, r \end{cases}$$

where

 Y_{ij} - any observation for which i is the treatment factor j is the blocking factor

 μ - the mean

 τ_i - the effect for being in treatment i

 B_i is the effect for being in block j

Formulation of Hypotheses:

$$H_0: \tau_i = 0$$

$$H'_0: \beta_j = 0$$

$$H_1: \tau_i \neq 0$$

$$H'_1: \beta_i \neq 0$$

Level of Significance:

$$\alpha = 0.05$$

Test Statistic:

$$F_1 = \frac{s_t^2}{s_e^2}, \quad F_2 = \frac{s_b^2}{s_e^2}$$

S.O.V	d.f	SS	MS	F
Treatments	t-1	SST	$s_t^2 = \frac{SST}{t - 1}$	$F_1 = \frac{s_t^2}{s_e^2}$
Blocks	r-1	SSB	$s_b^2 = \frac{SSB}{r - 1}$	$F_2 = \frac{s_b^2}{s_e^2}$
Error	(t-1)(r-1)	SSE	$s_e^2 = \frac{SSE}{(t-1)(r-1)}$	
Total	tr-1	TSS		

Where

$$C.F = \frac{Y_{..}^2}{tr}, \quad TSS = \sum \sum Y_{ij}^2 - C.F, \quad SST = \frac{1}{r} \sum Y_{i.}^2 - C.F$$

$$SSB = \frac{1}{t} \sum Y_{.j}^2 - C.F$$
, $SSE = TSS - SST - SSB$

C.R:

$$F_1 \ge F_{\alpha(t-1,(t-1)(r-1))}$$

$$F_2 \ge F_{\alpha(r-1,(t-1)(r-1))}$$

Conclusion:

If calculated value of F falls in the critical region then we reject H_0 .

Advantages of RCBD

- 1. Generally more precise than the CRD.
- 2. No restriction on the number of treatments or replicates.
- 3. Some treatments may be replicated more times than others.
- 4. Missing plots are easily estimated.
- 5. Whole treatments or entire replicates may be deleted from the analysis.
- 6. If experimental error is heterogeneous, valid comparisons can still be made.

Disadvantages of RCBD

- 1. Error df is smaller than that for the CRD (problem with a small number of treatments).
- 2. If there is a large variation between experimental units within a block, a large error term may result (this may be due to too many treatments).
- 3. If there are missing data, a RCBD experiment may be less efficient than a CRD

Estimation of Model Parameters

Let $\hat{\mu}$, $\hat{\tau}_i$, $\hat{\beta}_j$ are the OLS estimators of μ , τ_i , β_j respectively.

$$S = \sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)^2$$

Differentiate w.r.t $\hat{\mu}$, we get

$$\frac{\partial S}{\partial \hat{\mu}} = 2 \sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)(-1)$$

Now put $\frac{\partial S}{\partial \hat{u}} = 0$, we get

$$-2\sum_{i=1}^{t} \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j) = 0$$
$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} - tr\hat{\mu} - r\sum_{i=1}^{t} \hat{\tau}_i - t\sum_{j=1}^{r} \hat{\beta}_j = 0$$

$$tr\hat{\mu} = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} - r \sum_{i=1}^{t} \hat{\tau}_i - t \sum_{j=1}^{r} \hat{\beta}_j$$

For unique solutions put $\sum_{i=1}^{t} \hat{\tau}_i = 0$, and $\sum_{j=1}^{r} \hat{\beta}_j = 0$

$$tr\hat{\mu} = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} - r(0) - t(0)$$

$$\hat{\mu} = \frac{\sum_{i=1}^t \sum_{j=1}^r Y_{ij}}{tr} = \overline{\bar{Y}}$$

$$S = \sum_{j=1}^{r} (Y_{1j} - \hat{\mu} - \hat{\tau}_1 - \hat{\beta}_j)^2 + \sum_{j=1}^{r} (Y_{2j} - \hat{\mu} - \hat{\tau}_2 - \hat{\beta}_j)^2 + \cdots + \sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)^2 + \cdots + \sum_{j=1}^{r} (Y_{tj} - \hat{\mu} - \hat{\tau}_t - \hat{\beta}_j)^2$$

Differentiate w.r.t $\hat{\tau}_1, \hat{\tau}_2, \dots, \hat{\tau}_i, \dots, \hat{\tau}_t$

$$\frac{\partial S}{\partial \hat{\tau}_1} = 2 \sum_{j=1}^r (Y_{1j} - \hat{\mu} - \hat{\tau}_1 - \hat{\beta}_j)(-1) = 0$$

$$-2\sum_{j=1}^{r} (Y_{1j} - \hat{\mu} - \hat{\tau}_{1} - \hat{\beta}_{j}) = 0$$

$$\sum_{j=1}^{r} Y_{1j} - r\hat{\mu} - r\hat{\tau}_{1} - \sum_{j=1}^{r} \hat{\beta}_{j} = 0$$

$$\sum_{j=1}^{r} Y_{1j} = r\hat{\mu} + r\hat{\tau}_{1} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$Y_{1.} = r\hat{\mu} + r\hat{\tau}_{1} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$Y_{2.} = r\hat{\mu} - \hat{\tau}_{2} - \hat{\beta}_{j})(-1) = 0$$

$$-2\sum_{j=1}^{r} (Y_{2j} - \hat{\mu} - \hat{\tau}_{2} - \hat{\beta}_{j}) = 0$$

$$\sum_{j=1}^{r} Y_{2j} - r\hat{\mu} - r\hat{\tau}_{2} - \sum_{j=1}^{r} \hat{\beta}_{j} = 0$$

$$\sum_{j=1}^{r} Y_{2j} = r\hat{\mu} + r\hat{\tau}_{2} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$Y_{2.} = r\hat{\mu} + r\hat{\tau}_{2} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$Y_{2.} = r\hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j})(-1) = 0$$

$$-2\sum_{j=1}^{r} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j})(-1) = 0$$

$$\sum_{j=1}^{r} Y_{ij} - r\hat{\mu} - r\hat{\tau}_{i} - \sum_{j=1}^{r} \hat{\beta}_{j} = 0$$

$$\sum_{j=1}^{r} Y_{ij} - r\hat{\mu} - r\hat{\tau}_{i} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$Y_{i.} = r\hat{\mu} + r\hat{\tau}_{i} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$(i)$$

$$\frac{\partial S}{\partial \hat{\tau}_{t}} = 2 \sum_{j=1}^{r} (Y_{tj} - \hat{\mu} - \hat{\tau}_{t} - \hat{\beta}_{j})(-1) = 0$$

$$-2 \sum_{j=1}^{r} (Y_{tj} - \hat{\mu} - \hat{\tau}_{t} - \hat{\beta}_{j}) = 0$$

$$\sum_{j=1}^{r} Y_{tj} - r\hat{\mu} - r\hat{\tau}_{t} - \sum_{j=1}^{r} \hat{\beta}_{j} = 0$$

$$\sum_{j=1}^{r} Y_{tj} = r\hat{\mu} + r\hat{\tau}_{t} + \sum_{j=1}^{r} \hat{\beta}_{j}$$

$$Y_{t.} = r\hat{\mu} + r\hat{\tau}_{t} + \sum_{j=1}^{r} \hat{\beta}_{j}$$
(t)

From equation (i), put $\sum_{j=1}^{r} \hat{\beta}_j = 0$ we get

$$Y_{i.} = r\hat{\mu} + r\hat{\tau}_i + 0$$

$$r\hat{\tau}_i = Y_{i.} - r\hat{\mu}$$

$$\hat{\tau}_i = \frac{Y_{i.}}{r} - \frac{r\hat{\mu}}{r}$$

$$\hat{\tau}_i = \bar{Y}_{i.} - \bar{\bar{Y}}$$

$$S = \sum_{i=1}^{t} (Y_{i1} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_1)^2 + \sum_{i=1}^{t} (Y_{i2} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_2)^2 + \cdots + \sum_{i=1}^{t} (Y_{ij} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j)^2 + \cdots + \sum_{i=1}^{t} (Y_{ir} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_r)^2$$

Differentiate w.r.t $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_j, \dots, \hat{\beta}_r$

$$\frac{\partial S}{\partial \hat{\beta}_{1}} = 2 \sum_{i=1}^{t} (Y_{i1} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{1})(-1) = 0$$

$$-2 \sum_{i=1}^{t} (Y_{i1} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{1}) = 0$$

$$\sum_{i=1}^{t} Y_{i1} - t\hat{\mu} - \sum_{i=1}^{t} \hat{\tau}_{i} - t\hat{\beta}_{1} = 0$$

$$\sum_{i=1}^{t} Y_{i1} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{1}$$

$$Y_{.1} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{1} \qquad (1)$$

$$\frac{\partial S}{\partial \hat{\beta}_{2}} = 2 \sum_{i=1}^{t} (Y_{i2} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{2})(-1) = 0$$

$$-2 \sum_{i=1}^{t} (Y_{i2} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{2}) = 0$$

$$\sum_{i=1}^{t} Y_{i2} - t\hat{\mu} - \sum_{i=1}^{t} \hat{\tau}_{i} - t\hat{\beta}_{2} = 0$$

$$\sum_{i=1}^{t} Y_{i2} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{2} \qquad (2)$$

$$Y_{.2} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{2} \qquad (2)$$

$$\frac{\partial S}{\partial \hat{\beta}_{j}} = 2 \sum_{i=1}^{t} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j})(-1) = 0$$

$$-2 \sum_{i=1}^{t} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j}) = 0$$

$$\sum_{i=1}^{t} Y_{ij} - t\hat{\mu} - \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{j} \qquad (j)$$

$$Y_{.j} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{j} \qquad (j)$$

$$\frac{\partial S}{\partial \hat{\beta}_{r}} = 2 \sum_{i=1}^{t} (Y_{ir} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{r})(-1) = 0$$

$$-2 \sum_{i=1}^{t} (Y_{ir} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{r}) = 0$$

$$\sum_{i=1}^{t} Y_{ir} - t\hat{\mu} - \sum_{i=1}^{t} \hat{\tau}_{i} - t\hat{\beta}_{r} = 0$$

$$\sum_{i=1}^{t} Y_{ir} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{r}$$

$$Y_{r} = t\hat{\mu} + \sum_{i=1}^{t} \hat{\tau}_{i} + t\hat{\beta}_{r}$$
 (r)

Put $\sum_{i=1}^{t} \hat{\tau}_i = 0$ equation (j), we get

$$Y_{.j} = t\hat{\mu} + 0 + t\hat{\beta}_{j}$$

$$t\hat{\beta}_{j} = Y_{.j} - t\hat{\mu}$$

$$\hat{\beta}_{j} = \frac{Y_{.j}}{t} - \frac{t\hat{\mu}}{t}$$

$$\hat{\beta}_{i} = \bar{Y}_{.j} - \bar{\bar{Y}}$$

Expected Mean Square Error

Fixed Effect Model

Assumptions:

$$1. \quad E(e_{ij}) = 0$$

$$2. \quad E(e_{ij}e_{gh}) = 0$$

3.
$$\sum_{i=1}^{t} \tau_i = 0$$

4.
$$\sum_{i=1}^{r} \beta_i = 0$$

$$Y_{ij} = \mu + \tau_i + \beta_j + e_{ij} \begin{cases} i = 1, 2, 3, \dots, t \\ j = 1, 2, 3, \dots, r \end{cases}$$

$$SSE = TSS - SST - SSB$$

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^2 - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^2}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_i + \beta_j + e_{ij})\right)^2}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_i + t\sum_{j=1}^{r} \beta_j + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^2}{tr}$$

$$= \frac{\left(tr\mu + 0 + 0 + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^2}{tr}$$

$$= \frac{\left(tr\mu + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= \frac{t^{2}r^{2}\mu^{2} + \left(\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2} + 2tr\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}}{tr}$$

$$= tr\mu^{2} + \frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij} e_{gh}}{tr} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}$$

$$E(C.F) = tr\mu^{2} + \frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij}^{2}) + \sum_{i \neq g} \sum_{j \neq h} E(e_{ij}e_{gh})}{tr} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij})$$

$$= tr\mu^{2} + \frac{tr\sigma^{2} + 0}{tr} + 0$$

$$= tr\mu^{2} + \frac{tr\sigma^{2}}{tr}$$

$$= tr\mu^{2} + \sigma^{2}$$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_{i} + \beta_{j} + e_{ij})^{2}$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{r} (\mu^{2} + \tau_{i}^{2} + \beta_{j}^{2} + e_{ij}^{2} + 2\mu\tau_{i} + 2\mu\beta_{j} + 2\mu e_{ij} + 2\tau_{i}\beta_{j} + 2\tau_{i}e_{ij} + 2\beta_{j}e_{ij})$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} \tau_{i}^{2} + t \sum_{j=1}^{r} \beta_{j}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 2r\mu \sum_{i=1}^{t} \tau_{i} + 2t\mu \sum_{j=1}^{r} \beta_{j} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}$$

$$+ 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}\beta_{j} + 2 \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 0 + 0 + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 0 + 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij}$$

$$+ 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j}e_{ij}$$

$$= tr\mu^{2} + r\sum_{i=1}^{t} \tau_{i}^{2} + t\sum_{j=1}^{r} \beta_{j}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{ij}$$

$$+ 2\sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{ij}$$

$$\begin{split} E\left[\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{2}\right] &= tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + \sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}^{2}) + 2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}) \\ &+ 2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}E(e_{ij}) + 2\sum_{i=1}^{t}\sum_{j=1}^{r}\beta_{j}E(e_{ij}) \\ &= tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + tr\sigma^{2} + 0 + 0 + 0 \\ &= tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + tr\sigma^{2} \\ E(TSS) &= E\left[\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{2}\right] - E(C.F) \\ &= tr\mu^{2} + r\sum_{i=1}^{t}\tau_{i}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + tr\sigma^{2} - tr\mu^{2} - \sigma^{2} \\ &= r\sum_{i=1}^{t}\tau_{i}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + (tr-1)\sigma^{2} \\ SST &= \frac{\sum_{i=1}^{t}Y_{i}^{2}}{r} - C.F \\ Y_{i.} &= \sum_{j=1}^{r}Y_{ij} = \sum_{j=1}^{r}(\mu + \tau_{i} + \beta_{j} + e_{ij}) = r\mu + r\tau_{i} + \sum_{j=1}^{r}\beta_{j} + \sum_{j=1}^{r}e_{ij} \\ &= r\mu + r\tau_{i} + 0 + \sum_{j=1}^{r}e_{ij} = r\mu + r\tau_{i} + \sum_{j=1}^{r}e_{ij} \\ &= \frac{\sum_{i=1}^{t}\left(r^{2}\mu^{2} + r^{2}\tau_{i}^{2} + \left(\sum_{j=1}^{r}e_{ij}\right)^{2} + 2r^{2}\mu\tau_{i} + 2r\mu\sum_{j=1}^{r}e_{ij} + 2r\tau_{i}\sum_{j=1}^{r}e_{ij}\right)}{r} \\ &= \frac{\sum_{i=1}^{t}\left(r^{2}\mu^{2} + r^{2}\tau_{i}^{2} + \sum_{j=1}^{r}e_{ij} + \sum_{j\neq h}e_{ij}e_{ih} + 2r^{2}\mu\tau_{i} + 2r\mu\sum_{i=1}^{r}\tau_{i} + 2r\mu\sum_{i=1}^{r}e_{ij} + 2r\tau_{i}\sum_{j=1}^{r}e_{ij}\right)}{r} \\ &= \frac{t^{r}\mu^{2}}{r^{2}} + r^{2}\sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i\neq h}^{r}e_{ij}e_{ih} + 2r^{2}\mu\tau_{i}^{2} + 2r\mu\sum_{i=1}^{r}\tau_{i} + 2r\mu\sum_{i=1}^{r}e_{ij} + 2r\tau_{i}\sum_{i=1}^{r}\Sigma_{j=1}^{r}e_{ij}}{r} \\ &= \frac{t^{r}\mu^{2}}{r^{2}} + r^{2}\sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i\neq h}^{r}e_{ij}e_{ih} + 2r^{2}\mu\sum_{i=1}^{r}\tau_{i} + 2r\mu\sum_{i=1}^{r}E_{ij} + 2r\tau_{i}\sum_{i=1}^{r}\Sigma_{j=1}^{r}e_{ij}}{r} \\ &= \frac{t^{r}\mu^{2}}{r^{2}} + r^{2}\sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i\neq h}^{t}e_{ij}e_{ih} + 2r^{2}\mu\sum_{i=1}^{t}\tau_{i} + 2r\mu\sum_{i=1}^{t}E_{ij} + 2r\tau_{i}\sum_{i=1}^{r}\Sigma_{j=1}^{r}e_{ij}}{r} \\ &= \frac{t^{r}\mu^{2}}{r^{2}} + r^{2}\sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i\neq h}^{t}e_{ij}e_{ij} + \sum_{i\neq h}^{t}e_{ij}e_{ij}}{r} \\ &= \frac{t^{r}\mu^{2}}{r^{2}} + r^{2}\sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}\tau_{i}^{2} + \sum_{i=1}^{t}$$

$$\begin{split} &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{l} \tau_l^2 + \sum_{l=1}^{l} \sum_{j=1}^{l} e_{ij}^2 + \sum_{l=g} \sum_{j=h} e_{ij} e_{gh} + 0 + 2r \mu \sum_{l=1}^{l} \sum_{j=1}^{l} e_{ij} + 2r \sum_{l=1}^{l} \sum_{j=1}^{l} e_{ij}^2 \tau_l} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{l} \tau_l^2 + \sum_{l=1}^{l} \sum_{j=1}^{l} e_{ij}^2 + \sum_{l=g} \sum_{j=h} e_{ij} e_{gh} + 2r \mu \sum_{l=1}^{l} \sum_{j=1}^{l} e_{ij} + 2r \sum_{l=1}^{l} \sum_{j=1}^{l} e_{ij} \tau_l} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{l} \tau_l^2 + \sum_{l=1}^{l} \sum_{j=1}^{l} E_{e_{ij}}^2) + \sum_{l=g} \sum_{j=h} E_{le_{ij}} e_{gh} + 2r \mu \sum_{l=1}^{l} \sum_{j=1}^{r} E_{le_{ij}} + 2r \sum_{l=1}^{l} \sum_{j=1}^{r} e_{ij} \tau_l} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{l} \tau_l^2 + \sum_{l=1}^{l} \sum_{j=1}^{r} E_{le_{ij}} + \sum_{l=1}^{l} E_{le_{ij}} \tau_l^2}{r} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{l} \sum_{j=1}^{r} E_{le_{ij}} + \sum_{l=1}^{l} E_{le_{ij}} \tau_l^2}{r} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{l} \sum_{j=1}^{r} E_{le_{ij}} + \sum_{l=1}^{l} E_{le_{ij}} \tau_l^2}{r} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{r} \sum_{j=1}^{r} E_{le_{ij}} + \sum_{l=1}^{r} E_{le_{ij}} \tau_l^2}{r} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{r^2} \sum_{l=1}^{r} \sum_{j=1}^{r} E_{le_{ij}} + \sum_{l=1}^{r} E_{le_{ij}} + \sum_{l=1}^{r} E_{le_{ij}} + \sum_{l=1}^{r} E_{le_{ij}} \tau_l^2}{r} \\ &= \frac{\operatorname{tr}^2 \mu^2 + \operatorname{t^2} \sum_{j=1}^{r} \sum_{j=1}^{r} \sum_{l=1}^{r} E_{le_{ij}} + \sum_{l=1}^{r} E_{le$$

$$= tr\mu^{2} + t \sum_{j=1}^{r} \beta_{j}^{2} + r\sigma^{2} - tr\mu^{2} - \sigma^{2}$$

$$= t \sum_{j=1}^{r} \beta_{j}^{2} + (r-1)\sigma^{2}$$

$$E(SSE) = E(TSS) - E(SST) - E(SSB)$$

$$= r \sum_{i=1}^{t} \tau_{i}^{2} + t \sum_{j=1}^{r} \beta_{j}^{2} + (tr-1)\sigma^{2} - r \sum_{i=1}^{t} \tau_{i}^{2} - (t-1)\sigma^{2} - t \sum_{j=1}^{r} \beta_{j}^{2} - (r-1)\sigma^{2}$$

$$= (tr-1)\sigma^{2} - (t-1)\sigma^{2} - (r-1)\sigma^{2}$$

$$= (tr-1-t+1-r+1)\sigma^{2}$$

$$= (tr-1-t+1-r+1)\sigma^{2}$$

$$= (tr-1-t)(r-1)\sigma^{2}$$

$$= (tr-1)(r-1)\sigma^{2}$$

$$= (t-1)(r-1)\sigma^{2}$$

$$= (t-1)(r-1)\sigma^{2}$$

$$= E(MSE) = E\left[\frac{SSE}{(t-1)(r-1)}\right]$$

$$= \frac{E(SSE)}{(t-1)(r-1)} = \frac{(t-1)(r-1)\sigma^{2}}{(t-1)(r-1)} = \sigma^{2}$$

$$E(MST) = E\left[\frac{SST}{t-1}\right]$$

$$= \frac{E(SST)}{t-1} = \frac{r\sum_{i=1}^{t} \tau_{i}^{2} + (t-1)\sigma^{2}}{t-1} = \sigma^{2} + \frac{r\sum_{i=1}^{t} \tau_{i}^{2}}{t-1}$$

$$= \frac{E(SSB)}{r-1} = \frac{t\sum_{j=1}^{r} \beta_{j}^{2} + (r-1)\sigma^{2}}{r-1} = \sigma^{2} + \frac{t\sum_{j=1}^{r} \beta_{j}^{2}}{r-1}$$

Random Effect Model

Assumptions:

1.
$$E(e_{ij}) = 0$$

$$2. \quad E(e_{ij}e_{gh}) = 0$$

3.
$$e_i \sim iidN(0, \sigma^2)$$

4.
$$\tau_i \sim iidN(0, \sigma_\tau^2)$$

5.
$$\beta_j \sim iidN(0, \sigma_\beta^2)$$

$$6. \quad E(\tau_i \tau_j) = 0$$

7.
$$E(\beta_i \beta_i) = 0$$

8.
$$E(\tau_i e_{ij}) = 0$$

9.
$$E(\beta_i e_{ij}) = 0$$

10.
$$E(\tau_i\beta_j)=0$$

$$Y_{ij} = \mu + \tau_i + \beta_j + e_{ij}$$

$$\begin{cases} i = 1, 2, 3, \dots, t \\ j = 1, 2, 3, \dots, r \end{cases}$$

$$SSE = TSS - SST - SSB$$

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^{2}}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_{i} + \beta_{j} + e_{ij})\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_{i} + t\sum_{j=1}^{r} \beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$t^{2}r^{2}\mu^{2} + r^{2}\sum_{i=1}^{t} \tau_{i}^{2} + r^{2}\sum_{i\neq j} \tau_{i}\tau_{j} + t^{2}\sum_{j=1}^{r} \beta_{j}^{2} + t^{2}\sum_{i\neq j} \beta_{i}\beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij}e_{gh} + 2tr^{2}\mu\sum_{i=1}^{t} \tau_{i} + 2t^{2}r\mu\sum_{j=1}^{r} \beta_{j} + 2tr\mu\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2tr\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}\beta_{j} + 2r\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij}$$

$$tr$$

$$\frac{t^2r^2\mu^2 + r^2\sum_{i=1}^{t}E(\tau_i^2) + r^2\sum\sum_{i\neq j}E(\tau_i\tau_j) + t^2\sum_{j=1}^{r}E(\beta_j^2) + t^2\sum\sum_{i\neq j}E(\beta_i\beta_j) + \sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}^2) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij}e_{gh})}{+2tr^2\mu\sum_{i=1}^{t}E(\tau_i) + 2t^2r\mu\sum_{j=1}^{r}E(\beta_j) + 2tr\mu\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}) + 2tr\sum_{i=1}^{t}\sum_{j=1}^{r}E(\tau_i\beta_j) + 2r\sum_{i=1}^{t}\sum_{j=1}^{r}E(\tau_ie_{ij})} \\ \frac{2t\sum_{i=1}^{t}\sum_{j=1}^{r}E(\beta_je_{ij})}{tr}$$

$$= \frac{t^2r^2\mu^2 + tr^2\sigma_{\tau}^2 + 0 + t^2r\sigma_{\beta}^2 + 0 + tr\sigma^2 + 0 + 0 + 0 + 0 + 0 + 0}{tr}$$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r} (\mu + \tau_{i} + \beta_{j} + e_{ij})^{2}$$

 $E(C.F) = tr\mu^2 + r\sigma_{\tau}^2 + t\sigma_{\beta}^2 + \sigma^2$

$$= \sum_{i=1}^{t} \sum_{j=1}^{r} (\mu^2 + \tau_i^2 + \beta_j^2 + e_{ij}^2 + 2\mu\tau_i + 2\mu\beta_j + 2\mu e_{ij} + 2\tau_i\beta_j + 2\tau_i e_{ij} + 2\beta_j e_{ij})$$

$$=tr\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+t\sum_{j=1}^{r}\beta_{j}^{2}+\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij}^{2}+2r\mu\sum_{i=1}^{t}\tau_{i}+2t\mu\sum_{j=1}^{r}\beta_{j}+2\mu\sum_{i=1}^{t}\sum_{j=1}^{r}e_{ij}$$

$$+2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}\beta_{j}+2\sum_{i=1}^{t}\sum_{j=1}^{r}\tau_{i}e_{ij}+2\sum_{i=1}^{t}\sum_{j=1}^{r}\beta_{j}e_{ij}$$

$$= tr\mu^{2} + r\sum_{i=1}^{t} E(\tau_{i}^{2}) + t\sum_{j=1}^{r} E(\beta_{j}^{2}) + \sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij}^{2}) + 2r\mu\sum_{i=1}^{t} E(\tau_{i}) + 2t\mu\sum_{j=1}^{r} E(\beta_{j}) + 2\mu\sum_{i=1}^{t} \sum_{j=1}^{r} E(e_{ij}) + 2\sum_{i=1}^{t} \sum_{j=1}^{r} E(\tau_{i}\beta_{j}) + 2\sum_{i=1}^{t} \sum_{j=1}^{r} E(\tau_{i}e_{ij}) + 2\sum_{i=1}^{t} \sum_{j=1}^{r} (\beta_{j}e_{ij})$$

$$= tr\mu^{2} + tr\sigma_{\tau}^{2} + tr\sigma_{\beta}^{2} + tr\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0$$

$$E\left(\sum_{l=1}^{t}\sum_{j=1}^{r}Y_{ij}^{2}\right) = tr\mu^{2} + tr\sigma_{\tau}^{2} + tr\sigma_{\beta}^{2} + tr\sigma^{2}$$

$$E(TSS) = E\left(\sum_{l=1}^{t}\sum_{j=1}^{r}Y_{ij}^{2}\right) - E(C.F)$$

$$= tr\mu^{2} + tr\sigma_{\tau}^{2} + tr\sigma_{\beta}^{2} + tr\sigma^{2} - tr\mu^{2} - r\sigma_{\tau}^{2} - t\sigma_{\beta}^{2} - \sigma^{2}$$

$$= r(t-1)\sigma_{\tau}^{2} + t(r-1)\sigma_{\beta}^{2} + (tr-1)\sigma^{2}$$

$$SST = \frac{\sum_{l=1}^{t}Y_{l}^{2}}{r} - C.F$$

$$Y_{l.} = \sum_{j=1}^{r}Y_{ij} = \sum_{j=1}^{r}(\mu + \tau_{l} + \beta_{j} + e_{ij}) = r\mu + r\tau_{l} + \sum_{j=1}^{r}\beta_{j} + \sum_{j=1}^{r}e_{ij}$$

$$= \frac{\sum_{l=1}^{t}Y_{l}^{2}}{r} = \frac{\sum_{l=1}^{t}(r\mu + r\tau_{l} + \sum_{j=1}^{r}\beta_{j} + \sum_{j=1}^{r}e_{ij})^{2}}{r}$$

$$= \frac{\sum_{l=1}^{t}\left(r^{2}\mu^{2} + r^{2}\tau_{l}^{2} + \sum_{j=1}^{r}\beta_{j}^{2} + \sum_{l\neq j}\beta_{l}\beta_{j} + \sum_{j=1}^{r}e_{lj} + 2r\tau_{l}\sum_{j=1}^{r}e_{lj} + 2r\tau_{l}\sum_{j=1}^{r}e_{lj} + 2r\tau_{l}\sum_{j=1}^{r}\beta_{j}e_{lj}}{r}\right)}{r}$$

$$= \frac{tr^{2}\mu^{2} + r^{2}\sum_{l=1}^{t}\tau_{l}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + t\sum_{l\neq j}\sum_{l\neq j}\beta_{l}\beta_{j} + \sum_{l=1}^{t}\sum_{j=1}^{r}e_{lj} + \sum_{l\neq j}\sum_{l\neq k}e_{lj}e_{gh} + 2r^{2}\mu\sum_{l=1}^{t}\tau_{l} + 2tr\mu\sum_{j=1}^{r}\beta_{j}}{r}$$

$$= \frac{tr^{2}\mu^{2} + r^{2}\sum_{l=1}^{t}\tau_{l}^{2} + t\sum_{l=1}^{r}\sum_{j=1}^{r}e_{lj} + t\sum_{l=1}^{r}\sum_{j=1}^{r}e_{lj} + \sum_{l=1}^{r}\sum_{j=1}^{r}e_{lj} + \sum_{l=1}^{r}\sum_{j=1}^{r}\beta_{j}e_{lj}}{r}$$

$$\begin{split} &tr^2\mu^2 + r^2\sum_{i=1}^t E(\tau_i^2) + t\sum_{j=1}^r E(\beta_j^2) + t\sum_{i\neq j} E(\beta_i\beta_j) + \sum_{i=1}^t \sum_{j=1}^r E(e_{ij}^2) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij}e_{gh}) \\ &+ 2r^2\mu\sum_{i=1}^t E(\tau_i) + 2tr\mu\sum_{j=1}^r E(\beta_j) + 2r\mu\sum_{i=1}^t \sum_{j=1}^r E(e_{ij}) + 2r\sum_{i=1}^t \sum_{j=1}^r E(\tau_i\beta_j) \\ &+ 2r\sum_{i=1}^t \sum_{j=1}^r E(\tau_ie_{ij}) + 2\sum_{i=1}^t \sum_{j=1}^r E(\beta_je_{ij}) \\ &= \frac{tr^2\mu^2 + tr^2\sigma_\tau^2 + tr\sigma_\beta^2 + 0 + tr\sigma^2 + 0 + 0 + 0 + 0 + 0 + 0 + 0}{r} \\ &= \frac{E\left[\frac{\sum_{i=1}^t Y_{i.}^2}{r}\right] = tr\mu^2 + tr\sigma_\tau^2 + t\sigma_\beta^2 + t\sigma^2}{r} \\ &= \frac{E(SST) = E\left[\frac{\sum_{i=1}^t Y_{i.}^2}{r}\right] - E(C.F)}{r} \\ &= tr\mu^2 + tr\sigma_\tau^2 + t\sigma_\beta^2 + t\sigma^2 - tr\mu^2 - r\sigma_\tau^2 - t\sigma_\beta^2 - \sigma^2 \\ &= tr\sigma_\tau^2 + t\sigma^2 - r\sigma_\tau^2 - \sigma^2 \\ &= r(t-1)\sigma_\tau^2 + (t-1)\sigma^2 \\ &SSB = \frac{\sum_{j=1}^t Y_{.j}^2}{t} - C.F \end{split}$$

$$= \frac{\sum_{j=1}^{r} \left(t^{2}\mu^{2} + \sum_{i=1}^{t} \tau_{i}^{2} + \sum_{i=1}^{t} \tau_{i} \tau_{i} \tau_{j} + t^{2}\beta_{j}^{2} + \sum_{i=1}^{t} e_{ij}^{2} + \sum_{i=1}^{t} e_{ij} + 2t\mu \sum_{i=1}^{t} \tau_{i} + 2t^{2}\mu\beta_{j} \right)}{t}$$

$$+ 2t\mu \sum_{i=1}^{t} e_{ij} + 2\sum_{i=1}^{t} \tau_{i} e_{ij} + 2t\beta_{j} \sum_{i=1}^{t} \tau_{i} + 2t\beta_{j} \sum_{i=1}^{t} \tau_{i} + 2t^{2}\mu\beta_{j} \right)$$

$$+ 2t\mu \sum_{i=1}^{t} \tau_{i}^{2} + r \sum_{i=1}^{t} \tau_{i}^$$

Mixed Effect Model

Case I: In this model the effect of τ_i is fixed and effect of β_j is random Assumptions:

$$1. \quad E(e_{ij}) = 0$$

$$2. \quad E(e_{ij}e_{gh})=0$$

3.
$$e_i \sim iidN(0, \sigma^2)$$

4.
$$\beta_i \sim iidN(0, \sigma_R^2)$$

5.
$$E(\beta_i\beta_i)=0$$

6.
$$E(\beta_i e_{ij}) = 0$$

7.
$$\sum_{i=1}^{t} \tau_i = 0$$

$$Y_{ij} = \mu + \tau_{i} + \beta_{j} + e_{ij} \begin{cases} i = 1, 2, 3, ..., t \\ j = 1, 2, 3, ..., r \end{cases}$$

$$SSE = TSS - SST - SSB$$

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^{2}}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} \left(\mu + \tau_{i} + \beta_{j} + e_{ij}\right)\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_{i} + t\sum_{j=1}^{r} \beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + 0 + t\sum_{j=1}^{r} \beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + t\sum_{j=1}^{r} \beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$t^{2}r^{2}\mu^{2} + t^{2}\sum_{j=1}^{r} \beta_{j}^{2} + t^{2}\sum_{i\neq j} \beta_{i}\beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij}e_{gh} + 2t^{2}r\mu\sum_{j=1}^{r} \beta_{j}}{tr}$$

$$= \frac{tr}{tr}$$

$$\frac{t^{2}r^{2}\mu^{2} + t^{2}\sum_{j=1}^{r}E(\beta_{j}^{2}) + t^{2}\sum_{i\neq j}E(\beta_{i}\beta_{j}) + \sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}^{2}) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij}e_{gh}) + 2t^{2}r\mu\sum_{j=1}^{r}E(\beta_{j})}{+2tr\mu\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}) + 2t\sum_{i=1}^{t}\sum_{j=1}^{r}E(\beta_{j}e_{ij})}$$

$$= \frac{t^2r^2\mu^2 + t^2r\sigma_{\beta}^2 + 0 + tr\sigma^2 + 0 + 0 + 0 + 0}{tr}$$

$$E(C.F) = tr\mu^2 + t\sigma_{\beta}^2 + \sigma^2$$

$$\sum_{i=1}^t \sum_{j=1}^r Y_{ij}^2 = \sum_{i=1}^t \sum_{j=1}^r (\mu + \tau_i + \beta_j + e_{ij})^2$$

$$= \sum_{i=1}^t \sum_{j=1}^r (\mu^2 + \tau_i^2 + \beta_j^2 + e_{ij}^2 + 2\mu\tau_i + 2\mu\beta_j + 2\mu e_{ij} + 2\tau_i\beta_j + 2\tau_i e_{ij} + 2\beta_j e_{ij})$$

$$= tr\mu^2 + r \sum_{i=1}^t \tau_i^2 + t \sum_{j=1}^r \beta_j^2 + \sum_{i=1}^t \sum_{j=1}^r e_{ij}^2 + 2r\mu \sum_{i=1}^t \tau_i + 2t\mu \sum_{j=1}^r \beta_j + 2\mu \sum_{i=1}^t \sum_{j=1}^r e_{ij}$$

$$+ 2 \sum_{i=1}^t \sum_{j=1}^r \tau_i\beta_j + 2 \sum_{i=1}^t \sum_{j=1}^r \tau_i e_{ij} + 2 \sum_{i=1}^t \sum_{j=1}^r \beta_j e_{ij}$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} \tau_{i}^{2} + t \sum_{j=1}^{r} \beta_{j}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 0 + 2t\mu \sum_{j=1}^{r} \beta_{j} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}$$

$$+ 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{ij} + 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{ij}$$

$$= tr\mu^{2} + r \sum_{i=1}^{t} \tau_{i}^{2} + t \sum_{j=1}^{r} \beta_{j}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 2t\mu \sum_{j=1}^{r} \beta_{j} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}$$

$$+ 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{ij} + 2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{ij}$$

$$\begin{split} &= tr\mu^2 + r \sum_{l=1}^t \tau_l^2 + t \sum_{j=1}^r E(\beta_j^2) + \sum_{l=1}^t \sum_{j=1}^r E(e_{ij}^2) + 2t\mu \sum_{j=1}^r E(\beta_j) + 2\mu \sum_{l=1}^t \sum_{j=1}^r E(e_{ij}) \\ &+ 2 \sum_{l=1}^t \sum_{j=1}^r \tau_l E(\beta_j) + 2 \sum_{l=1}^t \sum_{j=1}^r \tau_l E(e_{ij}) + 2 \sum_{l=1}^t \sum_{j=1}^r E(\beta_j e_{ij}) \\ &= tr\mu^2 + r \sum_{l=1}^t \tau_l^2 + tr\sigma_\beta^2 + tr\sigma^2 + 0 + 0 + 0 + 0 + 0 \\ &E\left(\sum_{l=1}^t \sum_{j=1}^r Y_{ij}^2\right) = tr\mu^2 + r \sum_{l=1}^t \tau_l^2 + tr\sigma_\beta^2 + tr\sigma^2 \\ &E(TSS) = E\left(\sum_{l=1}^t \sum_{j=1}^r Y_{ij}^2\right) - E(C.F) \\ &= tr\mu^2 + r \sum_{l=1}^t \tau_l^2 + tr\sigma_\beta^2 + tr\sigma^2 - tr\mu^2 - t\sigma_\beta^2 - \sigma^2 \\ &= r \sum_{l=1}^t \tau_l^2 + tr\sigma_\beta^2 + tr\sigma^2 - t\sigma_\beta^2 - \sigma^2 \\ &= r \sum_{l=1}^t \tau_l^2 + tr\sigma_\beta^2 + tr\sigma^2 - t\sigma_\beta^2 - \sigma^2 \\ &= r \sum_{l=1}^t \tau_l^2 + t(r-1)\sigma_\beta^2 + (tr-1)\sigma^2 \\ SST = \frac{\sum_{l=1}^t Y_{i,l}^2}{r} - C.F \\ Y_{i.} &= \sum_{j=1}^r Y_{i,j} = \sum_{j=1}^r (\mu + \tau_l + \beta_j + e_{ij}) = r\mu + r\tau_l + \sum_{j=1}^r \beta_j + \sum_{j=1}^r e_{ij} \\ &= \frac{\sum_{l=1}^t Y_{i,l}^2}{r} = \frac{\sum_{l=1}^t (r\mu + r\tau_l + \sum_{j=1}^r \beta_j + \sum_{j=1}^r e_{ij})^2}{r} \end{split}$$

$$\begin{split} &= \frac{\sum_{i=1}^{t} \binom{r^2 \mu^2 + r^2 \tau_i^2 + \sum_{j=1}^{r} \beta_j^2 + \sum_{i \neq j} \beta_i \beta_j + \sum_{j=1}^{r} e_{ij}^2 + \sum_{j \neq h} e_{ij} e_{ij} + 2r^2 \mu \sum_{j=1}^{r} \beta_j}{r^2 + 2r \mu \sum_{j=1}^{r} \beta_j} + 2r \mu \sum_{j=1}^{r} \beta_j \\ &+ 2r \mu \sum_{j=1}^{r} e_{ij} + 2r \tau_i \sum_{j=1}^{r} \beta_j + 2r \tau_i \sum_{j=1}^{r} e_{ij} + 2\sum_{i \neq j} \beta_j e_{ij} \\ &= \frac{tr^2 \mu^2 + r^2 \sum_{i=1}^{r} \tau_i^2 + t \sum_{j=1}^{r} \beta_j^2 + t \sum_{i=1}^{r} \sum_{j=1}^{r} t_j \beta_j + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} e_{ij}^2 + \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}}{r^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} e_{ij}^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \tau_j e_{ij} + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} e_{ij} e_{ij} + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}} \\ &= \frac{tr^2 \mu^2 + r^2 \sum_{i=1}^{r} \tau_i^2 + t \sum_{j=1}^{r} \beta_j^2 + t \sum_{i=1}^{r} \sum_{j=1}^{r} t_j \beta_j + \sum_{i=1}^{r} \sum_{j=1}^{r} e_{ij}^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}}{r^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}} \\ &= \frac{tr^2 \mu^2 + r^2 \sum_{i=1}^{r} \tau_i^2 + t \sum_{j=1}^{r} \beta_j^2 + t \sum_{i=1}^{r} \sum_{j=1}^{r} \xi_j + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} e_{ij}^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}}{r^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}} \\ &= \frac{tr^2 \mu^2 + r^2 \sum_{i=1}^{r} \tau_i^2 + t \sum_{j=1}^{r} \beta_j^2 + t \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} e_{ij}^2 + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}}{r} \\ &= \frac{tr^2 \mu^2 + r^2 \sum_{i=1}^{r} \tau_i^2 + t \sum_{j=1}^{r} E(\beta_j^2) + \sum_{i=1}^{r} \sum_{j=1}^{r} E(\beta_j) + \sum_{i=1}^{r} \sum_{j=1}^{r} E(e_{ij}^2) + 2r \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_j e_{ij}}{r} \\ &= \frac{tr^2 \mu^2 + r^2 \sum_{i=1}^{r} \tau_i^2 + t \sum_{i=1}^{r} E(\beta_j^2) + t \sum_{i=1}^{r} \sum_{j=1}^{r} E(\beta_j) + \sum_{i=1}^{r} \sum_{j=1}^{r} E(e_{ij}^2) + 2r \sum_{i$$

$$\frac{\sum_{j=1}^{r} Y_{.j}^{2}}{t} = \frac{\sum_{j=1}^{r} (t\mu + t\beta_{j} + \sum_{i=1}^{t} e_{ij})^{2}}{t}$$

$$= \frac{\sum_{j=1}^{r} (t^{2}\mu^{2} + t^{2}\beta_{j}^{2} + \sum_{i=1}^{t} e_{ij}^{2} + \sum_{i\neq g} e_{ij}e_{gj} + 2t^{2}\mu\beta_{j} + 2t\mu\sum_{i=1}^{t} e_{ij} + 2t\beta_{j}\sum_{i=1}^{t} e_{ij})}{t}$$

$$= \frac{t^2 r \mu^2 + t^2 \sum_{j=1}^r \beta_j^2 + \sum_{i=1}^t \sum_{j=1}^r e_{ij}^2 + \sum_{i \neq g} \sum_{j \neq h} e_{ij} e_{gh} + 2 t^2 \mu \sum_{j=1}^r \beta_j + 2 t \mu \sum_{i=1}^t \sum_{j=1}^r e_{ij} + 2 t \sum_{i=1}^t \sum_{j=1}^r \beta_j e_{ij}}{t}$$

$$= \frac{t^2r\mu^2 + t^2\sum_{j=1}^r E(\beta_j^2) + \sum_{i=1}^t \sum_{j=1}^r E(e_{ij}^2) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij}e_{gh}) + 2t^2\mu\sum_{j=1}^r E(\beta_j)}{t}}{t}$$

$$= \frac{t^2r\mu^2 + t^2\sum_{j=1}^r E(e_{ij}) + 2t\sum_{i=1}^t \sum_{j=1}^r E(\beta_je_{ij})}{t}$$

$$= \frac{t^2r\mu^2 + t^2r\sigma_{\beta}^2 + tr\sigma^2 + 0 + 0 + 0 + 0}{t}$$

$$E\left[\frac{\sum_{j=1}^r Y_{,j}^2}{t}\right] = tr\mu^2 + tr\sigma_{\beta}^2 + r\sigma^2$$

$$E(SSB) = E\left[\frac{\sum_{j=1}^r Y_{,j}^2}{t}\right] - E(C.F)$$

$$= tr\mu^2 + tr\sigma_{\beta}^2 + r\sigma^2 - tr\mu^2 - t\sigma_{\beta}^2 - \sigma^2$$

$$= t(r - 1)\sigma_{\beta}^2 + (r - 1)\sigma^2$$

$$E(SSE) = E(TSS) - E(SST) - E(SSB)$$

$$= r\sum_{i=1}^t \tau_i^2 + t(r - 1)\sigma_{\beta}^2 + (tr - 1)\sigma^2 - r\sum_{i=1}^t \tau_i^2 - (t - 1)\sigma^2 - t(r - 1)\sigma_{\beta}^2 - (r - 1)\sigma^2$$

$$= (tr - 1 - t + 1 - r + 1)\sigma^2 = (tr - t - r + 1)\sigma^2$$

$$= (t(r - 1) - 1(r - 1))\sigma^2 = (t - 1)(r - 1)\sigma^2$$

$$E(MSE) = E\left[\frac{SSE}{(t - 1)(r - 1)}\right]$$

$$= \frac{E(SSE)}{(t - 1)(r - 1)} = \frac{(t - 1)(r - 1)\sigma^2}{(t - 1)(r - 1)} = \sigma^2$$

$$E(MST) = E\left[\frac{SST}{t - 1}\right]$$

$$= \frac{E(SST)}{t - 1} = \frac{r\sum_{i=1}^t \tau_i^2 + (t - 1)\sigma^2}{t - 1} = \sigma^2 + t\sigma_{\beta}^2$$

$$= \frac{E(SSB)}{r - 1} = \frac{t(r - 1)\sigma_{\beta}^2 + (r - 1)\sigma^2}{r - 1} = \sigma^2 + t\sigma_{\beta}^2$$

Case II: In this model the effect of τ_i is random and effect of β_j is fixed Assumptions:

- $1. \quad E(e_{ij}) = 0$
- $2. \quad E(e_{ij}e_{gh}) = 0$
- 3. $e_i \sim iidN(0, \sigma^2)$
- 4. $\tau_i \sim iidN(0, \sigma_\tau^2)$
- $5. \quad E(\tau_i \tau_j) = 0$
- 6. $E(\tau_i e_{ij}) = 0$
- $7. \quad \sum_{j=1}^{r} \beta_j = 0$

$$Y_{ij} = \mu + \tau_i + \beta_j + e_{ij}$$

$$\begin{cases} i = 1, 2, 3, ..., t \\ j = 1, 2, 3, ..., r \end{cases}$$

$$SSE = TSS - SST - SSB$$

$$TSS = \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^{2}}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} \left(\mu + \tau_{i} + \beta_{j} + e_{ij}\right)\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_{i} + t\sum_{j=1}^{r} \beta_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_{i} + 0 + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= \frac{\left(tr\mu + r\sum_{i=1}^{t} \tau_{i} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}\right)^{2}}{tr}$$

$$= t^{2}r^{2}\mu^{2} + r^{2}\sum_{i=1}^{t} \tau_{i}^{2} + r^{2}\sum_{i\neq j} \tau_{i}\tau_{j} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij}e_{gh} + 2r^{2}t\mu\sum_{i=1}^{t} \tau_{i}$$

$$+ 2tr\mu\sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2r\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{j}e_{ij}$$

$$= \frac{t^2r^2\mu^2 + r^2\sum_{i=1}^{t}E(\tau_i^2) + r^2\sum\sum_{i\neq j}E(\tau_i\tau_j) + \sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}^2) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij}e_{gh}) + 2r^2t\mu\sum_{i=1}^{t}E(\tau_i)}{+2tr\mu\sum_{i=1}^{t}\sum_{j=1}^{r}E(e_{ij}) + 2r\sum_{i=1}^{t}\sum_{j=1}^{r}E(\tau_je_{ij})}$$

$$\begin{split} &=\frac{t^2r^2\mu^2+tr^2\sigma_{\tau}^2+0+tr\sigma^2+0+0+0+0}{tr}\\ &=\frac{t}{E(C.F)}=tr\mu^2+r\sigma_{\tau}^2+\sigma^2\\ &\sum_{i=1}^t\sum_{j=1}^rY_{ij}^2=\sum_{i=1}^t\sum_{j=1}^r\left(\mu+\tau_i+\beta_j+e_{ij}\right)^2\\ &=\sum_{i=1}^t\sum_{j=1}^r\left(\mu^2+\tau_i^2+\beta_j^2+e_{ij}^2+2\mu\tau_i+2\mu\beta_j+2\mu e_{ij}+2\tau_i\beta_j+2\tau_i e_{ij}+2\beta_j e_{ij}\right)\\ &=tr\mu^2+r\sum_{i=1}^t\tau_i^2+t\sum_{j=1}^r\beta_j^2+\sum_{i=1}^t\sum_{j=1}^re_{ij}^2+2r\mu\sum_{i=1}^t\tau_i+2t\mu\sum_{j=1}^r\beta_j+2\mu\sum_{i=1}^t\sum_{j=1}^re_{ij}\\ &+2\sum_{i=1}^t\sum_{j=1}^r\tau_i\beta_j+2\sum_{i=1}^t\sum_{j=1}^r\tau_i e_{ij}+2\sum_{i=1}^t\sum_{j=1}^r\beta_j e_{ij}\\ &=tr\mu^2+r\sum_{i=1}^t\tau_i^2+t\sum_{j=1}^r\beta_j^2+\sum_{i=1}^t\sum_{j=1}^re_{ij}^2+2r\mu\sum_{i=1}^t\tau_i+0+2\mu\sum_{i=1}^t\sum_{j=1}^re_{ij}+2\sum_{i=1}^t\sum_{j=1}^r\tau_i\beta_j\\ &+2\sum_{i=1}^t\sum_{j=1}^r\tau_i e_{ij}+2\sum_{i=1}^t\sum_{j=1}^r\beta_j e_{ij} \end{split}$$

$$= tr\mu^{2} + r\sum_{i=1}^{t} \tau_{i}^{2} + t\sum_{j=1}^{r} \beta_{j}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij}^{2} + 2r\mu \sum_{i=1}^{t} \tau_{i} + 2\mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{ij} + 2\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}\beta_{j}$$

$$+ 2\sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i}e_{ij} + 2\sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j}e_{ij}$$

$$\begin{split} & = tr\mu^2 + r \sum_{l=1}^t E(\tau_l^2) + t \sum_{j=1}^r \beta_j^2 + \sum_{l=1}^t \sum_{j=1}^r E(e_{lj}^2) + 2r\mu \sum_{l=1}^t E(\tau_l) + 2\mu \sum_{l=1}^t \sum_{j=1}^r E(e_{lj}) \\ & + 2 \sum_{l=1}^t \sum_{j=1}^r E(\tau_l) \beta_j + 2 \sum_{l=1}^t \sum_{j=1}^r E(\tau_l e_{lj}) + 2 \sum_{l=1}^t \sum_{j=1}^r \beta_j E(e_{lj}) \\ & = tr\mu^2 + tr\sigma_\tau^2 + t \sum_{j=1}^r \beta_j^2 + tr\sigma^2 + 0 + 0 + 0 + 0 + 0 \\ & E\left(\sum_{l=1}^t \sum_{j=1}^r Y_{lj}^2\right) = tr\mu^2 + tr\sigma_\tau^2 + t \sum_{j=1}^r \beta_j^2 + tr\sigma^2 \\ & E(TSS) = E\left(\sum_{l=1}^t \sum_{j=1}^r Y_{lj}^2\right) - E(C.F) \\ & = tr\mu^2 + tr\sigma_\tau^2 + t \sum_{j=1}^r \beta_j^2 + tr\sigma^2 - tr\mu^2 - r\sigma_\tau^2 - \sigma^2 \\ & = tr\sigma_\tau^2 + t \sum_{j=1}^r \beta_j^2 + tr\sigma^2 - r\sigma_\tau^2 - \sigma^2 \\ & = tr\sigma_\tau^2 + t \sum_{j=1}^r \beta_j^2 + tr\sigma^2 - r\sigma_\tau^2 - \sigma^2 \\ & = t \sum_{j=1}^r \beta_j^2 + r(t-1)\sigma_\tau^2 + (tr-1)\sigma^2 \\ & SST = \frac{\sum_{l=1}^t Y_{l}^2}{r} - C.F \\ & Y_{l.} = \sum_{j=1}^r Y_{lj} = \sum_{j=1}^r \left(\mu + \tau_l + \beta_j + e_{lj}\right) = r\mu + r\tau_l + \sum_{j=1}^r \theta_j + \sum_{j=1}^r e_{lj} \\ & = r\mu + r\tau_l + 0 + \sum_{j=1}^r e_{lj} = r\mu + r\tau_l + \sum_{j=1}^r e_{lj} \\ & \frac{\sum_{l=1}^t Y_{l}^2}{r} = \frac{\sum_{l=1}^t (r\mu + r\tau_l + \sum_{j=1}^r e_{lj})^2}{r} \\ & = \frac{\sum_{l=1}^t (r^2\mu^2 + r^2\tau_l^2 + \sum_{l=1}^r e_{lj} + \sum_{l=1}^r e_{lj} e_{lj} e_{lj} + 2r^2\mu\tau_l^2 + r^2\tau_l^2 + \sum_{l=1}^r e_{lj} + 2r\tau_l^2 e_{lj}}{r} \\ & = \frac{tr^2\mu^2 + r^2\sum_{l=1}^t \tau_l^2 + \sum_{l=1}^t \sum_{l=1}^r e_{lj} + \sum_{l=0}^t \sum_{l=0}^r e_{lj} e_{lj} e_{lj} + 2r^2\mu\Sigma_{l=1}^t \tau_l + 2r\mu\Sigma_{l=1}^t \sum_{l=1}^r e_{lj} + 2r\tau_l^2 e_{lj}}{r} \\ & = \frac{tr^2\mu^2 + r^2\sum_{l=1}^t \tau_l^2 + \sum_{l=1}^t \sum_{l=1}^r e_{lj} + \sum_{l=0}^t \sum_{l=0}^r e_{lj} e_{lj} e_{lj} + 2r^2\mu\Sigma_{l=1}^t \tau_l + 2r\mu\Sigma_{l=1}^t \sum_{l=1}^r e_{lj} + 2r\tau_l^2 e_{lj}}{r} \\ & = \frac{tr^2\mu^2 + r^2\sum_{l=1}^t \tau_l^2 + \sum_{l=0}^t \sum_{l=0}^r \sum_{l=0}^t \sum_$$

$$=\frac{tr^{2}\mu^{2}+r^{2}\sum_{i=1}^{s}E(\tau_{i}^{2})+\sum_{i=1}^{s}\sum_{j=1}^{s}E(e_{i}^{2})+\sum_{i=2}^{s}\sum_{j=1}^{s}E(e_{i}e_{j})+2r^{2}\sum_{i=1}^{s}\sum_{j=1}^{s}E(\tau_{i}e_{i})}{r}}{e^{2}\frac{tr^{2}\mu^{2}+tr^{2}\sigma_{i}^{2}+tr\sigma^{2}+0+0+0+0}{r}}{e^{2}\frac{tr^{2}\mu^{2}+tr\sigma^{2}+tr\sigma^{2}+t\sigma^{2}}{r}}{e^{2}\frac{tr^{2}\mu^{2}+tr\sigma^{2}+t\sigma^{2}+t\sigma^{2}}{r}}$$

$$=\frac{tr^{2}\mu^{2}+tr\sigma^{2}\tau^{2}+tr\sigma^{2}+0+0+0+0}{r}$$

$$E\left[\frac{\sum_{i=1}^{t}Y_{i}^{2}}{r}\right]-E(C.F)$$

$$=tr\mu^{2}+tr\sigma_{i}^{2}+t\sigma^{2}-tr\mu^{2}-r\sigma_{i}^{2}-\sigma^{2}$$

$$=r(t-1)\sigma_{i}^{2}+(t-1)\sigma^{2}$$

$$SSB=\frac{\sum_{j=1}^{r}Y_{j}^{2}}{t}-C.F$$

$$Y_{j}=\sum_{i=1}^{t}Y_{i}=\sum_{i=1}^{t}(\mu+\tau_{i}+\beta_{j}+e_{ij})=t\mu+\sum_{i=1}^{t}\tau_{i}+t\beta_{j}+\sum_{i=1}^{t}e_{ij}$$

$$\frac{\sum_{j=1}^{r}Y_{j}^{2}}{t}=\frac{\sum_{i=1}^{r}(t\mu+\sum_{i=1}^{t}\tau_{i}+t\beta_{j}+\sum_{i=1}^{t}e_{ij})^{2}}{t}$$

$$t^{2}\mu^{2}+\sum_{i=1}^{t}\tau_{i}^{2}+\sum\sum_{i>j}\tau_{i}\tau_{i}+t^{2}\beta_{j}^{2}+\sum_{i=1}^{t}e_{ij}^{2}+\sum_{i=2}^{t}e_{ij}^{2}+2t\mu\sum_{i=1}^{t}\tau_{i}+2t^{2}\mu\beta_{j}$$

$$\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{r}\tau_{i}^{2}+\sum\sum_{i>j}\tau_{i}\tau_{i}+t^{2}\beta_{j}^{2}+\sum_{i=1}^{t}e_{ij}+2t\beta_{j}\sum_{i=1}^{t}\tau_{i}+2t^{2}\mu\beta_{j}}{t^{2}}$$

$$=\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+\sum\sum_{i>j}\tau_{i}\tau_{i}\tau_{i}+2t\sum_{j=1}^{r}\tau_{i}^{2}+\sum_{i=1}^{t}\tau_{i}^{2}+2\sum_{i=1}^{t}\tau_{i}e_{ij}+2t\mu\sum_{i=1}^{t}\tau_{i}+2t^{2}\mu\beta_{j}}{t^{2}}$$

$$=\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+r\sum\sum_{i>j}\tau_{i}\tau_{i}\tau_{i}+2t\sum_{j=1}^{t}\tau_{j}^{2}+2\sum_{i=1}^{t}\tau_{i}^{2}+2\sum_{i=1}^{t}\tau_{i}^{2}+2t\mu\sum_{i=1}^{t}\tau_{i}e_{ij}+2t\mu\sum_{i=1}^{t}\tau_{i}e_{ij}}{t^{2}}$$

$$=\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+r\sum\sum_{i>j}\tau_{i}\tau_{i}\tau_{i}+2t\sum_{j=1}^{t}\tau_{j}^{2}+2\sum_{i=1}^{t}\tau_{j}^{2}+2\sum_{i=1}^{t}\tau_{j}e_{ij}}{t^{2}}$$

$$=\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+t\sum\sum_{i>j}\tau_{i}\tau_{i}+t^{2}\sum_{j=1}^{t}\beta_{j}^{2}+\sum_{i=1}^{t}\tau_{j}^{2}+2\sum_{i=1}^{t}\tau_{j}^{2}+2\sum_{i=1}^{t}\tau_{i}e_{ij}}{t^{2}}$$

$$=\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+t\sum_{i=1}^{t}\tau_{i}^{2}+t\sum_{i=1}^{t}\tau_{j}^{2}+ti^{2}}{t^{2}}+t\sum_{i=1}^{t}\tau_{j}^{2}+ti^{2}}{t^{2}}$$

$$=\frac{t^{2}r\mu^{2}+r\sum_{i=1}^{t}\tau_{i}^{2}+t\sum_{i=1}^{t}\tau_{i}^{2}+t\sum_{i=1}^{t}\tau_{j}^{2}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}{t^{2}}+ti^{2}}$$

$$E\left[\frac{\sum_{j=1}^{r}Y_{j}^{2}}{t}\right] = tr\mu^{2} + r\sigma_{\tau}^{2} + t\sum_{j=1}^{r}\beta_{j}^{2} + r\sigma^{2}$$

$$E(SSB) = E\left[\frac{\sum_{j=1}^{r}Y_{j}^{2}}{t}\right] - E(C.F)$$

$$= tr\mu^{2} + r\sigma_{\tau}^{2} + t^{2}\sum_{j=1}^{r}\beta_{j}^{2} + r\sigma^{2} - tr\mu^{2} - r\sigma_{\tau}^{2} - \sigma^{2}$$

$$= t^{2}\sum_{j=1}^{r}\beta_{j}^{2} + (r-1)\sigma^{2}$$

$$E(SSE) = E(TSS) - E(SST) - E(SSB)$$

$$= t\sum_{j=1}^{r}\beta_{j}^{2} + r(t-1)\sigma_{\tau}^{2} + (tr-1)\sigma^{2} - r(t-1)\sigma_{\tau}^{2} - (t-1)\sigma^{2} - t\sum_{j=1}^{r}\beta_{j}^{2} - (r-1)\sigma^{2}$$

$$= (tr-1-t+1-r+1)\sigma^{2} = (tr-t-r+1)\sigma^{2}$$

$$= (t(r-1)-1(r-1))\sigma^{2} = (t-1)(r-1)\sigma^{2}$$

$$= (t(SSE)) = E\left[\frac{SSE}{(t-1)(r-1)}\right]$$

$$= \frac{E(SSE)}{(t-1)(r-1)} = \frac{(t-1)(r-1)\sigma^{2}}{(t-1)(r-1)} = \sigma^{2}$$

$$E(MST) = E\left[\frac{SST}{t-1}\right]$$

$$= \frac{E(SST)}{t-1} = \frac{r(t-1)\sigma_{\tau}^{2} + (t-1)\sigma^{2}}{t-1} = \sigma^{2} + r\sigma_{\tau}^{2}$$

$$E(MSB) = E\left[\frac{SSB}{r-1}\right]$$

$$= \frac{E(SSB)}{r-1} = \frac{t\sum_{j=1}^{r}\beta_{j}^{2} + (r-1)\sigma^{2}}{r-1} = \sigma^{2} + \frac{t\sum_{j=1}^{r}\beta_{j}^{2}}{r-1}$$

Estimation of Missing Observations

Case I: One Missing Value

Blocks	T_1	T_2		T_i		T_t	Total
$\boldsymbol{\mathit{B}}_{1}$	<i>Y</i> ₁₁	Y_{21}		Y_{i1}		Y_{t1}	Y _{.1}
$\boldsymbol{\mathit{B}}_{2}$	Y_{12}	Y_{22}		Y_{i2}	•••	Y_{t2}	<i>Y</i> _{.2}
:	:	:		:		:	:
B_{j}	Y_{1j}	Y_{2j}		Y_{ij}		Y_{tj}	$Y_{.j}$
:	:	:	Y_{cd}	:		:	$Y'_{.d} + Y_{cd}$
B_r	Y_{1r}	Y_{2r}		Y_{ir}		Y_{tr}	<i>Y</i> .1
Total	$Y_{1.}$	$Y_{2.}$	$Y'_{c.} + Y_{cd}$	$Y_{i.}$		$Y_{t.}$	$Y'_{\cdot \cdot} + Y_{cd}$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^{2}}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y'_{ij} + \hat{Y}_{cd}\right)^{2}}{tr}$$

$$SSE = TSS - SST - SSB$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} + \hat{Y}_{cd}^{2} - C.F - \frac{1}{r} \left[\sum_{i=1}^{t} Y_{i.}^{2} + (Y_{c.}' + \hat{Y}_{cd})^{2} \right] + C.F - \frac{1}{t} \left[\sum_{j=1}^{r} Y_{.j}^{2} + (Y_{.d}' + \hat{Y}_{cd})^{2} \right] + C.F$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} + \hat{Y}_{cd}^{2} - \frac{\sum_{i=1}^{t} Y_{i.}^{2}}{r} - \frac{(Y_{c.}' + \hat{Y}_{cd})^{2}}{r} - \frac{\sum_{j=1}^{r} Y_{.j}^{2}}{t} - \frac{(Y_{.d}' + \hat{Y}_{cd})^{2}}{t} + \frac{(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}' + \hat{Y}_{cd})^{2}}{tr}$$

$$\frac{\partial SSE}{\partial \hat{Y}_{cd}} = 0$$

$$0 + 2\hat{Y}_{cd} - 0 - \frac{2(Y_{.c}' + \hat{Y}_{cd})}{r} - 0 - \frac{2(Y_{.d}' + \hat{Y}_{cd})}{t} + \frac{2(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}' + \hat{Y}_{cd})}{tr} = 0$$

$$\frac{2tr\hat{Y}_{cd} - 2t(Y_{c.}' + \hat{Y}_{cd}) - 2r(Y_{.d}' + \hat{Y}_{cd}) + 2(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}' + \hat{Y}_{cd})}{tr} = 0$$

$$\frac{2\left(tr\hat{Y}_{cd} - t(Y_{c.}' + \hat{Y}_{cd}) - r(Y_{.d}' + \hat{Y}_{cd}) + (\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}' + \hat{Y}_{cd})}{tr} = 0$$

$$tr\hat{Y}_{cd} - tY_{c.}' - t\hat{Y}_{cd} - rY_{.d}' - r\hat{Y}_{cd}' + \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}' + \hat{Y}_{cd} = 0$$

$$(tr - t - r + 1)\hat{Y}_{cd} - tY_{c.}' - rY_{.d}' + \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}' + \hat{Y}_{ij}' = 0$$

$$(tr - t - r + 1)\hat{Y}_{cd} = tY_{c.}' + rY_{.d}' - \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}'$$

$$\hat{Y}_{cd} = \frac{tY_{c.}' + rY_{.d}' - \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}'}{(t - 1)(r - 1)}$$

Case II: Two Missing Values in same treatment but different blocks

T_1	T_2	•••	T_i		T_t	Total
Y_{11}	Y_{21}	•••	Y_{i1}		Y_{t1}	<i>Y</i> _{.1}
Y_{12}	Y_{22}		Y_{i2}		Y_{t2}	<i>Y</i> _{.2}
÷	:	Y_{ce}	:		÷	$Y'_{.e} + Y_{ce}$
Y_{1j}	Y_{2j}		Y_{ij}		Y_{tj}	$Y_{.j}$
:	:	Y_{cd}	:		÷	$Y'_{.d} + Y_{cd}$
Y_{1r}	Y_{2r}	•••	Y_{ir}		Y_{tr}	$Y_{.1}$
Y_{1}	Y_{2}	$Y_{c.}' + Y_{cd} + Y_{ce}$	Y_i		Y_{t}	$Y'_{} + Y_{cd} + Y_{ce}$
	Y_{12} \vdots Y_{1j} \vdots V	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$$C.F = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}\right)^{2}}{tr} = \frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij} + \hat{Y}_{cd} + \hat{Y}_{ce}\right)^{2}}{tr}$$

$$SSE = TSS - SST - SSB$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{ij}^{2} + \hat{Y}_{cd}^{2} + \hat{Y}_{ce}^{2} - C.F - \frac{1}{r} \left[\sum_{i=1}^{t} Y_{i.}^{2} + \left(Y_{c.}' + \hat{Y}_{cd} + \hat{Y}_{ce}\right)^{2}\right] + C.F - \frac{1}{t} \left[\sum_{j=1}^{r} Y_{.j}^{2} + \left(Y_{.e}' + \hat{Y}_{ce}\right)^{2} + \left(Y_{.d}' + \hat{Y}_{cd}\right)^{2}\right] + C.F$$

$$\begin{split} &=\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{2}+\hat{Y}_{cd}^{2}+\hat{Y}_{ce}^{2}-\frac{1}{r}\bigg[\sum_{i=1}^{t}Y_{i}^{2}+(Y_{c}^{i}+Y_{cd}+\hat{Y}_{ce})^{2}\bigg]-\frac{1}{t}\bigg[\sum_{j=1}^{r}Y_{j}^{2}+(Y_{x}^{i}+\hat{Y}_{ce})^{2}+(Y_{d}^{i}+\hat{Y}_{cd})^{2}\bigg]\\ &+\frac{\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)^{2}}{tr}\\ &=0\\ 0+2\hat{Y}_{cd}^{2}+0-0-\frac{2\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{r}-0-\frac{2\left(Y_{d}^{i}+\hat{Y}_{cd}\right)}{t}-0+\frac{2\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2tr\hat{Y}_{cd}-2t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-2r\left(Y_{d}^{i}+\hat{Y}_{cd}\right)+2\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2\left(tr\hat{Y}_{cd}-t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{d}^{i}+\hat{Y}_{cd}\right)+\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2\left(tr\hat{Y}_{cd}-t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{d}^{i}+\hat{Y}_{cd}\right)+\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2\left(tr\hat{Y}_{cd}-t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{d}^{i}+\hat{Y}_{cd}\right)+\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{tr\hat{Y}_{cd}-t\left(Y_{c}^{i}-t\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{d}^{i}+\hat{Y}_{cd}\right)+\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{\partial SSE}{\partial\hat{Y}_{ce}}=0\\ &0+0+2\hat{Y}_{ce}-0-\frac{2\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-2r\left(Y_{c}^{i}+\hat{Y}_{ce}\right)+2\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2tr\hat{Y}_{ce}-2t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{c}^{i}+\hat{Y}_{ce}\right)+2\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2tr\hat{Y}_{ce}-t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{c}^{i}+\hat{Y}_{ce}\right)+\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)}{tr}=0\\ &\frac{2tr\hat{Y}_{ce}-t\left(Y_{c}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(Y_{c}^{i}+\hat{Y}_{ce}\right)+\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{ce}\right)-r\left(\sum_{i=1}^{t}\sum_{j=1}^{r}Y_{ij}^{i}+\hat{Y}_{cd}+\hat{Y}_{c$$

Multiply equation (1) by F and equation (2) by E and then subtract it

$$EF\hat{Y}_{cd} + F^2\hat{Y}_{ce} = FZ_{cd}$$

$$\pm EF\hat{Y}_{cd} \pm E^2\hat{Y}_{ce} = \pm EZ_{ce}$$

$$(F^2 - E^2)\hat{Y}_{ce} = FZ_{cd} - EZ_{ce}$$

$$\hat{Y}_{ce} = \frac{FZ_{cd} - EZ_{ce}}{(F^2 - E^2)}$$

Multiply equation (1) by E and equation (2) by F and then subtract it

$$EF\hat{Y}_{ce} + E^2\hat{Y}_{cd} = EZ_{cd}$$

$$\underline{\pm EF\hat{Y}_{ce} \pm F^2\hat{Y}_{cd} = \pm FZ_{ce}}$$

$$(E^2 - F^2)\hat{Y}_{cd} = EZ_{cd} - FZ_{ce}$$

$$\hat{Y}_{cd} = \frac{EZ_{cd} - FZ_{ce}}{(E^2 - F^2)}$$

Exercise:

Estimate P-missing observations in different treatments and different blocks. Estimate the two missing observations in different treatments but same block.

Efficiency of RCBD relative to CRD

RE (RCB, CR): the relative efficiency of the randomized complete block design compared to a completely randomized design. Did blocking increase the precision for comparing treatment means in a given experiment?

$$RE(RCB, CR) = \frac{MSE_{CR}}{MSE_{PCR}} = \frac{(r-1)MSB + r(t-1)MSE}{(rt-1)MSE}$$

Latin Square Design

Latin Square Designs are probably not used as much as they should be - they are very efficient designs. Latin square designs allow for two blocking factors. In other words, these designs are used to simultaneously control (or eliminate) **two sources of nuisance variability**. For instance, if you had a plot of land the fertility of this land might change in both directions, North -- South and East -- West due to soil or moisture gradients. So, both rows and columns can be used as blocking factors. However, you can use Latin squares in lots of other settings. As we shall see, Latin squares can be used as much as the RCBD in industrial experimentation as well as other experiments.

Whenever, you have more than one blocking factor a Latin square design will allow you to remove the variation for these two sources from the error variation. So, consider we had a plot of land, we might have blocked it in columns and rows, i.e. each row is a level of the row factor, and each column is a level of the column factor. We can remove the variation from our measured response in both directions if we consider both rows and columns as factors in our design.

The Latin Square Design gets its name from the fact that we can write it as a square with Latin letters to correspond to the treatments. The treatment factor levels are the Latin letters

in the Latin square design. The number of rows and columns has to correspond to the number of treatment levels. So, if we have four treatments then we would need to have four rows and four columns in order to create a Latin square. This gives us a design where we have each of the treatments and in each row and in each column.

Experimental Layout

Latin square are always constructed by rotation e.g. in case of 4 treatments A,B,C,D we get,

A	В	C	D
B C	C	D	A
C	D	A	В
D	A	В	C

Example:

A courier company is interested in deciding between five brand D,P,F,C and R of car for its next purchase of fleet cars.

- 1. The brands are all comparable in purchase price.
- 2. The company wants to carry out a study that will enable them to compare the brands w.r.t operating costs.
- 3. For this purpose they select five drivers (Rows)
- 4. In addition the study will be carried out over a five week period (Columns=Weeks)
- 5. Each week a driver is assigned to a car using randomization and a Latin square design.
- 6. The average cost per mile is recorded at the end of each week and is tabulated below:

Drivers			Week		
	1	2	3	4	5
1	5.83	6.22	7.67	9.43	6.57
	D	P	F	C	R
2	4.80	7.56	10.34	5.82	9.86
	P	D	C	R	F
3	7.43	11.29	7.01	10.48	9.27
	F	C	R	D	P
4	6.60	9.54	11.11	10.84	15.05
	R	F	D	P	C
5	11.24	6.34	11.30	12.58	16.04
	C	R	P	F	D

Statistical Model and Analysis

The linear statistical model for LSD is

$$Y_{ij(k)} = \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)} \begin{cases} i = 1, 2, \dots, p \\ j = 1, 2, \dots, p \\ k = 1, 2, \dots, p \end{cases}$$

Where

 μ True mean effect τ_i effect of *ith* row β_i effect of *jth* row

 γ_k effect of kth treatment

Formulation of hypotheses:

$$H_0: \gamma_k = 0$$

 $H'_0: \tau_i = 0$
 $H''_0: \beta_j = 0$
 $H_1: \gamma_k \neq 0$
 $H'_0: \tau_i \neq 0$
 $H''_0: \beta_i \neq 0$

Level of significance:

 $\alpha = 0.05.0.01.0.001.0.10$

Test Statistic:

$$F_1 = \frac{S_r^2}{S_e^2}, \qquad F_2 = \frac{S_c^2}{S_e^2}, \quad F_3 = \frac{S_t^2}{S_e^2}$$

	J _e	s _e	J _e	
S.O.V	d.f	SS	MS	F
Rows	p - 1	SSR	$s_r^2 = \frac{SSR}{p-1}$	$F_1 = \frac{S_r^2}{S_e^2}$
Columns	p - 1	SSC	$s_c^2 = \frac{SSC}{p-1}$	$F_2 = \frac{s_c^2}{s_e^2}$
Treatment	p-1	SST	$s_t^2 = \frac{SST}{p-1}$	$F_3 = \frac{s_t^2}{s_e^2}$
Error	(p-1)(p-2)	SSE	$s_e^2 = \frac{SSE}{(p-1)(p-2)}$	-
Total	$p^2 - 1$	TSS		

Where

$$C.F = \frac{Y_{...}^2}{p^2}, SSR = \frac{1}{p} \sum_{i} R_i^2 - C.F, SSC = \frac{1}{p} \sum_{i} C_j^2 - C.F$$

 $SST = \frac{1}{p} \sum_{i} T_k^2 - C.F, SSE = TSS - SSR - SSC - SST$

C.R

$$F_1 \ge F_{\alpha(p-1,(p-1)(p-2))}$$

$$F_2 \geq F_{\alpha(p-1,(p-1)(p-2))}$$

$$F_3 \ge F_{\alpha(p-1,(p-1)(p-2))}$$

Conclusion

If calculated value of F falls in the critical region then we reject null hypotheses.

Advantages of LSD

- 1. Greater power than the RBD when there are two external sources of variation.
- 2. Easy to analyze.

Disadvantages of LSD

- 1. The number of treatments, rows and columns must be the same.
- 2. Squares smaller than 5×5 are not practical because of the small number of degrees of freedom for error.

3. The effect of each treatment must be approximately the same across rows and columns.

Estimation of Model Prameters

$$S = \sum_{i=1}^{p} \sum_{j=1}^{p} (Y_{ij(k)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k)^2$$

$$\frac{\partial S}{\partial \hat{\mu}} = 2 \sum_{i=1}^{p} \sum_{j=1}^{p} (Y_{ij(k)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k)(-1) = 0$$

$$-2 \sum_{i=1}^{p} \sum_{j=1}^{p} (Y_{ij(k)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k) = 0$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} - p^2 \hat{\mu} - p \sum_{i=1}^{p} \hat{\tau}_i - p \sum_{j=1}^{p} \hat{\beta}_j - p \sum_{k=1}^{p} \hat{\gamma}_k = 0$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} = p^2 \hat{\mu} + p \sum_{i=1}^{p} \hat{\tau}_i + p \sum_{j=1}^{p} \hat{\beta}_j + p \sum_{k=1}^{p} \hat{\gamma}_k$$

For unique solutions Put $\sum_{i=1}^{p} \hat{\tau}_i = 0$, $\sum_{j=1}^{p} \hat{\beta}_j = 0$, $\sum_{k=1}^{p} \hat{\gamma}_k = 0$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} = p^{2}\hat{\mu} + 0 + 0 + 0$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} = p^{2}\hat{\mu}$$

$$\hat{\mu} = \frac{\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}}{p^{2}} = \overline{\bar{Y}}$$

$$S = \sum_{j=1}^{p} (Y_{1j(k)} - \hat{\mu} - \hat{\tau}_1 - \hat{\beta}_j - \hat{\gamma}_k)^2 + \sum_{j=1}^{p} (Y_{2j(k)} - \hat{\mu} - \hat{\tau}_2 - \hat{\beta}_j - \hat{\gamma}_k)^2 + \sum_{j=1}^{p} (Y_{3j(k)} - \hat{\mu} - \hat{\tau}_3 - \hat{\beta}_j - \hat{\gamma}_k)^2 + \dots + \sum_{j=1}^{p} (Y_{pj(k)} - \hat{\mu} - \hat{\tau}_p - \hat{\beta}_j - \hat{\gamma}_k)^2$$

Differentiate w.r.t $\hat{\tau}_1$, $\hat{\tau}_2$, $\hat{\tau}_3$, ... $\hat{\tau}_p$

$$\frac{\partial S}{\partial \hat{\tau}_1} = 2 \sum_{j=1}^p (Y_{1j(k)} - \hat{\mu} - \hat{\tau}_1 - \hat{\beta}_j - \hat{\gamma}_k)(-1) = 0$$

$$-2\sum_{j=1}^{p} (Y_{1j(k)} - \hat{\mu} - \hat{\tau}_1 - \hat{\beta}_j - \hat{\gamma}_k) = 0$$

$$\sum_{j=1}^{p} Y_{1j(k)} - p\hat{\mu} - p\hat{\tau}_1 - \sum_{j=1}^{p} \hat{\beta}_j - \sum_{k=1}^{p} \hat{\gamma}_k = 0$$

$$\sum_{j=1}^{p} Y_{1j(k)} = p\hat{\mu} + p\hat{\tau}_1 + \sum_{j=1}^{p} \hat{\beta}_j + \sum_{k=1}^{p} \hat{\gamma}_k$$

$$R_1 = p\hat{\mu} + p\hat{\tau}_1 + \sum_{j=1}^{p} \hat{\beta}_j + \sum_{k=1}^{p} \hat{\gamma}_k$$

$$\frac{\partial S}{\partial \hat{\tau}_2} = 2\sum_{j=1}^{p} (Y_{2j(k)} - \hat{\mu} - \hat{\tau}_2 - \hat{\beta}_j - \hat{\gamma}_k)(-1) = 0$$

$$-2\sum_{j=1}^{p} (Y_{2j(k)} - \hat{\mu} - \hat{\tau}_2 - \hat{\beta}_j - \hat{\gamma}_k) = 0$$

$$\sum_{j=1}^{p} Y_{2j(k)} - p\hat{\mu} - p\hat{\tau}_2 - \sum_{j=1}^{p} \hat{\beta}_j - \sum_{k=1}^{p} \hat{\gamma}_k$$

$$R_2 = p\hat{\mu} + p\hat{\tau}_2 + \sum_{j=1}^{p} \hat{\beta}_j + \sum_{k=1}^{p} \hat{\gamma}_k$$

$$\frac{\partial S}{\partial \hat{\tau}_p} = 2\sum_{j=1}^{p} (Y_{pj(k)} - \hat{\mu} - \hat{\tau}_p - \hat{\beta}_j - \hat{\gamma}_k)(-1) = 0$$

$$-2\sum_{j=1}^{p} (Y_{pj(k)} - \hat{\mu} - \hat{\tau}_p - \hat{\beta}_j - \hat{\gamma}_k) = 0$$

$$\sum_{j=1}^{p} Y_{pj(k)} - p\hat{\mu} - p\hat{\tau}_p - \sum_{j=1}^{p} \hat{\beta}_j + \sum_{k=1}^{p} \hat{\gamma}_k = 0$$

$$\sum_{j=1}^{p} Y_{pj(k)} - p\hat{\mu} - p\hat{\tau}_p - \sum_{j=1}^{p} \hat{\beta}_j + \sum_{k=1}^{p} \hat{\gamma}_k = 0$$

$$\sum_{j=1}^{p} Y_{pj(k)} - p\hat{\mu} - p\hat{\tau}_p - \sum_{j=1}^{p} \hat{\beta}_j - \sum_{k=1}^{p} \hat{\gamma}_k = 0$$

$$R_p = p\hat{\mu} + p\hat{\tau}_p + \sum_{i=1}^p \hat{\beta}_i + \sum_{k=1}^p \hat{\gamma}_k$$

For unique solutions Put $\sum_{j=1}^{p} \hat{\beta}_j = 0$, $\sum_{k=1}^{p} \hat{\gamma}_k = 0$

From above equations, we get

$$\begin{split} R_1 &= p\hat{\mu} + p\hat{\tau}_1 \\ \hat{\tau}_1 &= \frac{R_1}{p} - \frac{p\hat{\mu}}{p} \\ \hat{\tau}_1 &= \frac{R_1}{p} - \bar{\bar{Y}} \end{split}$$

Similarly

$$\hat{\tau}_{2} = \frac{R_{2}}{p} - \overline{Y}$$

$$\vdots \qquad \vdots$$

$$\hat{\tau}_{p} = \frac{R_{p}}{p} - \overline{Y}$$

$$S = \sum_{i=1}^{p} (Y_{i1(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{1} - \hat{\gamma}_{k})^{2} + \sum_{i=1}^{p} (Y_{i2(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{2} - \hat{\gamma}_{k})^{2}$$

$$+ \sum_{i=1}^{p} (Y_{i3(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{3} - \hat{\gamma}_{k})^{2} + \dots + \sum_{i=1}^{p} (Y_{ip(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{p} - \hat{\gamma}_{k})^{2}$$

Differentiate w.r.t $\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3, \dots \hat{\beta}_p$

$$\frac{\partial S}{\partial \hat{\beta}_{1}} = 2 \sum_{i=1}^{p} (Y_{i1(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{1} - \hat{\gamma}_{k})(-1) = 0$$

$$-2 \sum_{i=1}^{p} (Y_{i1(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{1} - \hat{\gamma}_{k}) = 0$$

$$\sum_{i=1}^{p} Y_{i1(k)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - p\hat{\beta}_{1} - \sum_{k=1}^{p} \hat{\gamma}_{k} = 0$$

$$\sum_{i=1}^{p} Y_{i1(k)} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + p\hat{\beta}_{1} + \sum_{k=1}^{p} \hat{\gamma}_{k}$$

$$C_{1} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + p\hat{\beta}_{1} + \sum_{k=1}^{p} \hat{\gamma}_{k}$$

$$\frac{\partial S}{\partial \hat{\beta}_{2}} = 2 \sum_{i=1}^{p} (Y_{i2(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{2} - \hat{\gamma}_{k})(-1) = 0$$

$$-2 \sum_{i=1}^{p} (Y_{i2(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{2} - \hat{\gamma}_{k}) = 0$$

$$\sum_{i=1}^{p} Y_{i2(k)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - p\hat{\beta}_{2} - \sum_{k=1}^{p} \hat{\gamma}_{k} = 0$$

$$\sum_{i=1}^{p} Y_{i2(k)} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + p\hat{\beta}_{2} + \sum_{k=1}^{p} \hat{\gamma}_{k}$$

$$C_{2} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + p\hat{\beta}_{2} + \sum_{k=1}^{p} \hat{\gamma}_{k}$$

$$\frac{\partial S}{\partial \hat{\beta}_{p}} = 2 \sum_{i=1}^{p} (Y_{ip(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{p} - \hat{\gamma}_{k})(-1) = 0$$

$$-2 \sum_{i=1}^{p} (Y_{ip(k)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{p} - \hat{\gamma}_{k}) = 0$$

$$\sum_{i=1}^{p} Y_{ip(k)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - p\hat{\beta}_{p} - \sum_{k=1}^{p} \hat{\gamma}_{k} = 0$$

$$\sum_{i=1}^{p} Y_{ip(k)} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + p\hat{\beta}_{p} + \sum_{k=1}^{p} \hat{\gamma}_{k}$$

$$C_{p} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + p\hat{\beta}_{p} + \sum_{i=1}^{p} \hat{\gamma}_{k}$$

For unique solutions Put $\sum_{k=1}^{p} \hat{\gamma}_k = 0$, $\sum_{i=1}^{p} \hat{\tau}_i = 0$

From above equations, we get

$$C_1 = p\hat{\mu} + p\hat{\beta}_1$$
$$\hat{\beta}_1 = \frac{C_1}{p} - \frac{p\hat{\mu}}{p}$$
$$\hat{\beta}_1 = \frac{C_1}{p} - \overline{\bar{Y}}$$

Similarly

$$\hat{\beta}_{2} = \frac{C_{2}}{p} - \overline{Y}$$

$$\vdots \qquad \vdots$$

$$\hat{\beta}_{p} = \frac{C_{p}}{p} - \overline{Y}$$

$$S = \sum_{i=1}^{p} (Y_{ij(1)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1})^{2} + \sum_{i=1}^{p} (Y_{ij(2)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{2})^{2}$$

$$+ \sum_{i=1}^{p} (Y_{ij(3)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{3})^{2} + \dots + \sum_{i=1}^{p} (Y_{ij(p)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{p})^{2}$$

Differentiate w.r.t $\hat{\gamma}_1, \hat{\gamma}_2, \hat{\gamma}_3, \dots, \hat{\gamma}_k$

$$\begin{split} \frac{\partial S}{\partial \hat{\gamma}_{1}} &= 2 \sum_{i=1}^{p} \left(Y_{ij(1)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1} \right) (-1) = 0 \\ -2 \sum_{i=1}^{p} \left(Y_{ij(1)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1} \right) &= 0 \\ \sum_{i=1}^{p} Y_{ij(1)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - \sum_{j=1}^{p} \hat{\beta}_{j} - p\hat{\gamma}_{1} &= 0 \\ \sum_{i=1}^{p} Y_{ij(1)} &= p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + \sum_{j=1}^{p} \hat{\beta}_{j} + p\hat{\gamma}_{1} \\ T_{1} &= p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + \sum_{j=1}^{p} \hat{\beta}_{j} + p\hat{\gamma}_{1} \\ \frac{\partial S}{\partial \hat{\gamma}_{2}} &= 2 \sum_{i=1}^{p} \left(Y_{ij(2)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{2} \right) (-1) &= 0 \\ -2 \sum_{i=1}^{p} \left(Y_{ij(2)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{2} \right) &= 0 \\ \sum_{i=1}^{p} Y_{ij(2)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - \sum_{j=1}^{p} \hat{\beta}_{j} - p\hat{\gamma}_{2} &= 0 \\ \sum_{i=1}^{p} Y_{ij(2)} &= p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + \sum_{j=1}^{p} \hat{\beta}_{j} + p\hat{\gamma}_{2} \end{split}$$

$$T_{2} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + \sum_{j=1}^{p} \hat{\beta}_{j} + p\hat{\gamma}_{2}$$

$$\frac{\partial S}{\partial \hat{\gamma}_{p}} = 2 \sum_{i=1}^{p} (Y_{ij(p)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{p})(-1) = 0$$

$$-2 \sum_{i=1}^{p} (Y_{ij(p)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1}) = 0$$

$$\sum_{i=1}^{p} Y_{ij(1)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - \sum_{j=1}^{p} \hat{\beta}_{j} - p\hat{\gamma}_{p} = 0$$

$$\sum_{i=1}^{p} Y_{ij(p)} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + \sum_{j=1}^{p} \hat{\beta}_{j} + p\hat{\gamma}_{p}$$

$$T_{p} = p\hat{\mu} + \sum_{i=1}^{p} \hat{\tau}_{i} + \sum_{i=1}^{p} \hat{\beta}_{j} + p\hat{\gamma}_{p}$$

For unique solutions Put $\sum_{k=1}^{p} \hat{\gamma}_k = 0$, $\sum_{j=1}^{p} \hat{\beta}_j = 0$

From above equations, we get

$$T_1 = p\hat{\mu} + p\hat{\gamma}_1$$

$$\hat{\gamma}_1 = \frac{T_1}{p} - \frac{p\hat{\mu}}{p}$$

$$\hat{\gamma}_1 = \frac{T_1}{p} - \bar{\bar{Y}}$$

Similarly

$$\hat{\gamma}_2 = \frac{T_2}{p} - \bar{\bar{Y}}$$

$$\vdots \qquad \vdots$$

$$\hat{\gamma}_p = \frac{T_p}{p} - \bar{\bar{Y}}$$

Expected Mean Square Error

Fixed Effect Model

Assumptions:

The effect of treatments, rows and columns are fixed and we assume that

1.
$$\sum_{i=1}^{p} \hat{\tau}_i = 0$$

$$2. \quad \sum_{i=1}^{p} \hat{\beta}_{i} = 0$$

3.
$$\sum_{i=1}^{p} \hat{\gamma}_k = 0$$

$$4. \quad E(e_{ij(k)}) = 0$$

$$5. \quad E(e_{ij(k)}e_{gh(l)}) = 0$$

$$\begin{split} Y_{ij(k)} &= \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)} \\ SSE &= TSS - SSR - SSC - SST \\ TSS &= \sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2 - C.F \\ C.F &= \frac{\left(\sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}\right)^2}{p^2} = \frac{\left(\sum_{i=1}^p \sum_{j=1}^p \left(\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}\right)\right)^2}{p^2} \\ &= \frac{\left(p^2\mu + p\sum_{i=1}^p \tau_i + p\sum_{j=1}^p \beta_j + p\sum_{k=1}^p \gamma_k + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{\left(p^2\mu + 0 + 0 + 0 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{\left(p^2\mu + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{\left(p^2\mu + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{p^4\mu^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^2\mu \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}}{p^2} \end{split}$$

$$= \frac{p^{4}\mu^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i \neq g} \sum_{j \neq h} E(e_{ij(k)}e_{gh(l)}) + 2p^{2}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)})}{p^{2}}$$

$$E(C.F) = \frac{p^{4}\mu^{2} + p^{2}\sigma^{2}}{p^{2}} = p^{2}\mu^{2} + \sigma^{2}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} = \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})^{2}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu^{2} + \tau_{i}^{2} + \beta_{j}^{2} + \gamma_{k}^{2} + e_{ij(k)}^{2} + 2\mu\tau_{i} + 2\mu\beta_{j} + 2\mu\gamma_{k} + 2\mu e_{ij(k)} + 2\tau_{i}\beta_{j} + 2\tau_{i}\gamma_{k}$$

$$+ 2\tau_{i}e_{ij(k)} + 2\beta_{j}\gamma_{k} + 2\beta_{j}e_{ij(k)} + 2\gamma_{k}e_{ij(k)})$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{i=1}^p\tau_i+2p\mu\sum_{j=1}^p\beta_j\\ &+2p\mu\sum_{k=1}^p\gamma_k+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+2\sum_{i=1}^p\tau_i\sum_{j=1}^p\beta_j+2\sum_{i=1}^p\gamma_i\sum_{k=1}^p\gamma_k\\ &+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{j=1}^p\beta_j\sum_{k=1}^p\gamma_k+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{k=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+0+0+0+0+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+0\\ &+0+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+0+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)} \end{split}$$

$$\begin{split} &= p^2 \mu^2 + p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}^2) + 2\mu \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}) \\ &+ 2 \sum_{i=1}^p \sum_{j=1}^p \tau_i E(e_{ij(k)}) + 2 \sum_{i=1}^p \sum_{j=1}^p \beta_j E(e_{ij(k)}) + 2 \sum_{i=1}^p \sum_{j=1}^p \gamma_k E(e_{ij(k)}) \\ &= p^2 \mu^2 + p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + p^2 \sigma^2 + 0 + 0 + 0 + 0 \\ &E\left(\sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2\right) = p^2 \mu^2 + p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + p^2 \sigma^2 \\ &E(TSS) = E\left(\sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2\right) - E(C.F) \\ &= p^2 \mu^2 + p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + p^2 \sigma^2 - p^2 \mu^2 - \sigma^2 \\ &E(TSS) = p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + (p^2 - 1) \sigma^2 \\ &SSR = \frac{\sum_{i=1}^p R_i^2}{p} - C.F \end{split}$$

$$R_{i} = \sum_{j=1}^{p} Y_{ij(k)} = \sum_{j=1}^{p} \left(\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)} \right)$$

$$= p\mu + p\tau_{i} + \sum_{j=1}^{p} \beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + 0 + 0 + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= \frac{\sum_{i=1}^{p} R_{i}^{2}}{p} = \frac{\sum_{i=1}^{p} (p\mu + p\tau_{i} + \sum_{j=1}^{p} e_{ij(k)})^{2}}{p}$$

$$= \frac{\sum_{i=1}^{p} (p^{2}\mu^{2} + p^{2}\tau_{i}^{2} + \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq j} e_{ij(k)} + \sum_{j\neq k} e_{ij(k)} e_{ik(k)} + 2p^{2}\mu\tau_{i} + 2p\mu \sum_{j=1}^{p} e_{ij(k)} + 2p\tau_{i} \sum_{j=1}^{p} e_{ij(k)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{j=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} e_{ij(k)} + \sum_{i\neq j} \sum_{j=1}^{p} e_{ij(k)} + 2p^{2}\mu \sum_{i=1}^{p} \tau_{i} + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} e_{ij(k)} + 2p^{2}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} e_{ij(k)} + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} e_{ij(k)} + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{p$$

$$\begin{split} &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\beta_{j}+\sum_{k=1}^{p}\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+0+p\beta_{j}+0+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+p\beta_{j}+\sum_{i=1}^{p}e_{ij(k)}\\ &=\frac{\sum_{j=1}^{p}C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}(p\mu+p\beta_{j}+\sum_{i=1}^{p}e_{ij(k)})^{2}}{p}\\ &=\frac{\sum_{j=1}^{p}(p^{2}\mu^{2}+p^{2}\beta_{j}^{2}+\sum_{i=1}^{p}e_{ij(k)}^{2}+\sum_{i=2}^{p}e_{ij(k)}e_{gi(i)}+2p^{2}\mu\beta_{j}+2p\mu\sum_{i=1}^{p}e_{ij(k)}+2p\beta_{j}\sum_{i=1}^{p}e_{ij(k)})}{p}\\ &=\frac{\sum_{j=1}^{p}(p^{2}\mu^{2}+p^{2}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{i=2}^{p}e_{ij(k)}e_{gi(i)}+2p^{2}\mu\beta_{j}+2p\mu\sum_{j=1}^{p}\beta_{j}+2p\mu\sum_{i=1}^{p}E_{j=1}e_{ij(k)}}{p}\\ &=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{i=2}^{p}\sum_{j=1}^{p}e_{ij(k)}+\sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(i)}+0+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}}{p}\\ &=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{i=2}^{p}\sum_{j=1}^{p}e_{ij(k)}+\sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(i)}+0+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+2p\sum\sum_{i=1}^{p}\beta_{j}e_{ij(k)}}{p}\\ &=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+\sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(i)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+2p\sum\sum_{i=1}^{p}\beta_{j}e_{ij(k)}}{p}\\ &=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+\sum_{i\neq g}\sum_{j\neq h}E_{i}(e_{ij(k)}e_{gh(i)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\sum\sum_{j=1}^{p}\beta_{j}e_{ij(k)}}{p}\\ &=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+\sum_{i\neq g}\sum_{j=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}E_{ij(k)}+2p\mu\sum_{i=1}^{p}$$

$$=p\mu+0+0+p\gamma_{k}+\sum_{l=1}^{p}e_{lj(k)}$$

$$=p\mu+p\gamma_{k}+\sum_{l=1}^{p}e_{lj(k)}$$

$$\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}(p\mu+p\gamma_{k}+\sum_{l=1}^{p}e_{lj(k)})^{2}}{p}$$

$$=\frac{\sum_{k=1}^{p}(p^{2}\mu^{2}+p^{2}\gamma_{k}^{2}+\sum_{l=1}^{p}e_{lj(k)}^{2}+\sum_{l=q}^{p}e_{lj(k)}+\sum_{l=q}^{p}e_{lj(k)}+p\gamma_{k}+\sum_{l=q}^{p}e_{lj(k)})^{2}}{p}$$

$$=\frac{\sum_{k=1}^{p}(p^{2}\mu^{2}+p^{2}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+\sum_{l=q}^{p}e_{lj(k)}+\sum_{l=q}^{p}e_{lj(k)}+p\gamma_{k}+2p\mu\sum_{l=1}^{p}e_{lj(k)}+2p\gamma_{k}\sum_{l=1}^{p}e_{lj(k)}}{p}$$

$$=\frac{p^{3}\mu^{2}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+\sum_{l=q}^{p}\sum_{l=1}^{p}\sum_{l=1}^{p}\gamma_{k}e_{lj(k)}}{p}$$

$$=\frac{p^{2}\mu^{2}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+\sum_{l=q}^{p}\sum_{l=1}^{p}\sum_{l=1}^{p}\gamma_{k}e_{lj(k)}}{p}$$

$$=\frac{p^{2}\mu^{2}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+\sum_{l=q}^{p}\sum_{l=q}^{p}\sum_{l=q}^{p}\sum_{l=q}^{p}\sum_{l=1}^{p}\sum_{l=1}^{p}\sum_{l=q}^{p}\sum$$

$$E(MSE) = E\left[\frac{SSE}{(p-1)(p-2)}\right] = \frac{E(SSE)}{(p-1)(p-2)}$$

$$= \frac{(p-1)(p-2)\sigma^{2}}{(p-1)(p-2)} = \sigma^{2}$$

$$E(MSR) = E\left[\frac{SSR}{p-1}\right] = \frac{E(SSR)}{p-1}$$

$$= \frac{p\sum_{i=1}^{p}\tau_{i}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1}\sum_{i=1}^{p}\tau_{i}^{2}$$

$$E(MSC) = E\left[\frac{SSC}{p-1}\right] = \frac{E(SSC)}{p-1}$$

$$= \frac{p\sum_{j=1}^{p}\beta_{j}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1}\sum_{j=1}^{p}\beta_{j}^{2}$$

$$E(MST) = E\left[\frac{SST}{p-1}\right] = \frac{E(SST)}{p-1}$$

$$= \frac{p\sum_{k=1}^{p}\gamma_{k}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1}\sum_{k=1}^{p}\gamma_{k}^{2}$$

Random Effect Model

Assumptions:

- 1. $E(e_{ij(k)}) = 0$
- $2. \quad E(e_{ij(k)}e_{gh(l)}) = 0$
- 3. $\tau_i \sim iidN(0, \sigma_\tau^2)$
- 4. $\beta_i \sim iidN(0, \sigma_{\beta}^2)$
- 5. $\gamma_k \sim iidN(0, \sigma_{\gamma}^2)$
- 6. $E(\tau_i \tau_i) = 0$
- 7. $E(\beta_i \beta_j) = 0$
- 8. $E(\gamma_k \gamma_l) = 0$
- 9. $E(\tau_i\beta_j)=0$
- $10. E(\tau_i \gamma_k) = 0$
- 11. $E(\beta_j \gamma_k) = 0$
- $12. E(\tau_i e_{ij(k)}) = 0$
- 13. $E(\beta_i e_{i,i(k)}) = 0$
- $14. E(\gamma_k e_{ij(k)}) = 0$

$$Y_{ij(k)} = \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}$$

$$SSE = TSS - SSR - SSC - SST$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}\right)^{2}}{p^{2}} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p\sum_{i=1}^{p} \tau_{i} + p\sum_{j=1}^{p} \beta_{j} + p\sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}}$$

$$p^{4}\mu^{2} + p^{2} \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i}\tau_{j} + p^{2} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i\neq j} \beta_{i}\beta_{j} + p^{2} \sum_{k=1}^{p} \gamma_{k}^{2} + \sum_{k\neq l} \gamma_{k}\gamma_{l}$$

$$+ \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^{3}\mu \sum_{i=1}^{p} \tau_{i} + 2p^{3}\mu \sum_{j=1}^{p} \beta_{j} + 2p^{3}\mu \sum_{j=1}^{p} \beta_{j} + 2p^{3}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}\beta_{j} + 2p^{2}\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}\beta_{j} + 2p^{2}\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}\beta_{i} + 2p^{2}\sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k}e_{ij(k)}$$

$$+2p^{2} \sum_{i=1}^{p} \sum_{k=1}^{p} \beta_{j}\gamma_{k} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j}e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k}e_{ij(k)}$$

$$p^{2}$$

$$\begin{split} &=p^{2}\mu^{2}+p\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}^{2}+2p\mu\sum_{i=1}^{p}\tau_{i}+2p\mu\sum_{j=1}^{p}\beta_{j}+2p\mu\sum_{k=1}^{p}\gamma_{k}\\ &+2\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+2\sum_{i=1}^{p}\tau_{i}\sum_{j=1}^{p}\beta_{j}+2\sum_{i=1}^{p}\tau_{i}\sum_{k=1}^{p}\gamma_{k}+2\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+2\sum_{j=1}^{p}\beta_{j}\sum_{k=1}^{p}\gamma_{k}\\ &+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k)} \end{split}$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p E(\tau_i^2)+p\sum_{j=1}^p E(\beta_j^2)+p\sum_{k=1}^p E(\gamma_k^2)+\sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}^2)+2p\mu\sum_{i=1}^p E(\tau_i)+2p\mu\sum_{j=1}^p E(\beta_j)\\ &+2p\mu\sum_{k=1}^p E(\gamma_k)+2\mu\sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)})+2\sum_{i=1}^p \sum_{j=1}^p E(\tau_i\beta_j)+2\sum_{i=1}^p \sum_{k=1}^p E(\tau_i\gamma_k)\\ &+2\sum_{i=1}^p \sum_{j=1}^p E(\tau_ie_{ij(k)})+2\sum_{j=1}^p \sum_{k=1}^p E(\beta_j\gamma_k)+2\sum_{i=1}^p \sum_{j=1}^p E(\beta_je_{ij(k)})+2\sum_{i=1}^p \sum_{k=1}^p E(\gamma_ke_{ij(k)})\\ &+2\sum_{i=1}^p \sum_{j=1}^p E(\tau_ie_{ij(k)})+2\sum_{j=1}^p \sum_{k=1}^p E(\beta_j\gamma_k)+2\sum_{i=1}^p \sum_{j=1}^p E(\beta_je_{ij(k)})+2\sum_{i=1}^p \sum_{k=1}^p E(\gamma_ke_{ij(k)})\\ &=p^2\mu^2+p^2\sigma_\tau^2+p^2\sigma_\theta^2+p^2\sigma_\tau^2+p^2\sigma^2+0+0+0+0+0+0+0+0+0+0+0+0+0+0\\ &E\left(\sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2\right)=p^2\mu^2+p^2\sigma_\tau^2+p^2\sigma_\theta^2+p^2\sigma_\tau^2+p^2\sigma^2\\ &E(TSS)=E\left(\sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2\right)-E(C.F)\\ &=p^2\mu^2+p^2\sigma_\tau^2+p^2\sigma_\theta^2+p^2\sigma_\tau^2+p^2\sigma^2-p^2\mu^2-p\sigma_\tau^2-p\sigma_\theta^2-p\sigma_\tau^2-\sigma^2\\ &=p(p-1)\sigma_\tau^2+p(p-1)\sigma_\theta^2+p(p-1)\sigma_\eta^2+(p^2-1)\sigma^2\\ &SSR=\frac{\sum_{i=1}^p R_i^2}{p}-C.F\\ &R_i=\sum_{j=1}^p Y_{ij(k)}=\sum_{j=1}^p \left(\mu+\tau_i+\beta_j+\gamma_k+e_{ij(k)}\right)\\ &=p\mu+p\tau_i+\sum_{j=1}^p \beta_j+\sum_{k=1}^p \gamma_k+\sum_{j=1}^p e_{ij(k)}\\ &\frac{\sum_{i=1}^p R_i^2}{p}=\frac{\sum_{i=1}^p (p\mu+p\tau_i+\sum_{j=1}^p \beta_j+\sum_{k=1}^p \gamma_k+\sum_{j=1}^p e_{ij(k)})^2}{p}\\ &=\frac{\sum_{i=1}^p \left(p^2\mu^2+p^2\tau_i^2+\sum_{j=1}^p \beta_j^2+\sum_{k=1}^p \beta_j\beta_j+\sum_{k=1}^p \gamma_k+\sum_{k=1}^p \gamma_k+\sum_{j=1}^p e_{ij(k)}+\sum_{j=1}^p e_{ij(k)}e_{ih(l)}}\right)}{p^2\mu^2+p^2\mu^2\mu^2+p^2$$

 $+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+2p\sum_{i=1}^{p}\sum_{k=1}^{p}\tau_{i}\gamma_{k}+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+2\sum_{j=1}^{p}\sum_{k=1}^{p}\beta_{j}\gamma_{k}+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}\;e_{ij(k)}$

$$= \frac{p^{3}\mu^{2} + p\sum_{i=1}^{p}E(\tau_{i}^{2}) + p\sum_{i\neq j}E(\tau_{i}\tau_{j}) + p^{2}\sum_{j=1}^{p}E(\beta_{j}^{2}) + p\sum_{k=1}^{p}E(\gamma_{k}^{2}) + p\sum_{k\neq l}E(\gamma_{k}\gamma_{l}) + \sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}^{2}) + \sum_{i\neq j}\sum_{j=1}^{p}E(e_{ij(k)}^{2}) + 2p^{2}\mu\sum_{i=1}^{p}E(\tau_{i}) + 2p\mu\sum_{j=1}^{p}E(\beta_{j}) + 2p^{2}\mu\sum_{k=1}^{p}E(\gamma_{k}) + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}\beta_{j}) + 2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}\gamma_{k}) + 2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}e_{ij(k)}) + 2p\sum_{k=1}^{p}\sum_{j=1}^{p}E(\beta_{j}\gamma_{k}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\beta_{j}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\gamma_{k}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{j=1}^{$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p^{3}\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2}}{p}$$

$$= p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p\sigma_{\tau}^{2} + p\sigma_{\gamma}^{2} + p\sigma^{2}$$

$$= E\left(\frac{\sum_{j=1}^{p}C_{j}^{2}}{p}\right) = p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p\sigma_{\gamma}^{2} + p\sigma_{\gamma}^{2} + p\sigma^{2}$$

$$= E(SSC) = E\left(\frac{\sum_{j=1}^{p}C_{j}^{2}}{p}\right) - E(C.F)$$

$$= p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p^{2}\sigma_{\beta}^{2} + p\sigma_{\gamma}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\beta}^{2} - p\sigma_{\gamma}^{2} - \sigma^{2}$$

$$= p(p-1)\sigma_{\beta}^{2} + (p-1)\sigma^{2}$$

$$= p(p-1)\sigma_{\beta}^{2} + (p-1)\sigma^{2}$$

$$= SST = \frac{\sum_{k=1}^{p}T_{k}^{2}}{p} - C.F$$

$$= T_{k} = \sum_{i=1}^{p}Y_{ij(k)} = \sum_{i=1}^{p}(\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})$$

$$= p\mu + \sum_{i=1}^{p}T_{i} + \sum_{j=1}^{p}\beta_{j} + p\gamma_{k} + \sum_{i=1}^{p}e_{ij(k)}$$

$$= p\mu + \sum_{i=1}^{p}T_{i} + \sum_{j=1}^{p}\beta_{j} + p\gamma_{k} + \sum_{i=1}^{p}e_{ij(k)}$$

$$= \frac{\sum_{k=1}^{p}T_{k}^{2}}{2p\mu\sum_{i=1}^{p}\tau_{i} + 2p\mu\sum_{j=1}^{p}\beta_{j}^{2} + 2\sum_{i=1}^{p}\beta_{j} + p\gamma_{k} + \sum_{i=1}^{p}e_{ij(k)} + \sum_{i=2}^{p}\sum_{j=k}^{p}\beta_{i}e_{ij(k)}$$

$$= \frac{\sum_{k=1}^{p}T_{k}^{2}}{2p\mu\sum_{i=1}^{p}\tau_{i} + 2p\mu\sum_{j=1}^{p}\beta_{j}^{2} + 2\sum_{i=1}^{p}\beta_{j} + p\gamma_{k} + \sum_{i=1}^{p}e_{ij(k)} + \sum_{i=2}^{p}\sum_{j=k}^{p}\beta_{i}e_{ij(k)} + \sum_{i=2}^{p}\sum_{j=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\beta_{i}e_{ij(k)} + \sum_{i=1}^{p}\beta_{i}e_{ij(k)}$$

 $E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{n}\right) = p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p\sigma^{2}$

$$E(SST) = E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right) - E(C.F)$$

$$= p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\beta}^{2} - p\sigma_{\gamma}^{2} - \sigma^{2}$$

$$= p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2}$$

$$E(SSE) = E(TSS) - E(SSR) - E(SSC) - E(SST)$$

$$= p(p-1)\sigma_{\tau}^{2} + p(p-1)\sigma_{\beta}^{2} + p(p-1)\sigma_{\gamma}^{2} + (p^{2}-1)\sigma^{2} - p(p-1)\sigma_{\tau}^{2} - (p-1)\sigma^{2}$$

$$- p(p-1)\sigma_{\beta}^{2} - (p-1)\sigma^{2} - p(p-1)\sigma_{\gamma}^{2} - (p-1)\sigma^{2}$$

$$= (p^{2}-1-p+1-p+1-p+1)\sigma^{2}$$

$$= (p^{2}-3p+2)\sigma^{2}$$

$$= (p^{2}-3p+2)\sigma^{2}$$

$$= (p-2)(p-1)\sigma^{2}$$

$$E(MSE) = \frac{E(SSE)}{(p-1)(p-2)} = \frac{(p-2)(p-1)\sigma^{2}}{(p-1)(p-2)} = \sigma^{2}$$

$$E(MSR) = \frac{E(SSR)}{p-1} = \frac{p(p-1)\sigma_{\tau}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\tau}^{2}$$

$$E(MSC) = \frac{E(SSC)}{p-1} = \frac{p(p-1)\sigma_{\beta}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\beta}^{2}$$

$$E(MST) = \frac{E(SST)}{p-1} = \frac{p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\gamma}^{2}$$

Mixed Effect Model

Case I: In this model the effect of τ_i is random and effect of β_j and γ_k is fixed

Assumptions:

- $1. \quad E(e_{ij(k)}) = 0$
- 2. $E(e_{ij(k)}e_{gh(l)}) = 0$
- 3. $e_{ij(k)} \sim iidN(0, \sigma^2)$
- 4. $\tau_i \sim iidN(0, \sigma_\tau^2)$
- 5. $E(\tau_i \tau_i) = 0$
- $6. \quad E(\tau_i e_{ij(k)}) = 0$
- $7. \quad \sum_{j=1}^{p} \beta_j = 0$
- 8. $\sum_{k=1}^{p} \gamma_k = 0$

$$Y_{ij(k)} = \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}$$

$$SSE = TSS - SSR - SSC - SST$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^2 - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}\right)^2}{n^2} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})\right)^2}{n^2}$$

$$= \frac{\left(p^{2}\mu + p\sum_{i=1}^{p}\tau_{i} + p\sum_{j=1}^{p}\beta_{j} + p\sum_{k=1}^{p}\gamma_{k} + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p\sum_{i=1}^{p}\tau_{i} + 0 + 0 + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p\sum_{i=1}^{p}\tau_{i} + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p\sum_{i=1}^{p}\tau_{i} + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}\right)^{2}}{p^{2}}$$

$$p^{4}\mu^{2} + p^{2}\sum_{i=1}^{p}\tau_{i}^{2} + \sum\sum_{i\neq j}\tau_{i}\tau_{j} + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)} + \sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(l)} + 2p^{3}\mu\sum_{i=1}^{p}\tau_{i}$$

$$+2p^{2}\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)} + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}$$

$$p^{2}$$

$$\begin{split} &= \frac{p^4\mu^2 + p^2\sum_{i=1}^p E(\tau_i^2) + \sum_{l\neq j} E(\tau_l\tau_j) + \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}) + \sum_{l\neq g} \sum_{j\neq h} E(e_{ij(k)}e_{gh(l)})}{2} \\ &= \frac{p^4\mu^2 + p^3\sum_{i=1}^p E(\tau_i) + 2p^2\mu\sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}) + 2p\sum_{i=1}^p \sum_{j=1}^p E(\tau_ie_{ij(k)})}{p^2} \\ &= \frac{p^4\mu^2 + p^3\sigma_\tau^2 + 0 + p^2\sigma^2 + 0 + 0 + 0 + 0 + 0}{p^2} \\ &= \frac{p^4\mu^2 + p^3\sigma_\tau^2 + 0 + p^2\sigma^2 + 0 + 0 + 0 + 0 + 0}{p^2} \\ &= \sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2 = \sum_{i=1}^p \sum_{j=1}^p (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})^2 \\ &= \sum_{i=1}^p \sum_{j=1}^p (\mu^2 + \tau_i^2 + \beta_j^2 + \gamma_k^2 + e_{ij(k)}^2 + 2\mu\tau_i + 2\mu\beta_j + 2\mu\gamma_k + 2\mu e_{ij(k)} + 2\tau_i\beta_j + 2\tau_i\gamma_k \\ &+ 2\tau_i e_{ij(k)} + 2\beta_j\gamma_k + 2\beta_j e_{ij(k)} + 2\gamma_k e_{ij(k)}) \\ &= p^2\mu^2 + p\sum_{i=1}^p \tau_i^2 + p\sum_{j=1}^p \beta_j^2 + p\sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + 2\mu\mu\sum_{i=1}^p \tau_i + 2p\mu\sum_{j=1}^p \beta_j + 2p\mu\sum_{k=1}^p \gamma_k \\ &+ 2\mu\sum_{i=1}^p \sum_{j=1}^p e_{ij(k)} + 2\sum_{i=1}^p \sum_{j=1}^p \beta_j + 2\sum_{i=1}^p \tau_i \sum_{j=1}^p \gamma_i e_{ij(k)} + 2p\mu\sum_{i=1}^p \tau_i + 2p\mu\sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k)} + 2\sum_{j=1}^p \beta_j \sum_{j=1}^p \gamma_k \\ &+ 2\sum_{i=1}^p \sum_{j=1}^p \beta_j e_{ij(k)} + 2\sum_{i=1}^p \sum_{j=1}^p p_i e_{ij(k)} + 2p\mu\sum_{i=1}^p \tau_i + 0 + 0 + 2\mu\sum_{i=1}^p \sum_{j=1}^p e_{ij(k)} + 0 + 0 \\ &+ 2\sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k)} + 0 + 2\sum_{i=1}^p \sum_{j=1}^p \beta_j e_{ij(k)} + 2p\mu\sum_{i=1}^p \tau_i + 2\mu\sum_{i=1}^p \sum_{j=1}^p e_{ij(k)} + 2\sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k)} + 2\sum_{i=1}^p \sum_{j=1}^p \gamma_k e_{ij(k)} \\ &= p^2\mu^2 + p\sum_{i=1}^p \tau_i^2 + p\sum_{i=1}^p \beta_j^2 + p\sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p \beta_j e_{ij(k)} + 2p\mu\sum_{i=1}^p \tau_i + 0 + 0 + 2\mu\sum_{i=1}^p \sum_{j=1}^p e_{ij(k)} + 0 + 0 \\ &+ 2\sum_{i=1}^p \sum_{j=1}^p \tau_i^2 + p\sum_{i=1}^p \beta_j^2 + p\sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + 2p\mu\sum_{i=1}^p \tau_i + 2\mu\sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + 2\sum_{i=1}^p \sum_{j=1}^p \tau_i^2 e_{ij(k)}^2 + 2p\mu\sum_{i=1}^p \tau_i^2 + 2\sum_{i=1}^p \sum_{j=1}^p \tau_i^2 e_{ij(k)}^2 + 2p\mu\sum_{i=1}^p \tau_i^2 + 2\sum_{i=1}^p \sum_{j=1}^p \tau_i^2 e_{ij(k)}^2 + 2p\mu\sum_{i=1}^p \tau_i^2 + 2\sum_{i=1}^p \tau_i^2 e_{ij(k)}^2 + 2\sum_{i=1}^p \tau_i^2 e_{ij(k)}^2 + 2\sum_{i=1}^p \tau_i^2 e_{ij(k)}^2 + 2\sum_{i=1}^p \tau_i^2 e_{ij(k)}^2 + 2\sum_{i=1}^p \tau_i$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p E(\tau_i^2)+p\sum_{j=1}^p \beta_j^2+p\sum_{k=1}^p \gamma_k^2+\sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}^2)+2p\mu\sum_{i=1}^p E(\tau_i)+2\mu\sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)})\\ &+2\sum_{j=1}^p \sum_{j=1}^p E(\tau_i e_{ij(k)})+2\sum_{i=1}^p \sum_{j=1}^p \beta_j E(e_{ij(k)})+2\sum_{i=1}^p \sum_{k=1}^p \gamma_k E(e_{ij(k)})\\ &=p^2\mu^2+p^2\sigma_\tau^2+p\sum_{j=1}^p \beta_j^2+p\sum_{k=1}^p \gamma_k^2+p^2\sigma^2+0+0+0+0+0+0\\ &=p^2\mu^2+p^2\sigma_\tau^2+p\sum_{j=1}^p \beta_j^2+p\sum_{k=1}^p \gamma_j^2+p\sum_{k=1}^p \gamma_k^2+p^2\sigma^2\\ &E(TSS)=E\left[\sum_{i=1}^p \sum_{j=1}^p \gamma_{ij}^2\right]-E(C.F)\\ &=p^2\mu^2+p^2\sigma_\tau^2+p\sum_{j=1}^p \beta_j^2+p\sum_{k=1}^p \gamma_k^2+p^2\sigma^2-p^2\mu^2-p\sigma_\tau^2-\sigma^2\\ &=p(p-1)\sigma_\tau^2+p\sum_{j=1}^p \beta_j^2+p\sum_{k=1}^p \gamma_k^2+(p^2-1)\sigma^2\\ &SSR=\frac{\sum_{i=1}^p R_i^2}{p}-C.F\\ &R_i=\sum_{j=1}^p Y_{ij(k)}=\sum_{j=1}^p (\mu+\tau_i+\beta_j+\gamma_k+e_{ij(k)})\\ &=p\mu+p\tau_i+\sum_{j=1}^p \beta_j+\sum_{k=1}^p \gamma_k+\sum_{j=1}^p e_{ij(k)}\\ &=p\mu+p\tau_i+\sum_{j=1}^p \theta_i(pk)+p\tau_i+\sum_{j=1}^p e_{ij(k)}\\ &=p\mu+p\tau_i+\sum_{j=1}^p (p\mu+p\tau_i+\sum_{j=1}^p e_{ij(k)})^2\\ &=\frac{\sum_{i=1}^p R_i^2}{p}=\sum_{i=1}^p (p\mu+p\tau_i+\sum_{j=1}^p e_{ij(k)})^2}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\tau_i^2+\sum_{j=1}^p e_{ij(k)}^2+\sum_{j=1}^p e_{ij(k)}e_{in(i)}+2p^2\mu\tau_i+2p\mu\sum_{j=1}^p e_{ij(k)}+2p\tau_i\sum_{j=1}^p e_{ij(k)})}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\tau_i^2+\sum_{j=1}^p e_{ij(k)}^2+\sum_{j=1}^p e_{ij(k)}e_{in(i)}+2p^2\mu\tau_i+2p\mu\sum_{j=1}^p e_{ij(k)}+2p\tau_i\sum_{j=1}^p e_{ij(k)})}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\sum_{i=1}^p \tau_i^2+\sum_{j=1}^p e_{ij(k)}^2+\sum_{i=2}^p \sum_{j=1}^p e_{ij(k)}e_{in(i)}+2p^2\mu\tau_i+2p\mu\sum_{j=1}^p e_{ij(k)}+2p\tau_i\sum_{j=1}^p e_{ij(k)})}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\sum_{i=1}^p \tau_i^2+\sum_{j=1}^p e_{ij(k)}^2+\sum_{i=2}^p \sum_{j=1}^p e_{ij(k)}e_{in(i)}+2p^2\mu\tau_i+2p\mu\sum_{j=1}^p e_{ij(k)}+2p\mu\sum_{j=1}^p e_{ij(k)}}{p}}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\sum_{i=1}^p \tau_i^2+\sum_{j=1}^p e_{ij(k)}^2+\sum_{i=2}^p \sum_{j=1}^p e_{ij(k)}e_{in(i)}+2p^2\mu\tau_i^2+2p\mu\sum_{j=1}^p e_{ij(k)}+2p\mu\sum_{j=1}^p e_{ij(k)}}{p}}}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\sum_{i=1}^p \tau_i^2+\sum_{j=1}^p \sum_{i=1}^p e_{ij(k)}+\sum_{i=2}^p \sum_{j=1}^p e_{ij(k)}e_{in(i)}+2p^2\mu\tau_i^2+2p\mu\sum_{j=1}^p e_{ij(k)}+2p\mu\sum_{j=1}^p e_{ij(k)}}{p}}}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2\sum_{i=1}^p \sum_{j=1}^p \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}+p^2\mu}{p}}}{p}\\ &=\frac{\sum_{i=1}^p (p^2\mu^2+p^2)\sum_{i=1}^p \sum_{j=1}^p \sum_{$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{i=1}^{p} E(\tau_{i}^{2}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij(k)}e_{gh(l)}) + 2p^{2}\mu \sum_{i=1}^{p} E(\tau_{i})}{+2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} E(\tau_{i}e_{ij(k)})}$$

$$= \frac{p^{3}\mu^{2} + p^{3}\sigma_{\tau}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0}{p}$$

$$\begin{split} &=\frac{p^3\mu^2+p^3\sigma_{\tau}^2+p^2\sigma^2}{p}\\ &=p^2\mu^2+p^2\sigma_{\tau}^2+p\sigma^2\\ &E\left(\frac{\sum_{l=1}^pR_l^2}{p}\right)=p^2\mu^2+p^2\sigma_{\tau}^2+p\sigma^2\\ &E\left(\frac{\sum_{l=1}^pR_l^2}{p}\right)=p^2\mu^2+p^2\sigma_{\tau}^2+p\sigma^2\\ &E(SSR)=E\left(\frac{\sum_{l=1}^pR_l^2}{p}\right)-E(C.F)\\ &=p^2\mu^2+p^2\sigma_{\tau}^2+p\sigma^2-p^2\mu^2-p\sigma_{\tau}^2-\sigma^2\\ &=p(p-1)\sigma_{\tau}^2+(p-1)\sigma^2\\ &SSC=\frac{\sum_{l=1}^pY_{ij(k)}}{p}-C.F\\ &C_i=\sum_{l=1}^pY_{ij(k)}=\sum_{l=1}^p\left(\mu+\tau_i+\beta_j+\gamma_k+e_{ij(k)}\right)\\ &=p\mu+\sum_{l=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{l=1}^pe_{ij(k)}\\ &=p\mu+\sum_{l=1}^p\tau_i+p\beta_j+\sum_{k=1}^pe_{ij(k)}\\ &=p\mu+\sum_{l=1}^p\tau_i+p\beta_j+\sum_{l=1}^pe_{ij(k)}\\ &=p\mu+\sum_{l=1}^p\tau_i+p\beta_j+\sum_{l=1}^pe_{ij(k)}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^p(p\mu+\sum_{l=1}^p\tau_i+p\beta_j+\sum_{l=1}^pe_{ij(k)})^2}{p}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^p(p\mu+\sum_{l=1}^p\tau_i+p\beta_j+\sum_{l=1}^pe_{ij(k)})^2}{p}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^pT_j$$

$$\begin{split} &=\frac{p^{3}\mu^{2}+p^{2}\sigma_{t}^{2}+p^{2}\sum_{j=1}^{2}\beta_{j}^{2}+p^{2}\sigma^{2}}{p}\\ &=\frac{p^{3}\mu^{2}+p^{2}\sigma_{t}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sigma^{2}}{p}\\ &=E\left(\frac{\sum_{j=1}^{p}C_{j}^{2}}{p}\right)=p^{2}\mu^{2}+p\sigma_{t}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sigma^{2}\\ &=E(SSC)=E\left(\frac{\sum_{j=1}^{p}C_{j}^{2}}{p}\right)-E(C.F)\\ &=p^{2}\mu^{2}+p\sigma_{t}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sigma^{2}-p^{2}\mu^{2}-p\sigma^{2}-\sigma^{2}\\ &=p\sum_{j=1}^{p}\beta_{j}^{2}+(p-1)\sigma^{2}\\ &=p\sum_{j=1}^{p}\beta_{j}^{2}+(p-1)\sigma^{2}\\ &SST=\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}-C.F\\ &T_{k}=\sum_{i=1}^{p}Y_{ij(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{ij(k)}\right)\\ &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=p\mu+\sum_{i=1}^{p}\tau_{i}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}\\ &=\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}=\sum_{k=1}^{p}(p^{2}\mu^{2}+\sum_{i=1}^{p}\tau_{i}^{$$

$$\begin{split} & p^{3}\mu^{2} + p \sum_{i=1}^{p} E(\tau_{i}^{2}) + p \sum \sum_{i\neq j} E(\tau_{i}\tau_{j}) + p^{2} \sum_{k=1}^{p} Y_{k}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij(k)}) e_{jh(i)} \\ & + 2p^{2}\mu \sum_{i=1}^{p} E(\tau_{i}) + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p \sum_{i=1}^{p} \sum_{k=1}^{p} E(\tau_{i}) \gamma_{k} + 2 \sum_{i=1}^{p} \sum_{j=1}^{p} E(\tau_{i}e_{ij(k)}) \\ & + 2p \sum_{i=1}^{p} \sum_{k=1}^{p} E(e_{ij(k)}) \gamma_{k} \\ & = \frac{p^{3}\mu^{2} + p^{2}\sigma_{\tau}^{2} + 0 + p^{2} \sum_{k=1}^{p} \gamma_{k}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0}{p} \\ & = \frac{p^{3}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p^{2} \sum_{k=1}^{p} \gamma_{k}^{2} + p^{2}\sigma^{2}}{p} \\ & E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right) = p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p \sum_{k=1}^{p} \gamma_{k}^{2} + p\sigma^{2} \\ & E(SST) = E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right) - E(C.F) \\ & = p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p \sum_{k=1}^{p} \gamma_{k}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - \sigma^{2} \\ & = p \sum_{k=1}^{p} \gamma_{k}^{2} + (p-1)\sigma^{2} \\ & E(SSE) = E(TSS) - E(SSR) - E(SSC) - E(SST) \\ & = p(p-1)\sigma_{\tau}^{2} + p \sum_{i=1}^{p} \gamma_{i}^{2} + p \sum_{k=1}^{p} \gamma_{i}^{2} + (p^{2} - 1)\sigma^{2} - p(p-1)\sigma_{\tau}^{2} - (p-1)\sigma^{2} - p \sum_{i=1}^{p} \beta_{i}^{2} - (p-1)\sigma^{2} - p \sum_{k=1}^{p} \gamma_{i}^{2} - (p-1)\sigma^{2} \\ & = (p-2)(p-1)\sigma^{2} \\ & E(MSE) = \frac{E(SSE)}{(p-1)(p-2)} = \frac{(p-2)(p-1)\sigma^{2}}{(p-1)(p-2)} = \sigma^{2} \\ & E(MSC) = \frac{E(SSE)}{(p-1)} = \frac{p(p-1)\sigma_{\tau}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1} \sum_{i=1}^{p} \beta_{i}^{2} \\ & E(MST) = \frac{E(SST)}{p-1} = \frac{p\sum_{k=1}^{p} \gamma_{k}^{2} - (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1} \sum_{k=1}^{p} \gamma_{k}^{2} \end{pmatrix}$$

Case II: In this model the effect of β_j is random and effect of τ_i and γ_k is fixed

Assumptions:

- $1. \quad E(e_{ij(k)}) = 0$
- $2. \quad E(e_{ij(k)}e_{gh(l)}) = 0$
- 3. $e_{ij(k)} \sim iidN(0, \sigma^2)$
- 4. $\beta_j \sim iidN(0, \sigma_\beta^2)$
- 5. $E(\beta_i \beta_j) = 0$

6.
$$E(\beta_i e_{i,i(k)}) = 0$$

7.
$$\sum_{i=1}^{p} \tau_i = 0$$

8.
$$\sum_{k=1}^{p} \gamma_k = 0$$

$$Y_{ij(k)} = \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}$$

$$SSE = TSS - SSR - SSC - SST$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^2 - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}\right)^2}{p^2} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + p \sum_{i=1}^{p} \tau_i + p \sum_{j=1}^{p} \beta_j + p \sum_{k=1}^{p} \gamma_k + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + 0 + p \sum_{j=1}^{p} \beta_j + 0 + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + p \sum_{j=1}^{p} \beta_j + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + p \sum_{j=1}^{p} \beta_j + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$= \frac{p^4\mu^2 + p^2 \sum_{j=1}^{p} \beta_j^2 + \sum \sum_{i\neq j} \beta_i \beta_j + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^3\mu \sum_{j=1}^{p} \beta_j}{p^2}$$

$$= \frac{p^2\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_j e_{ij(k)}}{p^2}$$

$$= \frac{p^{4}\mu^{2} + p^{2} \sum_{j=1}^{p} E(\beta_{j}^{2}) + \sum \sum_{i\neq j} E(\beta_{i}\beta_{j}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij(k)}e_{gh(l)})}{+2p^{3}\mu \sum_{j=1}^{p} E(\beta_{j}) + 2p^{2}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} E(\beta_{j}e_{ij(k)})}$$

$$= \frac{p^{4}\mu^{2} + p^{3}\sigma_{\beta}^{2} + 0 + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0}{p^{2}}$$

$$= \frac{p^{4}\mu^{2} + p^{3}\sigma_{\beta}^{2} + 0 + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0}{p^{2}}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} = \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})^{2}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu^{2} + \tau_{i}^{2} + \beta_{j}^{2} + \gamma_{k}^{2} + e_{ij(k)}^{2} + 2\mu\tau_{i} + 2\mu\beta_{j} + 2\mu\gamma_{k} + 2\mu e_{ij(k)} + 2\tau_{i}\beta_{j} + 2\tau_{i}\gamma_{k}$$

$$+ 2\tau_{i}e_{ij(k)} + 2\beta_{i}\gamma_{k} + 2\beta_{i}e_{ij(k)} + 2\gamma_{k}e_{ij(k)})$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{i=1}^p\tau_i+2p\mu\sum_{j=1}^p\beta_j+2p\mu\sum_{k=1}^p\gamma_k\\ &+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+2\sum_{i=1}^p\tau_i\sum_{j=1}^p\beta_j+2\sum_{i=1}^p\tau_i\sum_{j=1}^p\gamma_k+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{j=1}^p\beta_j\sum_{k=1}^p\gamma_k\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+0+2p\mu\sum_{j=1}^p\beta_j+0+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+0+0\\ &+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+0+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{k=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{j=1}^p\beta_j+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{k=1}^p\gamma_ke_{ij(k)} \end{split}$$

$$\begin{split} &=p^{2}\mu^{2}+p\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}E(\beta_{j}^{2})+p\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}^{2})+2p\mu\sum_{j=1}^{p}E(\beta_{j})+2\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)})\\ &+2\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}E(e_{ij(k)})+2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\beta_{j}e_{ij(k)})+2\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}E(e_{ij(k)})\\ &=p^{2}\mu^{2}+p\sum_{i=1}^{p}\tau_{i}^{2}+p^{2}\sigma_{\beta}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+p^{2}\sigma^{2}+0+0+0+0+0+0\\ &=p^{2}\mu^{2}+p\sum_{i=1}^{p}\tau_{i}^{2}+p^{2}\sigma_{\beta}^{2}+p\sum_{k=1}^{p}\gamma_{ij(k)}^{2}-E(C.F)\\ &=p^{2}\mu^{2}+p\sum_{i=1}^{p}\tau_{i}^{2}+p^{2}\sigma_{\beta}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+p^{2}\sigma^{2}-p^{2}\mu^{2}-p\sigma_{\beta}^{2}-\sigma^{2}\\ &E(TSS)=p\sum_{i=1}^{p}\tau_{i}^{2}+p(p-1)\sigma_{\beta}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+(p^{2}-1)\sigma^{2}\\ &SSR=\frac{\sum_{i=1}^{p}R_{i}^{2}}{p}-C.F\\ &R_{i}=\sum_{j=1}^{p}Y_{ij(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{ij(k)}\right)\\ &=p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{k=1}^{p}\gamma_{k}+\sum_{j=1}^{p}e_{ij(k)} \end{split}$$

$$=p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+0+\sum_{j=1}^{p}e_{ij(k)}$$

$$=p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)}$$

$$\frac{\sum_{i=1}^{p}R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}(p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)})^{2}}{p}$$

$$\frac{\sum_{i=1}^{p}R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}(p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)})^{2}}{p}$$

$$\frac{\sum_{i=1}^{p}(p^{2}\mu^{2}+p^{2}\tau_{i}^{2}+\sum_{j=1}^{p}\beta_{j}^{2}+\sum\sum_{i\neq j}\beta_{j}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{j=1}^{p}e_{ij(k)}+\sum_{j=1}^{p}e_{ij(k)}+\sum_{j=1}^{p}e_{ij(k)}+2p^{2}\mu\tau_{i}+2p\mu\sum_{j=1}^{p}\beta_{j}+2p\mu\sum_{j=1}^{p}e_{ij(k)}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i\neq j}\beta_{j}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}e_{ij(k)}+2\sum_{j=1}^{p}\sum_{j=1}^{p}\epsilon_{ij(k)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i\neq j}\beta_{j}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\epsilon_{ij(k)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}\epsilon_{ij(k)}+\sum_{i\neq j}\sum_{j\neq h}e_{ij(k)}e_{gh(i)}+0+2p^{2}\mu\sum_{j=1}^{p}\beta_{j}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j\neq h}e_{ij(k)}e_{gh(i)}+0+2p^{2}\mu\sum_{j=1}^{p}\beta_{j}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j\neq h}e_{ij(k)}e_{gh(i)}+2p^{2}\mu\sum_{j=1}^{p}\beta_{j}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\Sigma_{j=1}^{p}\beta_{j}e_{ij(k)}}{p}$$

$$\frac{p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{i=1}^{p}\beta_{j}^{2}+p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\beta_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\beta_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\beta_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\beta_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}\beta_{i}e_{ij(k)}+\sum_{i\neq j}\sum_{j=1}^{p}$$

$$\begin{split} \frac{p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p} \tau_{i}^{2} + p\sum_{j=1}^{p} E(\beta_{j}^{2}) + p\sum\sum_{i=1}^{p} E(\beta_{j}\beta_{j}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij(k)}) + 2p^{2}\mu \sum_{j=1}^{p} E(\beta_{j}) \\ + 2p\mu\sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}E(\beta_{j}) + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}E(e_{ij(k)}) + 2\sum_{i=1}^{p} \sum_{j=1}^{p} E(\beta_{j}) \\ + 2p\mu\sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}E(\beta_{j}) + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}E(e_{ij(k)}) + 2\sum_{i=1}^{p} \sum_{j=1}^{p} E(\beta_{j}) \\ + 2p\mu\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}^{2} + p^{2}\sigma_{j}^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 \\ + p \\ = \frac{p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p} \tau_{i}^{2} + p^{2}\sigma_{j}^{2} + p^{2}\sigma^{2}}{p} \\ = p^{2}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sigma_{j}^{2} + p\sigma^{2} \\ E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right) = p^{2}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sigma_{j}^{2} + p\sigma^{2} \\ E(SSR) = E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right) - E(C.F) \\ = p^{2}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sigma_{j}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{j}^{2} - \sigma^{2} \\ = p\sum_{i=1}^{p} \tau_{i}^{2} + (p-1)\sigma^{2} \\ SSC = \frac{\sum_{j=1}^{p} C_{j}^{2}}{p} - C.F \end{split}$$

$$C_{j} = \sum_{i=1}^{p} Y_{ij(k)} = \sum_{i=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + p\beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} e_{ij(k)}$$

$$= p\mu + 0 + p\beta_{j} + 0 + \sum_{i=1}^{p} e_{ij(k)}$$

$$= p\mu + p\beta_{j} + \sum_{i=1}^{p} e_{ij(k)}$$

$$\frac{\sum_{j=1}^{p} C_{j}^{2}}{p} = \frac{\sum_{j=1}^{p} (p\mu + p\beta_{j} + \sum_{i=1}^{p} e_{ij(k)})^{2}}{p}$$

$$= \frac{\sum_{j=1}^{p} (p^{2}\mu^{2} + p^{2}\beta_{j}^{2} + \sum_{i=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq g} e_{ij(k)} e_{gj(l)} + 2p^{2}\mu\beta_{j} + 2p\mu\sum_{i=1}^{p} e_{ij(k)} + 2p\sum_{i=1}^{p} \beta_{j} e_{ij(k)})}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^{2}\mu\sum_{j=1}^{p} \beta_{j} + 2p\mu\sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}}{p}$$

$$= \frac{p^{2}\mu^{2} + p^{2}\sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}^{2}}{p}$$

$$\begin{split} & = \frac{p^{3}\mu^{2} + p^{2} \sum_{j=1}^{p} E(\beta_{j}^{2}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i \neq g} \sum_{j \neq h} E(e_{ij(k)} e_{gh(l)}) + 2p^{2}\mu \sum_{j=1}^{p} E(\beta_{j})}{+2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} E(\beta_{j} e_{ij(k)})} \\ & = \frac{p^{3}\mu^{2} + p^{3}\sigma_{\beta}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0}{p} \\ & = \frac{p^{3}\mu^{2} + p^{3}\sigma_{\beta}^{2} + p^{2}\sigma^{2}}{p} \\ & = p^{2}\mu^{2} + p^{2}\sigma_{\beta}^{2} + p\sigma^{2} \\ & E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right) = p^{2}\mu^{2} + p^{2}\sigma_{\beta}^{2} + p\sigma^{2} \\ & E(SSC) = E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right) - E(C.F) \\ & = p^{2}\mu^{2} + p^{2}\sigma_{\beta}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\beta}^{2} - \sigma^{2} \\ & = p(p-1)\sigma_{\beta}^{2} + (p-1)\sigma^{2} \\ & T_{k} = \sum_{i=1}^{p} Y_{ij(k)} = \sum_{i=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)}) \\ & = p\mu + \sum_{i=1}^{p} \tau_{i} + \sum_{j=1}^{p} \beta_{j} + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)} \\ & = p\mu + 0 + \sum_{i=1}^{p} \beta_{j} + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)} \end{split}$$

$$=p\mu+\sum_{j=1}^{p}\beta_{j}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)}$$

$$\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}(p\mu+\sum_{j=1}^{p}\beta_{j}+p\gamma_{k}+\sum_{i=1}^{p}e_{ij(k)})^{2}}{p}$$

$$=\frac{\sum_{k=1}^{p}(p^{2}\mu^{2}+\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{l\neq i}\beta_{l}\beta_{j}+p^{2}\gamma_{k}^{2}+\sum_{l=1}^{p}e_{ij(k)}^{2}+\sum_{l\neq i}\beta_{l}\beta_{l}+2p\mu\sum_{j=1}^{p}\beta_{j}+2p^{2}\mu\gamma_{k}}{p}$$

$$=\frac{\sum_{k=1}^{p}(p^{2}\mu^{2}+\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{l\neq i}\beta_{l}\beta_{j}+p^{2}\gamma_{k}^{2}+\sum_{l=1}^{p}e_{ij(k)}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2p\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2p\mu\sum_{j=1}^{p}\beta_{j}+2p^{2}\mu\gamma_{k}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l=1}^{p}\beta_{j}^{2}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{k=1}^{p}\beta_{j}\gamma_{k}+2\sum_{l=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2p\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l\neq i}\beta_{j}\beta_{j}+p^{2}\sum_{k=1}^{p}\beta_{j}\gamma_{k}+2\sum_{l=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2p\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l\neq i}\beta_{j}\beta_{j}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{k=1}^{p}\beta_{j}\gamma_{k}+2\sum_{l=1}^{p}\sum_{j=1}^{p}\beta_{l}e_{ij(k)}+2p\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l\neq i}\beta_{i}\beta_{j}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}e_{ij(k)}+2p\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l\neq i}\beta_{i}\beta_{j}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}e_{ij(k)}+2p\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l\neq i}\beta_{i}\beta_{j}+p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}e_{ij(k)}+2p\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{l\neq i}\beta_{i}\beta_{j}+p^{2}\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\gamma_{k}e_{ij(k)}+2p\sum_{l=1}^{p}\gamma_{k}e_{ij(k)}}{p}}{p}$$

$$=\frac{p^{3}\mu^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{p}\beta_{l}^{2}+p\sum_{l=1}^{$$

$$\begin{split} & \stackrel{p^{p}\mu^{+} + p \sum_{j=1}^{n} E(\beta_{j}^{+} + p \sum_{k=1}^{n} E(e_{ij(k)}) + p^{-} \sum_{k=1}^{n} V_{k}^{+} + \sum_{j=1}^{n} \sum_{k=1}^{n} E(e_{ij(k)}) + \sum_{k=2}^{n} \sum_{l=1}^{n} E(e_{ij(k)}) + 2p^{-} \sum_{j=1}^{p} E(p_{j}) \gamma_{k} + 2\sum_{l=1}^{n} \sum_{j=1}^{n} \sum_{l=1}^{n} E(\beta_{l}e_{ij(k)}) + 2p^{-} \sum_{k=1}^{n} \sum_{l=1}^{n} E(p_{l}e_{lj(k)}) + 2p^{-} \sum_{k=1}^{n} \sum_{l=1}^{n} E(p_{l}e_{lj(k)}) + 2p^{-} \sum_{k=1}^{n} \sum_{l=1}^{n} E(p_{l}e_{lj(k)}) + 2p^{-} \sum_{k=1}^{n} E(p_{l}e_{lj(k)}) + 2p^{-} \sum_{k=1}^{n} \sum_{l=1}^{n} E(p_{l}e_{lj(k)}) + 2p^{-} \sum_{k=1}^{n} E(p_{l}e_{lj(k)}) + 2p$$

$$E(MSE) = \frac{E(SSE)}{(p-1)(p-2)} = \frac{(p-1)(p-2)\sigma^2}{(p-1)(p-2)} = \sigma^2$$

$$E(MSR) = \frac{E(SSR)}{p-1} = \frac{p\sum_{i=1}^{p} \tau_i^2 + (p-1)\sigma^2}{p-1} = \sigma^2 + \frac{p}{p-1} \sum_{i=1}^{p} \tau_i^2$$

$$E(MSC) = \frac{E(SSC)}{p-1} = \frac{p(p-1)\sigma_{\beta}^2 + (p-1)\sigma^2}{p-1} = \sigma^2 + p\sigma_{\beta}^2$$

$$E(MST) = \frac{E(SST)}{p-1} = \frac{p\sum_{k=1}^{p} \gamma_k^2 + (p-1)\sigma^2}{p-1} = \sigma^2 + \frac{p}{p-1} \sum_{k=1}^{p} \gamma_k^2$$

Case III: In this model the effect of γ_k is random and effect of τ_i and β_j is fixed

Assumptions:

- 1. $E(e_{ii(k)}) = 0$
- 2. $E(e_{ij(k)}e_{gh(l)}) = 0$
- 3. $e_{ii(k)} \sim iidN(0, \sigma^2)$
- 4. $\gamma_k \sim iidN(0, \sigma_v^2)$
- 5. $E(\gamma_k \gamma_l) = 0$
- 6. $E(\gamma_k e_{ij(k)}) = 0$
- 7. $\sum_{i=1}^{p} \beta_i = 0$
- 8. $\sum_{i=1}^{p} \tau_i = 0$

$$\begin{split} Y_{ij(k)} &= \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)} \\ SSE &= TSS - SSR - SSC - SST \\ TSS &= \sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2 - C.F \\ C.F &= \frac{\left(\sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}\right)^2}{p^2} = \frac{\left(\sum_{i=1}^p \sum_{j=1}^p (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})\right)^2}{p^2} \\ &= \frac{\left(p^2 \mu + p \sum_{i=1}^p \tau_i + p \sum_{j=1}^p \beta_j + p \sum_{k=1}^p \gamma_k + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{\left(p^2 \mu + 0 + 0 + p \sum_{k=1}^p \gamma_k + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{\left(p^2 \mu + p \sum_{k=1}^p \gamma_k + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ &= \frac{\left(p^2 \mu + p \sum_{k=1}^p \gamma_k + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}\right)^2}{p^2} \\ p^4 \mu^2 + p^2 \sum_{k=1}^p \gamma_k^2 + \sum_{k\neq l} \gamma_k \gamma_l + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + \sum_{l\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^3 \mu \sum_{k=1}^p \gamma_k + 2p^2 \mu \sum_{l=1}^p \sum_{j=1}^p e_{ij(k)} + 2p \sum_{l=1}^p \sum_{l=1}^p \gamma_k e_{ij(k)} \\ p^2 \end{split}$$

$$\begin{split} & p^4 \mu^2 + p^2 \sum_{k=1}^p E(\gamma_k^2) + \sum_{k \neq 1} E(\gamma_k \gamma_t) + \sum_{j=1}^p \sum_{j=1}^p E(e_{ij(k)}^2) + \sum_{i \neq g} \sum_{j \neq h} E(e_{ij(k)} e_{gh(t)}) \\ & + 2p^3 \mu \sum_{k=1}^p E(\gamma_k) + 2p^2 \mu \sum_{i=1}^p \sum_{j=1}^p \sum_{j=1}^p E(e_{ij(k)}) + 2p \sum_{i=1}^p \sum_{k=1}^p E(\gamma_k e_{ij(k)}) \\ & p^2 \end{split}$$

$$& = \frac{p^4 \mu^2 + p^3 \sigma_{\gamma}^2 + 0 + p^2 \sigma^2 + 0 + 0 + 0 + 0}{p^2}$$

$$& = \frac{p^4 \mu^2 + p^3 \sigma_{\gamma}^2 + p^2 \sigma^2}{p^2}$$

$$& E(C.F) = p^2 \mu^2 + p \sigma_{\gamma}^2 + \sigma^2$$

$$& \sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2 = \sum_{i=1}^p \sum_{j=1}^p (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})^2$$

$$& = \sum_{i=1}^p \sum_{j=1}^p (\mu^2 + \tau_i^2 + \beta_j^2 + \gamma_k^2 + e_{ij(k)}^2 + 2\mu \tau_i + 2\mu \beta_j + 2\mu \gamma_k + 2\mu e_{ij(k)} + 2\tau_i \beta_j + 2\tau_i \gamma_k$$

$$& + 2\tau_i e_{ij(k)} + 2\beta_j \gamma_k + 2\beta_j e_{ij(k)} + 2\gamma_k e_{ij(k)})$$

$$& = p^2 \mu^2 + p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + 2\mu \sum_{i=1}^p \tau_i + 2\mu \mu \sum_{j=1}^p \tau_i e_{ij(k)} + 2\sum_{j=1}^p \beta_j \sum_{k=1}^p \gamma_k$$

$$& + 2\mu \sum_{i=1}^p \sum_{j=1}^p \theta_{ij(k)} + 2\sum_{i=1}^p \sum_{j=1}^p \gamma_i e_{ij(k)}^2 + 2$$

$$= p^{2}\mu^{2} + p \sum_{i=1}^{p} \tau_{i}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p \sum_{k=1}^{p} E(\gamma_{k}^{2}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + 2p\mu \sum_{k=1}^{p} E(\gamma_{k}) + 2\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E(e_{ij(k)}) + 2\sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} E(e_{ij(k)})$$

$$= p^{2}\mu^{2} + p \sum_{i=1}^{p} \tau_{i}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0$$

$$\begin{split} &=p^2\mu^2+p\sum_{l=1}^p\tau_l^2+p\sum_{j=1}^p\beta_j^2+p^2\sigma_y^2+p^2\sigma^2\\ &=E(TSS)=E\left(\sum_{l=1}^p\sum_{j=1}^pY_{lj(k)}^2\right)-E(C.F)\\ &=p^2\mu^2+p\sum_{l=1}^p\tau_l^2+p\sum_{j=1}^p\beta_j^2+p^2\sigma_y^2+p^2\sigma^2-p^2\mu^2-p\sigma_y^2-\sigma^2\\ &=p\sum_{l=1}^p\tau_l^2+p\sum_{j=1}^p\beta_j^2+p(p-1)\sigma_y^2+p^2\sigma^2-p^2\mu^2-p\sigma_y^2-\sigma^2\\ &=p\sum_{l=1}^p\tau_l^2+p\sum_{j=1}^p\beta_j^2+p(p-1)\sigma_y^2+(p^2-1)\sigma^2\\ &SSR=\frac{\sum_{j=1}^pR_l^2}{p}-C.F\\ &R_l=\sum_{j=1}^pY_{lj(k)}=\sum_{j=1}^p\left(\mu+\tau_l+\beta_j+\gamma_k+e_{lj(k)}\right)\\ &=p\mu+p\tau_l+\sum_{j=1}^p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{j=1}^pe_{lj(k)}\\ &=p\mu+p\tau_l+\sum_{k=1}^p\gamma_k+\sum_{j=1}^pe_{lj(k)}\\ &=p\mu+p\tau_l+\sum_{k=1}^p\gamma_k+\sum_{j=1}^pe_{lj(k)}\\ &=p\mu+p\tau_l+\sum_{k=1}^p\gamma_k+\sum_{j=1}^pe_{lj(k)}\\ &=p\mu+p\tau_l+\sum_{k=1}^p\gamma_k+\sum_{j=1}^pe_{lj(k)}\\ &=\frac{\sum_{l=1}^p\left(p^2\mu^2+p^2\tau_l^2+\sum_{k=1}^p\gamma_k^2+\sum_{k=1}^p\gamma_k+\gamma_k+\sum_{j=1}^pe_{lj(k)}+\sum_{l=k}^pe_{lj(k)}e_{lk(l)}+2p^2\mu\sum_{k=1}^p\gamma_k+2p\mu\sum_{j=1}^pe_{lj(k)}\\ &=\frac{p^2\mu^2+p^2\sum_{l=1}^p\tau_l^2+p\sum_{k=1}^p\gamma_k^2+p\sum_{k=1}^$$

$$\begin{split} & = p^3 \mu^2 + p^2 \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p E(y_k^2) + p \sum_{k=1}^p E(y_k^2) + p \sum_{k=1}^p E(y_k^2) + 2p \sum_{k=1}^p \sum_{j=1}^p E(y_k^2) + 2p \sum_{j=1}^p \sum_{j=1}^p E(y_k^2) + 2$$

$$=\frac{p^{3}\mu^{2}+p^{3}\sigma_{\gamma}^{2}+p^{2}\sigma^{2}+0+0+0+0}{p}$$

$$=\frac{p^{3}\mu^{2}+p^{3}\sigma_{\gamma}^{2}+p^{2}\sigma^{2}}{p}$$

$$E\left(\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}\right)=p^{2}\mu^{2}+p^{2}\sigma_{\gamma}^{2}+p\sigma^{2}$$

$$E(SST)=E\left(\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}\right)-E(C.F)$$

$$=p^{2}\mu^{2}+p^{2}\sigma_{\gamma}^{2}+p\sigma^{2}-p^{2}\mu^{2}-p\sigma_{\gamma}^{2}-\sigma^{2}$$

$$=p(p-1)\sigma_{\gamma}^{2}+(p-1)\sigma^{2}$$

$$E(SSE)=E(TSS)-E(SSR)-E(SSC)-E(SST)$$

$$=p\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p(p-1)\sigma_{\gamma}^{2}+(p^{2}-1)\sigma^{2}-p\sum_{i=1}^{p}\tau_{i}^{2}-(p-1)\sigma^{2}-p\sum_{j=1}^{p}\beta_{j}^{2}$$

$$-(p-1)\sigma^{2}-p(p-1)\sigma_{\gamma}^{2}-(p-1)\sigma^{2}$$

$$=(p^{2}-1-p+1-p+1-p+1)\sigma^{2}$$

$$=(p^{2}-3p+2)\sigma^{2}=(p-1)(p-2)\sigma^{2}$$

$$E(MSE)=\frac{E(SSE)}{(p-1)(p-2)}=\frac{(p-1)(p-2)\sigma^{2}}{(p-1)(p-2)}=\sigma^{2}$$

$$E(MSE)=\frac{E(SSE)}{p-1}=\frac{p\sum_{i=1}^{p}\tau_{i}^{2}+(p-1)\sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1}\sum_{i=1}^{p}\tau_{i}^{2}$$

$$E(MSC)=\frac{E(SSC)}{p-1}=\frac{p\sum_{j=1}^{p}\beta_{j}^{2}+(p-1)\sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1}\sum_{j=1}^{p}\beta_{j}^{2}$$

$$E(MST)=\frac{E(SST)}{p-1}=\frac{p(p-1)\sigma_{\gamma}^{2}+(p-1)\sigma^{2}}{p-1}=\sigma^{2}+p\sigma_{\gamma}^{2}$$

Case IV: In this model the effect of τ_i and β_j is random and effect of γ_k is fixed

Assumptions:

- $1. \quad E(e_{ij(k)}) = 0$
- $2. \quad E\left(e_{ij(k)}e_{gh(l)}\right) = 0$
- 3. $e_{ij(k)} \sim iidN(0, \sigma^2)$
- 4. $\tau_i \sim iidN(0, \sigma_{\tau}^2)$
- $5. \quad E(\tau_i \tau_j) = 0$
- 6. $E(\tau_i e_{ii(k)}) = 0$
- 7. $\beta_j \sim iidN(0, \sigma_\beta^2)$
- 8. $E(\beta_i\beta_i)=0$
- 9. $E(\beta_i e_{ij(k)}) = 0$
- 10. $E(\tau_i \beta_i) = 0$

11.
$$\sum_{k=1}^{p} \gamma_k = 0$$

$$\begin{split} SSE &= TSS - SSR - SSC - SST \\ TSS &= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} - C.F \\ &= \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}\right)^{2}}{p^{2}} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} \left(\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)}\right)\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + p \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + 0 + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i} + p \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{i} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}} \\ &= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i}^{2} + \sum_{i\neq j} \tau_{i}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{i}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{i}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i\neq j} \sum_{j=1}^{p} \beta_{i}^{2} + \sum_{i\neq$$

$$p^{4}\mu^{2} + p^{2} \sum_{i=1}^{p} E(\tau_{i}^{2}) + \sum \sum_{i\neq j} E(\tau_{i}\tau_{j}) + p^{2} \sum_{j=1}^{p} E(\beta_{j}^{2}) + \sum \sum_{i\neq j} E(\beta_{i}\beta_{j})$$

$$+ \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij(k)}e_{gh(l)}) + 2p^{3}\mu \sum_{i=1}^{p} E(\tau_{i}) + 2p^{3}\mu \sum_{j=1}^{p} E(\beta_{j})$$

$$+ 2p^{2}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} E(\tau_{i}e_{ij(k)}) + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} E(\tau_{i}\beta_{j})$$

$$+ 2p \sum_{i=1}^{p} \sum_{j=1}^{p} E(\beta_{j}e_{ij(k)})$$

$$p^{2}$$

$$p^{4}\mu^{2} + p^{3}\sigma_{\tau}^{2} + 0 + p^{3}\sigma_{\beta}^{2} + 0 + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= \frac{p^4\mu^2 + p^3\sigma_{\tau}^2 + 0 + p^3\sigma_{\beta}^2 + 0 + p^2\sigma^2 + 0 + 0 + 0 + 0 + 0 + 0 + 0}{p^2}$$

$$= \frac{p^4\mu^2 + p^3\sigma_{\tau}^2 + p^3\sigma_{\beta}^2 + p^2\sigma^2}{p^2}$$

$$E(C.F) = p^2\mu^2 + p\sigma_{\tau}^2 + p\sigma_{\beta}^2 + \sigma^2$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^2 = \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})^2$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu^2 + \tau_i^2 + \beta_j^2 + \gamma_k^2 + e_{ij(k)}^2 + 2\mu\tau_i + 2\mu\beta_j + 2\mu\gamma_k + 2\mu e_{ij(k)} + 2\tau_i\beta_j + 2\tau_i\gamma_k$$

$$+ 2\tau_i e_{ij(k)} + 2\beta_j \gamma_k + 2\beta_j e_{ij(k)} + 2\gamma_k e_{ij(k)})$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{i=1}^p\tau_i+2p\mu\sum_{j=1}^p\beta_j+2p\mu\sum_{k=1}^p\gamma_k\\ &+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+2\sum_{i=1}^p\tau_i\sum_{j=1}^p\beta_j+2\sum_{i=1}^p\tau_i\sum_{k=1}^p\gamma_k+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{j=1}^p\beta_j\sum_{k=1}^p\gamma_k\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{k=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{i=1}^p\tau_i+2p\mu\sum_{j=1}^p\beta_j+0+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_j\tau_i+0+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+0+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{i=1}^p\tau_i+2p\mu\sum_{j=1}^p\beta_j+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_j\tau_i+2\sum_{k=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)}\\ &+2\sum_{i=1}^p\sum_{j=1}^p\beta_j\tau_i+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)} \end{split}$$

$$\begin{split} &= p^2 \mu^2 + p \sum_{i=1}^p E(\tau_i^2) + p \sum_{j=1}^p E(\beta_j^2) + p \sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}^2) + 2p\mu \sum_{i=1}^p E(\tau_i) + 2p\mu \sum_{j=1}^p E(\beta_j) \\ &+ 2\mu \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}) + 2 \sum_{i=1}^p \sum_{j=1}^p E(\beta_j \tau_i) + 2 \sum_{i=1}^p \sum_{j=1}^p E(\tau_i e_{ij(k)}) + 2 \sum_{i=1}^p \sum_{j=1}^p E(\beta_j e_{ij(k)}) \\ &+ 2 \sum_{i=1}^p \sum_{k=1}^p \gamma_k E(e_{ij(k)}) \\ &= p^2 \mu^2 + p^2 \sigma_\tau^2 + p^2 \sigma_\beta^2 + p \sum_{k=1}^p \gamma_k^2 + p^2 \sigma^2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 \\ &= p^2 \mu^2 + p^2 \sigma_\tau^2 + p^2 \sigma_\beta^2 + p \sum_{k=1}^p \gamma_{ij(k)}^2 - E(C.F) \\ &= p^2 \mu^2 + p^2 \sigma_\tau^2 + p^2 \sigma_\beta^2 + p \sum_{k=1}^p \gamma_{ij(k)}^2 - E(C.F) \\ &= p^2 \mu^2 + p^2 \sigma_\tau^2 + p^2 \sigma_\beta^2 + p \sum_{k=1}^p \gamma_k^2 + p^2 \sigma^2 - p^2 \mu^2 - p \sigma_\tau^2 - p \sigma_\beta^2 - \sigma^2 \\ &= p(p-1)\sigma_\tau^2 + p(p-1)\sigma_\beta^2 + p \sum_{k=1}^p \gamma_k^2 + (p^2-1)\sigma^2 \\ &SSR = \frac{\sum_{i=1}^p R_i^2}{p} - C.F \\ &R_i = \sum_{j=1}^p Y_{ij(k)} = \sum_{j=1}^p (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}) \end{split}$$

$$\begin{split} &=p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{k=1}^{p}\gamma_{k}+\sum_{j=1}^{p}e_{ij(k)}\\ &=p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+0+\sum_{j=1}^{p}e_{ij(k)}\\ &=p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)}\\ &=\frac{\sum_{i=1}^{p}R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}(p\mu+p\tau_{i}+\sum_{j=1}^{p}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)})^{2}}{p}\\ &=\frac{\sum_{i=1}^{p}\left(p^{2}\mu^{2}+p^{2}\tau_{i}^{2}+\sum_{j=1}^{p}\beta_{j}^{2}+\sum\sum_{i\neq j}\beta_{i}\beta_{j}+\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{j=1}^{p}e_{ij(k)}+2p^{2}\mu\tau_{i}+2p\mu\sum_{j=1}^{p}\beta_{j}\\ &+2p\mu\sum_{j=1}^{p}e_{ij(k)}+2p\tau_{i}\sum_{j=1}^{p}\beta_{j}+2p\tau_{i}\sum_{j=1}^{p}e_{ij(k)}+2\sum_{j=1}^{p}\beta_{j}e_{ij(k)}\\ &p\\ &p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i\neq j}\beta_{i}\beta_{j}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{i\neq j}\sum_{j=1}^{p}\epsilon_{ij(k)}e_{jh(i)}\\ &+2p^{2}\mu\sum_{i=1}^{p}\tau_{i}+2p^{2}\mu\sum_{j=1}^{p}\beta_{j}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}\\ &=\frac{+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}}{p} \end{split}$$

$$p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}E(\tau_{i}^{2}) + p\sum_{j=1}^{p}E(\beta_{j}^{2}) + p\sum_{i\neq j}E(\beta_{i}\beta_{j}) + \sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}^{2}) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k)}e_{gh(l)}) + 2p^{2}\mu\sum_{i=1}^{p}E(\tau_{i}) + 2p^{2}\mu\sum_{j=1}^{p}E(\beta_{j}) + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}\beta_{j}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\beta_{j}e_{ij(k)})$$

$$= \frac{p^{3}\mu^{2} + p^{3}\sigma_{\tau}^{2} + p^{2}\sigma_{\beta}^{2} + 0 + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{3}\sigma_{\tau}^{2} + p^{2}\sigma_{\beta}^{2} + p^{2}\sigma^{2}}{p}$$

$$= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p\sigma_{\beta}^{2} + p\sigma^{2}$$

$$E(SSR) = E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right) - E(C.F)$$

$$= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p\sigma_{\beta}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\beta}^{2} - \sigma^{2}$$

$$= p(p-1)\sigma_{\tau}^{2} + (p-1)\sigma^{2}$$

$$SSC = \frac{\sum_{j=1}^{p} C_{j}^{2}}{p} - C.F$$

$$C_{j} = \sum_{i=1}^{p} Y_{ij(k)} = \sum_{i=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + p\beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} e_{ij(k)}$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + p\beta_{j} + 0 + \sum_{i=1}^{p} e_{ij(k)}$$

$$\begin{aligned} & \text{DESIGN AND ANALYSIS OF EXPERIMENT I} \\ & = p\mu + \sum_{l=1}^{p} \tau_{l} + p\beta_{j} + \sum_{l=1}^{p} e_{ij(k)} \\ & \frac{\sum_{j=1}^{p} C_{j}^{2}}{p} = \frac{\sum_{j=1}^{p} (p\mu + \sum_{l=1}^{p} \tau_{l} + p\beta_{j} + \sum_{l=1}^{p} e_{ij(k)})^{2}}{p} \\ & = \frac{\sum_{j=1}^{p} \left(p^{2}\mu^{2} + \sum_{l=1}^{p} \tau_{l}^{2} + \sum_{l=1}^{p} \tau_{l}^{2} + p^{2}\beta_{j}^{2} + \sum_{l=1}^{p} e_{ij(k)} + \sum_{l=2}^{p} e_{ij(k)} + \sum_{l=2}^{p} e_{ij(k)} + 2p\mu \sum_{l=1}^{p} \tau_{l}^{2} + 2p\mu \sum_{l=1}^{p} \tau_{l}^{2} + p^{2}\beta_{j}^{2} + \sum_{l=1}^{p} \sum_{l=1}^{p} \tau_{l}^{2} + \sum_{l=1}^{p} \sum_{l=1}^{p} \tau_{l}^{2} + p^{2}\beta_{j}^{2} + \sum_{l=1}^{p} \sum_{l=1}^{p} \sum_{l=1}^{p} \sum_{l=1}^{p} \sum_{l=1}^{p} v_{l}^{2} + p^{2}\beta_{l}^{2} + p^{2}\beta_{j}^{2} + p^{2}\beta_{j}^{2} + \sum_{l=1}^{p} \sum_{l=1}^{p} \sum_{l=1}^{p} \sum_{l=1}^{p} v_{l}^{2} + p^{2}\beta_{l}^{2} + p^{2}\beta_{l}^{2}$$

$$T_k = \sum_{i=1}^p Y_{ij(k)} = \sum_{i=1}^p (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})$$

$$= p\mu + \sum_{i=1}^{p} \tau_i + \sum_{i=1}^{p} \beta_i + p\gamma_k + \sum_{i=1}^{p} e_{ij(k)}$$

$$\frac{\sum_{k=1}^{p} T_k^2}{p} = \frac{\sum_{k=1}^{p} \left(p\mu + \sum_{i=1}^{p} \tau_i + \sum_{j=1}^{p} \beta_j + p\gamma_k + \sum_{i=1}^{p} e_{ij(k)}\right)^2}{p}$$

$$= \frac{\sum_{k=1}^{p} \binom{p^{2}\mu^{2} + \sum_{i=1}^{p} \tau_{i}^{2} + \sum \sum_{i\neq j} \tau_{i}\tau_{j} + \sum_{j=1}^{p} \beta_{j}^{2} + \sum \sum_{i\neq j} \beta_{i}\beta_{j} + p^{2}\gamma_{k}^{2} + \sum_{i=1}^{p} e_{ij(k)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)}}{+2p\mu \sum_{i=1}^{p} \tau_{i} + 2p\mu \sum_{j=1}^{p} \beta_{j} + 2p^{2}\mu\gamma_{k} + 2p\mu \sum_{i=1}^{p} e_{ij(k)} + 2\sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}\beta_{j} + 2p \sum_{i=1}^{p} \tau_{i}\gamma_{k}} + 2\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{ij(k)} + 2p \sum_{i=1}^{p} \gamma_{k} e_{ij(k)}$$

 $p^{3}\mu^{2} + p\sum_{i=1}^{p}\tau_{i}^{2} + p\sum_{i\neq j}\tau_{i}\tau_{j} + p\sum_{j=1}^{p}\beta_{j}^{2} + p\sum_{i\neq j}\beta_{i}\beta_{j} + p^{2}\sum_{k=1}^{p}\gamma_{k}^{2} + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}^{2}$ $+\sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(l)} + 2p^{2}\mu\sum_{i=1}^{p}\tau_{i} + 2p^{2}\mu\sum_{j=1}^{p}\beta_{j} + 2p^{2}\mu\sum_{k=1}^{p}\gamma_{k} + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)} + 2\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}$ $+2p\sum_{i=1}^{p}\sum_{k=1}^{p}\tau_{i}\gamma_{k} + 2\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)} + 2p\sum_{k=1}^{p}\sum_{j=1}^{p}\beta_{j}\gamma_{k} + 2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)} + 2p\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}$

$$\begin{split} & p^3 \mu^2 + p \sum_{i=1}^n \tau_i^2 + p \sum_{l=1}^n \tau_i^2 + p \sum_{l=1}^n \tau_i \tau_i + p \sum_{l=1}^$$

Case V: In this model the effect of τ_i and γ_k is random and effect of β_j is fixed

Assumptions:

1.
$$E(e_{ii(k)}) = 0$$

2.
$$E(e_{ij(k)}e_{gh(l)}) = 0$$

3.
$$e_{ij(k)} \sim iidN(0, \sigma^2)$$

4.
$$\tau_i \sim iidN(0, \sigma_\tau^2)$$

5.
$$E(\tau_i \tau_i) = 0$$

6.
$$E(\tau_i e_{ii(k)}) = 0$$

7.
$$\gamma_k \sim iidN(0, \sigma_v^2)$$

8.
$$E(\gamma_k \gamma_l) = 0$$

9.
$$E(\gamma_k e_{ij(k)}) = 0$$

10.
$$E(\tau_i \gamma_k) = 0$$

11.
$$\sum_{i=1}^{p} \beta_i = 0$$

$$Y_{ij(k)} = \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}$$

$$SSE = TSS - SSR - SSC - SST$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^2 - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}\right)^2}{p^2} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)})\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + p \sum_{i=1}^{p} \tau_i + p \sum_{j=1}^{p} \beta_j + p \sum_{k=1}^{p} \gamma_k + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + p \sum_{i=1}^{p} \tau_i + 0 + p \sum_{k=1}^{p} \gamma_k + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$= \frac{\left(p^2\mu + p \sum_{i=1}^{p} \tau_i + p \sum_{k=1}^{p} \gamma_k + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2}{p^2}$$

$$p^4\mu^2 + p^2 \sum_{i=1}^{p} \tau_i^2 + \sum_{i\neq j} \tau_i \tau_j + p^2 \sum_{k=1}^{p} \gamma_k + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^2$$

$$+ \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^3\mu \sum_{i=1}^{p} \tau_i + 2p^3\mu \sum_{k=1}^{p} \gamma_k + 2p^2\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}$$

$$+ 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_i e_{ij(k)} + 2p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_i \gamma_k + 2p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_k e_{ij(k)}$$

 $p^4 \mu^2 + p^2 \sum_{i=1}^p E(\tau_i^2) + \sum \sum_{i \neq i} E(\tau_i \tau_i) + p^2 \sum_{k=1}^p E(\gamma_k^2) + \sum \sum_{k \neq l} E(\gamma_k \gamma_l)$

$$\begin{split} &+\sum_{l=1}^{p}\sum_{j=1}^{p}E(e_{lj(k)}^{2})+\sum_{l\neq g}\sum_{j\neq h}E(e_{lj(k)}e_{gh(l)})+2p^{3}\mu\sum_{l=1}^{p}E(\tau_{l})+2p^{3}\mu\sum_{k=1}^{p}E(\gamma_{k})\\ &+2p^{2}\mu\sum_{l=1}^{p}\sum_{j=1}^{p}E(e_{lj(k)})+2p\sum_{l=1}^{p}\sum_{j=1}^{p}E(\tau_{l}e_{lj(k)})\\ &+2p\sum_{l=1}^{p}\sum_{k=1}^{p}E(\tau_{l}e_{lj(k)})\\ &=\frac{+2p\sum_{l=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{lj(k)})}{p^{2}}\\ &=\frac{p^{4}\mu^{2}+p^{3}\sigma_{r}^{2}+0+p^{3}\sigma_{r}^{2}+0+p^{2}\sigma^{2}+0+0+0+0+0+0+0+0}{p^{2}}\\ &=\frac{p^{4}\mu^{2}+p^{3}\sigma_{r}^{2}+p^{3}\sigma_{r}^{2}+p^{3}\sigma_{r}^{2}+p^{2}\sigma^{2}}{p^{2}}\\ &E(C.F)=p^{2}\mu^{2}+p\sigma_{r}^{2}+p\sigma_{r}^{2}+p\sigma_{r}^{2}+\sigma^{2}\\ &\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{lj(k)}^{2}=\sum_{l=1}^{p}\sum_{j=1}^{p}(\mu+\tau_{l}+\beta_{j}+\gamma_{k}+e_{lj(k)})^{2}\\ &=\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{lj(k)}^{2}+2\beta_{j}\gamma_{k}+2\beta_{j}e_{lj(k)}+2\gamma_{k}e_{lj(k)})\\ &=p^{2}\mu^{2}+p\sum_{l=1}^{p}\tau_{l}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+2\gamma_{k}e_{lj(k)})\\ &=p^{2}\mu^{2}+p\sum_{l=1}^{p}\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+2\gamma_{k}e_{lj(k)})\\ &=p^{2}\mu^{2}+p\sum_{l=1}^{p}\sum_{j=1}^{p}\beta_{j}^{2}+p\sum_{k=1}^{p}\gamma_{k}^{2}+\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+2\gamma_{k}\sum_{l=1}^{p}\gamma_{k}+2\sum_{l=1}^{p}\sum_{j=1}^{p}\tau_{l}^{2}+2\gamma_{k}\sum_{l=1}^{p}\gamma_{k}+2\sum_{l=1}^{p}\sum_{j=1}^{p}e_{lj(k)}^{2}+2\gamma_{k}\sum_{l=1}^{p}\gamma_{l}^{2}+2\gamma_{$$

$$= p^{2}\mu^{2} + p \sum_{i=1}^{p} E(\tau_{i}^{2}) + p \sum_{j=1}^{p} \beta_{j}^{2} + p \sum_{k=1}^{p} E(\gamma_{k}^{2}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + 2p\mu \sum_{i=1}^{p} E(\tau_{i}) + 2p\mu \sum_{k=1}^{p} E(\gamma_{k})$$

$$+ 2\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2\sum_{i=1}^{p} \sum_{k=1}^{p} E(\gamma_{k}\tau_{i}) + 2\sum_{i=1}^{p} \sum_{j=1}^{p} E(\tau_{i}e_{ij(k)}) + 2\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j}E(e_{ij(k)})$$

$$+ 2\sum_{i=1}^{p} \sum_{k=1}^{p} E(\gamma_{k}e_{ij(k)})$$

$$= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$$

$$= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2}$$

$$E(TSS) = E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2}\right) - E(C.F)$$

$$= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\gamma}^{2} - \sigma^{2}$$

$$= p(p-1)\sigma_{\tau}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p(p-1)\sigma_{\gamma}^{2} + (p^{2}-1)\sigma^{2}$$

$$SSR = \frac{\sum_{i=1}^{p} R_{i}^{2}}{p} - C.F$$

$$R_{i} = \sum_{j=1}^{p} Y_{ij(k)} = \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})$$

$$= p\mu + p\tau_{i} + \sum_{j=1}^{p} \beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)} + \sum_{j=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)} + \sum_{j=1}^{p} e_{ij(k)} + \sum_{k=1}^{p} e_{ij(k)}$$

$$= p\mu + p\tau_{i} + \sum_{k=1}^{p} \gamma_{k} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} \gamma_{k} + \sum_{j=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)} + \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \gamma_{i} + \sum_{i=1}^{$$

$$p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}E(\tau_{i}^{2}) + p\sum_{k=1}^{p}E(\gamma_{k}^{2}) + p\sum\sum_{k\neq l}E(\gamma_{k}\gamma_{l}) + \sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}^{2}) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k)}e_{gh(l)}) + 2p^{2}\mu\sum_{i=1}^{p}E(\tau_{i}) + 2p^{2}\mu\sum_{k=1}^{p}E(\gamma_{k}) + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}) + 2p\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}\gamma_{k}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}\gamma_{k}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{ij(k)}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}\gamma_{k}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}\gamma_{k}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}\gamma_{k}) + 2\sum_{i=1}^{p}\sum_{k=1}^{p}\sum_{i=1}^{p}\sum$$

$$\begin{split} &=\frac{p^3\mu^2+p^3\sigma_{\rm r}^2+p^2\sigma_{\rm r}^2+p^2\sigma^2}{p}\\ &=p^2\mu^2+p^2\sigma_{\rm r}^2+p\sigma_{\rm r}^2+p\sigma^2\\ &=p^2\mu^2+p^2\sigma_{\rm r}^2+p\sigma_{\rm r}^2+p\sigma^2\\ &=\left(\frac{\sum_{i=1}^pR_i^2}{p}\right)-E(C.F)\\ &=p^2\mu^2+p^2\sigma_{\rm r}^2+p\sigma_{\rm r}^2+p\sigma^2-p^2\mu^2-p\sigma_{\rm r}^2-p\sigma_{\rm r}^2-\sigma^2\\ &=p(p-1)\sigma_{\rm r}^2+(p-1)\sigma^2\\ &SSC=\frac{\sum_{j=1}^pC_j^2}{p}-C.F\\ \\ C_j&=\sum_{i=1}^pY_{ij(k)}=\sum_{i=1}^p\left(\mu+\tau_i+\beta_j+\gamma_k+e_{ij(k)}\right)\\ &=p\mu+\sum_{i=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{i=1}^pe_{ij(k)}\\ &=p\mu+\sum_{i=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{k=1}^pe_{ij(k)}\\ &=p\mu+\sum_{i=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{k=1}^pe_{ij(k)}\\ &=p\mu+\sum_{i=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{k=1}^pe_{ij(k)}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^p(p\mu+\sum_{i=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{i=1}^pe_{ij(k)})^2}{p}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^p(p\mu+\sum_{i=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{k=1}^p\gamma_k+\sum_{i=1}^pe_{ij(k)})^2}{p}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^p(p\mu+\sum_{j=1}^p\tau_i+p\beta_j+\sum_{k=1}^p\gamma_k+\sum_{k=1}^p\gamma_k+\sum_{i=1}^pe_{ij(k)})^2}{p}\\ &=\frac{\sum_{j=1}^pC_j^2}{p}=\frac{\sum_{j=1}^pC_j^2+\sum_{j=1}^p\gamma_i+p^2\beta_j^2+\sum_{j=1}^p\gamma_j^2+\sum_{j=1}^p\beta_j+p^2\beta_j}{p}+\sum_{j=1}^p\beta_j+p^2\beta_j+\sum_{j=1}^p\gamma_j+p^2\beta_j+\sum_{j=1}^p\gamma_j+p^2\beta_j$$

$$= \frac{p^{3}\mu^{2} + p\sum_{i=1}^{p}E(\tau_{i}^{2}) + p\sum\sum_{i\neq j}E(\tau_{i}\tau_{j}) + p^{2}\sum_{j=1}^{p}\beta_{j}^{2} + p\sum_{k=1}^{p}E(\gamma_{k}^{2}) + p\sum\sum_{k\neq i}E(\gamma_{k}\gamma_{l}) + \sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k)}^{2}) + \sum_{i\neq j}E(z_{ij(k)}^{2}) + p\sum\sum_{i=1}^{p}\sum_{j=1}^{p}E(z_{ij(k)}^{2}) + p\sum\sum_{j=1}^{p}\sum_{i=1}^{p}E(z_{ij(k)}^{2}) + p\sum\sum_{j=1}^{p}\sum_{i=1}^{p}\sum_{j=1}^{p}E(z_{ij(k)}^{2}) + p\sum\sum_{j=1}^{p}\sum_{j=1}^{p}\sum_{j=1}^{p}E(z_{ij(k)}^{2}) + p\sum\sum_{j=1}^{p}\sum_{j=1}^{$$

$$E(SSC) = E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right) - E(C.F)$$

$$= p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p\sum_{j=1}^{p} \beta_{j}^{2} + p\sigma_{\gamma}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\gamma}^{2} - \sigma^{2}$$

$$= p\sum_{j=1}^{p} \beta_{j}^{2} + (p-1)\sigma^{2}$$

$$SST = \frac{\sum_{k=1}^{p} T_{k}^{2}}{p} - C.F$$

$$T_{k} = \sum_{i=1}^{p} Y_{ij(k)} = \sum_{i=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)})$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + \sum_{j=1}^{p} \beta_{j} + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)}$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + 0 + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)}$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)}$$

$$= p\mu + \sum_{i=1}^{p} \tau_{i} + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)}$$

$$= \frac{\sum_{k=1}^{p} T_{k}^{2}}{p} = \frac{\sum_{k=1}^{p} (p\mu + \sum_{i=1}^{p} \tau_{i} + p\gamma_{k} + \sum_{i=1}^{p} e_{ij(k)})^{2}}{p}$$

$$= \frac{\sum_{k=1}^{p} (p^{2}\mu^{2} + \sum_{i=1}^{p} \tau_{i}^{2} + \sum_{i=1}^{p} \tau_{i} + p^{2}\gamma_{k}^{2} + \sum_{i=1}^{p} e_{ij(k)} + \sum_{i\neq j}^{p} e_{ij(k)} + 2p\mu \sum_{i=1}^{p} \tau_{i} + 2p^{2}\mu\gamma_{k}})}{p}$$

$$= \frac{p^{3}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sum_{i\neq j}^{p} \sum_{i\neq j}^{p} \tau_{i} + p^{2}\sum_{k=1}^{p} \gamma_{k}^{2} + \sum_{i=1}^{p} \sum_{i=1}^{p} e_{ij(k)} + 2p\sum_{i=1}^{p} \gamma_{i} + e_{ij(k)} e_{jh(i)}}{p}}$$

$$= \frac{p^{3}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sum_{i\neq j}^{p} \sum_{i\neq j}^{p} \tau_{i} + p^{2}\sum_{k=1}^{p} \gamma_{k}^{2} + \sum_{i=1}^{p} \sum_{i=1}^{p} e_{ij(k)} + 2p\sum_{i=1}^{p} \gamma_{i} + e_{ij(k)} e_{jh(i)}}{p}}$$

$$= \frac{p^{3}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sum_{i\neq j}^{p} \sum_{i\neq j}^{p} \tau_{i} + p^{2}\sum_{k=1}^{p} \gamma_{k}^{2} + p\sum_{i=1}^{p} \sum_{k=1}^{p} e_{ij(k)} + 2p\sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k} e_{ij(k)}}{p}}$$

$$= \frac{p^{3}\mu^{2} + p\sum_{i=1}^{p} \tau_{i}^{2} + p\sum_{i\neq j}^{p} \sum_{k=1}^{p} \tau_{i}^{2} + p\sum_{i=1}^{p} \sum_{k=1}^{p} \sum_{i\neq j}^{p} \sum_{k=1}^{p} \sum_{i=1}^{p} \sum_{k=1}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{k=1}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{i=1}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{i=1}^{p} \sum_{i=1}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{i=1}^{p} \sum_{i=1}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{i\neq j}^{p} \sum_{i\neq j}^{p} \sum_{i=1}^{p} \sum_{i\neq j}^{p} \sum$$

$$=\frac{p^{3}\mu^{2}+p\sum_{i=1}^{p}E(\tau_{i}^{2})+p\sum_{i\neq j}E(\tau_{i}\tau_{j})+p^{2}\sum_{k=1}^{p}E(\gamma_{k}^{2})+\sum_{i=1}^{p}\sum_{k=1}^{p}E(e_{ij(k)}^{2})+\sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k)}e_{gh(l)})}{+2p^{2}\mu\sum_{i=1}^{p}E(\tau_{i})+2p^{2}\mu\sum_{k=1}^{p}E(\gamma_{k})+2p\mu\sum_{i=1}^{p}\sum_{k=1}^{p}E(e_{ij(k)})+2p\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}\gamma_{k})}{+2\sum_{i=1}^{p}\sum_{k=1}^{p}E(\tau_{i}e_{ij(k)})+2p\sum_{i=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{ij(k)})}$$

$$=\frac{p^{3}\mu^{2}+p^{2}\sigma_{\tau}^{2}+0+p^{3}\sigma_{\gamma}^{2}+p^{2}\sigma^{2}+0+0+0+0+0+0+0}{p}$$

$$=\frac{p^{3}\mu^{2}+p^{2}\sigma_{\tau}^{2}+p^{3}\sigma_{\gamma}^{2}+p^{2}\sigma^{2}}{p}$$

$$=p^{2}\mu^{2}+p\sigma_{\tau}^{2}+p^{2}\sigma_{\gamma}^{2}+p\sigma^{2}$$

$$E(SST)=E\left(\frac{\sum_{k=1}^{p}T_{k}^{2}}{p}\right)-E(C.F)$$

$$=p^{2}\mu^{2}+p\sigma_{\tau}^{2}+p^{2}\sigma_{\gamma}^{2}+p\sigma^{2}-p\sigma_{\tau}^{2}-p\sigma_{\gamma}^{2}-\sigma^{2}$$

$$\begin{split} &= p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2} \\ &E(SSE) = E(TSS) - E(SSR) - E(SSC) - E(SST) \\ &= p(p-1)\sigma_{\tau}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p(p-1)\sigma_{\gamma}^{2} + (p^{2}-1)\sigma^{2} - p(p-1)\sigma_{\tau}^{2} - (p-1)\sigma^{2} \\ &- p \sum_{j=1}^{p} \beta_{j}^{2} - (p-1)\sigma^{2} - p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2} \\ &= (p^{2}-1-p+1-p+1-p+1)\sigma^{2} \\ &= (p^{2}-3p+2)\sigma^{2} = (p-1)(p-2)\sigma^{2} \\ &E(MSE) = \frac{E(SSE)}{(p-1)(p-2)} = \frac{(p-1)(p-2)\sigma^{2}}{(p-1)(p-2)} = \sigma^{2} \\ &E(MSR) = \frac{E(SSR)}{p-1} = \frac{p(p-1)\sigma_{\tau}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\tau}^{2} \\ &E(MSC) = \frac{E(SSC)}{p-1} = \frac{p\sum_{j=1}^{p} \beta_{j}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1} \sum_{j=1}^{p} \beta_{j}^{2} \\ &E(MST) = \frac{E(SST)}{p-1} = \frac{p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\gamma}^{2} \end{split}$$

Case VI: In this model the effect of β_j and γ_k is random and effect of τ_i is fixed

Assumptions:

- $1. \quad E(e_{ij(k)}) = 0$
- $2. \quad E(e_{ij(k)}e_{gh(l)}) = 0$
- 3. $e_{ij(k)} \sim iidN(0, \sigma^2)$
- 4. $\beta_j \sim iidN(0, \sigma_\beta^2)$
- $5. E(\beta_i \beta_j) = 0$
- 6. $E(\beta_j e_{ij(k)}) = 0$
- 7. $\gamma_k \sim iidN(0, \sigma_{\gamma}^2)$
- 8. $E(\gamma_k \gamma_l) = 0$
- $9. \quad E(\gamma_k e_{ij(k)}) = 0$
- $10. E(\beta_j \gamma_k) = 0$
- 11. $\sum_{i=1}^{p} \tau_i = 0$

$$Y_{ij(k)} = \mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}$$

$$SSE = TSS - SSR - SSC - SST$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^2 - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}\right)^{2}}{p^{2}} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} \left(\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)}\right)\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + p \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + 0 + p \sum_{j=1}^{p} \beta_{j} + p \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p \sum_{j=1}^{p} \beta_{j} + p \sum_{k=1}^{p} \gamma_{k} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}\right)^{2}}{p^{2}}$$

$$p^{4}\mu^{2} + p^{2} \sum_{j=1}^{p} \beta_{j}^{2} + \sum \sum_{i\neq j} \beta_{i}\beta_{j} + p^{2} \sum_{k=1}^{p} \gamma_{k}^{2} + \sum \sum_{k\neq l} \gamma_{k}\gamma_{l} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k)}$$

$$+ \sum_{i\neq g} \sum_{j\neq h} e_{ij(k)} e_{gh(l)} + 2p^{3}\mu \sum_{j=1}^{p} \beta_{j} + 2p^{3}\mu \sum_{k=1}^{p} \gamma_{k} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{ij(k)}$$

$$= \frac{+2p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{ij(k)} + 2p \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j}\gamma_{k} + 2p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{ij(k)}}{p^{2}}$$

$$\begin{split} p^4\mu^2 + p^2 \sum_{j=1}^p E(\beta_j^2) + \sum_{i \neq j} E(\beta_i \beta_j) + p^2 \sum_{k=1}^p E(\gamma_k^2) + \sum_{k \neq i} E(\gamma_k \gamma_l) \\ + \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}^2) + \sum_{i \neq g} \sum_{j \neq k} E(e_{ij(k)} e_{gh(l)}) + 2p^3 \mu \sum_{j=1}^p E(\beta_j) + 2p^3 \mu \sum_{k=1}^p E(\gamma_k) \\ + 2p^2 \mu \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}) + 2p \sum_{j=1}^p \sum_{j=1}^p E(\beta_j e_{ij(k)}) + 2p \sum_{j=1}^p \sum_{k=1}^p E(\beta_j \gamma_k) \\ + 2p \sum_{i=1}^p \sum_{j=1}^p E(e_{ij(k)}) + 2p \sum_{j=1}^p \sum_{k=1}^p E(\beta_j e_{ij(k)}) + 2p \sum_{j=1}^p \sum_{k=1}^p E(\beta_j \gamma_k) \\ + 2p \sum_{i=1}^p \sum_{j=1}^p E(\beta_i e_{ij(k)}) + 2p \sum_{j=1}^p \sum_{k=1}^p E(\beta_j \gamma_k) \\ p^2 \\ = \frac{p^4 \mu^2 + p^3 \sigma_\beta^2 + 0 + p^3 \sigma_\gamma^2 + 0 + p^2 \sigma^2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0}{p^2} \\ = \frac{p^4 \mu^2 + p^3 \sigma_\beta^2 + p^3 \sigma_\gamma^2 + p^2 \sigma^2}{p^2} \\ E(C.F) = p^2 \mu^2 + p \sigma_\beta^2 + p \sigma_\gamma^2 + \sigma^2 \\ \sum_{i=1}^p \sum_{j=1}^p Y_{ij(k)}^2 = \sum_{i=1}^p \sum_{j=1}^p \left(\mu + \tau_i + \beta_j + \gamma_k + e_{ij(k)}\right)^2 \\ = \sum_{i=1}^p \sum_{j=1}^p \left(\mu^2 + \tau_i^2 + \beta_j^2 + \gamma_k^2 + e_{ij(k)}^2 + 2\mu \tau_i + 2\mu \beta_j + 2\mu \gamma_k + 2\mu e_{ij(k)} + 2\tau_i \beta_j + 2\tau_i \gamma_k \right. \\ \left. + 2\tau_i e_{ij(k)} + 2\beta_j \gamma_k + 2\beta_j e_{ij(k)} + 2\gamma_k e_{ij(k)}\right) \\ = p^2 \mu^2 + p \sum_{i=1}^p \gamma_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k)}^2 + 2\mu \sum_{i=1}^p \gamma_i \sum_{j=1}^p \tau_i e_{ij(k)} + 2\sum_{i=1}^p \gamma_i \sum_{j=1}^p \tau_i e_{ij(k)} + 2\sum_{i=1}^p \gamma_i \sum_{j=1}^p \tau_i e_{ij(k)} + 2\sum_{i=1}^p \gamma_i e_{ij(k)}^2 + 2\sum_{i=1}^p \gamma_i \sum_{j=1}^p \tau_i e_{ij(k)}^2 + 2\sum_{i=1}^p \gamma_i e_{ij(k)}^2 + 2\sum_{i=1}^p \gamma_i$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+0+2p\mu\sum_{j=1}^p\beta_j+2p\mu\sum_{k=1}^p\gamma_k+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}+0\\ &+0+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{j=1}^p\beta_j\sum_{k=1}^p\gamma_k+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{k=1}^p\gamma_ke_{ij(k)}\\ &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}^2+2p\mu\sum_{j=1}^p\beta_j+2p\mu\sum_{k=1}^p\gamma_k+2\mu\sum_{i=1}^p\sum_{j=1}^pe_{ij(k)}\\ &+2\sum_{i=1}^p\sum_{j=1}^p\tau_ie_{ij(k)}+2\sum_{j=1}^p\beta_j\sum_{k=1}^p\gamma_k+2\sum_{i=1}^p\sum_{j=1}^p\beta_je_{ij(k)}+2\sum_{i=1}^p\sum_{j=1}^p\gamma_ke_{ij(k)} \end{split}$$

$$\begin{split} \prod_{i=1}^{p} \sum_{j=1}^{p} \tau_{i}^{2} + p \sum_{j=1}^{p} E(\beta_{j}^{2}) + p \sum_{k=1}^{p} E(\gamma_{k}^{2}) + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}^{2}) + 2p\mu \sum_{j=1}^{p} E(\beta_{j}) + 2p\mu \sum_{k=1}^{p} E(\gamma_{k}) \\ + 2\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k)}) + 2 \sum_{i=1}^{p} \sum_{j=1}^{p} E(\tau_{i}e_{ij(k)}) + 2 \sum_{j=1}^{p} \sum_{k=1}^{p} E(\gamma_{k}\beta_{j}) + 2 \sum_{i=1}^{p} \sum_{j=1}^{p} E(\beta_{j}e_{ij(k)}) \\ + 2 \sum_{i=1}^{p} \sum_{k=1}^{p} E(\gamma_{k}e_{ij(k)}) \\ = p^{2}\mu^{2} + p \sum_{i=1}^{p} \tau_{i}^{2} + p^{2}\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 \\ = p^{2}\mu^{2} + p \sum_{i=1}^{p} \tau_{i}^{2} + p^{2}\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} \\ E(TSS) = E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2}\right) - E(C.F) \\ = p^{2}\mu^{2} + p \sum_{i=1}^{p} \tau_{i}^{2} + p^{2}\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\beta}^{2} - p\sigma_{\gamma}^{2} - \sigma^{2} \\ = p \sum_{i=1}^{p} \tau_{i}^{2} + p(p-1)\sigma_{\beta}^{2} + p(p-1)\sigma_{\gamma}^{2} + (p^{2}-1)\sigma^{2} \\ SSR = \frac{\sum_{i=1}^{p} R_{i}^{2}}{p} - C.F \\ R_{i} = \sum_{j=1}^{p} Y_{ij(k)} = \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + e_{ij(k)}) \\ = p\mu + p\tau_{i} + \sum_{j=1}^{p} \beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)} \\ \frac{\sum_{i=1}^{p} R_{i}^{2}}{p} = \frac{\sum_{i=1}^{p} (p\mu + p\tau_{i} + \sum_{j=1}^{p} \beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{j=1}^{p} e_{ij(k)})^{2}}{p} \end{split}$$

$$=\frac{\sum_{i=1}^{p}\binom{p^{2}\mu^{2}+p^{2}\tau_{i}^{2}+\sum_{j=1}^{p}\beta_{j}^{2}+\sum\sum_{i\neq j}\beta_{i}\beta_{j}+\sum_{k=1}^{p}\gamma_{k}^{2}+\sum\sum_{k\neq l}\gamma_{k}\gamma_{l}+\sum_{j=1}^{p}e_{ij(k)}^{2}+\sum_{j\neq h}e_{ij(k)}e_{ih(l)}}{+2p^{2}\mu\tau_{i}+2p\mu\sum_{j=1}^{p}\beta_{j}+2p\mu\sum_{k=1}^{p}\gamma_{k}+2p\mu\sum_{j=1}^{p}e_{ij(k)}+2p\tau_{i}\sum_{j=1}^{p}\beta_{j}+2p\tau_{i}\sum_{k=1}^{p}\gamma_{k}}\\ +2p\tau_{i}\sum_{j=1}^{p}e_{ij(k)}+2\sum_{j=1}^{p}\beta_{j}\gamma_{k}+2\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}\\ p\\ p^{3}\mu^{2}+p^{2}\sum_{i=1}^{p}\tau_{i}^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sum\sum_{i\neq j}\beta_{i}\beta_{j}+p\sum_{k=1}^{p}\gamma_{k}^{2}+p\sum\sum_{k\neq l}\gamma_{k}\gamma_{l}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k)}\\ +\sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(l)}+2p^{2}\mu\sum_{i=1}^{p}\tau_{i}+2p^{2}\mu\sum_{j=1}^{p}\beta_{j}+2p^{2}\mu\sum_{k=1}^{p}\gamma_{k}+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\epsilon_{ij(k)}\\ +2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+2p\sum_{k=1}^{p}\sum_{i=1}^{p}\tau_{i}\gamma_{k}+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k)}+2p\sum_{j=1}^{p}\beta_{j}\gamma_{k}\\ =\frac{+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k)}+2\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{p}$$
 Apply expectation on both sides

$$\begin{aligned} p_{j}^{n}y_{j} & \text{expectation both of both is both} \\ p_{j}^{n}u_{j}^{2} + p_{j}^{2} \sum_{i=1}^{p} \tau_{i}^{2} + p \sum_{j=1}^{p} E(\beta_{j}^{2}) + p \sum_{i=1}^{p} E(\beta_{i}^{2}) + p \sum_{k=1}^{p} E(\gamma_{k}^{2}) + p \sum_{k\neq i} E(\gamma_{k}) + p \sum_{k\neq i} E(\gamma_{k})$$

$$\begin{split} & \frac{\sum_{j=1}^{p} C_j^2}{p} = \frac{\sum_{j=1}^{p} (\mu \mu + p \beta_j + \sum_{k=1}^{p} \gamma_k + \sum_{l=1}^{p} e_{lj(k)})^2}{p} \\ & = \frac{\sum_{j=1}^{p} \left(p^2 \mu^2 + p^2 \beta_j^2 + \sum_{k=1}^{p} \gamma_k^2 + \sum_{k=1}^{p} \gamma_k + \sum_{l=1}^{p} e_{lj(k)}^2 + \sum_{k=1}^{p} \beta_{jk} + 2p \mu \sum_{l=1}^{p} e_{lj(k)} + 2p^2 \mu \beta_{j+1}^2 + 2p \mu \sum_{l=1}^{p} \beta_{jk} + 2p \mu \sum_{l=1}^{p} e_{lj(k)} + 2p \mu \sum_{l=1}^{p} \beta_{jk} + 2p \mu \sum_{l=1}^{p$$

$$= \frac{p^{3}\mu^{2} + p\sum_{j=1}^{p}\beta_{j}^{2} + p\sum\sum_{i\neq j}\beta_{i}\beta_{j} + p^{2}\sum_{k=1}^{p}\gamma_{k}^{2} + \sum_{i=1}^{p}\sum_{k=1}^{p}e_{ij(k)}^{2} + \sum_{i\neq g}\sum_{j\neq h}e_{ij(k)}e_{gh(l)}}{+2p^{2}\mu\sum_{j=1}^{p}\beta_{j} + 2p^{2}\mu\sum_{k=1}^{p}\gamma_{k} + 2p\mu\sum_{i=1}^{p}\sum_{k=1}^{p}e_{ij(k)} + 2p\sum_{j=1}^{p}\sum_{k=1}^{p}\beta_{j}\gamma_{k}} \\ = \frac{+2\sum_{j=1}^{p}\sum_{k=1}^{p}\beta_{j}e_{ij(k)} + 2p\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k)}}{n}$$

$$p^{3}\mu^{2} + p\sum_{j=1}^{p} E(\beta_{j}^{2}) + p\sum_{i\neq j} E(\beta_{i}\beta_{j}) + p^{2}\sum_{k=1}^{p} E(\gamma_{k}^{2}) + \sum_{i=1}^{p} \sum_{k=1}^{p} E(e_{ij(k)}^{2}) + \sum_{i\neq g} \sum_{j\neq h} E(e_{ij(k)}e_{gh(l)}) + 2p^{2}\mu\sum_{j=1}^{p} E(\beta_{j}) + 2p^{2}\mu\sum_{k=1}^{p} E(\gamma_{k}) + 2p\mu\sum_{i=1}^{p} \sum_{k=1}^{p} E(e_{ij(k)}) + 2p\sum_{j=1}^{p} \sum_{k=1}^{p} E(\beta_{j}\gamma_{k}) + 2\sum_{j=1}^{p} \sum_{k=1}^{p} E(\beta_{j}e_{ij(k)}) + 2p\sum_{i=1}^{p} \sum_{k=1}^{p} E(\gamma_{k}e_{ij(k)})$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sigma_{\beta}^{2} + 0 + p^{3}\sigma_{\gamma}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sigma_{\beta}^{2} + p^{3}\sigma_{\gamma}^{2} + p^{2}\sigma^{2}}{p}$$

$$= p^{2}\mu^{2} + p\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p\sigma^{2}$$

$$E(SST) = E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right) - E(C.F)$$

$$= p^{2}\mu^{2} + p\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p\sigma^{2} - p\sigma_{\beta}^{2} - p\sigma_{\gamma}^{2} - \sigma^{2}$$

$$= p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2}$$

$$E(SSE) = E(TSS) - E(SSR) - E(SSC) - E(SST)$$

$$= p\sum_{i=1}^{p} \tau_{i}^{2} + p(p-1)\sigma_{\beta}^{2} + p(p-1)\sigma_{\gamma}^{2} + (p^{2}-1)\sigma^{2} - p\sum_{i=1}^{p} \tau_{i}^{2} - (p-1)\sigma^{2}$$

$$- p(p-1)\sigma_{\beta}^{2} - (p-1)\sigma_{\gamma}^{2} + (p^{2}-1)\sigma^{2} - p\sum_{i=1}^{p} \tau_{i}^{2} - (p-1)\sigma^{2}$$

$$= (p^{2}-1-p+1-p+1-p+1)\sigma^{2}$$

$$= (p^{2}-3p+2)\sigma^{2} = (p-1)(p-2)\sigma^{2}$$

$$E(MSE) = \frac{E(SSE)}{(p-1)(p-2)} = \frac{(p-1)(p-2)\sigma^{2}}{(p-1)(p-2)} = \sigma^{2}$$

$$E(MSR) = \frac{E(SSR)}{p-1} = \frac{p\sum_{i=1}^{p} \tau_{i}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + \frac{p}{p-1}\sum_{i=1}^{p} \tau_{i}^{2}}{p^{2}}$$

$$E(MSC) = \frac{E(SSC)}{p-1} = \frac{p(p-1)\sigma_{\beta}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\beta}^{2}$$

$$E(MST) = \frac{E(SST)}{p-1} = \frac{p(p-1)\sigma_{\gamma}^{2} + (p-1)\sigma^{2}}{p-1} = \sigma^{2} + p\sigma_{\gamma}^{2}$$

Estimation of missing values

Case I: One missing value in one treatment

Rows		Columns							
	1	2		j		p	Total		
1	$Y_{11(A)}$	$Y_{21(B)}$		$Y_{1j(D)}$		$Y_{1p(Z)}$	R_1		

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \textbf{2} & Y_{12(E)} & Y_{22(D)} & \dots & Y_{2j(M)} & \dots & Y_{2p(X)} & R_2 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ \textbf{i} & Y_{i1(F)} & Y_{i2(G)} & \dots & Y_{ij(k)} & \dots & Y_{ip(O)} & R_i \\ \vdots & \vdots & \vdots & Y_{ab(D)} & \vdots & & \vdots & R'_a + Y_{ab(D)} \\ \textbf{p} & Y_{p1(Z)} & Y_{p2(N)} & \dots & Y_{pj(L)} & \dots & Y_{pp(Y)} & R_p \\ \hline \textbf{Total} & C_1 & C_2 & C'_b + Y_{ab(D)} & C_j & \dots & C_p & G' + Y_{ab(D)} \\ \hline \end{array}$$

Effected Total:

Effected Total:
$$R_{a} = R'_{a} + Y_{ab(D)}$$

$$C_{b} = C'_{b} + Y_{ab(D)}$$

$$T_{D} = T'_{D} + Y_{ab(D)}$$

$$C = G' + Y_{ab(D)}$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)}\right)^{2}}{p^{2}}$$

$$SSE = TSS - SSR - SSC - SST$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ab(D)}^{2} - C.F - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + \left(R'_{a} + Y_{ab(D)}\right)^{2}\right] + C.F$$

$$-\frac{1}{p} \left[\sum_{j=1}^{p} C_{j}^{2} + \left(C'_{b} + Y_{ab(D)}\right)^{2}\right] + C.F - \frac{1}{p} \left[\sum_{k=1}^{p} T_{k}^{2} + \left(T'_{D} + Y_{ab(D)}\right)^{2}\right] + C.F$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ab(D)}^{2} - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + \left(R'_{a} + Y_{ab(D)}\right)^{2}\right] - \frac{1}{p} \left[\sum_{j=1}^{p} C_{j}^{2} + \left(C'_{b} + Y_{ab(D)}\right)^{2}\right]$$

$$-\frac{1}{p} \left[\sum_{k=1}^{p} T_{k}^{2} + \left(T'_{D} + Y_{ab(D)}\right)^{2}\right] + \frac{2C.F}{p}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ab(D)}^{2} - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + \left(R'_{a} + Y_{ab(D)}\right)^{2}\right] - \frac{1}{p} \left[\sum_{j=1}^{p} C_{j}^{2} + \left(C'_{b} + Y_{ab(D)}\right)^{2}\right]$$

$$-\frac{1}{p} \left[\sum_{k=1}^{p} T_{k}^{2} + \left(T'_{D} + Y_{ab(D)}\right)^{2}\right] + \frac{2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)}\right)^{2}}{p^{2}}$$

$$\frac{\partial SSE}{\partial Y_{ab(D)}} = 0$$

$$0 + 2Y_{ab(D)} - \frac{2(R'_{a} + Y_{ab(D)})}{p} - 0 - \frac{2(C'_{b} + Y_{ab(D)})}{p} - \frac{2(T'_{D} + Y_{ab(D)})}{p} + \frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)}\right)}{p^{2}} = 0$$

$$\frac{2p^{2}Y_{ab(D)} - 2p\left(R'_{a} + Y_{ab(D)}\right) - 2p\left(C'_{b} + Y_{ab(D)}\right) - 2p\left(T'_{D} + Y_{ab(D)}\right) + 4\left(C' + Y_{ab(D)}\right)}{p^{2}} = 0$$

$$\begin{split} \frac{2\left(p^{2}Y_{ab(D)}-p\left(R'_{a}+Y_{ab(D)}\right)-p\left(C'_{b}+Y_{ab(D)}\right)-p\left(T'_{D}+Y_{ab(D)}\right)+2\left(G'+Y_{ab(D)}\right)\right)}{p^{2}} &= 0\\ p^{2}Y_{ab(D)}-pR'_{a}-pY_{ab(D)}-pC'_{b}-pY_{ab(D)}-pT'_{D}-pY_{ab(D)}+2G'+2Y_{ab(D)} &= 0\\ (p^{2}-3p+2)Y_{ab(D)}-p\left(R'_{a}+C'_{b}+T'_{D}\right)+2G' &= 0\\ (p-1)(p-2)Y_{ab(D)}&=p\left(R'_{a}+C'_{b}+T'_{D}\right)-2G'\\ Y_{ab(D)}&=\frac{p\left(R'_{a}+C'_{b}+T'_{D}\right)-2G'}{(p-1)(p-2)} \end{split}$$

Case II: Two missing Observations

(a) Missing in different treatment but same row and different columns

Rows							
	1	2	•••	j		p	Total
1	$Y_{11(A)}$	$Y_{21(B)}$		$Y_{1j(D)}$		$Y_{1p(Z)}$	R_1
2	$Y_{12(E)}$	$Y_{22(D)}$		$Y_{2j(M)}$		$Y_{2p(X)}$	R_2
:	:	:	$Y_{ab(D)}$	÷	$Y_{ac(E)}$:	$R_a' + Y_{ab(D)} + Y_{ac(E)}$
i	$Y_{i1(F)}$	$Y_{i2(G)}$		$Y_{ij(k)}$		$Y_{ip(O)}$	R_i
:	:	:		:		:	:
p	$Y_{p1(Z)}$	$Y_{p2(N)}$		$Y_{pj(L)}$		$Y_{pp(Y)}$	R_p
Total	\mathcal{C}_1	C_2	$C_b' + Y_{ab(D)}$	C_{j}	$C_c' + Y_{ac(E)}$	C_p	$G' + Y_{ab(D)} + Y_{ac(E)}$

Effected Total:

$$R_{a} = R'_{a} + Y_{ab(D)} + Y_{ac(E)}$$

$$C_{b} = C'_{b} + Y_{ab(D)}$$

$$C_{c} = C'_{c} + Y_{ac(E)}$$

$$T_{D} = T'_{D} + Y_{ab(D)}$$

$$T_{E} = T'_{E} + Y_{ac(E)}$$

$$G = G' + Y_{ab(D)} + Y_{ac(E)}$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{ac(E)}\right)^{2}}{p^{2}}$$

$$SSE = TSS - SSR - SSC - SST$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ab(D)}^{2} + Y_{ac(E)}^{2} - C.F - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + \left(R'_{a} + Y_{ab(D)} + Y_{ac(E)}\right)^{2}\right] + C.F$$

$$-\frac{1}{p} \left[\sum_{j=1}^{p} C_{j}^{2} + \left(C'_{b} + Y_{ab(D)}\right)^{2} + \left(C'_{c} + Y_{ac(E)}\right)^{2}\right] + C.F$$

$$-\frac{1}{p} \left[\sum_{j=1}^{p} T_{k}^{2} + \left(T'_{D} + Y_{ab(D)}\right)^{2} + \left(T'_{E} + Y_{ab(E)}\right)^{2}\right] + C.F$$

$$\begin{split} &= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ab(D)}^{2} + Y_{ac(E)}^{2} - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + (R_{a}^{i} + Y_{ab(D)} + Y_{ac(E)})^{2} \right] - \frac{1}{p} \left[\sum_{j=1}^{p} C_{j}^{2} + (C_{b}^{i} + Y_{ab(D)})^{2} + (C_{c}^{i} + Y_{ac(E)})^{2} \right] \\ &- \frac{1}{p} \left[\sum_{k=1}^{p} T_{k}^{2} + (T_{o}^{i} + Y_{ab(D)})^{2} + (T_{k}^{i} + Y_{ab(D)} + Y_{ac(E)})^{2} \right] + \frac{2(\sum_{i=1}^{p} \sum_{i=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})^{2}}{p^{2}} \\ &- \frac{1}{p} \left[\sum_{k=1}^{p} T_{k}^{2} + (T_{o}^{i} + Y_{ab(D)})^{2} + (T_{k}^{i} + Y_{ab(D)} + Y_{ac(E)})^{2} \right] + \frac{2(\sum_{i=1}^{p} \sum_{i=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})^{2}}{p^{2}} \\ &- 0 - \frac{2(T_{o}^{i} + Y_{ab(D)})}{p} - 0 - 0 - \frac{2(T_{o}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p} - 0 - 0 - 0 \\ &- \frac{2(T_{o}^{i} + Y_{ab(D)})}{p} - 0 - 0 + \frac{4(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} \\ &- 0 - \frac{2(T_{o}^{i} + Y_{ab(D)})}{p} - 0 - 0 - 0 \\ &- \frac{2(T_{o}^{i} + Y_{ab(D)})}{p} - 0 - 0 + \frac{4(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} \\ &- 0 - 0 - 0 \\ &- \frac{2(T_{o}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p} - 2(C_{o}^{i} + Y_{ab(D)}) - 2(T_{o}^{i} + Y_{ab(D)}) + 4(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} = 0 \\ &- \frac{2(T_{o}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p} - 2(T_{o}^{i} + Y_{ab(D)}) - p(T_{o}^{i} + Y_{ab(D)}) + 4(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} = 0 \\ &- \frac{2(T_{o}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p} - p(C_{o}^{i} + Y_{ab(D)}) - p(T_{o}^{i} + Y_{ab(D)}) + 2(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} = 0 \\ &- p^{2} Y_{ab(D)} - p(R_{o}^{i} + Y_{ab(D)} + Y_{ac(E)}) - p(T_{o}^{i} + Y_{ab(D)}) - p(T_{o}^{i} + Y_{ab(D)}) + 2(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} = 0 \\ &- p^{2} Y_{ab(D)} - p(T_{o}^{i} + Y_{ab(D)} + T_{ac(E)}) - p(T_{o}^{i} + Y_{ab(D)}) - p(T_{o}^{i} + Y_{ab(D)}) + 2(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{i} + Y_{ab(D)} + Y_{ac(E)})}{p^{2}} = 0 \\ &- 2(T_{o}^{i} + Y_{ac(E)}) - p(T_{o}^{i} + Y_{ac(E)}) - p$$

Multiply (1) by E and (2) by F and then subtract it

$$\frac{EFY_{ab(D)} + E^{2}Y_{ac(E)} = EZ_{ab(D)}}{\pm EFY_{ab(D)} \pm F^{2}Y_{ac(E)} = \pm FZ_{ac(E)}}$$
$$(E^{2} - F^{2})Y_{ac(E)} = EZ_{ab(D)} - FZ_{ac(E)}$$

$$Y_{ac(E)} = \frac{EZ_{ab(D)} - FZ_{ac(E)}}{E^2 - F^2} \label{eq:Yac(E)}$$

Multiply (1) by F and (2) by E and then subtract it

$$EFY_{ac(E)} + F^{2}Y_{ab(D)} = FZ_{ab(D)}$$

$$\pm EFY_{ac(E)} \pm E^{2}Y_{ab(D)} = \pm EZ_{ac(E)}$$

$$(F^{2} - E^{2})Y_{ab(D)} = FZ_{ab(D)} - EZ_{ac(E)}$$

$$Y_{ab(D)} = \frac{FZ_{ab(D)} - EZ_{ac(E)}}{F^2 - E^2}$$

(b) Missing in different treatment but same column and different rows

Rows							
	1	2	***	j		\boldsymbol{p}	Total
1	$Y_{11(A)}$	$Y_{21(B)}$		$Y_{1j(D)}$		$Y_{1p(Z)}$	R_1
2	$Y_{12(E)}$	$Y_{22(D)}$		$Y_{2j(M)}$		$Y_{2p(X)}$	R_2
:	÷	:	$Y_{ab(D)}$:		÷	$R_{a}^{'}+Y_{ab(D)}$
i	$Y_{i1(F)}$	$Y_{i2(G)}$		$Y_{ij(k)}$		$Y_{ip(O)}$	R_i
:	÷	÷	$Y_{cb(E)}$:		÷	$R_c^{'} + Y_{cb(E)}$
p	$Y_{p1(Z)}$	$Y_{p2(N)}$		$Y_{pj(L)}$		$Y_{pp(Y)}$	R_p
Total	C_1	C_2	$C_b^{'} + Y_{ab(D)} + Y_{cb(E)}$	C_{j}		C_p	$G^{'} + Y_{ab(D)} + Y_{cb(E)}$

Effected Total:

$$R_{a} = R'_{a} + Y_{ab(D)}$$

$$R_{c} = R'_{c} + Y_{cb(E)}$$

$$C_{b} = C'_{b} + Y_{ab(D)} + Y_{cb(E)}$$

$$T_{D} = T'_{D} + Y_{ab(D)}$$

$$T_{E} = T'_{E} + Y_{cb(E)}$$

$$G = G' + Y_{ab(D)} + Y_{cb(E)}$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{cb(E)}\right)^{2}}{p^{2}}$$

$$SSE = TSS - SSR - SSC - SST$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y^{2}_{ij(k)} + Y^{2}_{ab(D)} + Y^{2}_{cb(E)} - C.F - \frac{1}{p} \left[\sum_{i=1}^{p} R^{2}_{i} + \left(R'_{a} + Y_{ab(D)}\right)^{2} + \left(R'_{c} + Y_{cb(E)}\right)^{2}\right]$$

$$+ C.F - \frac{1}{p} \left[\sum_{j=1}^{p} C^{2}_{j} + \left(C'_{b} + Y_{ab(D)} + Y_{cb(E)}\right)^{2}\right] + C.F$$

$$- \frac{1}{p} \left[\sum_{k=1}^{p} T^{2}_{k} + \left(T'_{D} + Y_{ab(D)}\right)^{2} + \left(T'_{E} + Y_{cb(E)}\right)^{2}\right] + C.F$$

$$\begin{split} &= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ob(D)}^{2} - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + (R_{o}^{i} + Y_{ob(D)})^{2} + (R_{c}^{i} + Y_{cb(E)})^{2} \right] - \frac{1}{p} \left[\sum_{j=1}^{p} C_{i}^{2} + (C_{b}^{i} + Y_{ab(D)}) + Y_{cb(E)})^{2} \right] \\ &- \frac{1}{p} \left[\sum_{k=1}^{p} Y_{k}^{2} + (T_{b}^{i} + Y_{ab(D)})^{2} + (T_{b}^{i} + Y_{cb(E)})^{2} \right] + \frac{2(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})^{2}}{p^{2}} \\ &= 0 \\ &0 + 2Y_{ab(D)} + 0 - 0 - \frac{2(R_{a}^{i} + Y_{ab(D)})}{p} - 0 + \frac{4(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p} - 0 - 0 \\ &- \frac{2(T_{b}^{i} + Y_{ab(D)})}{p} - 0 + \frac{4(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p} + \frac{4(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p} = 0 \\ &2Y_{ab(D)} - \frac{2(R_{a}^{i} + Y_{ab(D)})}{p} - \frac{2(C_{b}^{i} + Y_{ab(D)} + Y_{cb(E)})}{p} - \frac{2(T_{b}^{i} + Y_{ab(D)})}{p} + \frac{4(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p^{2}} = 0 \\ &2Y_{ab(D)} - \frac{2(R_{a}^{i} + Y_{ab(D)})}{p} - \frac{2(C_{b}^{i} + Y_{ab(D)} + Y_{cb(E)})}{p} - \frac{2(T_{b}^{i} + Y_{ab(D)})}{p} + \frac{4(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p^{2}} = 0 \\ &2\frac{2p^{2}Y_{ab(D)} - 2(R_{a}^{i} + Y_{ab(D)}) - p(C_{b}^{i} + Y_{ab(D)} + Y_{cb(E)})}{p} - p(T_{b}^{i} + Y_{ab(D)}) + 2(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p^{2}} = 0 \\ &2P^{2}Y_{ab(D)} - p(R_{a}^{i} + Y_{ab(D)}) - p(C_{b}^{i} + Y_{ab(D)} + Y_{cb(E)}) - p(T_{b}^{i} + Y_{ab(D)}) + 2(\sum_{j=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p^{2}} = 0 \\ &p^{2}Y_{ab(D)} - p(R_{a}^{i} + Y_{ab(D)}) - p(C_{b}^{i} + Y_{ab(D)} + Y_{cb(E)}) - p(T_{b}^{i} + Y_{ab(D)}) + 2(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)} + Y_{ab(D)} + Y_{cb(E)})}{p^{2}} = 0 \\ &(p^{2} - 3p + 2)Y_{ab(D)} - p(R_{b}^{i} + C_{b}^{i} + T_{b}^{i}) + (2 - p)Y_{cb(D)} + Y_{cb(E)}) - 2G^{i} \\ \text{Let } N = p^{2} - 3p + 2, \quad M = 2 - p, \quad Z_{ab(D)} - P(P_{a}^{i} + Y_{cb(E)}) - 2(P_{a}^{i} + Y_{ab(D)} + Y_{cb(D)}) + Y_{cb(D)}) - 2G^{i} \\ &P^{2}Y_{cb(E)} - 2(R_{b}^{i} + Y_{cb(E)}) - 2(R_{b}^{i} + Y_{cb(E)}) - 2($$

Multiply (1) by M and (2) by N and then subtract it

$$\frac{MNY_{ab(D)} + M^2Y_{cb(E)} = MZ_{ab(D)}}{\pm MNY_{ab(D)} \pm N^2Y_{cb(E)} = \pm NZ_{cb(E)}}$$

$$\frac{(M^2 - N^2)Y_{cb(E)} = MZ_{ab(D)} - NZ_{cb(E)}}{(M^2 - N^2)Y_{cb(E)} = MZ_{ab(D)} - NZ_{cb(E)}}$$

$$Y_{cb(E)} = \frac{MZ_{ab(D)} - NZ_{cb(E)}}{M^2 - N^2}$$

Multiply (1) by N and (2) by M and then subtract it

$$\frac{MNY_{cb(E)} + N^2Y_{ab(D)} = NZ_{ab(D)}}{\pm MNY_{cb(E)} \pm M^2Y_{ab(D)} = \pm MZ_{cb(E)}}$$

$$\frac{(N^2 - M^2)Y_{ab(D)} = NZ_{ab(D)} - MZ_{cb(E)}}{(N^2 - M^2)Y_{ab(D)} = NZ_{ab(D)} - MZ_{cb(E)}}$$

$$Y_{ab(D)} = \frac{NZ_{ab(D)} - MZ_{cb(E)}}{N^2 - M^2}$$

(c) Missing in different rows and different columns but same treatments

Rows							
	1	2		j		p	Total
1	$Y_{11(A)}$	$Y_{21(B)}$		$Y_{1j(D)}$		$Y_{1p(Z)}$	R_1
2	$Y_{12(E)}$	$Y_{22(D)}$		$Y_{2j(M)}$		$Y_{2p(X)}$	R_2
:	÷	:	$Y_{ab(D)}$	÷		÷	$R_{a}^{'}+Y_{ab(D)}$
i	$Y_{i1(F)}$	$Y_{i2(G)}$		$Y_{ij(k)}$		$Y_{ip(O)}$	R_i
:	:	:		:	$Y_{ce(D)}$:	$R_{c}^{'}+Y_{ce(D)}$
p	$Y_{p1(Z)}$	$Y_{p2(N)}$		$Y_{pj(L)}$		$Y_{pp(Y)}$	R_p
Total	\mathcal{C}_1	C_2	$C_{b}^{'}+Y_{ab(D)}$	\mathcal{C}_{j}	$C_{e}^{'}+Y_{ce(D)}$	C_p	$G^{'} + Y_{ab(D)} + Y_{ce(D)}$

Effected Total:

$$R_{a} = R'_{a} + Y_{ab(D)}$$

$$R_{c} = R'_{c} + Y_{ce(D)}$$

$$C_{b} = C'_{b} + Y_{ab(D)}$$

$$C_{e} = C'_{e} + Y_{ce(D)}$$

$$T_{D} = T'_{D} + Y_{ab(D)} + Y_{ce(D)}$$

$$G = G' + Y_{ab(D)} + Y_{ce(D)}$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{ce(D)}\right)^{2}}{p^{2}}$$

$$SSE = TSS - SSR - SSC - SST$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k)}^{2} + Y_{ab(D)}^{2} + Y_{ce(D)}^{2} - C.F - \frac{1}{p} \left[\sum_{i=1}^{p} R_{i}^{2} + \left(R'_{a} + Y_{ab(D)}\right)^{2} + \left(R'_{c} + Y_{ce(D)}\right)^{2}\right]$$

$$+ C.F - \frac{1}{p} \left[\sum_{j=1}^{p} C_{j}^{2} + \left(C'_{b} + Y_{ab(D)} + Y_{ce(D)}\right)^{2} + C.F$$

$$- \frac{1}{p} \left[\sum_{k=1}^{p} T_{k}^{2} + \left(T'_{D} + Y_{ab(D)} + Y_{ce(D)}\right)^{2}\right] + C.F$$

$$\begin{split} &=\sum_{i=1}^{p}\sum_{j=1}^{q}Y_{ij(k)}^{2}+Y_{ab(D)}^{2}+Y_{ce(D)}^{2}-\frac{1}{p}\bigg[\sum_{i=1}^{p}R_{i}^{2}+\left(R_{a}^{\prime}+Y_{ab(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{ce(D)}\right)^{2}\bigg]\\ &-\frac{1}{p}\bigg[\sum_{j=1}^{p}C_{j}^{2}+\left(C_{b}^{\prime}+Y_{ab(D)}\right)^{2}+\left(C_{c}^{\prime}+Y_{ce(D)}\right)^{2}\bigg]-\frac{1}{p}\bigg[\sum_{k=1}^{p}T_{k}^{2}+\left(T_{D}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)^{2}\bigg]\\ &+\frac{2\left(\sum_{i=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)^{2}}{p^{2}}\\ &\frac{\partial SSE}{\partial Y_{ab(D)}}=0\\ &0+2Y_{ab(D)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)}{p}+\frac{4\left(\sum_{j=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}\right)}{p}-0-0-0\\ &-\frac{2\left(T_{D}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)}{p}+\frac{4\left(\sum_{j=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}\right)}{p}=0\\ &2Y_{ab(D)}-\frac{2\left(R_{a}^{\prime}+Y_{ab(D)}\right)+Y_{ce(D)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)}{p}+\frac{4\left(\sum_{j=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}\right)}{p^{2}}=0\\ &2\frac{2p^{2}Y_{ab(D)}-2p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-2p\left(T_{D}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)}{p}+\frac{4\left(\sum_{j=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}\right)}{p^{2}}=0\\ &2\frac{2\left(p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(T_{D}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)+4\left(\sum_{j=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}\right)}{p^{2}}=0\\ &p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(C_{b}^{\prime}+Y_{ab(D)}\right)-p\left(T_{D}^{\prime}+Y_{ab(D)}+Y_{ce(D)}\right)+2\left(\sum_{j=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}\right)=0\\ &p^{2}Y_{ab(D)}-pR_{a}^{\prime}-pY_{ab(D)}-pC_{b}^{\prime}-pY_{ab(D)}-pT_{D}^{\prime}-pY_{ab(D)}+Y_{ce(D)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}=0\\ &p^{2}Y_{ab(D)}-pR_{a}^{\prime}-pY_{ab(D)}-pC_{b}^{\prime}-pY_{ab(D)}-pT_{D}^{\prime}-pY_{ab(D)}+pY_{ce(D)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}=0\\ &p^{2}Y_{ab(D)}-pR_{a}^{\prime}-pY_{ab(D)}-pC_{b}^{\prime}-pY_{ab(D)}-pT_{D}^{\prime}-pY_{ab(D)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}=0\\ &p^{2}Y_{ab(D)}-pR_{a}^{\prime}-pY_{ab(D)}+Y_{ce(D)}-pT_{D}^{\prime}-pY_{ab(D)}+Y_{ce(D)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}=0\\ &p^{2}Y_{ce(D)}-pR_{a}^{\prime}-pY_{ce(D)}-pT_{D}^{\prime}-pY_{ab(D)}+Y_{ce(D)}+2\sum_{i=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}+Y_{ab(D)}+Y_{ce(D)}=0\\ &p^{2}Y_{ce(D)}-p\left(R_{c}^{\prime}+Y_{ce(D)}\right)-p\left(C_{c}^{\prime}+$$

$$(p^2-3p+2)Y_{ce(D)}+(2-p)Y_{ab(D)}=p(R_c'+C_e'+T_D')-2G'$$
 Let $N=p^2-3p+2$, $M=2-p$, $Z_{ce(D)}=p(R_c'+C_e'+T_D')-2G'$
$$NY_{ce(D)}+MY_{ab(D)}=Z_{ce(D)} \tag{2}$$

Multiply (1) by M and (2) by N and then subtract it

$$MNY_{ab(D)} + M^{2}Y_{ce(D)} = MZ_{ab(D)}$$

$$\pm MNY_{ab(D)} \pm N^{2}Y_{ce(D)} = \pm NZ_{ce(D)}$$

$$(M^{2} - N^{2})Y_{ce(D)} = MZ_{ab(D)} - NZ_{ce(D)}$$

$$Y_{ce(D)} = \frac{MZ_{ab(D)} - NZ_{ce(D)}}{M^2 - N^2} \label{eq:Yce}$$

Multiply (1) by N and (2) by M and then subtract it

$$\frac{MNY_{ce(D)} + N^{2}Y_{ab(D)} = NZ_{ab(D)}}{\pm MNY_{ce(D)} \pm M^{2}Y_{ab(D)} = \pm MZ_{ce(D)}}$$
$$(N^{2} - M^{2})Y_{ab(D)} = NZ_{ab(D)} - MZ_{ce(D)}$$

$$Y_{ab(D)} = \frac{NZ_{ab(D)} - MZ_{ce(D)}}{N^2 - M^2}$$

(d) Missing in different rows columns and treatments

Rows							
	1	2		j		p	Total
1	$Y_{11(A)}$	$Y_{21(B)}$		$Y_{1j(D)}$		$Y_{1p(Z)}$	R_1
2	$Y_{12(E)}$	$Y_{22(D)}$		$Y_{2j(M)}$		$Y_{2p(X)}$	R_2
:	÷	:	$Y_{ab(D)}$:		÷	$R_{a}^{'}+Y_{ab(D)}$
i	$Y_{i1(F)}$	$Y_{i2(G)}$	•••	$Y_{ij(k)}$		$Y_{ip(O)}$	R_i
:	÷	:		:	$Y_{ce(E)}$	÷	$R_{c}^{'}+Y_{ce(E)}$
p	$Y_{p1(Z)}$	$Y_{p2(N)}$	•••	$Y_{pj(L)}$		$Y_{pp(Y)}$	R_p
Total	\mathcal{C}_1	\mathcal{C}_2	$C_{b}^{'}+Y_{ab(D)}$	C_j	$C_{e}^{'}+Y_{ce(E)}$	C_p	$G^{'} + Y_{ab(D)} + Y_{ce(E)}$

Effected Total:

$$R_{a} = R'_{a} + Y_{ab(D)}$$

$$R_{c} = R'_{c} + Y_{ce(E)}$$

$$C_{b} = C'_{b} + Y_{ab(D)}$$

$$C_{e} = C'_{e} + Y_{ce(E)}$$

$$T_{D} = T'_{D} + Y_{ab(D)}$$

$$T_{E} = T'_{E} + Y_{ce(E)}$$

$$G = G' + Y_{ab(D)} + Y_{ce(E)}$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{ce(E)}\right)^{2}}{p^{2}}$$

$$SSE = TSS - SSR - SSC - SST$$

$$\begin{split} &=\sum_{l=1}^{p}\sum_{j=1}^{p}\frac{y_{lj}^{2}(k)+Y_{ab(D)}^{2}+Y_{ce(E)}^{2}-C.F-\frac{1}{p}\bigg[\sum_{l=1}^{p}R_{l}^{2}+\left(R_{a}^{\prime}+Y_{ab(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{ce(E)}\right)^{2}\bigg]\\ &+C.F-\frac{1}{p}\bigg[\sum_{j=1}^{p}G_{j}^{2}+\left(C_{b}^{\prime}+Y_{ab(D)}\right)^{2}+\left(C_{e}^{\prime}+Y_{ce(E)}\right)^{2}\bigg]+C.F\\ &-\frac{1}{p}\bigg[\sum_{j=1}^{p}T_{k}^{2}+\left(T_{D}^{\prime}+Y_{ab(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{ce(E)}\right)^{2}\bigg]+C.F\\ &=\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{2}+Y_{ab(D)}^{2}+Y_{ce(C)}^{2}-\frac{1}{p}\bigg[\sum_{l=1}^{p}R_{l}^{2}+\left(R_{a}^{\prime}+Y_{ab(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{ce(E)}\right)^{2}\bigg]\\ &-\frac{1}{p}\bigg[\sum_{j=1}^{p}C_{j}^{2}+\left(C_{b}^{\prime}+Y_{ab(D)}\right)^{2}+\left(C_{c}^{\prime}+Y_{ce(E)}\right)^{2}\bigg]-\frac{1}{p}\bigg[\sum_{k=1}^{p}T_{k}^{2}+\left(T_{b}^{\prime}+Y_{ab(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{ce(E)}\right)^{2}\bigg]\\ &+\frac{2\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)^{2}}{p^{2}}=0\\ 0+2Y_{ab(D)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{ab(D)}\right)}{p}-2\left(C_{b}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}=0\\ &+\frac{4\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)^{2}}{p^{2}}=0\\ 2Y_{ab(D)}-\frac{2\left(R_{a}^{\prime}+Y_{ab(D)}\right)}{p}-2\left(C_{b}^{\prime}+Y_{ab(D)}\right)-2\left(C_{b}^{\prime}+Y_{ab(D)}\right)+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2P^{2}Y_{ab(D)}-2P\left(R_{a}^{\prime}+Y_{ab(D)}\right)-2P\left(R_{a}^{\prime}+Y_{ab(D)}\right)-2P\left(R_{b}^{\prime}+Y_{ab(D)}\right)+4\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2\left(p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(C_{b}^{\prime}+Y_{ab(D)}\right)-p\left(T_{b}^{\prime}+Y_{ab(D)}\right)+2\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2\left(p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(C_{b}^{\prime}+Y_{ab(D)}\right)-p\left(T_{b}^{\prime}+Y_{ab(D)}\right)+2\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2\left(p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(C_{b}^{\prime}+Y_{ab(D)}\right)-p\left(T_{b}^{\prime}+Y_{ab(D)}\right)+2\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2\left(p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(P_{a}^{\prime}+Y_{ab(D)}\right)+2\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2\left(p^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-p\left(P_{a}^{\prime}+Y_{ab(D)}\right)+2\left(\sum_{l=1}^{p}\sum_{j=1}^{p}Y_{ij(k)}^{\prime}+Y_{ab(D)}+Y_{ce(E)}\right)}{p}=0\\ &-\frac{2\left(P^{2}Y_{ab(D)}-p\left(R_{a}^{\prime}+Y_{ab(D)}\right)-P\left(P_{a$$

$$\frac{2p^{2}Y_{ce(E)} - 2p(R'_{c} + Y_{ce(E)}) - 2p(C'_{e} + Y_{ce(E)}) - 2p(T'_{E} + Y_{ce(E)}) + 4(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{ce(E)})}{p^{2}} = 0$$

$$\frac{2\left(p^{2}Y_{ce(E)} - p(R'_{c} + Y_{ce(E)}) - p(C'_{e} + Y_{ce(E)}) - p(T'_{E} + Y_{ce(E)}) + 2(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{ce(E)})\right)}{p^{2}} = 0$$

$$p^{2}Y_{ce(E)} - p(R'_{c} + Y_{ce(E)}) - p(C'_{e} + Y_{ce(E)}) - p(T'_{E} + Y_{ce(E)}) + 2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + Y_{ab(D)} + Y_{ce(E)}\right) = 0$$

$$p^{2}Y_{ce(E)} - pR'_{c} - pY_{ce(E)} - pC'_{e} - pY_{ce(E)} - pT'_{E} - pY_{ce(E)} + 2\sum_{i=1}^{p} \sum_{j=1}^{p} Y'_{ij(k)} + 2Y_{ab(D)} + 2Y_{ce(E)} = 0$$

$$(p^{2} - 3p + 2)Y_{ce(E)} - p(R'_{c} + C'_{e} + T'_{E}) + 2Y_{ab(D)} + 2G' = 0$$

$$(p^{2} - 3p + 2)Y_{ce(E)} + 2Y_{ab(D)} = p(R'_{c} + C'_{e} + T'_{E}) - 2G'$$
Let $F = p^{2} - 3p + 2$, $Z_{ce(E)} = p(R'_{c} + C'_{e} + T'_{E}) - 2G'$

$$FY_{ce(E)} + 2Y_{ab(D)} = Z_{ce(E)} \qquad (2)$$

Multiply (1) by 2 and (2) by F and then subtract it

$$2FY_{ab(D)} + 4Y_{ce(E)} = 2Z_{ab(D)}$$

$$\pm 2FY_{ab(D)} \pm F^{2}Y_{ce(E)} = \pm FZ_{ce(E)}$$

$$(4 - F^{2})Y_{ce(E)} = 2Z_{ab(D)} - FZ_{ce(E)}$$

$$Y_{ce(E)} = \frac{2Z_{ab(D)} - FZ_{ce(E)}}{4 - F^2}$$

Multiply (1) by F and (2) by 2 and then subtract it

$$2FY_{ce(E)} + F^{2}Y_{ab(D)} = FZ_{ab(D)}$$

$$\pm 2FY_{ce(E)} \pm 4Y_{ab(D)} = \pm 2Z_{ce(E)}$$

$$(F^{2} - 4)Y_{ab(D)} = NZ_{ab(D)} - 2Z_{ce(E)}$$

$$Y_{ab(D)} = \frac{NZ_{ab(D)} - 2Z_{ce(E)}}{F^{2} - 4}$$

Efficiency of LSD relative to CRD

RE (LS, CR): the relative efficiency of the Latin square design compared to a completely randomized design. Did accounting for row/column sources of variability increase the precision in estimating the treatment means?

$$RE(LS, CR) = \frac{MSE_{CR}}{MSE_{LS}} = \frac{MSR + MSC + (p-1)MSE}{(p+1)MSE}$$

Where p is equal to no. of treatments.

Efficiency of LSD relative to RCBD

RE (LS, RCB): the relative efficiency of the Latin square design compared to a Randomized complete block design.

RE using columns as Blocks in RCBD

$$RE(LS, RCB) = \frac{MSE_{RCB}}{MSE_{LSD}} = \frac{MSR + (p-1)MSE}{pMSE}$$

Where p is equal to no. of treatments.

RE using rows as Blocks in RCBD

$$RE(LS, RCB) = \frac{MSE_{RCB}}{MSE_{LSD}} = \frac{MSC + (p-1)MSE}{pMSE}$$

An estimated relative efficiency greater than 1 indicates that LSD is more efficient than RCBD whereas less than 1 indicates that RCBD is more efficient than LSD.

Greaco Latin Square Design

A Greaco-Latin square consists of two latin squares (one using the letters A, B, C, ... the other using greek letters a, b, c, ...) such that when the two latin square are supper imposed on each other the letters of one square appear once and only once with the letters of the other square. The two Latin squares are called mutually orthogonal.

Experimental Layout

a 7 x 7 Greaco-Latin Square

Aa	Be	Cb	Df	Ec	Fg	Gd
Bb	Cf	Dc	Eg	Fd	Ga	Ae
Cc	Dg	Ed	Fa	Ge	Ab	Bf
Dd	Ea	Fe	Gb	Af	Bc	Cg
Ee	Fb	Gf	Ac	Bg	Cd	Da
Ff	Gc	Ag	Bd	Ca	De	Eb
Gg	Ad	Ba	Ce	Db	Ef	Fc

Example:

A researcher is interested in determining the effect of two factors. The percentage of *Lysine* in the diet and the percentage of *Protein* in the diet have on *Milk Production* in cows. For this reason it is decided to use a Greaco-Latin square design to experimentally determine the two effects of the two factors (*Lysine* and *Protein*).

Seven levels of each factor is selected

- 0.0(A), 0.1(B), 0.2(C), 0.3(D), 0.4(E), 0.5(F), and 0.6(G)% for Lysine and
- 2(a), 4(b), 6(c), 8(d), 10(e), 12(f) and 14(g)% for *Protein*.
- Seven animals (cows) are selected at random for the experiment which is to be carried out over seven three-month periods.

A Greaco-Latin Square is the used to assign the 7 X 7 combinations of levels of the two factors (*Lysine* and *Protein*) to a period and a cow. The data is tabulated on below:

					Period			
		1	2	3	4	5	6	7
	1	304	436	350	504	417	519	432
		$(A\alpha)$	$(B\epsilon)$	(Cβ)	$(D\phi)$	(Εχ)	(Fy)	$(G\delta)$
	2	381	505	425	564	494	350	413
		(Ββ)	(Cφ)	$(D\chi)$	(Εγ)	(Fδ)	(Ga)	$(A\epsilon)$
	3	432	566	479	357	461	340	502
		$(C\chi)$	$(D\gamma)$	(Εδ)	(Fa)	(GE)	(Αβ)	$(B\phi)$
Cows	4	442	372	536	366	495	425	507
		$(D\delta)$	$(E\alpha)$	(Fε)	(Gβ)	$(A\phi)$	$(B\chi)$	$(C\gamma)$
	5	496	449	493	345	509	481	380
		(Εε)	(FB)	(G ϕ)	$(A\chi)$	(Βγ)	(Cδ)	$(D\alpha)$
	6	534	421	452	427	346	478	397
		(F ϕ)	$(G\chi)$	$(A\gamma)$	$(B\delta)$	$(C\alpha)$	$(D\epsilon)$	(Eβ)
	7	543	386	435	485	406	554	410
		(Gγ)	$(A\delta)$	$(B\alpha)$	(CE)	$(D\beta)$	(Eφ)	(F _{\chi})

Statistical Model and Analysis

The linear statistical model for Greaco LSD is

$$Y_{ij} = \mu + \tau_i + \beta_j + \gamma_k + \eta_m + e_{ij(k,m)}$$

$$\begin{cases} i = 1, 2, ..., p \\ j = 1, 2, ..., p \\ k = 1, 2, ..., p \\ m = 1, 2, ..., p \end{cases}$$

Where

 μ True mean effect

 τ_i ith row effect

 β_i jth column effect

 γ_k kth Greek letter effect

 η_m mth Latin letter effect

Formulation of Hypotheses

$$H_0: \tau_i = 0$$

 $H'_0: \beta_j = 0$
 $H''_0: \gamma_k = 0$
 $H''': \eta_m = 0$
 $H_1: \tau_i \neq 0$
 $H'_1: \beta_j \neq 0$
 $H''_1: \gamma_k \neq 0$
 $H''': \eta_m \neq 0$

Level of significance

 $\alpha = 0.05, 0.01, 0.10, 0.001$

Test Statistic

$$F_1 = \frac{s_r^2}{s_e^2}, \quad F_2 = \frac{s_c^2}{s_e^2}, \quad F_3 = \frac{s_G^2}{s_e^2}, \quad F_4 = \frac{s_L^2}{s_e^2}$$

S.O.V	df	SS	MS	F
Rows	p-1	SSR	$s_r^2 = \frac{SSR}{p-1}$	$F_1 = \frac{s_r^2}{s_e^2}$
Columns	p-1	SSC	$s_c^2 = \frac{SSC}{p-1}$	$F_2 = \frac{s_c^2}{s_e^2}$
Greek Letters	p-1	SSG	$s_G^2 = \frac{SSG}{p-1}$	$F_3 = \frac{s_G^2}{s_e^2}$
Latin Letters	p-1	SSL	$s_L^2 = \frac{SSL}{p-1}$	$F_4 = \frac{s_L^2}{s_e^2}$
Error	(p-1)(p-3)	SSE	$s_e^2 = \frac{SSE}{(p-1)(p-3)}$	
Total	$p^2 - 1$	TSS		

$$C.F = \frac{Y_{...}}{p^2}, \quad SSR = \frac{1}{p} \sum_{i} R_i^2 - C.F, \quad SSC = \frac{1}{p} \sum_{i} C_j^2 - C.F, \quad SSG = \frac{1}{p} \sum_{i} G_k^2 - C.F$$

$$SSL = \frac{1}{p} \sum_{i} L_m^2 - C.F, \quad SSE = TSS - SSC - SSC - SSG - SSL$$

C.R:

$$F_1 \ge F_{\alpha((p-1),(p-1)(p-3))}$$

$$F_2 \ge F_{\alpha((p-1),(p-1)(p-3))}$$

$$F_3 \ge F_{\alpha((p-1),(p-1)(p-3))}$$

$$F_4 \ge F_{\alpha((p-1),(p-1)(p-3))}$$

Conclusion:

If F_{cal} falls in critical region then we reject the null hypothesis.

Estimation of Model Parameters

The least square estimates of $\hat{\mu}$, $\hat{\tau}_i$, $\hat{\beta}_j$, $\hat{\gamma}_k$ and $\hat{\eta}_m$ are as:

$$S = \sum_{i=1}^{p} \sum_{j=1}^{p} \left(Y_{ij(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m \right)^2$$

$$\frac{\partial S}{\partial \hat{\mu}} = 2 \sum_{i=1}^{p} \sum_{j=1}^{p} \left(Y_{ij(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m \right) (-1) = 0$$

$$-2 \sum_{i=1}^{p} \sum_{j=1}^{p} \left(Y_{ij(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m \right) = 0$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)} - p^2 \hat{\mu} - p \sum_{i=1}^{p} \hat{\tau}_i - p \sum_{j=1}^{p} \hat{\beta}_j - p \sum_{k=1}^{p} \hat{\gamma}_k - p \sum_{m=1}^{p} \hat{\eta}_m = 0$$
 For unique solution Put $\sum_{i=1}^{p} \hat{\tau}_i = 0, \sum_{j=1}^{p} \hat{\beta}_j = 0, \sum_{k=1}^{p} \hat{\gamma}_k = 0, \quad \sum_{m=1}^{p} \hat{\eta}_m = 0$
$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)} - p^2 \hat{\mu} = 0$$

$$p^{2}\hat{\mu} = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}$$

$$\hat{\mu} = \frac{\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}}{p^{2}} = \overline{\bar{Y}}$$

$$S = \sum_{j=1}^{p} (Y_{1j(k,m)} - \hat{\mu} - \hat{\tau}_{1} - \hat{\beta}_{j} - \hat{\gamma}_{k} - \hat{\eta}_{m})^{2} + \sum_{j=1}^{p} (Y_{2j(k,m)} - \hat{\mu} - \hat{\tau}_{2} - \hat{\beta}_{j} - \hat{\gamma}_{k} - \hat{\eta}_{m})^{2}$$

$$+ \dots + \sum_{j=1}^{p} (Y_{pj(k,m)} - \hat{\mu} - \hat{\tau}_{p} - \hat{\beta}_{j} - \hat{\gamma}_{k} - \hat{\eta}_{m})^{2}$$

Differentiate w.r.t $\hat{\tau}_1, \hat{\tau}_2, \dots, \hat{\tau}_p$

$$\frac{\partial S}{\partial \hat{\tau}_{1}} = 2 \sum_{j=1}^{p} (Y_{1j(k,m)} - \hat{\mu} - \hat{\tau}_{1} - \hat{\beta}_{j} - \hat{\gamma}_{k} - \hat{\eta}_{m})(-1) = 0$$

$$-2 \sum_{j=1}^{p} (Y_{1j(k,m)} - \hat{\mu} - \hat{\tau}_{1} - \hat{\beta}_{j} - \hat{\gamma}_{k} - \hat{\eta}_{m}) = 0$$

$$\sum_{j=1}^{p} Y_{1j(k,m)} - p\hat{\mu} - p\hat{\tau}_{1} - \sum_{j=1}^{p} \hat{\beta}_{j} - \sum_{k=1}^{p} \hat{\gamma}_{k} - \sum_{m=1}^{p} \hat{\eta}_{m} = 0$$

For unique solution put $\sum_{j=1}^p \hat{\beta}_j = 0$, $\sum_{k=1}^p \hat{\gamma}_k = 0$, $\sum_{m=1}^p \hat{\eta}_m = 0$

$$\sum_{j=1}^{p} Y_{1j(k,m)} - p\hat{\mu} - p\hat{\tau}_1 = 0$$

$$p\hat{\tau}_1 = \sum_{j=1}^{p} Y_{1j(k,m)} - p\hat{\mu}$$

$$\hat{\tau}_1 = \frac{\sum_{j=1}^{p} Y_{1j(k,m)}}{p} - \frac{p\hat{\mu}}{p}$$

$$\hat{\tau}_1 = \frac{R_1}{p} - \overline{Y}$$

$$\frac{\partial S}{\partial \hat{\tau}_2} = 2 \sum_{j=1}^p (Y_{2j(k,m)} - \hat{\mu} - \hat{\tau}_2 - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m)(-1) = 0$$

$$-2 \sum_{j=1}^p (Y_{2j(k,m)} - \hat{\mu} - \hat{\tau}_2 - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m) = 0$$

$$\sum_{j=1}^{p} Y_{2j(k,m)} - p\hat{\mu} - p\hat{\tau}_1 - \sum_{j=1}^{p} \hat{\beta}_j - \sum_{k=1}^{p} \hat{\gamma}_k - \sum_{m=1}^{p} \hat{\eta}_m = 0$$

For unique solution put $\sum_{j=1}^p \hat{\beta}_j = 0$, $\sum_{k=1}^p \hat{\gamma}_k = 0$, $\sum_{m=1}^p \hat{\eta}_m = 0$

$$\sum_{i=1}^{p} Y_{2j(k,m)} - p\hat{\mu} - p\hat{\tau}_2 = 0$$

$$\begin{split} p\hat{\tau}_2 &= \sum_{j=1}^p Y_{2j(k,m)} - p\hat{\mu} \\ \hat{\tau}_2 &= \frac{\sum_{j=1}^p Y_{2j(k,m)}}{p} - \frac{p\hat{\mu}}{p} \\ \hat{\tau}_2 &= \frac{R_2}{p} - \bar{Y} \end{split}$$

$$\frac{\partial S}{\partial \hat{\tau}_p} = 2 \sum_{j=1}^p (Y_{pj(k,m)} - \hat{\mu} - \hat{\tau}_p - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m)(-1) = 0$$

$$-2 \sum_{j=1}^p (Y_{pj(k,m)} - \hat{\mu} - \hat{\tau}_p - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_m) = 0$$

$$\sum_{j=1}^p Y_{pj(k,m)} - p\hat{\mu} - p\hat{\tau}_p - \sum_{j=1}^p \hat{\beta}_j - \sum_{k=1}^p \hat{\gamma}_k - \sum_{m=1}^p \hat{\eta}_m = 0$$
 For unique solution put $\sum_{j=1}^p \hat{\beta}_j = 0$, $\sum_{k=1}^p \hat{\gamma}_k = 0$, $\sum_{m=1}^p \hat{\eta}_m = 0$
$$\sum_{j=1}^p Y_{pj(k,m)} - p\hat{\mu} - p\hat{\tau}_p = 0$$

$$p\hat{\tau}_p = \sum_{j=1}^p Y_{pj(k,m)} - p\hat{\mu} \\ \hat{\tau}_p = \frac{\sum_{j=1}^p Y_{pj(k,m)} - p\hat{\mu}}{p} \\ \hat{\tau}_p = \frac{\sum_{j=1}^p Y_{pj(k,m)} - p\hat{\mu}}{p} \\ \hat{\tau}_p = \frac{\sum_{j=1}^p Y_{pj(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_2 - \hat{\gamma}_k - \hat{\eta}_m)^2 + \cdots$$

$$+ \sum_{i=1}^p (Y_{ip(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_i - \hat{\gamma}_k - \hat{\eta}_m)^2$$
 Differentiate w.r.t $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_p$
$$\frac{\partial S}{\partial \hat{\beta}_1} = 2 \sum_{i=1}^p (Y_{i1(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_1 - \hat{\gamma}_k - \hat{\eta}_m) = 0$$

$$\sum_{i=1}^p (Y_{i1(k,m)} - p\hat{\mu} - \sum_{i=1}^p \hat{\tau}_i - p\hat{\beta}_1 - \sum_{k=1}^p \hat{\gamma}_k - \hat{\eta}_m) = 0$$
 For unique solution put $\sum_{i=1}^p \hat{\tau}_i = 0$, $\sum_{k=1}^p \hat{\gamma}_i - p\hat{\beta}_1 - \sum_{k=1}^p \hat{\gamma}_k - \sum_{m=1}^p \hat{\eta}_m = 0$

$$\begin{split} \sum_{i=1}^{p} Y_{i1(k,m)} - p\hat{\mu} - p\hat{\beta}_1 &= 0 \\ p\hat{\beta}_1 &= \sum_{i=1}^{p} Y_{i1(k,m)} - p\hat{\mu} \\ \hat{\beta}_1 &= \frac{\sum_{i=1}^{p} Y_{i1(k,m)}}{p} - \frac{p\hat{\mu}}{p} \\ \hat{\beta}_1 &= \frac{C_1}{p} - \bar{Y} \end{split}$$

$$\frac{\partial S}{\partial \hat{\beta}_2} = 2 \sum_{i=1}^{p} \left(Y_{i2(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_2 - \hat{\gamma}_k - \hat{\eta}_m \right) (-1) = 0 \\ -2 \sum_{i=1}^{p} \left(Y_{i2(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_2 - \hat{\gamma}_k - \hat{\eta}_m \right) = 0 \\ \sum_{i=1}^{p} Y_{i2(k,m)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\gamma}_i - p\hat{\beta}_2 - \sum_{k=1}^{p} \hat{\gamma}_k - \sum_{m=1}^{p} \hat{\eta}_m = 0 \\ \sum_{i=1}^{p} Y_{i2(k,m)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\gamma}_k = 0, \ \sum_{m=1}^{p} \hat{\eta}_m = 0 \\ \sum_{i=1}^{p} Y_{i2(k,m)} - p\hat{\mu} - p\hat{\beta}_2 = 0 \\ p\hat{\beta}_2 &= \sum_{i=1}^{p} Y_{i2(k,m)} - p\hat{\mu} \\ \hat{\beta}_2 &= \frac{\sum_{i=1}^{p} Y_{i2(k,m)}}{p} - \frac{p\hat{\mu}}{p} \\ \hat{\beta}_2 &= \frac{C_2}{p} - \bar{Y} \\ \frac{\partial S}{\partial \hat{\beta}_p} &= 2 \sum_{i=1}^{p} \left(Y_{ip(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_p - \hat{\gamma}_k - \hat{\eta}_m \right) (-1) = 0 \\ -2 \sum_{i=1}^{p} \left(Y_{ip(k,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_p - \hat{\gamma}_k - \hat{\eta}_m \right) = 0 \\ \sum_{i=1}^{p} Y_{ip(k,m)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_i - p\hat{\beta}_p - \sum_{k=1}^{p} \hat{\gamma}_k - \sum_{m=1}^{p} \hat{\eta}_m = 0 \\ \sum_{i=1}^{p} Y_{ip(k,m)} - p\hat{\mu} - p\hat{\beta}_p = 0 \\ \sum_{i=1}^{p} Y_{ip(k,m)} - p\hat{\mu} - p\hat{\beta}_p = 0 \\ p\hat{\beta}_p &= \sum_{i=1}^{p} Y_{ip(k,m)} - p\hat{\mu} \end{aligned}$$

$$\hat{\beta}_{p} = \frac{\sum_{i=1}^{p} Y_{ip(k,m)}}{p} - \frac{p\hat{\mu}}{p}$$

$$\hat{\beta}_{p} = \frac{C_{p}}{p} - \overline{\bar{Y}}$$

$$S = \sum_{i=1}^{p} (Y_{ij(1,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1} - \hat{\eta}_{m})^{2} + \sum_{i=1}^{p} (Y_{ij(2,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{2} - \hat{\eta}_{m})^{2} + \cdots$$

$$+ \sum_{i=1}^{p} (Y_{ij(p,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{p} - \hat{\eta}_{m})^{2}$$

Differentiate w.r.t $\hat{\gamma}_1, \hat{\gamma}_2, \dots, \hat{\gamma}_p$

$$\frac{\partial S}{\partial \hat{\gamma}_{1}} = 2 \sum_{i=1}^{p} \left(Y_{ij(1,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1} - \hat{\eta}_{m} \right) (-1) = 0$$

$$-2 \sum_{i=1}^{p} \left(Y_{ij(1,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{1} - \hat{\eta}_{m} \right) = 0$$

$$\sum_{i=1}^{p} Y_{ij(1,m)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - \sum_{i=1}^{p} \hat{\beta}_{j} - p\hat{\gamma}_{1} - \sum_{m=1}^{p} \hat{\eta}_{m} = 0$$

For unique solution put $\sum_{i=1}^p \hat{\tau}_i = 0$, $\sum_{j=1}^p \hat{\beta}_j = 0$, $\sum_{m=1}^p \hat{\eta}_m = 0$

$$\sum_{i=1}^{p} Y_{ij(1,m)} - p\hat{\mu} - p\hat{\gamma}_{1} = 0$$

$$p\hat{\gamma}_{1} = \sum_{i=1}^{p} Y_{ij(1,m)} - p\hat{\mu}$$

$$\hat{\gamma}_{1} = \frac{\sum_{i=1}^{p} Y_{ij(1,m)}}{p} - \frac{p\hat{\mu}}{p}$$

$$\hat{\gamma}_{1} = \frac{G_{1}}{p} - \bar{\bar{Y}}$$

$$\frac{\partial S}{\partial \hat{\gamma}_{2}} = 2 \sum_{i=1}^{p} \left(Y_{ij(2,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{2} - \hat{\eta}_{m} \right) (-1) = 0$$

$$-2 \sum_{i=1}^{p} \left(Y_{ij(2,m)} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j} - \hat{\gamma}_{2} - \hat{\eta}_{m} \right) = 0$$

$$\sum_{i=1}^{p} Y_{ij(2,m)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_{i} - \sum_{i=1}^{p} \hat{\beta}_{j} - p\hat{\gamma}_{2} - \sum_{i=1}^{p} \hat{\eta}_{m} = 0$$

For unique solution put $\sum_{i=1}^p \hat{\tau}_i = 0$, $\sum_{j=1}^p \hat{\beta}_j = 0$, $\sum_{m=1}^p \hat{\eta}_m = 0$

$$\sum_{i=1}^{p} Y_{ij(2,m)} - p\hat{\mu} - p\hat{\gamma}_2 = 0$$

$$\begin{split} p\hat{\gamma}_2 &= \sum_{i=1}^p Y_{ij(2,m)} - p\hat{\mu} \\ \hat{\gamma}_2 &= \frac{\sum_{i=1}^p Y_{ij(2,m)}}{p} - \frac{p\hat{\mu}}{p} \\ \hat{\gamma}_2 &= \frac{G_2}{p} - \bar{Y} \\ \frac{\partial S}{\partial \hat{V}_p} &= 2 \sum_{i=1}^p (Y_{ij(p,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_p - \hat{\eta}_m)(-1) = 0 \\ -2 \sum_{i=1}^p (Y_{ij(p,m)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_p - \hat{\eta}_m) &= 0 \\ \sum_{i=1}^p Y_{ij(p,m)} - p\hat{\mu} - \sum_{i=1}^p \hat{\tau}_i - \sum_{j=1}^p \hat{\beta}_j - p\hat{V}_p - \sum_{m=1}^p \hat{\eta}_m = 0 \\ \\ \text{For unique solution put } \sum_{i=1}^p \hat{\tau}_i = 0, \sum_{j=1}^p \hat{\beta}_j = 0, \sum_{m=1}^p \hat{\eta}_m = 0 \\ \sum_{i=1}^p Y_{ij(p,m)} - p\hat{\mu} - p\hat{V}_p &= 0 \\ p\hat{V}_p &= \sum_{i=1}^p Y_{ij(p,m)} - p\hat{\mu} \\ \hat{V}_p &= \frac{G_p}{p} - \bar{Y} \\ \\ S &= \sum_{i=1}^p (Y_{ij(k,1)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_1)^2 + \sum_{i=1}^p (Y_{ij(k,2)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_2)^2 + \cdots \\ &+ \sum_{i=1}^p (Y_{ij(k,p)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_p)^2 \\ \text{Differentiate w.r.t.} \hat{\eta}_1, \hat{\eta}_2, \dots, \hat{\eta}_p \\ \frac{\partial S}{\partial \hat{\eta}_1} &= 2 \sum_{i=1}^p (Y_{ij(k,1)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_1) = 0 \\ &- 2 \sum_{i=1}^p (Y_{ij(k,1)} - p\hat{\mu} - \sum_{i=1}^p \hat{\tau}_i - \sum_{i=1}^p \hat{\beta}_j - \sum_{i=1}^p \gamma_i - p\hat{\eta}_1 = 0 \end{split}$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_i = 0$, $\sum_{j=1}^{p} \hat{\beta}_j = 0$, $\sum_{k=1}^{p} \hat{\gamma}_k = 0$

$$\begin{split} \sum_{i=1}^{p} Y_{ij(k,1)} - p\hat{\mu} - p\hat{\eta}_1 &= 0 \\ p\hat{\eta}_1 &= \sum_{i=1}^{p} Y_{ij(k,1)} - p\hat{\mu} \\ \hat{\eta}_1 &= \frac{\sum_{i=1}^{p} Y_{ij(k,1)}}{p} - \frac{p\hat{\mu}}{p} \\ \hat{\eta}_1 &= \frac{L_1}{p} - \bar{Y} \end{split}$$

$$\frac{\partial S}{\partial \hat{\eta}_2} = 2 \sum_{i=1}^{p} \left(Y_{ij(k,2)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_2 \right) (-1) = 0 \\ -2 \sum_{i=1}^{p} \left(Y_{ij(k,2)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_2 \right) = 0 \\ \sum_{i=1}^{p} Y_{ij(k,2)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_i - \sum_{j=1}^{p} \hat{\beta}_j - \sum_{k=1}^{p} \gamma_k - p\hat{\eta}_2 = 0 \\ \text{For unique solution put } \sum_{i=1}^{p} \hat{\tau}_i = 0, \sum_{j=1}^{p} \hat{\beta}_j = 0, \sum_{k=1}^{p} \hat{\gamma}_k = 0 \\ \sum_{i=1}^{p} Y_{ij(k,2)} - p\hat{\mu} - p\hat{\eta}_2 = 0 \\ p\hat{\eta}_2 &= \sum_{i=1}^{p} Y_{ij(k,2)} - p\hat{\mu} \\ \hat{\eta}_2 &= \frac{\sum_{i=1}^{p} Y_{ij(k,2)} - p\hat{\mu}}{p} \\ \hat{\eta}_2 &= \frac{L_2}{p} - \bar{Y} \end{aligned}$$

$$\frac{\partial S}{\partial \hat{\eta}_p} = 2 \sum_{i=1}^{p} \left(Y_{ij(k,p)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_p \right) (-1) = 0 \\ -2 \sum_{i=1}^{p} \left(Y_{ij(k,p)} - \hat{\mu} - \hat{\tau}_i - \hat{\beta}_j - \hat{\gamma}_k - \hat{\eta}_p \right) = 0 \\ \sum_{i=1}^{p} Y_{ij(k,p)} - p\hat{\mu} - \sum_{i=1}^{p} \hat{\tau}_i - \sum_{j=1}^{p} \hat{\beta}_j - \sum_{k=1}^{p} \gamma_k - p\hat{\eta}_p = 0 \\ \sum_{i=1}^{p} Y_{ij(k,p)} - p\hat{\mu} - p\hat{\mu}_p - p\hat{\mu}_p = 0 \end{aligned}$$
 For unique solution put $\sum_{i=1}^{p} \hat{\tau}_i = 0, \sum_{j=1}^{p} \hat{\beta}_j = 0, \sum_{k=1}^{p} \hat{\gamma}_k = 0$

$$\hat{\eta}_p = \frac{\sum_{i=1}^p Y_{ij(k,p)}}{p} - \frac{p\hat{\mu}}{p}$$

$$\hat{\eta}_p = \frac{L_p}{p} - \overline{\bar{Y}}$$

Expected Mean Square Error

Fixed Effect Model

Assumptions:

1.
$$e_{i,i(k,m)} \sim iidN(0,\sigma^2)$$

2.
$$E(e_{ij(k,m)}e_{ah(l,z)}) = 0$$

3.
$$\sum_{i=1}^{p} \tau_i = 0$$

4.
$$\sum_{i=1}^{p} \beta_i = 0$$

$$5. \quad \sum_{k=1}^{p} \gamma_k = 0$$

6.
$$\sum_{m=1}^{p} \eta_m = 0$$

$$E(SSE) = E(TSS) - E(SSR) - E(SSC) - E(SSG) - E(SSL)$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}\right)^{2}}{p^{2}} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + \eta_{m} + e_{ij(k,m)})\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + p \sum_{i=1}^{p} \tau_{i} + p \sum_{j=1}^{p} \beta_{j} + p \sum_{k=1}^{p} \gamma_{k} + p \sum_{m=1}^{p} \eta_{m} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}\right)^{2}}{p^{2}}$$

$$= \frac{\left(p^{2}\mu + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}\right)^{2}}{p^{2}}$$

$$= \frac{p^{4}\mu^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k,m)} e_{gh(l,z)} + 2p^{2}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}}{p^{2}}$$

$$= \frac{p^{4}\mu^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k,m)}^{2}) + \sum_{i \neq g} \sum_{j \neq h} E(e_{ij(k,m)} e_{gh(l,z)}) + 2p^{2}\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k,m)})}{p^{2}}$$

$$= \frac{p^{4}\mu^{2} + p^{2}\sigma^{2} + 0 + 0}{p^{2}} = \frac{p^{4}\mu^{2} + p^{2}\sigma^{2}}{p^{2}}$$

$$= p^{2}\mu^{2} + \sigma^{2}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}^{2} = \sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + \eta_{m} + e_{ij(k,m)})^{2}$$

$$\begin{split} &= \sum_{i=1}^{r} \sum_{j=1}^{r} \left(\mu^{2} + \tau_{i}^{2} + \beta_{j}^{2} + \gamma_{k}^{2} + \eta_{m}^{2} + e_{ij(k,m)}^{2} + 2\mu\tau_{i} + 2\mu\beta_{j} + 2\mu\gamma_{k} + 2\mu\eta_{m} + 2\mu e_{ij(k,m)} \right. \\ &\quad + 2\tau_{i}\beta_{j} + 2\tau_{i}\gamma_{k} + 2\tau_{i}\eta_{m} + 2\tau_{i}e_{ij(k,m)} + 2\beta_{j}\gamma_{k} + 2\beta_{j}\eta_{m} + 2\beta_{j}e_{ij(k,m)} \\ &\quad + 2\gamma_{k}\eta_{m} + 2\gamma_{k}e_{ij(k,m)} + 2\eta_{m}e_{ij(k,m)} \right) \\ &= p^{2}\mu^{2} + p \sum_{i=1}^{p} \tau_{i}^{2} + p \sum_{j=1}^{p} \beta_{j}^{2} + p \sum_{k=1}^{p} \gamma_{k}^{2} + p \sum_{m=1}^{p} \eta_{m}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + 2p\mu \sum_{i=1}^{p} \tau_{i} \\ &\quad + 2p\mu \sum_{j=1}^{p} \beta_{j} + 2p\mu \sum_{k=1}^{p} \gamma_{k} + 2p\mu \sum_{m=1}^{p} \eta_{m} + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)} \\ &\quad + 2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j} + 2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k} + 2 \sum_{i=1}^{p} \tau_{i} \sum_{m=1}^{p} \eta_{m} + 2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{ij(k,m)} \\ &\quad + 2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} + 2 \sum_{j=1}^{p} \beta_{j} \sum_{m=1}^{p} \eta_{m} + 2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{ij(k,m)} + 2 \sum_{k=1}^{p} \gamma_{k} \sum_{m=1}^{p} \eta_{m} \\ &\quad + 2 \sum_{i=1}^{p} \sum_{i=1}^{p} \gamma_{k} e_{ij(k,m)} + 2 \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{ij(k,m)} \end{split}$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+p\sum_{m=1}^p\eta_m^2+\sum_{i=1}^p\sum_{j=1}^pE(e_{ij(k,m)}^2)+2p\mu\sum_{i=1}^p\tau_i\\ &+2p\mu\sum_{j=1}^p\beta_j+2p\mu\sum_{k=1}^p\gamma_k+2p\mu\sum_{m=1}^p\eta_m+2p\mu\sum_{i=1}^p\sum_{j=1}^pE(e_{ij(k,m)})\\ &+2\sum_{i=1}^p\tau_i\sum_{j=1}^p\beta_j+2\sum_{i=1}^p\tau_i\sum_{k=1}^p\gamma_k+2\sum_{i=1}^p\tau_i\sum_{m=1}^p\eta_m+2\sum_{i=1}^p\sum_{j=1}^p\tau_iE(e_{ij(k,m)})\\ &+2\sum_{j=1}^p\beta_j\sum_{k=1}^p\gamma_k+2\sum_{j=1}^p\beta_j\sum_{m=1}^p\eta_m+2\sum_{i=1}^p\sum_{j=1}^p\beta_jE(e_{ij(k,m)})\\ &+2\sum_{k=1}^p\gamma_k\sum_{m=1}^p\eta_m+2\sum_{i=1}^p\sum_{j=1}^p\gamma_kE(e_{ij(k,m)})+2\sum_{i=1}^p\sum_{j=1}^p\eta_mE(e_{ij(k,m)})\\ &+2\sum_{k=1}^p\gamma_k^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+p\sum_{m=1}^p\eta_m^2+p^2\sigma^2+0+0+0+0+0+0+0\\ &+p^2\mu^2+p\sum_{i=1}^p\tau_i^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+p\sum_{m=1}^p\eta_m^2+p^2\sigma^2\\ &E(TSS)=E\left(\sum_{i=1}^p\sum_{j=1}^p\gamma_{ij(k,m)}^2\right)-E(C.F) \end{split}$$

$$\begin{split} &= p^2 \mu^2 + p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + p \sum_{m=1}^p \eta_m^2 + p^2 \sigma^2 - p^2 \mu^2 - \sigma^2 \\ &E(TSS) = p \sum_{i=1}^p \tau_i^2 + p \sum_{j=1}^p \beta_j^2 + p \sum_{k=1}^p \gamma_k^2 + p \sum_{m=1}^p \eta_m^2 + (p^2 - 1) \sigma^2 \\ &SSR = \frac{\sum_{i=1}^p R_i^2}{p} - C.F \\ &\frac{\sum_{i=1}^p R_i^2}{p} = \frac{\sum_{i=1}^p (\sum_{j=1}^p (\mu + \tau_i + \beta_j + \gamma_k + \eta_m + e_{ij(k,m)}))^2}{p} \\ &= \frac{\sum_{i=1}^p (p\mu + p\tau_i + \sum_{j=1}^p \beta_j + \sum_{k=1}^p \gamma_k + \sum_{m=1}^p \eta_m + \sum_{j=1}^p e_{ij(k,m)})^2}{p} \\ &= \frac{\sum_{i=1}^p (p\mu + p\tau_i + \sum_{j=1}^p e_{ij(k,m)} + \sum_{j\neq h} e_{ij(k,m)} e_{ih(l,x)} + 2p^2 \mu \tau_i + 2p\mu \sum_{j=1}^p e_{ij(k,m)} + 2p\tau_i \sum_{j=1}^p e_{ij(k,m)})}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{j=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + \sum_{l=2}^p \sum_{j=1}^p e_{ij(k,m)} + 2p \sum_{l=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)} e_{gh(l,x)} + 2p^2 \mu \sum_{l=1}^p \tau_i \\ &= \frac{+2p\mu \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)} + 2p \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)} e_{gh(l,x)} + 0}{p} \\ &= \frac{+2p\mu \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)} + 2p \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)} e_{gh(l,x)} + 2p\mu \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + 2p \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + 2p \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + 2p \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^p e_{ij(k,m)}^2 + \sum_{i=1}^p \sum_{j=1}^p \tau_i e_{ij(k,m)}}{p} \\ &= \frac{p^3 \mu^2 + p^2 \sum_{i=1}^p \tau_i^2 + \sum_{i=1}^p \sum_{j=1}^$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}\tau_{i}^{2} + \sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)}^{2}) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k,m)}e_{gh(l,z)}) + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)})}{+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}E(e_{ij(k,m)})}$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}^{2} + p^{2}\sigma^{2} + 0 + 0 + 0}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}\tau_{i}^{2} + p^{2}\sigma^{2}}{p} = p^{2}\mu^{2} + p\sum_{i=1}^{p}\tau_{i}^{2} + p\sigma^{2}$$

$$E(SSR) = E\left[\frac{\sum_{i=1}^{p}R_{i}^{2}}{p}\right] - E(C.F)$$

$$= p^{2}\mu^{2} + p\sum_{i=1}^{p}\tau_{i}^{2} + p\sigma^{2} - p^{2}\mu^{2} - \sigma^{2}$$

$$= p\sum_{i=1}^{p}\tau_{i}^{2} + (p-1)\sigma^{2}$$

$$SSC = \frac{\sum_{j=1}^{p} C_{j}^{2}}{p} - C.F$$

$$\frac{\sum_{j=1}^{p} C_{j}^{2}}{p} = \frac{\sum_{j=1}^{p} \left(\sum_{i=1}^{p} \left(\mu + \tau_{i} + \beta_{j} + \gamma_{k} + \eta_{m} + e_{ij(k,m)}\right)\right)^{2}}{p}$$

$$= \frac{\sum_{j=1}^{p} \left(p\mu + \sum_{i=1}^{p} \tau_{i} + p\beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{m=1}^{p} \eta_{m} + \sum_{i=1}^{p} e_{ij(k,m)}\right)^{2}}{p}$$

$$= \frac{\sum_{j=1}^{p} \left(p\mu + p\beta_{j} + \sum_{i=1}^{p} e_{ij(k,m)}\right)^{2}}{p}$$

$$= \frac{\sum_{j=1}^{p} \left(p^{2}\mu^{2} + p^{2}\beta_{j}^{2} + \sum_{i=1}^{p} e_{ij(k,m)}^{2} + \sum_{i=1}^{p} e_{ij(k,m)} + \sum_{i\neq g} e_{ij(k,m)} e_{gj(i,x)} + 2p^{2}\mu\beta_{j} + 2p\mu \sum_{i=1}^{p} e_{ij(k,m)} + 2p\beta_{j} \sum_{i=1}^{p} e_{ij(k,m)}\right)}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k,m)} e_{gh(i,x)} + 2p^{2}\mu \sum_{j=1}^{p} \beta_{j}}{p}$$

$$= \frac{+2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)} + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{ij(k,m)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{ij(k,m)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{j=1}^{p} \beta_{j}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + 2p\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{ij(k,m)}}{p}$$
Apply a practation on both sides

$$=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)}^{2})+\sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k,m)})e_{gh(l,z)})+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)})}{+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}E(e_{ij(k,m)})}$$

$$=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+p^{2}\sigma^{2}+0+0+0}{p}$$

$$=\frac{p^{3}\mu^{2}+p^{2}\sum_{j=1}^{p}\beta_{j}^{2}+p^{2}\sigma^{2}}{p}=p^{2}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sigma^{2}$$

$$E(SSC)=E\left[\frac{\sum_{j=1}^{p}C_{j}^{2}}{p}\right]-E(C.F)$$

$$=p^{2}\mu^{2}+p\sum_{j=1}^{p}\beta_{j}^{2}+p\sigma^{2}-p^{2}\mu^{2}-\sigma^{2}$$

$$=p\sum_{j=1}^{p}\beta_{j}^{2}+(p-1)\sigma^{2}$$

$$SSG=\frac{\sum_{k=1}^{p}G_{k}^{2}}{p}-C.F$$

$$\frac{\sum_{k=1}^{p}G_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}(\sum_{i=1}^{p}(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{ij(k,m)}))^{2}}{p}$$

$$=\frac{\sum_{k=1}^{p}(p\mu+\sum_{i=1}^{p}\tau_{i}+\sum_{j=1}^{p}\beta_{j}+p\gamma_{k}+\sum_{m=1}^{p}\eta_{m}+\sum_{i=1}^{p}e_{ij(k,m)})^{2}}{p}$$

$$\begin{split} &= \frac{\sum_{k=1}^{p} (p\mu + p\gamma_k + \sum_{l=1}^{p} e_{ij(k,m)})^2}{p} \\ &= \frac{\sum_{k=1}^{p} (p^2\mu^2 + p^2\gamma_k^2 + \sum_{l=1}^{p} e_{ij(k,m)}^2 + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,l)} + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,l)} + \sum_{l=2}^{p} e_{ij(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} + \sum_{l=2}^{p} e_{ij(k,m)} e_{jj(k,l)} + \sum_{l=2}^{p} e_{ij(k,m)} + \sum_{l=2}$$

$$p^{3}\mu^{2} + p^{2} \sum_{m=1}^{p} \eta_{m}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k,m)} e_{gh(l,z)} + 0$$

$$= \frac{+2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{ij(k,m)}}{p}$$

$$p^{3}\mu^{2} + p^{2} \sum_{m=1}^{p} \eta_{m}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}^{2} + \sum_{i\neq g} \sum_{j\neq h} e_{ij(k,m)} e_{gh(l,z)} + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)} + 2p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{ij(k,m)}$$

$$= \frac{+2p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{ij(k,m)}}{p}$$

$$= \frac{p^{3}\mu^{2} + p^{2} \sum_{m=1}^{p} \eta_{m}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k,m)}^{2}) + \sum_{i \neq g} \sum_{j \neq h} E(e_{ij(k,m)} e_{gh(l,z)}) + 2p\mu \sum_{i=1}^{p} \sum_{j=1}^{p} E(e_{ij(k,m)})}{+2p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} E(e_{ij(k,m)})}$$

$$\begin{split} &=\frac{p^3\mu^2+p^2\sum_{m=1}^p\eta_m^2+p^2\sigma^2+0+0+0}{p}\\ &=\frac{p^3\mu^2+p^2\sum_{m=1}^p\eta_m^2+p^2\sigma^2}{p}=p^2\mu^2+p\sum_{m=1}^p\eta_m^2+p\sigma^2\\ &E(SSL)=E\left[\frac{\sum_{m=1}^pL_m^2}{p}\right]-E(C.F)\\ &=p^2\mu^2+p\sum_{m=1}^p\eta_m^2+p\sigma^2-p^2\mu^2-\sigma^2\\ &=p\sum_{m=1}^p\eta_m^2+(p-1)\sigma^2\\ &E(SSE)=E(TSS)-E(SSR)-E(SSC)-E(SSG)-E(SSL)\\ &=p\sum_{l=1}^p\tau_l^2+p\sum_{j=1}^p\beta_j^2+p\sum_{k=1}^p\gamma_k^2+p\sum_{m=1}^p\eta_m^2+(p^2-1)\sigma^2-p\sum_{l=1}^p\tau_l^2-(p-1)\sigma^2\\ &-p\sum_{j=1}^p\beta_j^2-(p-1)\sigma^2-p\sum_{k=1}^p\gamma_k^2-(p-1)\sigma^2-p\sum_{m=1}^p\eta_m^2-(p-1)\sigma^2\\ &=(p^2-1-p+1-p+1-p+1-p+1-p+1)\sigma^2\\ &=(p^2-4p+3)\sigma^2=(p^2-3p-p+3)\sigma^2\\ &=(p(p-3)-1(p-3))\sigma^2=(p-1)(p-3)\sigma^2\\ &E(MSE)=\frac{E(SSE)}{(p-1)(p-3)}=\frac{(p-1)(p-3)\sigma^2}{(p-1)(p-3)}=\sigma^2\\ &E(MSC)=\frac{E(SSE)}{p-1}=\frac{p\sum_{l=1}^p\tau_l^2+(p-1)\sigma^2}{p-1}=\sigma^2+\frac{p}{p-1}\sum_{l=1}^p\tau_l^2\\ &E(MSC)=\frac{E(SSC)}{p-1}=\frac{p\sum_{l=1}^p\beta_j^2+(p-1)\sigma^2}{p-1}=\sigma^2+\frac{p}{p-1}\sum_{l=1}^p\beta_j^2\\ &E(MSG)=\frac{E(SSG)}{p-1}=\frac{p\sum_{k=1}^pG_k^2+(p-1)\sigma^2}{p-1}=\sigma^2+\frac{p}{p-1}\sum_{l=1}^pG_k^2\\ \end{split}$$

$$E(MSL) = \frac{E(SSL)}{p-1} = \frac{p\sum_{m=1}^{p} \eta_m^2 + (p-1)\sigma^2}{p-1} = \sigma^2 + \frac{p}{p-1} \sum_{m=1}^{p} \eta_m^2$$

Random Effect Model

Assumptions:

- 1. $e_{ij(k,m)} \sim iidN(0,\sigma^2)$
- 2. $E(e_{ij(k,m)}e_{gh(l,z)}) = 0$
- 3. $E(\tau_i e_{ij(k,m)}) = 0$
- 4. $E(\beta_i e_{i,i(k,m)}) = 0$
- 5. $E(\gamma_k e_{ij(k,m)}) = 0$
- 6. $E(\eta_m e_{ij(k,m)}) = 0$
- 7. $\tau_i \sim iidN(0, \sigma_\tau^2)$
- 8. $\beta_i \sim iidN(0, \sigma_{\beta}^2)$
- 9. $\gamma_k \sim iidN(0, \sigma_{\gamma}^2)$
- 10. $\eta_m \sim iidN(0, \sigma_\eta^2)$
- $11. E(\tau_i \tau_j) = 0$
- 12. $E(\beta_i\beta_j)=0$
- 13. $E(\gamma_k \gamma_l) = 0$
- $14. E(\eta_m \eta_n) = 0$
- 15. $E(\tau_i \beta_j) = 0$
- 16. $E(\tau_i \gamma_k) = 0$
- $17. E(\tau_i \eta_m) = 0$
- $18. E(\beta_j \gamma_k) = 0$
- 19. $E(\beta_j \eta_m) = 0$
- $20. E(\gamma_k \eta_m) = 0$

$$E(SSE) = E(TSS) - E(SSR) - E(SSC) - E(SSG) - E(SSL)$$

$$TSS = \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}^{2} - C.F$$

$$C.F = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{ij(k,m)}\right)^{2}}{p^{2}} = \frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} (\mu + \tau_{i} + \beta_{j} + \gamma_{k} + \eta_{m} + e_{ij(k,m)})\right)^{2}}{p^{2}}$$

$$=\frac{\left(p^{2}\mu+p\sum_{i=1}^{p}\tau_{i}+p\sum_{j=1}^{p}\beta_{j}+p\sum_{k=1}^{p}\gamma_{k}+p\sum_{m=1}^{p}\eta_{m}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)}\right)^{2}}{p^{2}}$$

$$\begin{split} &p^4\mu^2 + p^2 \sum_{i=1}^n \tau_i^2 + \sum \sum_{i=j} \tau_i \tau_i \tau_j + p^2 \sum_{j=1}^n \beta_j^2 + \sum \sum_{i=j} \mu_j \beta_j + p^2 \sum_{k=1}^n \gamma_k^2 + \sum \sum_{k=i} \nu_j \tau_i \tau_j \tau_k \\ & \sum \sum_{m,n} \eta_m \eta_n + \sum_{i=1}^n \sum_{j=1}^n \epsilon_{ij(k,m)}^2 + \sum_{j=1}^n \beta_j^2 + \sum_{j=1}^n \epsilon_{ij(k,m)}^2 + 2p^3 \sum_{j=1}^n \beta_j \sum_{m=1}^n \tau_i \tau_j \tau_j \\ & + 2p^3 \mu \sum_{m=1}^n \eta_m + 2p^2 \mu \sum_{j=1}^n \sum_{i=1}^n \epsilon_{ij(k,m)}^2 + 2p^2 \sum_{j=1}^n \Gamma_i \sum_{j=1}^n \beta_j + 2p^3 \sum_{j=1}^n \Gamma_i \sum_{k=1}^n \tau_i \sum$$

$$\begin{split} &=p^2\mu^2+p\sum_{i=1}^pE(\tau_i^2)+p\sum_{j=1}^pE(\beta_j^2)+p\sum_{k=1}^pE(\gamma_k^2)+p\sum_{m=1}^pE(\eta_m^2)+\sum_{i=1}^p\sum_{j=1}^pE(e_{ij(k,m)}^2)\\ &+2p\mu\sum_{i=1}^pE(\tau_i)+2p\mu\sum_{j=1}^pE(\beta_j)+2p\mu\sum_{k=1}^pE(\gamma_k)+2p\mu\sum_{m=1}^pE(\eta_m)\\ &+2p\mu\sum_{i=1}^p\sum_{j=1}^pE(e_{ij(k,m)})+2\sum_{i=1}^p\sum_{j=1}^pE(\tau_i\beta_j)+2\sum_{i=1}^p\sum_{k=1}^pE(\tau_i\gamma_k)\\ &+2\sum_{i=1}^p\sum_{m=1}^pE(\eta_m)+2\sum_{i=1}^p\sum_{j=1}^pE(\tau_ie_{ij(k,m)})+2\sum_{j=1}^p\sum_{k=1}^pE(\beta_j\gamma_k)\\ &+2\sum_{i=1}^p\sum_{m=1}^pE(\beta_j\eta_m)+2\sum_{i=1}^p\sum_{j=1}^pE(\beta_je_{ij(k,m)})+2\sum_{j=1}^p\sum_{k=1}^pE(\gamma_k\eta_m)\\ &+2\sum_{i=1}^p\sum_{m=1}^pE(\gamma_ke_{ij(k,m)})+2\sum_{i=1}^p\sum_{j=1}^pE(\eta_me_{ij(k,m)})\\ &+2\sum_{i=1}^p\sum_{m=1}^pE(\gamma_ke_{ij(k,m)})+2\sum_{i=1}^p\sum_{j=1}^pE(\eta_me_{ij(k,m)})\\ &+2\sum_{i=1}^p\sum_{m=1}^pE(\gamma_ke_{ij(k,m)})+2\sum_{i=1}^p\sum_{j=1}^pE(\gamma_me_{ij(k,m)})\\ &=p^2\mu^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma^2+0+0+0+0+0+0+0+0+0+0+0+0+0\\ &=p^2\mu^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma^2\\ &E(TSS)=E\left[\sum_{i=1}^p\sum_{j=1}^pY_{ij}^2\right]-E(C.F)\\ &=p^2\mu^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma_t^2+p^2\sigma^2-p^2\mu^2-p\sigma_t^2-p\sigma_t^2-p\sigma_t^2-p\sigma_t^2-p\sigma_t^2-p\sigma_t^2\\ &=p(p-1)\sigma_t^2+p(p-$$

$$p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}\tau_{i}^{2} + p\sum_{j=1}^{p}\beta_{j}^{2} + p\sum\sum_{i\neq j}\beta_{i}\beta_{j} + p\sum_{k=1}^{p}\gamma_{k}^{2} + p\sum\sum_{k\neq l}\gamma_{k}\gamma_{l} + p\sum_{m=1}^{p}\eta_{m}^{2}$$

$$+p\sum\sum_{m\neq n}\eta_{m}\eta_{n} + \sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)}^{2} + \sum_{i\neq g}\sum_{j\neq h}e_{ij(k,m)}e_{gh(l,z)} + 2p^{2}\mu\sum_{i=1}^{p}\tau_{i} + 2p^{2}\mu\sum_{j=1}^{p}\beta_{j}$$

$$+2p^{2}\mu\sum_{k=1}^{p}\gamma_{k} + 2p^{2}\mu\sum_{m=1}^{p}\eta_{m} + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)} + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j} + 2p\sum_{k=1}^{p}\sum_{i=1}^{p}\tau_{i}\gamma_{k}$$

$$+2p\sum_{m=1}^{p}\sum_{i=1}^{p}\tau_{i}\eta_{m} + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k,m)} + 2\sum_{j=1}^{p}\sum_{k=1}^{p}\beta_{j}\gamma_{k} + 2\sum_{j=1}^{p}\sum_{m=1}^{p}\beta_{j}\eta_{m}$$

$$+2\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k,m)} + 2\sum_{k=1}^{p}\sum_{m=1}^{p}\gamma_{k}\eta_{m} + 2\sum_{j=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k,m)} + 2\sum_{j=1}^{p}\sum_{m=1}^{p}\eta_{m}e_{ij(k,m)}$$

$$p$$

Apply expectation on both sides

$$p^{3}\mu^{2} + p^{2}\sum_{i=1}^{p}E(\tau_{i}^{2}) + p\sum_{j=1}^{p}E(\beta_{j}^{2}) + p\sum_{i\neq j}E(\beta_{i}\beta_{j}) + p\sum_{k=1}^{p}E(\gamma_{k}^{2}) + p\sum_{k\neq l}E(\gamma_{k}\gamma_{l}) + p\sum_{m=1}^{p}E(\eta_{m}^{2}) + p\sum_{m=1}^{p}E(\eta_{m}^{2}) + p\sum_{k\neq l}E(\eta_{m}\gamma_{n}) + \sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)}^{2}) + \sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k,m)}e_{gh(l,z)}) + 2p^{2}\mu\sum_{i=1}^{p}E(\tau_{i}) + 2p^{2}\mu\sum_{j=1}^{p}E(\beta_{j}) + 2p^{2}\mu\sum_{k=1}^{p}E(\gamma_{k}) + 2p^{2}\mu\sum_{m=1}^{p}E(\eta_{m}) + 2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}\beta_{j}) + 2p\sum_{k=1}^{p}\sum_{j=1}^{p}E(\tau_{i}\gamma_{k}) + 2p\sum_{m=1}^{p}\sum_{i=1}^{p}E(\tau_{i}\eta_{m}) + 2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}e_{ij(k,m)}) + 2\sum_{j=1}^{p}\sum_{m=1}^{p}E(\beta_{j}\gamma_{k}) + 2\sum_{j=1}^{p}\sum_{m=1}^{p}E(\beta_{j}\eta_{m}) + 2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\beta_{j}e_{ij(k,m)}) + 2\sum_{k=1}^{p}\sum_{m=1}^{p}E(\gamma_{k}\eta_{m}) + 2\sum_{j=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{ij(k,m)}) + 2\sum_{j=1}^{p}\sum_{m=1}^{p}E(\eta_{m}e_{ij(k,m)})$$

 $= \frac{p^{3}\mu^{2} + p^{3}\sigma_{\tau}^{2} + p^{2}\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma_{\eta}^{2} + p^{2}\sigma^{2}}{p}$ $= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p\sigma_{\beta}^{2} + p\sigma_{\nu}^{2} + p\sigma_{\eta}^{2} + p\sigma^{2}$ $E(SSR) = E\left[\frac{\sum_{i=1}^{p} R_i^2}{p}\right] - E(C.F)$ $= p^{2}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p\sigma_{\beta}^{2} + p\sigma_{\gamma}^{2} + p\sigma_{\eta}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\beta}^{2} - p\sigma_{\gamma}^{2} - p\sigma_{\eta}^{2} - \sigma^{2}$ $= p(p-1)\sigma_{\tau}^2 + (p-1)\sigma^2$ $SSC = \frac{\sum_{j=1}^{p} C_j^2}{n} - C.F$ $\frac{\sum_{j=1}^{p} C_{j}^{2}}{n} = \frac{\sum_{j=1}^{p} \left(\sum_{i=1}^{p} \left(\mu + \tau_{i} + \beta_{j} + \gamma_{k} + \eta_{m} + e_{ij(k,m)}\right)\right)^{2}}{n}$ $= \frac{\sum_{j=1}^{p} \left(p\mu + \sum_{i=1}^{p} \tau_{i} + p\beta_{j} + \sum_{k=1}^{p} \gamma_{k} + \sum_{m=1}^{p} \eta_{m} + \sum_{i=1}^{p} e_{ij(k,m)}\right)^{2}}{n}$ $\sum_{j=1}^{p} \begin{pmatrix} p^{2}\mu^{2} + \sum_{i=1}^{p} \tau_{i}^{2} + \sum \sum_{i\neq j} \tau_{i}\tau_{j} + p^{2}\beta_{j}^{2} + \sum_{k=1}^{p} \gamma_{k}^{2} + \sum \sum_{k\neq l} \gamma_{k}\gamma_{l} + \sum_{m=1}^{p} \eta_{m}^{2} \\ + \sum \sum_{m\neq n} \eta_{m}\eta_{n} + \sum_{j=1}^{p} e_{ij(k,m)}^{2} + \sum_{j\neq h} e_{ij(k,m)}e_{gh(l,z)} + 2p\mu \sum_{i=1}^{p} \tau_{i} + 2p^{2}\mu\beta_{j} \\ + 2p\mu \sum_{k=1}^{p} \gamma_{k} + 2p\mu \sum_{m=1}^{p} \eta_{m} + 2p\mu \sum_{j=1}^{p} e_{ij(k,m)} + 2p \sum_{i=1}^{p} \tau_{i}\beta_{j} + 2 \sum_{k=1}^{p} \sum_{i=1}^{p} \tau_{i}\gamma_{k} \\ + 2 \sum_{m=1}^{p} \sum_{i=1}^{p} \tau_{i}\eta_{m} + 2 \sum_{i=1}^{p} \tau_{i}e_{ij(k,m)} + 2p \sum_{k=1}^{p} \beta_{j}\gamma_{k} + 2p \sum_{m=1}^{p} \beta_{j}\eta_{m} \\ + 2p \sum_{i=1}^{p} \beta_{j}e_{ij(k,m)} + 2 \sum_{k=1}^{p} \sum_{m=1}^{p} \gamma_{k}\eta_{m} + 2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k}e_{ij(k,m)} + 2 \sum_{j=1}^{p} \sum_{m=1}^{p} \eta_{m}e_{ij(k,m)} / 2 \sum_{i=1}^{p} \gamma_{i}^{2} \gamma_{k}e_{ij(k,m)} + 2 \sum_{j=1}^{p} \gamma_{i}^{2} \gamma_{k}e_{ij(k,m)} / 2 \sum_{j=1}^{p} \gamma_{i}^{2} \gamma_{i}^{2} \gamma_{i}^{2} \gamma_{i}^{2} \gamma_{k}e_{ij(k,m)} / 2 \sum_{j=1}^{p} \gamma_{i}^{2} \gamma_{i}^$ $p^{3}\mu^{2} + p\sum_{i=1}^{p}\tau_{i}^{2} + p\sum_{i\neq j}\tau_{i}\tau_{j} + p^{2}\sum_{j=1}^{p}\beta_{j}^{2} + p\sum_{k=1}^{p}\gamma_{k}^{2} + p\sum_{k\neq l}\gamma_{k}\gamma_{l} + p\sum_{m=1}^{p}\eta_{m}^{2}$ $+p\sum\sum_{m\neq n}\eta_{m}\eta_{n}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)}^{2}+\sum_{i\neq g}\sum_{j\neq h}e_{ij(k,m)}e_{gh(l,z)}+2p^{2}\mu\sum_{i=1}^{p}\tau_{i}+2p^{2}\mu\sum_{j=1}^{p}\beta_{j}$ $+2p^{2}\mu\sum_{k=1}^{p}\gamma_{k}+2p^{2}\mu\sum_{m=1}^{p}\eta_{m}+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)}+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+2\sum_{k=1}^{p}\sum_{i=1}^{p}\tau_{i}\gamma_{k}$ $+2\textstyle\sum_{m=1}^{p}\sum_{i=1}^{p}\tau_{i}\eta_{m}+2\textstyle\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}e_{ij(k,m)}+2p\textstyle\sum_{k=1}^{p}\sum_{j=1}^{p}\beta_{j}\gamma_{k}+2p\textstyle\sum_{m=1}^{p}\sum_{j=1}^{p}\beta_{j}\eta_{m}$ $+2p\sum_{i=1}^{p}\sum_{j=1}^{p}\beta_{j}e_{ij(k,m)}+2\sum_{k=1}^{p}\sum_{m=1}^{p}\gamma_{k}\eta_{m}+2\sum_{j=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k,m)}+2\sum_{j=1}^{p}\sum_{m=1}^{p}\eta_{m}e_{ij(k,m)}$

Apply expectation on both sides $p^{3}\mu^{2} + p\sum_{i=1}^{p} E(\tau_{i}^{2}) + p\sum_{i\neq j} E(\tau_{i}\tau_{j}) + p^{2}\sum_{i=1}^{p} E(\beta_{j}^{2}) + p\sum_{k=1}^{p} E(\gamma_{k}^{2}) + p\sum_{k\neq l} E(\gamma_{k}\gamma_{l}) + p\sum_{m=1}^{p} E(\eta_{m}^{2})$ $+p\sum\sum_{m\neq n}E(\eta_{m}\eta_{n})+\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)}^{2})+\sum_{i\neq g}\sum_{j\neq h}E(e_{ij(k,m)}e_{gh(l,z)})+2p^{2}\mu\sum_{i=1}^{p}E(\tau_{i})+2p^{2}\mu\sum_{j=1}^{p}E(\beta_{j})$ $+2p^{2}\mu\sum_{k=1}^{p}E(\gamma_{k})+2p^{2}\mu\sum_{m=1}^{p}E(\eta_{m})+2p\mu\sum_{i=1}^{p}\sum_{j=1}^{p}E(e_{ij(k,m)})+2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}\beta_{j})+2\sum_{k=1}^{p}\sum_{i=1}^{p}E(\tau_{i}\gamma_{k})$ $+2\sum_{m=1}^{p}\sum_{i=1}^{p}E(\tau_{i}\eta_{m})+2\sum_{i=1}^{p}\sum_{j=1}^{p}E(\tau_{i}e_{ij(k,m)})+2p\sum_{k=1}^{p}\sum_{j=1}^{p}E(\beta_{j}\gamma_{k})+2p\sum_{m=1}^{p}\sum_{j=1}^{p}E(\beta_{j}\eta_{m})$ $+2p\sum_{i=1}^{p}\sum_{j=1}^{p}E(\beta_{j}e_{ij(k,m)})+2\sum_{k=1}^{p}\sum_{m=1}^{p}E(\gamma_{k}\eta_{m})+2\sum_{j=1}^{p}\sum_{k=1}^{p}E(\gamma_{k}e_{ij(k,m)})+2\sum_{j=1}^{p}\sum_{m=1}^{p}E(\eta_{m}e_{ij(k,m)})$ $= \frac{p^{3}\mu^{2} + p^{2}\sigma_{\tau}^{2} + p^{3}\sigma_{\beta}^{2} + p^{2}\sigma_{\gamma}^{2} + p^{2}\sigma_{\eta}^{2} + p^{2}\sigma^{2}}{p}$ $= p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p^{2}\sigma_{\beta}^{2} + p\sigma_{\gamma}^{2} + p\sigma_{\eta}^{2} + p\sigma^{2}$ $E(SSC) = E\left[\frac{\sum_{j=1}^{p} C_j^2}{n}\right] - E(C.F)$ $= p^{2}\mu^{2} + p\sigma_{\tau}^{2} + p^{2}\sigma_{\beta}^{2} + p\sigma_{\gamma}^{2} + p\sigma_{\eta}^{2} + p\sigma^{2} - p^{2}\mu^{2} - p\sigma_{\tau}^{2} - p\sigma_{\beta}^{2} - p\sigma_{\gamma}^{2} - p\sigma_{\eta}^{2} - \sigma^{2}$ $= p(p-1)\sigma_{\mathcal{B}}^2 + (p-1)\sigma^2$ $SSG = \frac{\sum_{k=1}^{p} G_k^2}{n} - C.F$ $\frac{\sum_{k=1}^{p} G_k^2}{n} = \frac{\sum_{k=1}^{p} \left(\sum_{i=1}^{p} \left(\mu + \tau_i + \beta_j + \gamma_k + \eta_m + e_{ij(k,m)}\right)\right)^2}{n}$ $= \frac{\sum_{k=1}^{p} \left(p\mu + \sum_{i=1}^{p} \tau_{i} + \sum_{j=1}^{p} \beta_{j} + p\gamma_{k} + \sum_{m=1}^{p} \eta_{m} + \sum_{i=1}^{p} e_{ij(k,m)}\right)^{2}}{n}$ $(2\mu^{2} + \sum_{i=1}^{p} \tau_{i}^{2} + \sum \sum_{i \neq j} \tau_{i} \tau_{i} + \sum_{i=1}^{p} \beta_{i}^{2} + \sum \sum_{i \neq j} \beta_{i} \beta_{i} + p^{2} \gamma_{k}^{2})$ $\sum_{k=1}^{p} \sum_{m=1}^{p} \gamma_{m}^{2} + \sum_{l=1}^{p} \sum_{i=1}^{p} \gamma_{i}^{2} \sum_{l=1}^{p} \gamma_{i}^{2} + \sum_{l=1}^{p} \gamma_{i}^{2} \sum_{l=1}$ $p^{3}\mu^{2} + p\sum_{i=1}^{p}\tau_{i}^{2} + p\sum_{i\neq i}\tau_{i}\tau_{i} + p\sum_{i=1}^{p}\beta_{i}^{2} + p\sum_{i\neq i}\beta_{i}\beta_{i} + p^{2}\sum_{k=1}^{p}\gamma_{k}^{2}$ $+p\sum_{m=1}^{p}\eta_{m}^{2}+p\sum\sum_{m\neq n}\eta_{m}\eta_{n}+\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)}^{2}+\sum_{i\neq g}\sum_{j\neq h}e_{ij(k,m)}e_{gh(l,n)}$ $+2p^{2}\mu\sum_{i=1}^{p}\tau_{i}+2p^{2}\mu\sum_{i=1}^{p}\beta_{i}+2p^{2}\mu\sum_{k=1}^{p}\gamma_{k}+2p^{2}\mu\sum_{m=1}^{p}\eta_{m}+2p\mu\sum_{i=1}^{p}\sum_{i=1}^{p}e_{ii(k,m)}$ $+2\sum_{i=1}^{p}\sum_{j=1}^{p}\tau_{i}\beta_{j}+2p\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}\tau_{i}+2\sum_{i=1}^{p}\sum_{m=1}^{p}\tau_{i}\eta_{m}+2\sum_{i=1}^{p}\sum_{k=1}^{p}\tau_{i}e_{ij(k,m)}$ $+2p\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}\beta_{j}+2\sum_{j=1}^{p}\sum_{m=1}^{p}\eta_{m}\beta_{j}+2\sum_{i=1}^{p}\sum_{j=1}^{p}e_{ij(k,m)}\beta_{j}+2p\sum_{m=1}^{p}\sum_{k=1}^{p}\gamma_{k}\eta_{m}$

Apply expectation on both sides

 $\frac{+2p\sum_{i=1}^{p}\sum_{k=1}^{p}\gamma_{k}e_{ij(k,m)}+2\sum_{i=1}^{p}\sum_{m=1}^{p}\eta_{m}\,e_{ij(k,m)}}{n}$

$$\begin{split} & p^{3}\mu^{2} + p \sum_{i=1}^{p} E(\tau_{i}^{2}) + p \sum_{i=1}^{N} E(\tau_{i}^{2}) + p \sum_{i=1}^{N} E(\eta_{i}^{2}) + p \sum_{i=1}^{N} E(\beta_{i}^{2}) + p \sum_{i=1}^{N} E(\beta_{i}^{2}) + p \sum_{i=1}^{N} E(\theta_{i}^{2}(x_{i})) + p \sum_{i=1}^{N} E(\eta_{i}^{2}(x_{i})) + p \sum_{i=1}^{N} E(\theta_{i}^{2}(x_{i})) + p \sum_{i=1}^$$

$$\begin{aligned} &p^{3}\mu^{2} + p\sum_{i=1}^{p} E(\tau_{i}^{2}) + p\sum_{i=j} E(\tau_{i}\tau_{j}) + p\sum_{j=1}^{p} E(\beta_{j}^{2}) + p\sum_{i\neq j} E(\beta_{i}\beta_{j}) + p\sum_{k=1}^{p} E(\gamma_{k}^{2}) \\ &+ p\sum_{k\neq i} E(\gamma_{k}\gamma_{l}) + p^{2}\sum_{m=1}^{p} E(\alpha_{m}^{2}) + \sum_{l=1}^{p} \sum_{m=1}^{m} E(\epsilon_{ij(k,m)}^{2}) + \sum_{i\neq j} \sum_{j\neq h} E(\epsilon_{ij(k,m)}) e_{ji(k,n)} \\ &+ 2p^{2}\sum_{l=1}^{p} E(\tau_{l}) + 2p^{2}\mu\sum_{j=1}^{p} E(\beta_{l}) + 2p^{2}\mu\sum_{k=1}^{p} E(\gamma_{k}) + 2p^{2}\mu\sum_{l=1}^{p} E(\eta_{m}) \\ &+ 2\sum_{l=1}^{p} \sum_{j=1}^{p} E(\tau_{l}) + 2p^{2}\mu\sum_{l=1}^{p} E(\epsilon_{lj(k,m)}) + 2\sum_{l=1}^{p} \sum_{k=1}^{p} E(\tau_{l}\gamma_{k}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\tau_{l}\eta_{m}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\tau_{l}\epsilon_{lj(k,m)}) + 2\sum_{l=1}^{p} \sum_{l=1}^{p} \sum_{k=1}^{p} E(\gamma_{k}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\tau_{l}\eta_{m}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\tau_{l}\epsilon_{lj(k,m)}) + 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\beta_{j}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\epsilon_{lj(k,m)}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\epsilon_{lj(k,m)}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\theta_{lj(k,m)}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\epsilon_{lj(k,m)}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\theta_{lj(k,m)}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\epsilon_{lj(k,m)}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\theta_{lj(k,m)}\beta_{j}) + 2p\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\epsilon_{lj(k,m)}) \\ &+ 2\sum_{l=1}^{p} \sum_{m=1}^{p} E(\eta_{m}\epsilon_{lj(k,m)})$$