

DESIGN AND ANALYSIS OF EXPERIMENT I

Lecture Notes

DESIGN AND ANALYSIS OF EXPERIMENT I

Contents
Experimental Design 3
Experiment 3
Observational Study 3
Experimental Unit 3
Treatments 4
Response Measurement 4
Experimental Error 4
Principles of Experimental Design 4
Randomization 4
Replication 5
Local Control 5
Completely Randomized Design(CRD) 5
Experimental Layout 6
Statistical Model and Analysis 6
Advantages of CRD 7
Disadvantages of CRD 7
Estimation of Parameters 7
Expected Mean square Error for CRD 10
Fixed Effect Model 10
Random Effect Model 13
Estimation of Missing Observations 16
Case I: One missing value 16
Case II:Two missing Observations in same treatment 17
Randomized Complete Block Design 18
Experimental Layout 19
Statistical Model and Analysis 19
Advantages of RCBD 20
Disadvantages of RCBD 20
Estimation of Model Parameters 20
Expected Mean Square Error 25
Fixed Effect Model 25
Random Effect Model 29
Mixed Effect Model 32
Estimation of Missing Observations 40
Case I: One Missing Value 40
Case II: Two Missing Values in same treatment but different blocks 41
Efficiency of RCBD relative to CRD 43
Latin Square Design 43
Experimental Layout 44
Statistical Model and Analysis 44
Advantages of LSD 45
Disadvantages of LSD 45
Estimation of Model Prameters 46
Expected Mean Square Error 51
Fixed Effect Model 51
Random Effect Model 57
Mixed Effect Model 62
Estimation of missing values 94
Case I: One missing value in one treatment 94
Case II: Two missing Observations 96
Efficiency of LSD relative to CRD 104
Efficiency of LSD relative to RCBD 104
Greaco Latin Square Design 105
Experimental Layout 105
Statistical Model and Analysis 106
Estimation of Model Parameters 107
Expected Mean Square Error 114
Fixed Effect Model 114
Random Effect Model 120

Experimental Design

Experimental design is the design of any information gathering exercises where variation is present whether under full control of the experimenter or not. However, in statistics these terms are usually used for controlled experiments. In the design of experiments, the experimenter is often interested in the effect of some process or intervention on some objects, which may be people, parts of people, groups of people, plants, animals, materials etc. Design of experiment is thus a discipline that has a very broad application across all the natural and social sciences.

Design means a statistical plan to get observations relevant to the experiment. The plan usually means

1- Selection of Treatment
2- Specifications of Layout
3- Allocation of Treatment
4- Collection of data analysis
Thus design is logical structure of experiment for the collection of data in an experimental way. A good experimental design is one i.e.
1- Experimental conditions are free from any systematic error.
2- Minimum experimental error for free cost.
3- The inference have wide range of validity.
There are two types of experimental design.
1- Systematic Design
2- Randomized Design
The basic randomized designs are

- Completely Randomized Design (CRD)
- Randomized Complete Block Design (RCBD)
- Latin Square Design (LSD)

Experiment

The word experiment is used in quite different sense to mean an investigation where the system under study is under the control of the investigator. This means that the individuals or material investigated, the nature of the treatments or manipulations under study and the measurement procedures used are all settled, in their important features at least by the investigator e.g. clinical study, fertilizer treatments.

Observational Study

The allocation of individuals to treatment groups, are outside the investigator's control e.g. Penal of interviewers, payment, cash withdrawals

Experimental Unit

A unit or experimental unit in a statistical analysis refers to one member of a set of entities being studied. It is the material source for the mathematical abstraction of a random variable. Common examples of a unit would be a single person, animal, plant or manufactured item that belongs to larger collection of such entities being studied. More formally they correspond to the smallest subdivision of the experimental material such that any two different experimental units might receive different treatments.

Treatments

The treatments are clearly defined procedures one of which is to be applied to each experimental unit. In some cases the treatments are an unstructured set of two or more qualitatively different procedures. In others including many investigations in the physical sciences, the treatments are defined by the levels of one or more quantitative variables such as the amounts per square meter of the constituents nitrogen, potash and potassium etc.

Response Measurement

The response measurement specifies the criterion in terms of which the comparison of treatments is to be effected. In many applications there will be several such measures.

Experimental Error

Experimental material is subject to variation. Experimental error is the measure of variation which exists among observations on experimental units treated alike. There are two source of variation

1. There is inherent variability persists in the experimental material.
2. Variation due to lack of uniformity in the physical conduct of experiment.

Efforts are made to improve the power of the test, decrease the size of the confidence interval and others good results.

Principles of Experimental Design

The three principles of experimental design are:

- randomization, to ensure that this estimate is statistically valid;
- replication, to provide an estimate of experimental error;
- local control, to reduce experimental error by making the experiment more efficient

Randomization

Randomization is the random process of assigning treatments to the experimental units. The random process implies that every possible allotment of treatments has the same probability. An experimental unit is the smallest division of the experimental material and a treatment means an experimental condition whose effect is to be measured and compared. The purpose of randomization is to remove bias and other sources of extraneous variation, which are not
controllable. Another advantage of randomization is that it forms the basis of any valid statistical test. Hence the treatments must be assigned at random to the experimental units. Randomization is usually done by drawing numbered cards from a well shuffled pack of cards or by drawing numbered balls from a well shaken container or by using tables of random numbers.

Replication

By replication we means that repetition of the basic experiments. For example, If we need to compare grain yield of two varieties of wheat then each variety is applied to more than one experimental units. The number of times these are applied on experimental units is called their number of replication. A replication is used:
i. to secure more accurate estimate of experimental error, a term which represents the differences that would be observed if the same treatments were applied several times to the same experimental units.
ii. to decrease the experimental error and thereby to increase precision, which is the measure of variability of experimental error
iii. to obtain more precise estimate of the mean effect of a treatment, since $\sigma_{\bar{y}}=\frac{\sigma^{2}}{n}$ where n denotes the number of replications.

Local Control

It has been observed that all extraneous source of variation are not removed by randomization and replication, i.e. unable to control extraneous source of variation. Thus we need to a refinement in the experimental technique. In other words we need to choose a design in such a way that all extraneous source of variation are brought under control. For this purpose we make use of local control, a term referring to the amount of (i) balancing, (ii) blocking and (iii) grouping of experimental units.

Balancing:

Balancing means that the treatment should be assigned to the experimental units in such a way that the result is a balanced arrangement of treatment.

Blocking:

Blocking means that the like experimental units should be collected together to far relatively homogeneous groups. A block is also a replicate.
The main objective/ purpose of local control is to increase the efficiency of experimental design by decreasing the experimental error.

Completely Randomized Design(CRD)

A completely randomized design, which is the simplest type of the basic designs, may be defined as a design in which the treatments are assigned to experimental units completely random, that is the randomization is done without restrictions. The design is completely
flexible i.e. any number of treatments and any number of units per treatment may be used. Moreover, the number of units per treatment need not be equal. A CRD is considered to be more useful where
i. the experimental units are homogenous
ii. the experiments are small such as laboratory experiments
iii. some experimental units are likely to be destroyed or fail to respond

Experimental Layout

The layout of an experiment is the actual placement of the treatments on the experimental units, which may certain to time, space or type of material. Suppose we have k treatments and the experimental material is divided into n experimental units. We shall then assign the k treatments at random to the n experimental units in such a way that treatment τ_{i} is applied r_{j} times, with $\sum r_{i}=n$. When each treatment is applied the same number of times, then $r_{1}=r_{2}=\cdots=r_{t}=r$ and $\sum r_{i}=r t=n$. Usually each treatment is applied equal number of times.

An example of the experimental layout for a CRD using four treatments A, B, C, D, each repeated 3 times is given below:

C	A	B	D
C	B	C	A

A
D
D
B

The result or response of a treatment which may be a real yield, the gain in weight, the ability etc. is generally called yield and is represented by the letter Y.

Statistical Model and Analysis

Each observation may be written in the form

$$
Y_{i j}=\mu+\tau_{i}+e_{i j}, \quad\left\{\begin{array}{l}
j=1,2, \ldots, r \\
i=1,2, \ldots, t
\end{array}\right.
$$

where μ represents the true mean effect, τ_{i} represents the effects of the treatment i and $e_{i j}$ denotes the random error, normally and independently distributed with mean 0 and variance σ^{2}.

Formulation of hypotheses:

$H_{0}: \tau_{i}=0$
$H_{0}: \tau_{i} \neq 0$ for all i

Level of significance:

$$
\alpha=0.05
$$

Test Statistic:

$$
F=\frac{s_{t}^{2}}{s_{e}^{2}}
$$

S.O.V	d.f	SS	MS
Treatments	$t-1$	SST	$s_{t}^{2}=\frac{S S T}{t-1}$
Error	$n-t$	SSE	$s_{e}^{2}=\frac{S S E}{n-t}$
Total	$n-1$		
	$C . F=\frac{Y_{t}^{2}}{s_{e}^{2}}$		
C.R:			
Conclusion:			

Conclusion:

If calculated value of F falls in the critical region then we reject H_{0}.

Advantages of CRD

- Very flexible design (i.e. number of treatments and replicates is only limited by the available number of experimental units).
- Statistical analysis is simple compared to other designs.
- Loss of information due to missing data is small compared to other designs due to the larger number of degrees of freedom for the error source of variation.

Disadvantages of CRD

- If experimental units are not homogeneous and you fail to minimize this variation using blocking, there may be a loss of precision.
- Usually the least efficient design unless experimental units are homogeneous.
- Not suited for a large number of treatments.

Estimation of Parameters

We estimate the parameters of the statistical model of CRD using OLS technique.

$$
S=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)^{2}
$$

Differentiate w.r.t $\hat{\mu}$

$$
\frac{\partial S}{\partial \hat{\mu}}=-2 \sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)(-1)
$$

Put $\frac{\partial S}{\partial \widehat{\mu}}=0$, we get

$$
\begin{gathered}
2 \sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)=0 \\
\sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)=0 \\
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}-\operatorname{tr} \hat{\mu}-r \sum_{i=1}^{t} \hat{\tau}_{i}=0
\end{gathered}
$$

For unique solutions put $\sum_{i=1}^{t} \hat{\tau}_{i}=0$

$$
\begin{gathered}
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}-\operatorname{tr} \hat{\mu}-r(0)=0 \\
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}-\operatorname{tr} \hat{\mu}=0 \\
\operatorname{tr} \hat{\mu}=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j} \\
\hat{\mu}=\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}}{t r} \\
\hat{\mu}=\frac{Y_{\text {I. }}}{t r}=\overline{\bar{Y}} \\
S=\sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}\right)^{2}+\sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}\right)^{2}+\cdots+\sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)^{2}+\cdots \\
+\sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\tau_{1}, \tau_{2}, \ldots, \tau_{i}, \ldots \tau_{t}$

$$
\frac{\partial S}{\partial \hat{\tau}_{1}}=-2 \sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}\right)(-1)
$$

Put $\frac{\partial S}{\partial \hat{\tau}_{1}}=0$, we get

$$
\begin{aligned}
& 2 \sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}\right)=0 \\
& \sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}\right)=0 \\
& \sum_{j=1}^{r} Y_{1 j}-r \hat{\mu}-r \hat{\tau}_{1}=0
\end{aligned}
$$

$$
\begin{gathered}
\sum_{j=1}^{r} Y_{1 j}=r \hat{\mu}+r \hat{\tau}_{1} \\
Y_{1 .}=r \hat{\mu}+r \hat{\tau}_{1} \\
\frac{\partial S}{\partial \hat{\tau}_{2}}=-2 \sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}\right)(-1)
\end{gathered}
$$

Put $\frac{\partial S}{\partial \hat{\tau}_{2}}=0$, we get

$$
\begin{gather*}
2 \sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}\right)=0 \\
\sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}\right)=0 \\
\sum_{j=1}^{r} Y_{2 j}-r \hat{\mu}-r \hat{\tau}_{2}=0 \\
\sum_{j=1}^{r} Y_{2 j}=r \hat{\mu}+r \hat{\tau}_{2} \\
Y_{22}=r \hat{\mu}+r \hat{\tau}_{2} \tag{2}\\
\frac{\partial S}{\partial \hat{\tau}_{i}}=-2 \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)(-1)
\end{gather*}
$$

Put $\frac{\partial S}{\partial \hat{\tau}_{i}}=0$, we get

$$
\begin{gathered}
2 \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)=0 \\
\sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}\right)=0 \\
\sum_{j=1}^{r} Y_{i j}-r \hat{\mu}-r \hat{\tau}_{i}=0 \\
\sum_{j=1}^{r} Y_{i j}=r \hat{\mu}+r \hat{\tau}_{i} \\
Y_{i .}=r \hat{\mu}+r \hat{\tau}_{i} \\
\frac{\partial S}{\partial \hat{\tau}_{t}}=-2 \sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}\right)(-1)
\end{gathered}
$$

Put $\frac{\partial S}{\partial \hat{\tau}_{t}}=0$, we get

$$
2 \sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}\right)=0
$$

$$
\begin{gather*}
\sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}\right)=0 \\
\sum_{j=1}^{r} Y_{t j}-r \hat{\mu}-r \hat{\tau}_{t}=0 \\
\sum_{j=1}^{r} Y_{t j}=r \hat{\mu}+r \hat{\tau}_{t} \\
Y_{t .}=r \hat{\mu}+r \hat{\tau}_{t} \tag{t}
\end{gather*}
$$

Adding equation (1),(2),(i),....,(t)

$$
\begin{gather*}
Y_{1 .}=r \hat{\mu}+r \hat{\tau}_{1} \tag{1}\\
Y_{2 .}=r \hat{\mu}+r \hat{\tau}_{2} \tag{2}\\
\vdots \tag{i}\\
\vdots \tag{t}\\
Y_{i .}=r \hat{\mu}+r \hat{\tau}_{i} \\
\vdots \quad \vdots \\
Y_{t .}=r \hat{\mu}+r \hat{\tau}_{t} \\
\hline \cdot \sum_{i=1}^{t} Y_{i .}=\operatorname{tr} \hat{\mu}+r \sum_{i=1}^{t} \hat{\tau}_{i}
\end{gather*}
$$

From equation (i)

$$
\begin{gathered}
Y_{i .}=r \hat{\mu}+r \hat{\tau}_{i} \\
\hat{\tau}_{i}=\frac{Y_{i .}}{r}-\frac{r \hat{\mu}}{r} \\
\hat{\tau}_{i}=\bar{Y}_{i .}-\overline{\bar{Y}}
\end{gathered}
$$

Expected Mean square Error for CRD

Fixed Effect Model

Assumptions:

1. $E\left(e_{i j}\right)=0$
2. $E\left(e_{i j} e_{g h}\right)=0$
3. $\sum_{i=1}^{t} \tau_{i}=0$

$$
\begin{gathered}
Y_{i j}=\mu+\tau_{i}+e_{i j} \\
S S E=T S S-S S T \\
T S S=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+e_{i j}\right)\right)^{2}}{t r} \\
=\frac{\left(t r \mu+r \sum_{i=1}^{t} \tau_{i}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r}
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{gathered}
=\frac{\left(t r \mu+r(0)+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{\left(t r \mu+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{(t r \mu)^{2}+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}}{t r} \\
=\frac{t^{2} r^{2} \mu^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{t r} \\
t r
\end{gathered}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}}{t r}+\frac{2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}}{t r}+\frac{2 \sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{t r} .
$$

Apply expectation on both sides

$$
\begin{aligned}
& E(C . F)= E\left(\operatorname{tr} \mu^{2}\right)+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}{ }^{2}\right)}{t r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+\frac{2 \sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)}{t r} \\
&=\operatorname{tr} \mu^{2}+\frac{t r \sigma^{2}}{t r}+2 \mu(0)+\frac{2(0)}{t r} \\
&=\operatorname{tr} \mu^{2}+\sigma^{2} \\
& \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+e_{i j}\right)^{2} \\
& \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu^{2}+\tau_{i}^{2}+e_{i j}^{2}+2 \mu \tau_{i}+2 \mu e_{i j}+2 \tau_{i} e_{i j}\right) \\
&= \operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j} \\
&= \operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu(0)+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j} \\
&= \operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=t r \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(e_{i j}\right) \\
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t r \sigma^{2}+2 \mu(0)+2(0) \\
=\operatorname{tr\mu ^{2}}+r \sum_{i=1}^{t} \tau_{i}^{2}+t r \sigma^{2} \\
E(T S S)=E\left[\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right]-E(C . F) \\
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t r \sigma^{2}-t r \mu^{2}-\sigma^{2} \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+(t r-1) \sigma^{2} \\
S S T=\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-C . F \\
r
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]=E\left[\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}}{r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+\frac{\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{r}\right] \\
& =\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)}{r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(e_{i j}\right)+\frac{\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)}{r}
\end{aligned}
$$

$$
\begin{gathered}
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\frac{t r \sigma^{2}}{r}+2 \mu(0)+2(0)+(0) \\
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sigma^{2} \\
E(S S T)=E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]-E(C . F) \\
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sigma^{2}-t r \mu^{2}-\sigma^{2} \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+(t-1) \sigma^{2} \\
E(M S E)=E\left[\frac{S S E}{n-t}\right] \\
E(S S E)=E(T S S)-E(S S T) \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+(t r-1) \sigma^{2}-r \sum_{i=1}^{t} \tau_{i}^{2}-(t-1) \sigma^{2} \\
=n \sigma^{2}-\sigma^{2}-t \sigma^{2}+\sigma^{2} \\
\quad=(n-t) \sigma^{2} \\
E(M S E)=\frac{(n-t) \sigma^{2}}{n-t}=\sigma^{2} \\
E(M S T)=E\left[\frac{S S T}{t-1}\right]=\frac{r \sum_{i=1}^{t} \tau_{i}^{2}+(t-1) \sigma^{2}}{t-1} \\
=\frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t-1}+\frac{(t-1) \sigma^{2}}{t-1}=\frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t-1}+\sigma^{2} \\
E
\end{gathered}
$$

Random Effect Model

Assumptions:

1. $\tau_{i} \sim \operatorname{iidN}\left(0, \sigma_{\tau}^{2}\right)$
2. $E\left(e_{i j}, e_{g h}\right)=0$
3. $E\left(e_{i j}, \tau_{i}\right)=0$
4. $E\left(\tau_{i}, \tau_{j}\right)=0$

$$
\begin{aligned}
& Y_{i j}=\mu+\tau_{i}+e_{i j} \\
& S S E=T S S-S S T
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{gathered}
T S S=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+e_{i j}\right)\right)^{2}}{t r} \\
=\frac{\left(t r \mu+r \sum_{i=1}^{t} \tau_{i}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r}
\end{gathered}
$$

$=\frac{(\operatorname{tr} \mu)^{2}+r^{2}\left(\sum_{i=1}^{t} \tau_{i}\right)^{2}+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}+2 \operatorname{tr}^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 \operatorname{tr} \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}}{\operatorname{tr}}$
$=\frac{t^{2} r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r^{2} \sum \sum \tau_{i} \tau_{j}+\sum_{i \neq g} \sum_{j \neq n} e_{i j} e_{g h}+2 t r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}}{t r}$

$$
=t r \mu^{2}+\frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}}{t r}+\frac{2 r \sum \sum \tau_{i} \tau_{j}}{t}+\frac{\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{t r}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+\frac{2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}}{t}
$$

Apply expectation on both sides

$$
\begin{gathered}
E(C . F)=\operatorname{tr} \mu^{2}+\frac{r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)}{t}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)}{t r}+\frac{2 r \sum \sum E\left(\tau_{i} \tau_{j}\right)}{t}+\frac{\sum_{i \neq g} \sum_{j \neq n} E\left(e_{i j} e_{g h}\right)}{t r}+2 r \mu \sum_{i=1}^{t} E\left(\tau_{i}\right) \\
+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+\frac{2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right)}{t} \\
=t r \mu^{2}+\frac{r t \sigma_{\tau}^{2}}{t}+\frac{\operatorname{tr} \sigma^{2}}{t r}+0+0+0+0+0 \\
=t r \mu^{2}+r \sigma_{\tau}^{2}+\sigma^{2} \\
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+e_{i j}\right)^{2} \\
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+2 r \mu \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right) \\
+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right) \\
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+t r \sigma^{2}+2 r \mu(0)+2 \mu(0)+2(0) \\
=t r \mu^{2}+t r \sigma_{\tau}^{2}+t r \sigma^{2}
\end{gathered}
$$

$$
\begin{gathered}
E(T S S)=E\left[\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right]-E(C . F) \\
=\operatorname{tr\mu ^{2}+} \begin{array}{c}
t r \sigma_{\tau}^{2}+t r \sigma^{2}-t r \mu^{2}-r \sigma_{\tau}^{2}-\sigma^{2} \\
=r(t-1) \sigma_{\tau}^{2}+(t r-1) \sigma^{2} \\
S S T=\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-C . F \\
Y_{i .}=\sum_{j=1}^{r} Y_{i j}=\sum_{j=1}^{r}\left(\mu+\tau_{i}+e_{i j}\right) \\
=r \mu+r \tau_{i}+\sum_{j=1}^{r} e_{i j} \\
=\frac{\sum_{i=1}^{t}\left(r^{2} \mu^{2}+r^{2} \tau_{i}^{2}+\sum_{j=1}^{r} e_{i j}^{2}+2 r^{2} \mu \tau_{i}+2 r \mu \sum_{j=1}^{r} e_{i j}+2 r \tau_{i} \sum_{j=1}^{r} e_{i j}+\sum_{j \neq h} e_{i j} e_{g h}\right)}{r} \\
=\frac{\operatorname{tr}^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{r} \\
\sum_{i=1}^{t}\left(r \mu+r \tau_{i}+\sum_{j=1}^{r} e_{i j}\right)^{2} \\
=\operatorname{tr\mu } \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}}{r}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+\frac{\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{r}
\end{array}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]=E\left[t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}}{r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+\frac{\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{r}\right] \\
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)}{r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right)+\frac{\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)}{r} \\
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+\frac{\operatorname{tr} \sigma^{2}}{r}+2 \mu(0)+2(0)+(0) \\
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+t \sigma^{2} \\
E(S S T)=E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]-E(C . F) \\
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+t \sigma^{2}-t r \mu^{2}-r \sigma_{\tau}^{2}-\sigma^{2} \\
=r(t-1) \sigma_{\tau}^{2}+(t-1) \sigma^{2} \\
E(M S E)=E\left[\frac{S S E}{n-t}\right] \\
E(S S E)=E(T S S)-E(S S T)
\end{gathered}
$$

$$
\begin{gathered}
=r(t-1) \sigma_{\tau}^{2}+(t r-1) \sigma^{2}-r(t-1) \sigma_{\tau}^{2}-(t-1) \sigma^{2} \\
\\
=t r \sigma^{2}-\sigma^{2}-t \sigma^{2}+\sigma^{2} \\
=(t r-t) \sigma^{2}=(n-t) \sigma^{2} \\
E(M S E)=\frac{(n-t) \sigma^{2}}{n-t}=\sigma^{2} \\
E(M S T)=E\left[\frac{S S T}{t-1}\right]=\frac{r(t-1) \sigma_{\tau}^{2}+(t-1) \sigma^{2}}{t-1} \\
=r \sigma_{\tau}^{2}+\sigma^{2}
\end{gathered}
$$

Estimation of Missing Observations

Case I: One missing value

$\frac{\partial S S E}{\partial \hat{Y}_{c d}}=0$

$$
\begin{gathered}
0+2 \hat{Y}_{c d}-0-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)}{r}=0 \\
\frac{2 r \hat{Y}_{c d}-2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)}{r}=0 \\
\frac{2\left(r \hat{Y}_{c d}-\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)\right)}{r}=0 \\
r \hat{Y}_{c d}-Y_{c .}^{\prime}-\hat{Y}_{c d}=0 \\
(r-1) \hat{Y}_{c d}=Y_{c .}^{\prime} \\
\hat{Y}_{c d}=\frac{Y_{c .}^{\prime}}{r-1}
\end{gathered}
$$

Case II:Two missing Observations in same treatment

$$
\begin{align*}
& \begin{array}{cccccc|}
\hline \boldsymbol{T}_{1} & \boldsymbol{T}_{2} & \ldots & \boldsymbol{T}_{i} & \ldots & \boldsymbol{T}_{t} \\
\hline Y_{11} & Y_{21} & \ldots & Y_{i 1} & \ldots & Y_{t 1} \\
Y_{12} & Y_{22} & \ldots & Y_{i 2} & \ldots & Y_{t 2} \\
\vdots & \vdots & & \vdots & & \vdots \\
Y_{1 j} & Y_{2 j} & \ldots & Y_{i j} & \ldots & Y_{t j} \\
\vdots & \vdots & Y_{c d} & \vdots & & \vdots \\
& \vdots & Y_{e f} & & \\
Y_{1 r} & Y_{2 r} & \ldots & Y_{i r} & \ldots & Y_{t r} \\
\hline Y_{1 .} & Y_{2 .} & Y_{c .}^{\prime}+Y_{c d}+Y_{e f} & Y_{i .} & \ldots & Y_{t .} \\
\hline
\end{array} \\
& C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)^{2}}{t r} \\
& S S E=T S S-S S T \\
& =\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}+\hat{Y}_{c d}^{2}+\hat{Y}_{e f}^{2}-C . F-\frac{1}{r}\left[\sum_{i=1}^{t} Y_{i .}^{2}+\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)^{2}\right]+C . F \\
& =\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}+\hat{Y}_{c d}^{2}+\hat{Y}_{e f}^{2}-\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-\frac{\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)^{2}}{r} \\
& \frac{\partial S S E}{\partial \hat{Y}_{c d}}=0 \\
& 0+2 \hat{Y}_{c d}+0-0-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)}{r}=0 \\
& 2 \hat{Y}_{c d}-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)}{r}=0 \\
& \frac{2\left(r \hat{Y}_{c d}-\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)\right)}{r}=0 \\
& r \hat{Y}_{c d}-Y_{c .}^{\prime}-\hat{Y}_{c d}-\hat{Y}_{e f}=0 \\
& (r-1) \hat{Y}_{c d}-\hat{Y}_{e f}=Y_{c}^{\prime} . \tag{1}\\
& \frac{\partial S S E}{\partial \hat{Y}_{e f}}=0 \\
& 0+0+2 \hat{Y}_{e f}-0-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)}{r}=0 \\
& 2 \hat{Y}_{e f}-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)}{r}=0 \\
& \frac{2\left(r \hat{Y}_{e f}-\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{e f}\right)\right)}{r}=0 \\
& r \hat{Y}_{e f}-Y_{c .}^{\prime}-\hat{Y}_{c d}-\hat{Y}_{e f}=0 \\
& (r-1) \hat{Y}_{e f}-\hat{Y}_{c d}=Y_{c .}^{\prime} . \tag{2}
\end{align*}
$$

Multiply (1) by $r-1$ and add it in equation (2)

$$
\begin{gathered}
(r-1)^{2} \hat{Y}_{c d}-(r-1) \hat{Y}_{e f}=(r-1) Y_{c .}^{\prime} \\
-\hat{Y}_{c d}+(r-1) \hat{Y}_{e f}=Y_{c .}^{\prime} \\
(r-1)^{2} \hat{Y}_{c d}-\hat{Y}_{c d} \quad(r-1) Y_{c .}^{\prime}+Y_{c .}^{\prime} \\
\left((r-1)^{2}-1\right) \hat{Y}_{c d}=(r-1+1) Y_{c .}^{\prime} \\
\left(r^{2}-2 r+1-1\right) \hat{Y}_{c d}=r Y_{c .}^{\prime} \\
r(r-2) \hat{Y}_{c d}=r Y_{c .}^{\prime} \\
\hat{Y}_{c d}=\frac{r Y_{c .}^{\prime}}{r(r-2)} \\
\hat{Y}_{c d}=\frac{Y_{c .}^{\prime}}{r-2}
\end{gathered}
$$

Exercise

Estimate the two missing observations in different treatments.

Randomized Complete Block Design

The RCBD assumes that a population of experimental units can be divided into a number of relatively homogeneous subpopulations or blocks. The treatments are then randomly assigned to experimental units such that each treatment occurs equally often (usually once) in each block (i.e. each block contains all treatments). Blocks usually represent levels of naturallyoccurring differences or sources of variation that are unrelated to the treatments, and the characterization of these differences is not of interest to the researcher. In the analysis, the variation among blocks can be partitioned out of the experimental error (MSE), thereby reducing this quantity and increasing the power of the test.

Blocking technique

The purpose of blocking is to reduce the experimental error by eliminating the contribution of known sources of variation among the experimental units. This is done by grouping the experimental units into blocks such that variability within each block is minimized and variability among blocks is maximized. Since only the variation within a block becomes part of the experimental error, blocking is most effective when the experimental area has a predictable pattern of variability.
An ideal source of variation to use as the basis for blocking is one that is large and highly predictable. An example is soil heterogeneity, in a fertilizer or provenance trial where yield data is the primary character of interest. In the case of such experiments, after identifying the specific source of variability to be used as the basis for blocking, the size and the shape of blocks must be selected to maximize variability among blocks. The guidelines for this decision are (i) When the gradient is unidirectional (i.e., there is only one gradient), use long and narrow blocks. Furthermore, orient these blocks so that their length is perpendicular to the direction of the gradient. (ii) When the fertility gradient occurs in two directions with one gradient much stronger than the other, ignore the weaker gradient and follow the preceding guideline for the case of the unidirectional gradient. (iii) When the fertility gradient occurs in two directions with both gradients equally strong and perpendicular to each other, use blocks that are as square as possible or choose other designs like latin square design (Gomez and Gomez, 1980).

Whenever blocking is used, the identity of the blocks and the purpose for their use must be consistent throughout the experiment. That is, whenever a source of variation exists that is beyond the control of the researcher, it should be ensured that such variation occurs among blocks rather than within blocks. For example, if certain operations such as application of insecticides or data collection cannot be completed for the whole experiment in one day, the task should be completed for all plots of the same block on the same day. In this way, variation among days (which may be enhanced by weather factors) becomes a part of block variation and is, thus, excluded from the experimental error. If more than one observer is to make measurements in the trial, the same observer should be assigned to make measurements for all plots of the same block. This way, the variation among observers if any, would constitute a part of block variation instead of the experimental error.

Experimental Layout

Suppose there are k treatments and r blocks in a randomized complete block design, then each block contains k homogenous plots, one of each treatment. An experimental layout for such a design using 6 treatments A,B,C,D,E,F in 3 blocks might be as follows:

BLOCK I	D	B	A	C	F	E
BLOCK II	C	B	E	F	D	A
BLOCK III	C	F	B	D	A	E

Statistical Model and Analysis

As each observation in a RCBD is classified by the block to which it belongs and by the treatment it receives, therefore $Y_{i j}$ represents the observation corresponding to block j and treatment i.

The linear statistical model for RCBD is as:

$$
Y_{i j}=\mu+\tau_{i}+\beta_{j}+e_{i j} \quad\left\{\begin{array}{l}
i=1,2,3, \ldots, t \\
j=1,2,3, \ldots, r
\end{array}\right.
$$

where
$Y_{i j}$ - any observation for which i is the treatment factor j is the blocking factor
μ - the mean
τ_{i} - the effect for being in treatment i
B_{j} is the effect for being in block j

Formulation of Hypotheses:

$$
\begin{aligned}
& H_{0}: \tau_{i}=0 \\
& H_{0}^{\prime}: \beta_{j}=0 \\
& H_{1}: \tau_{i} \neq 0 \\
& H_{1}^{\prime}: \beta_{j} \neq 0
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

Level of Significance:

$$
\alpha=0.05
$$

Test Statistic:

$$
F_{1}=\frac{s_{t}^{2}}{s_{e}^{2}}, \quad F_{2}=\frac{s_{b}^{2}}{s_{e}^{2}}
$$

S.O.V	d.f	SS	MS	F
Treatments	$t-1$	SST	$s_{t}^{2}=\frac{S S T}{t-1}$	$F_{1}=\frac{s_{t}^{2}}{s_{e}^{2}}$
Blocks	$r-1$	SSB	$s_{b}^{2}=\frac{S S B}{r-1}$	$F_{2}=\frac{s_{b}^{2}}{s_{e}^{2}}$
Error	$(t-1)(r-1)$	SSE	$s_{e}^{2}=\frac{S S E}{(t-1)(r-1)}$	
Total	$t r-1$	TSS		

Where

$$
\begin{gathered}
C . F=\frac{Y_{.}^{2}}{t r}, \quad T S S=\sum \sum Y_{i j}^{2}-C . F, \quad S S T=\frac{1}{r} \sum Y_{i .}^{2}-C . F \\
S S B=\frac{1}{t} \sum Y_{. j}^{2}-C . F, S S E=T S S-S S T-S S B
\end{gathered}
$$

C.R:

$F_{1} \geq F_{\alpha(t-1,(t-1)(r-1))}$
$F_{2} \geq F_{\alpha(r-1,(t-1)(r-1))}$
Conclusion:
If calculated value of F falls in the critical region then we reject H_{0}.

Advantages of RCBD

1. Generally more precise than the CRD.
2. No restriction on the number of treatments or replicates.
3. Some treatments may be replicated more times than others.
4. Missing plots are easily estimated.
5. Whole treatments or entire replicates may be deleted from the analysis.
6. If experimental error is heterogeneous, valid comparisons can still be made.

Disadvantages of RCBD

1. Error df is smaller than that for the CRD (problem with a small number of treatments).
2. If there is a large variation between experimental units within a block, a large error term may result (this may be due to too many treatments).
3. If there are missing data, a RCBD experiment may be less efficient than a CRD

Estimation of Model Parameters

Let $\hat{\mu}, \hat{\tau}_{i}, \hat{\beta}_{j}$ are the OLS estimators of μ, τ_{i}, β_{j} respectively.

$$
S=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)^{2}
$$

Differentiate w.r.t $\hat{\mu}$, we get

$$
\frac{\partial S}{\partial \hat{\mu}}=2 \sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)(-1)
$$

Now put $\frac{\partial S}{\partial \widehat{\mu}}=0$, we get

$$
\begin{gathered}
-2 \sum_{i=1}^{t} \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)=0 \\
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}-\operatorname{tr} \hat{\mu}-r \sum_{i=1}^{t} \hat{\tau}_{i}-t \sum_{j=1}^{r} \hat{\beta}_{j}=0 \\
\operatorname{tr} \hat{\mu}=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}-r \sum_{i=1}^{t} \hat{\tau}_{i}-t \sum_{j=1}^{r} \hat{\beta}_{j}
\end{gathered}
$$

For unique solutions put $\sum_{i=1}^{t} \hat{\tau}_{i}=0$, and $\sum_{j=1}^{r} \hat{\beta}_{j}=0$

$$
\begin{gathered}
\operatorname{tr} \hat{\mu}=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}-r(0)-t(0) \\
\hat{\mu}=\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}}{t r}=\overline{\bar{Y}} \\
S=\sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}\right)^{2}+\sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}\right)^{2}+\cdots \\
+\sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)^{2}+\cdots+\sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}-\hat{\beta}_{j}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\tau}_{1}, \hat{\tau}_{2}, \ldots, \hat{\tau}_{i}, \ldots, \hat{\tau}_{t}$

$$
\frac{\partial S}{\partial \hat{\tau}_{1}}=2 \sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}\right)(-1)=0
$$

$$
\begin{gather*}
-2 \sum_{j=1}^{r}\left(Y_{1 j}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}\right)=0 \\
\sum_{j=1}^{r} Y_{1 j}-r \hat{\mu}-r \hat{\tau}_{1}-\sum_{j=1}^{r} \hat{\beta}_{j}=0 \\
\sum_{j=1}^{r} Y_{1 j}=r \hat{\mu}+r \hat{\tau}_{1}+\sum_{j=1}^{r} \hat{\beta}_{j} \\
Y_{1 .}=r \hat{\mu}+r \hat{\tau}_{1}+\sum_{j=1}^{r} \hat{\beta}_{j} \tag{1}\\
\frac{\partial S}{\partial \hat{\tau}_{2}}=2 \sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}\right)(-1)=0 \\
-2 \sum_{j=1}^{r}\left(Y_{2 j}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}\right)=0 \\
\sum_{j=1}^{r} Y_{2 j}-r \hat{\mu}-r \hat{\tau}_{2}-\sum_{j=1}^{r} \hat{\beta}_{j}=0 \\
\sum_{j=1}^{r} Y_{2 j}=r \hat{\mu}+r \hat{\tau}_{2}+\sum_{j=1}^{r} \hat{\beta}_{j} \\
Y_{2 .}=r \hat{\mu}+r \hat{\tau}_{2}+\sum_{j=1}^{r} \hat{\beta}_{j} \tag{2}\\
\frac{\partial S}{\partial \hat{\tau}_{i}}=2 \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)(-1)=0 \\
-2 \sum_{j=1}^{r}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)=0 \\
\sum_{j=1}^{r} Y_{i j}-r \hat{\mu}-r \hat{\tau}_{i}-\sum_{j=1}^{r} \hat{\beta}_{j}=0 \\
\sum_{j=1}^{r} Y_{i j}=r \hat{\mu}+r \hat{\tau}_{i}+\sum_{j=1}^{r} \hat{\beta}_{j} \\
Y_{i .}=r \hat{\mu}+r \hat{\tau}_{i}+\sum_{j=1}^{r} \hat{\beta}_{j} \tag{i}\\
r_{j}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial S}{\partial \hat{\tau}_{t}}=2 \sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}-\hat{\beta}_{j}\right)(-1)=0 \\
-2 \sum_{j=1}^{r}\left(Y_{t j}-\hat{\mu}-\hat{\tau}_{t}-\hat{\beta}_{j}\right)=0 \\
\sum_{j=1}^{r} Y_{t j}-r \hat{\mu}-r \hat{\tau}_{t}-\sum_{j=1}^{r} \hat{\beta}_{j}=0 \\
\sum_{j=1}^{r} Y_{t j}=r \hat{\mu}+r \hat{\tau}_{t}+\sum_{j=1}^{r} \hat{\beta}_{j} \\
Y_{t .}=r \hat{\mu}+r \hat{\tau}_{t}+\sum_{j=1}^{r} \hat{\beta}_{j} \tag{t}
\end{gather*}
$$

From equation (i), put $\sum_{j=1}^{r} \hat{\beta}_{j}=0$ we get

$$
\begin{gathered}
Y_{i .}=r \hat{\mu}+r \hat{\tau}_{i}+0 \\
r \hat{\tau}_{i}=Y_{i .}-r \hat{\mu} \\
\hat{\tau}_{i}=\frac{Y_{i .}}{r}-\frac{r \hat{\mu}}{r} \\
\hat{\tau}_{i}=\bar{Y}_{i .}-\overline{\bar{Y}} \\
S=\sum_{i=1}^{t}\left(Y_{i 1}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}\right)^{2}+\sum_{i=1}^{t}\left(Y_{i 2}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}\right)^{2}+\cdots \\
+\sum_{i=1}^{t}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)^{2}+\cdots+\sum_{i=1}^{t}\left(Y_{i r}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{r}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{j}, \ldots, \hat{\beta}_{r}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\beta}_{1}}=2 \sum_{i=1}^{t}\left(Y_{i 1}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}\right)(-1)=0 \\
-2 \sum_{i=1}^{t}\left(Y_{i 1}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}\right)=0 \\
\sum_{i=1}^{t} Y_{i 1}-t \hat{\mu}-\sum_{i=1}^{t} \hat{\tau}_{i}-t \hat{\beta}_{1}=0
\end{gathered}
$$

$$
\begin{align*}
& \sum_{i=1}^{t} Y_{i 1}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{1} \\
& Y_{.1}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{1} \tag{1}\\
& \frac{\partial S}{\partial \hat{\beta}_{2}}=2 \sum_{i=1}^{t}\left(Y_{i 2}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}\right)(-1)=0 \\
& -2 \sum_{i=1}^{t}\left(Y_{i 2}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}\right)=0 \\
& \sum_{i=1}^{t} Y_{i 2}-t \hat{\mu}-\sum_{i=1}^{t} \hat{\tau}_{i}-t \hat{\beta}_{2}=0 \\
& \sum_{i=1}^{t} Y_{i 2}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{2} \\
& Y_{.2}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{2} \tag{2}\\
& \frac{\partial S}{\partial \hat{\beta}_{j}}=2 \sum_{i=1}^{t}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)(-1)=0 \\
& -2 \sum_{i=1}^{t}\left(Y_{i j}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}\right)=0 \\
& \sum_{i=1}^{t} Y_{i j}-t \hat{\mu}-\sum_{i=1}^{t} \hat{\tau}_{i}-t \hat{\beta}_{j}=0 \\
& \sum_{i=1}^{t} Y_{i j}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{j} \\
& Y_{. j}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{j} \tag{j}\\
& \frac{\partial S}{\partial \hat{\beta}_{r}}=2 \sum_{i=1}^{t}\left(Y_{i r}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{r}\right)(-1)=0 \\
& -2 \sum_{i=1}^{t}\left(Y_{i r}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{r}\right)=0
\end{align*}
$$

$$
\begin{gather*}
\sum_{i=1}^{t} Y_{i r}-t \hat{\mu}-\sum_{i=1}^{t} \hat{\tau}_{i}-t \hat{\beta}_{r}=0 \\
\sum_{i=1}^{t} Y_{i r}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{r} \\
Y_{r}=t \hat{\mu}+\sum_{i=1}^{t} \hat{\tau}_{i}+t \hat{\beta}_{r} \tag{r}
\end{gather*}
$$

Put $\sum_{i=1}^{t} \hat{\tau}_{i}=0$ equation (j), we get

$$
\begin{gathered}
Y_{. j}=t \hat{\mu}+0+t \hat{\beta}_{j} \\
t \hat{\beta}_{j}=Y_{. j}-t \hat{\mu} \\
\hat{\beta}_{j}=\frac{Y_{. j}}{t}-\frac{t \hat{\mu}}{t} \\
\hat{\beta}_{j}=\bar{Y}_{. j}-\overline{\bar{Y}}
\end{gathered}
$$

Expected Mean Square Error

Fixed Effect Model

Assumptions:

1. $E\left(e_{i j}\right)=0$
2. $E\left(e_{i j} e_{g h}\right)=0$
3. $\sum_{i=1}^{t} \tau_{i}=0$
4. $\sum_{j=1}^{r} \beta_{j}=0$

$$
\begin{gathered}
Y_{i j}=\mu+\tau_{i}+\beta_{j}+e_{i j} \quad\left\{\begin{array}{l}
i=1,2,3, \ldots, t \\
j=1,2,3, \ldots, r
\end{array}\right. \\
S S E=T S S-S S T-S S B \\
T S S=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)\right)^{2}}{t r} \\
=\frac{\left(\operatorname{tr} \mu+r \sum_{i=1}^{t} \tau_{i}+t \sum_{j=1}^{r} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{\left(t r \mu+0+0+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{\left(t r \mu+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{t^{2} r^{2} \mu^{2}+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}}{t r} \\
=\operatorname{tr} \mu^{2}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}}{t r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
E(C . F)=\operatorname{tr} \mu^{2}+\frac{\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)}{t r}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right) \\
=\operatorname{tr} \mu^{2}+\frac{t r \sigma^{2}+0}{t r}+0 \\
=\operatorname{tr\mu ^{2}+\frac {tr\sigma ^{2}}{tr}} \\
=\operatorname{tr} \mu^{2}+\sigma^{2} \\
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)^{2} \\
=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+e_{i j}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu e_{i j}+2 \tau_{i} \beta_{j}+2 \tau_{i} e_{i j}+2 \beta_{j} e_{i j}\right) \\
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 t \mu \sum_{j=1}^{r} \beta_{j}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \\
+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_{j} e_{i j} \\
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+0+0+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+0+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j} \\
+2 \sum_{i=1}^{r} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{gathered}
$$

$$
\begin{aligned}
&=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}{ }^{2}+t \sum_{j=1}^{r} \beta_{j}{ }^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j} \\
&+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& E\left[\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right]=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}{ }^{2}+t \sum_{j=1}^{r} \beta_{j}{ }^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right) \\
& +2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} E\left(e_{i j}\right) \\
& =\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}{ }^{2}+t \sum_{j=1}^{r} \beta_{j}{ }^{2}+\operatorname{tr} \sigma^{2}+0+0+0 \\
& =\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}{ }^{2}+t \sum_{j=1}^{r} \beta_{j}{ }^{2}+t r \sigma^{2} \\
& E(T S S)=E\left[\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right]-E(C . F) \\
& =t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}{ }^{2}+t \sum_{j=1}^{r} \beta_{j}{ }^{2}+t r \sigma^{2}-t r \mu^{2}-\sigma^{2} \\
& =r \sum_{i=1}^{t} \tau_{i}{ }^{2}+t \sum_{j=1}^{r} \beta_{j}{ }^{2}+(t r-1) \sigma^{2} \\
& S S T=\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-C . F \\
& Y_{i .}=\sum_{j=1}^{r} Y_{i j}=\sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=r \mu+r \tau_{i}+\sum_{j=1}^{r} \beta_{j}+\sum_{j=1}^{r} e_{i j} \\
& =r \mu+r \tau_{i}+0+\sum_{j=1}^{r} e_{i j}=r \mu+r \tau_{i}+\sum_{j=1}^{r} e_{i j} \\
& \frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}=\frac{\sum_{i=1}^{t}\left(r \mu+r \tau_{i}+\sum_{j=1}^{r} e_{i j}\right)^{2}}{r} \\
& =\frac{\sum_{i=1}^{t}\left(r^{2} \mu^{2}+r^{2} \tau_{i}^{2}+\left(\sum_{j=1}^{r} e_{i j}\right)^{2}+2 r^{2} \mu \tau_{i}+2 r \mu \sum_{j=1}^{r} e_{i j}+2 r \tau_{i} \sum_{j=1}^{r} e_{i j}\right)}{r} \\
& =\frac{\sum_{i=1}^{t}\left(r^{2} \mu^{2}+r^{2} \tau_{i}^{2}+\sum_{j=1}^{r} e_{i j}^{2}+\sum_{j \neq h} e_{i j} e_{i h}+2 r^{2} \mu \tau_{i}+2 r \mu \sum_{j=1}^{r} e_{i j}+2 r \tau_{i} \sum_{j=1}^{r} e_{i j}\right)}{r} \\
& =\frac{t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \tau_{i}}{r}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{t^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+0+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \tau_{i}}{r} \\
=\frac{t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \tau_{i}}{r}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq n} E\left(e_{i j} e_{g h}\right)+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right) \tau_{i}}{r} \\
=\frac{t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t r \sigma^{2}+0+0+0}{r} \\
E\left(\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right)=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sigma^{2} \\
E(S S T)=E\left(\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right)-E(C . F) \\
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sigma^{2}-t r \mu^{2}-\sigma^{2} \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+(t-1) \sigma^{2} \\
\quad S S B=\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}-C . F \\
=t \mu+0+t \beta_{j}+\sum_{i=1}^{t} e_{i j}=t \mu+t \beta_{j}+\sum_{i=1}^{t} e_{i j} \\
Y_{i=1}^{t} Y_{i j}=\sum_{i=1}^{t}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=t \mu+\sum_{i=1}^{t} \tau_{i}+t \beta_{j}+\sum_{i=1}^{t} e_{i j} \\
\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}=\frac{\sum_{j=1}^{r}\left(t \mu+t \beta_{j}+\sum_{i=1}^{t} e_{i j}\right)^{2}}{t} \\
=\frac{\sum_{j=1}^{r}\left(t^{2} \mu^{2}+t^{2} \beta_{j}^{2}+\left(\sum_{i=1}^{t} e_{i j}\right)^{2}+2 t^{2} \mu \beta_{j}+2 t \mu \sum_{i=1}^{t} e_{i j}+2 t \beta_{j} \sum_{i=1}^{t} e_{i j}\right)}{t} \\
=\frac{t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{j=1}^{r} \sum_{i=1}^{t} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 t^{2} \mu \sum_{j=1}^{r} \beta_{j}+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{t} \\
=\frac{t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{j=1}^{r} \sum_{i=1}^{t} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g n}+0+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{t} \\
=\frac{t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{j=1}^{r} \sum_{i=1}^{t} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{t}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{j=1}^{r} \sum_{i=1}^{t} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} E\left(e_{i j}\right)}{t}=\frac{t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\operatorname{tr} \sigma^{2}+0+0+0}{t} \\
E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]=\operatorname{tr\mu ^{2}+t\sum _{j=1}^{r}\beta _{j}^{2}+r\sigma ^{2}} \\
E(S S B)=E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]-E(C . F)
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\left.\begin{array}{c}
=t r \mu^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+r \sigma^{2}-t r \mu^{2}-\sigma^{2} \\
=t \sum_{j=1}^{r} \beta_{j}^{2}+(r-1) \sigma^{2} \\
E(S S E)=E(T S S)-E(S S T)-E(S S B) \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+(t r-1) \sigma^{2}-r \sum_{i=1}^{t} \tau_{i}^{2}-(t-1) \sigma^{2}-t \sum_{j=1}^{r} \beta_{j}^{2}-(r-1) \sigma^{2} \\
=(t r-1) \sigma^{2}-(t-1) \sigma^{2}-(r-1) \sigma^{2} \\
=(t r-1-t+1-r+1) \sigma^{2} \\
=(t r-t-r+1) \sigma^{2} \\
=(t(r-1)-1(r-1)) \sigma^{2} \\
=(t-1)(r-1) \sigma^{2}
\end{array}\right] \begin{array}{r}
E(M S E)=E\left[\frac{S S E}{(t-1)(r-1)}\right] \\
=\frac{E(S S E)}{(t-1)(r-1)}=\frac{(t-1)(r-1) \sigma^{2}}{(t-1)(r-1)}=\sigma^{2} \\
E(M S T)=E\left[\frac{S S T}{t-1}\right] \\
=\frac{E(S S T)}{t-1}=\frac{r \sum_{i=1}^{t} \tau_{i}^{2}+(t-1) \sigma^{2}}{t-1}=\sigma^{2}+\frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t-1} \\
=\frac{E(S S B)}{r-1}=\frac{t \sum_{j=1}^{r} \beta_{j}^{2}+(r-1) \sigma^{2}}{r-1}=\sigma^{2}+\frac{t \sum_{j=1}^{r} \beta_{j}^{2}}{r-1}
\end{array}
$$

Random Effect Model

Assumptions:

1. $E\left(e_{i j}\right)=0$
2. $E\left(e_{i j} e_{g h}\right)=0$
3. $e_{i} \sim i i d N\left(0, \sigma^{2}\right)$
4. $\tau_{i} \sim \operatorname{iidN}\left(0, \sigma_{\tau}^{2}\right)$
5. $\beta_{j} \sim \operatorname{iidN}\left(0, \sigma_{\beta}^{2}\right)$
6. $E\left(\tau_{i} \tau_{j}\right)=0$
7. $E\left(\beta_{i} \beta_{j}\right)=0$
8. $E\left(\tau_{i} e_{i j}\right)=0$
9. $E\left(\beta_{j} e_{i j}\right)=0$
10. $E\left(\tau_{i} \beta_{j}\right)=0$

$$
Y_{i j}=\mu+\tau_{i}+\beta_{j}+e_{i j} \quad\left\{\begin{array}{l}
i=1,2,3, \ldots, t \\
j=1,2,3, \ldots, r
\end{array}\right.
$$

$$
\begin{gathered}
S S E=T S S-S S T-S S B \\
T S S=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)\right)^{2}}{t r} \\
=\frac{\left(t r \mu+r \sum_{i=1}^{t} \tau_{i}+t \sum_{j=1}^{r} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{\begin{array}{c}
t^{2} r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+r^{2} \sum \sum_{i \neq j} \tau_{i} \tau_{j}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+t^{2} \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h} \\
+2 t r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 t^{2} r \mu \sum_{j=1}^{r} \beta_{j}+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 t r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j} \\
2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{array} t}{t r}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
\begin{array}{c}
t^{2} r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+r^{2} \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+t^{2} \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+t^{2} \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right) \\
+2 t r^{2} \mu \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 t^{2} r \mu \sum_{j=1}^{r} E\left(\beta_{j}\right)+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 t r \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right) \\
2 t \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right)
\end{array} \\
=\frac{t^{2} r^{2} \mu^{2}+t r^{2} \sigma_{\tau}^{2}+0+t^{2} r \sigma_{\beta}^{2}+0+t r \sigma^{2}+0+0+0+0+0+0+0}{t r} \\
E(C . F)=t r \mu^{2}+r \sigma_{\tau}^{2}+t \sigma_{\beta}^{2}+\sigma^{2} \\
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)^{2} \\
=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu^{2}+\tau_{i}{ }^{2}+\beta_{j}^{2}+e_{i j}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu e_{i j}+2 \tau_{i} \beta_{j}+2 \tau_{i} e_{i j}+2 \beta_{j} e_{i j}\right) \\
t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 t \mu \sum_{j=1}^{r} \beta_{j}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \\
+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}{ }^{2}\right)+t \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+2 r \mu \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 t \mu \sum_{j=1}^{r} E\left(\beta_{j}\right)+ \\
2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r}\left(\beta_{j} e_{i j}\right) \\
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+\operatorname{tr} \sigma^{2}+0+0+0+0+0+0
\end{gathered}
$$

$$
\begin{gathered}
E\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right)=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+\operatorname{tr} \sigma^{2} \\
E(T S S)=E\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right)-E(C . F) \\
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+\operatorname{tr} \sigma^{2}-t r \mu^{2}-r \sigma_{\tau}^{2}-t \sigma_{\beta}^{2}-\sigma^{2} \\
=r(t-1) \sigma_{\tau}^{2}+t(r-1) \sigma_{\beta}^{2}+(t r-1) \sigma^{2} \\
S S T=\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-C . F \\
Y_{i .}=\sum_{j=1}^{r} Y_{i j}=\sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=r \mu+r \tau_{i}+\sum_{j=1}^{r} \beta_{j}+\sum_{j=1}^{r} e_{i j} \\
\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}=\frac{\sum_{i=1}^{t}\left(r \mu+r \tau_{i}+\sum_{j=1}^{r} \beta_{j}+\sum_{j=1}^{r} e_{i j}\right)^{2}}{r} \\
\sum_{i=1}^{t}\left(r^{2} \mu^{2}+r^{2} \tau_{i}^{2}+\sum_{j=1}^{r} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{j=1}^{r} e_{i j}^{2}+\sum_{j \neq h} e_{i j} e_{i h}+2 r^{2} \mu \tau_{i}+2 r \mu \sum_{j=1}^{r} \beta_{j}\right) \\
+2 r \mu \sum_{j=1}^{r} e_{i j}+2 r \tau_{i} \sum_{j=1}^{r} \beta_{j}+2 r \tau_{i} \sum_{j=1}^{r} e_{i j}+2 \sum_{j=1}^{r} \beta_{j} e_{i j} \\
r
\end{gathered}
$$

$$
t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+t \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 t r \mu \sum_{j=1}^{r} \beta_{j}
$$

$$
=\frac{+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{r}
$$

Apply expectation on both sides

$$
\begin{gathered}
\begin{array}{r}
t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+t \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+t \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right) \\
+2 r^{2} \mu \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 \operatorname{tr\mu } \sum_{j=1}^{r} E\left(\beta_{j}\right)+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} \beta_{j}\right) \\
+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right)
\end{array} r \\
=\frac{t r^{2} \mu^{2}+t r^{2} \sigma_{\tau}^{2}+t r \sigma_{\beta}^{2}+0+t r \sigma^{2}+0+0+0+0+0+0+0}{r} \\
E\left[\frac{\left.\sum_{i=1}^{t} Y_{i .}^{2}\right]}{r}\right]=t r \mu^{2}+t r \sigma_{\tau}^{2}+t \sigma_{\beta}^{2}+t \sigma^{2} \\
E(S S T)=E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]-E(C . F)
\end{gathered}
$$

$$
=\frac{\sum_{j=1}^{r}\binom{t^{2} \mu^{2}+\sum_{i=1}^{t} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+t^{2} \beta_{j}^{2}+\sum_{i=1}^{t} e_{i j}^{2}+\sum_{i \neq g} e_{i j} e_{g j}+2 t \mu \sum_{i=1}^{t} \tau_{i}+2 t^{2} \mu \beta_{j}}{+2 t \mu \sum_{i=1}^{t} e_{i j}+2 \sum_{i=1}^{t} \tau_{i} e_{i j}+2 t \beta_{j} \sum_{i=1}^{t} \tau_{i}+2 t \beta_{j} \sum_{i=1}^{t} e_{i j}}}{t}
$$

$$
=\frac{t^{2} r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+r \sum_{i \neq j} \tau_{i} \tau_{j}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 \operatorname{tr} \mu \sum_{i=1}^{t} \tau_{i}+2 t^{2} \mu \sum_{j=1}^{r} \beta_{j}}{+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}} t . t .
$$

Apply expectation on both sides

$$
\begin{aligned}
& t^{2} r \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+r \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+t^{2} \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right) \\
& 2 t r \mu \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 t^{2} \mu \sum_{j=1}^{r} E\left(\beta_{j}\right)+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right) \\
& =\frac{+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} \beta_{j}\right)+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right)}{t} \\
& =\frac{t^{2} r \mu^{2}+t r \sigma_{\tau}^{2}+0+t^{2} r \sigma_{\beta}^{2}+t r \sigma^{2}+0+0+0+0+0+0+0}{t} \\
& E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]=\operatorname{tr} \mu^{2}+r \sigma_{\tau}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+r \sigma^{2} \\
& E(S S B)=E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]-E(C . F) \\
& =t r \mu^{2}+r \sigma_{\tau}^{2}+t r \sigma_{\beta}^{2}+r \sigma^{2}-t r \mu^{2}-r \sigma_{\tau}^{2}-t \sigma_{\beta}^{2}-\sigma^{2} \\
& =t(r-1) \sigma_{\beta}^{2}+(r-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S T)-E(S S B) \\
& =r(t-1) \sigma_{\tau}^{2}+t(r-1) \sigma_{\beta}^{2}+(t r-1) \sigma^{2}-r(t-1) \sigma_{\tau}^{2}-(t-1) \sigma^{2}-t(r-1) \sigma_{\beta}^{2}-(r-1) \sigma^{2} \\
& =(t r-1-t+1-r+1) \sigma^{2}=(t r-t-r+1) \sigma^{2} \\
& =(t(r-1)-1(r-1)) \sigma^{2}=(t-1)(r-1) \sigma^{2} \\
& E(M S E)=E\left[\frac{S S E}{(t-1)(r-1)}\right] \\
& =\frac{E(S S E)}{(t-1)(r-1)}=\frac{(t-1)(r-1) \sigma^{2}}{(t-1)(r-1)}=\sigma^{2} \\
& E(M S T)=E\left[\frac{S S T}{t-1}\right] \\
& =\frac{E(S S T)}{t-1}=\frac{r(t-1) \sigma_{\tau}^{2}+(t-1) \sigma^{2}}{t-1}=\sigma^{2}+r \sigma_{\tau}^{2} \\
& E(M S B)=E\left[\frac{S S B}{r-1}\right] \\
& =\frac{E(S S B)}{r-1}=\frac{t(r-1) \sigma_{\beta}^{2}+(r-1) \sigma^{2}}{r-1}=\sigma^{2}+t \sigma_{\beta}^{2}
\end{aligned}
$$

Mixed Effect Model

Case I: In this model the effect of τ_{i} is fixed and effect of $\boldsymbol{\beta}_{\boldsymbol{j}}$ is random

Assumptions:

1. $E\left(e_{i j}\right)=0$
2. $E\left(e_{i j} e_{g h}\right)=0$
3. $e_{i} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$
4. $\beta_{j} \sim \operatorname{iidN}\left(0, \sigma_{\beta}^{2}\right)$
5. $E\left(\beta_{i} \beta_{j}\right)=0$
6. $E\left(\beta_{j} e_{i j}\right)=0$
7. $\sum_{i=1}^{t} \tau_{i}=0$

$$
\left.\begin{array}{c}
Y_{i j}=\mu+\tau_{i}+\beta_{j}+e_{i j} \quad\left\{\begin{array}{l}
i=1,2,3, \ldots, t \\
j=1,2,3, \ldots ., r
\end{array}\right. \\
S S E=T S S-S S T-S S B
\end{array}\right\} \begin{gathered}
T S S=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)\right)^{2}}{t r} \\
=\frac{\left(t r \mu+r \sum_{i=1}^{t} \tau_{i}+t \sum_{j=1}^{r} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{\left(t r \mu+0+t \sum_{j=1}^{r} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
t^{2} r^{2} \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+t^{2} \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 t^{2} r \mu \sum_{j=1}^{r} \beta_{j} \\
+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j} \\
t r
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& t^{2} r^{2} \mu^{2}+t^{2} \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+t^{2} \sum_{\sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)+2 t^{2} r \mu \sum_{j=1}^{r} E\left(\beta_{j}\right)}^{+2 \operatorname{tr} \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right)} \\
& t r
\end{aligned}
$$

$$
=\frac{t^{2} r^{2} \mu^{2}+t^{2} r \sigma_{\beta}^{2}+0+t r \sigma^{2}+0+0+0+0}{t r}
$$

$$
\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)^{2}
$$

$$
=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+e_{i j}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu e_{i j}+2 \tau_{i} \beta_{j}+2 \tau_{i} e_{i j}+2 \beta_{j} e_{i j}\right)
$$

$$
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 t \mu \sum_{j=1}^{r} \beta_{j}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}
$$

$$
+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
$$

$$
\begin{aligned}
& =\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+0+2 t \mu \sum_{j=1}^{r} \beta_{j}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j} \\
& \quad+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j} \\
& =\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 t \mu \sum_{j=1}^{r} \beta_{j}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j} \\
& \quad+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+2 t \mu \sum_{j=1}^{r} E\left(\beta_{j}\right)+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right) \\
+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(\beta_{j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right) \\
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+\operatorname{tr} \sigma^{2}+0+0+0+0+0 \\
E\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right)=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+t r \sigma^{2} \\
E(T S S)=E\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right)-E(C . F) \\
=\operatorname{tr\mu ^{2}}+r \sum_{i=1}^{t} \tau_{i}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+\operatorname{tr} \sigma^{2}-\operatorname{tr} \mu^{2}-t \sigma_{\beta}^{2}-\sigma^{2} \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+\operatorname{tr} \sigma_{\beta}^{2}+t r \sigma^{2}-t \sigma_{\beta}^{2}-\sigma^{2} \\
=r \sum_{i=1}^{t} \tau_{i}^{2}+t(r-1) \sigma_{\beta}^{2}+(t r-1) \sigma^{2} \\
Y_{i .}=\sum_{j=1}^{r} Y_{i j}=\sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=r \mu+r \tau_{i}+\sum_{j=1}^{r} \beta_{j}+\sum_{j=1}^{r} e_{i j} \\
\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}=\frac{\sum_{i=1}^{t}\left(r \mu+r \tau_{i}+\sum_{j=1}^{r} \beta_{j}+\sum_{j=1}^{r} e_{i j}^{2}\right.}{r} \\
r
\end{gathered}
$$

$$
=\frac{\sum_{i=1}^{t}\binom{r^{2} \mu^{2}+r^{2} \tau_{i}^{2}+\sum_{j=1}^{r} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{j=1}^{r} e_{i j}^{2}+\sum_{j \neq h} e_{i j} e_{i h}+2 r^{2} \mu \tau_{i}+2 r \mu \sum_{j=1}^{r} \beta_{j}}{+2 r \mu \sum_{j=1}^{r} e_{i j}+2 r \tau_{i} \sum_{j=1}^{r} \beta_{j}+2 r \tau_{i} \sum_{j=1}^{r} e_{i j}+2 \sum_{j=1}^{r} \beta_{j} e_{i j}}}{r}
$$

Apply expectation on both sides

$$
\operatorname{tr}^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+t \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)
$$

$$
+2 \operatorname{tr} \mu \sum_{j=1}^{r} E\left(\beta_{j}\right)+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(\beta_{j}\right)
$$

$$
=\frac{+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right)}{r}=\frac{t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t r \sigma_{\beta}^{2}+0+t r \sigma^{2}+0+0+0+0+0+0+0}{r}
$$

$$
E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sigma_{\beta}^{2}+t \sigma^{2}
$$

$$
E(S S T)=E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]-E(C . F)
$$

$$
=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sigma_{\beta}^{2}+t \sigma^{2}-t r \mu^{2}-t \sigma_{\beta}^{2}-\sigma^{2}
$$

$$
=r \sum_{i=1}^{t} \tau_{i}^{2}+(t-1) \sigma^{2}
$$

$$
S S B=\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}-C . F
$$

$$
Y_{. j}=\sum_{i=1}^{t} Y_{i j}=\sum_{i=1}^{t}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=t \mu+\sum_{i=1}^{t} \tau_{i}+t \beta_{j}+\sum_{i=1}^{t} e_{i j}
$$

$$
=t \mu+0+t \beta_{j}+\sum_{i=1}^{t} e_{i j}=t \mu+t \beta_{j}+\sum_{i=1}^{t} e_{i j}
$$

$$
\frac{\sum_{j=1}^{r} Y_{j}^{2}}{t}=\frac{\sum_{j=1}^{r}\left(t \mu+t \beta_{j}+\sum_{i=1}^{t} e_{i j}\right)^{2}}{t}
$$

$$
=\frac{\sum_{j=1}^{r}\left(t^{2} \mu^{2}+t^{2} \beta_{j}^{2}+\sum_{i=1}^{t} e_{i j}^{2}+\sum_{i \neq g} e_{i j} e_{g j}+2 t^{2} \mu \beta_{j}+2 t \mu \sum_{i=1}^{t} e_{i j}+2 t \beta_{j} \sum_{i=1}^{t} e_{i j}\right)}{t}
$$

$=\frac{t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 t^{2} \mu \sum_{j=1}^{r} \beta_{j}+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{t}$
Apply expectation on both sides

$$
\begin{aligned}
& t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+t \sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 t r \mu \sum_{j=1}^{r} \beta_{j} \\
& =\frac{+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{r} \\
& t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+t \sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+0+2 t r \mu \sum_{j=1}^{r} \beta_{j} \\
& =\frac{+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{r} \\
& t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+t \sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 \operatorname{tr} \mu \sum_{j=1}^{r} \beta_{j} \\
& =\frac{+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& t^{2} r \mu^{2}+t^{2} \sum_{j=1}^{r} E\left(\beta_{j}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)++2 t^{2} \mu \sum_{j=1}^{r} E\left(\beta_{j}\right) \\
& =\frac{+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\beta_{j} e_{i j}\right)}{t} \\
& =\frac{t^{2} r \mu^{2}+t^{2} r \sigma_{\beta}^{2}+t r \sigma^{2}+0+0+0+0}{t} \\
& E\left[\frac{\sum_{j=1}^{r} Y_{j}^{2}}{t}\right]=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\beta}^{2}+r \sigma^{2} \\
& E(S S B)=E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]-E(C . F) \\
& =t r \mu^{2}+t r \sigma_{\beta}^{2}+r \sigma^{2}-t r \mu^{2}-t \sigma_{\beta}^{2}-\sigma^{2} \\
& =t(r-1) \sigma_{\beta}^{2}+(r-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S T)-E(S S B) \\
& =r \sum_{i=1}^{t} \tau_{i}^{2}+t(r-1) \sigma_{\beta}^{2}+(t r-1) \sigma^{2}-r \sum_{i=1}^{t} \tau_{i}^{2}-(t-1) \sigma^{2}-t(r-1) \sigma_{\beta}^{2}-(r-1) \sigma^{2} \\
& =(t r-1-t+1-r+1) \sigma^{2}=(t r-t-r+1) \sigma^{2} \\
& =(t(r-1)-1(r-1)) \sigma^{2}=(t-1)(r-1) \sigma^{2} \\
& E(M S E)=E\left[\frac{S S E}{(t-1)(r-1)}\right] \\
& =\frac{E(S S E)}{(t-1)(r-1)}=\frac{(t-1)(r-1) \sigma^{2}}{(t-1)(r-1)}=\sigma^{2} \\
& E(M S T)=E\left[\frac{S S T}{t-1}\right] \\
& =\frac{E(S S T)}{t-1}=\frac{r \sum_{i=1}^{t} \tau_{i}^{2}+(t-1) \sigma^{2}}{t-1}=\sigma^{2}+\frac{r \sum_{i=1}^{t} \tau_{i}^{2}}{t-1} \\
& E(M S B)=E\left[\frac{S S B}{r-1}\right] \\
& =\frac{E(S S B)}{r-1}=\frac{t(r-1) \sigma_{\beta}^{2}+(r-1) \sigma^{2}}{r-1}=\sigma^{2}+t \sigma_{\beta}^{2}
\end{aligned}
$$

Case II: In this model the effect of τ_{i} is random and effect of $\boldsymbol{\beta}_{j}$ is fixed

Assumptions:

1. $E\left(e_{i j}\right)=0$
2. $E\left(e_{i j} e_{g h}\right)=0$
3. $e_{i} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$
4. $\tau_{i} \sim i i d N\left(0, \sigma_{\tau}^{2}\right)$
5. $E\left(\tau_{i} \tau_{j}\right)=0$
6. $E\left(\tau_{i} e_{i j}\right)=0$
7. $\sum_{j=1}^{r} \beta_{j}=0$

$$
Y_{i j}=\mu+\tau_{i}+\beta_{j}+e_{i j} \quad\left\{\begin{array}{l}
i=1,2,3, \ldots, t \\
j=1,2,3, \ldots, r
\end{array}\right.
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{gathered}
S S E=T S S-S S T-S S B \\
T S S=\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)\right)^{2}}{t r} \\
=\frac{\left(t r \mu+r \sum_{i=1}^{t} \tau_{i}+t \sum_{j=1}^{r} \beta_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{\left(\operatorname{tr} \mu+r \sum_{i=1}^{t} \tau_{i}+0+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
=\frac{\left(t r \mu+r \sum_{i=1}^{t} \tau_{i}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}\right)^{2}}{t r} \\
t^{2} r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+r^{2} \sum_{i \neq j} \tau_{i} \tau_{j}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 r^{2} t \mu \sum_{i=1}^{t} \tau_{i} \\
+2 \operatorname{tr\mu } \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{j} e_{i j} \\
t r
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& t^{2} r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+r^{2} \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)+2 r^{2} t \mu \sum_{i=1}^{t} E\left(\tau_{i}\right) \\
& =\frac{+2 t r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{j} e_{i j}\right)}{t r} \\
& =\frac{t^{2} r^{2} \mu^{2}+t r^{2} \sigma_{\tau}^{2}+0+t r \sigma^{2}+0+0+0+0}{t r} \\
& E(C . F)=t r \mu^{2}+r \sigma_{\tau}^{2}+\sigma^{2} \\
& \sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}=\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)^{2} \\
& =\sum_{i=1}^{t} \sum_{j=1}^{r}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+e_{i j}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu e_{i j}+2 \tau_{i} \beta_{j}+2 \tau_{i} e_{i j}+2 \beta_{j} e_{i j}\right) \\
& =t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 t \mu \sum_{j=1}^{r} \beta_{j}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \\
& +2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j} \\
& =\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+0+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j} \\
& +2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{aligned}
$$

$$
\begin{aligned}
&=t r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+2 r \mu \sum_{i=1}^{t} \tau_{i}+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} \beta_{j} \\
&+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}
\end{aligned}
$$

Apply expectation on both sides

$$
=\operatorname{tr} \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+t \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+2 r \mu \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)
$$

$$
+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i}\right) \beta_{j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} E\left(e_{i j}\right)
$$

$$
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\operatorname{tr} \sigma^{2}+0+0+0+0+0
$$

$$
E\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right)=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\operatorname{tr} \sigma^{2}
$$

$$
E(T S S)=E\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}\right)-E(C . F)
$$

$$
=\operatorname{tr} \mu^{2}+\operatorname{tr} \sigma_{\tau}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+\operatorname{tr} \sigma^{2}-\operatorname{tr} \mu^{2}-r \sigma_{\tau}^{2}-\sigma^{2}
$$

$$
=\operatorname{tr} \sigma_{\tau}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+t r \sigma^{2}-r \sigma_{\tau}^{2}-\sigma^{2}
$$

$$
=t \sum_{j=1}^{r} \beta_{j}^{2}+r(t-1) \sigma_{\tau}^{2}+(t r-1) \sigma^{2}
$$

$$
S S T=\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-C . F
$$

$$
Y_{i .}=\sum_{j=1}^{r} Y_{i j}=\sum_{j=1}^{r}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=r \mu+r \tau_{i}+\sum_{j=1}^{r} \beta_{j}+\sum_{j=1}^{r} e_{i j}
$$

$$
=r \mu+r \tau_{i}+0+\sum_{j=1}^{r} e_{i j}=r \mu+r \tau_{i}+\sum_{j=1}^{r} e_{i j}
$$

$$
\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}=\frac{\sum_{i=1}^{t}\left(r \mu+r \tau_{i}+\sum_{j=1}^{r} e_{i j}\right)^{2}}{r}
$$

$$
=\frac{\sum_{i=1}^{t}\left(r^{2} \mu^{2}+r^{2} \tau_{i}^{2}+\sum_{j=1}^{r} e_{i j}^{2}+\sum_{j \neq h} e_{i j} e_{i h}+2 r^{2} \mu \tau_{i}+2 r \mu \sum_{j=1}^{r} e_{i j}+2 r \tau_{i} \sum_{j=1}^{r} e_{i j}\right)}{r}
$$

$$
=\frac{t r^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} \tau_{i}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h}+2 r^{2} \mu \sum_{i=1}^{t} \tau_{i}+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} \tau_{i} e_{i j}}{r}
$$

Apply expectation on both sides

$$
\begin{aligned}
& \operatorname{tr}^{2} \mu^{2}+r^{2} \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)+2 r^{2} \mu \sum_{i=1}^{t} E\left(\tau_{i}\right) \\
& =\frac{+2 r \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 r \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(\tau_{i} e_{i j}\right)}{r}=\frac{t r^{2} \mu^{2}+t r^{2} \sigma_{\tau}^{2}+t r \sigma^{2}+0+0+0+0}{r} \\
& E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]=t r \mu^{2}+t r \sigma_{\tau}^{2}+t \sigma^{2} \\
& E(S S T)=E\left[\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}\right]-E(C . F) \\
& =t r \mu^{2}+t r \sigma_{\tau}^{2}+t \sigma^{2}-t r \mu^{2}-r \sigma_{\tau}^{2}-\sigma^{2} \\
& =r(t-1) \sigma_{\tau}^{2}+(t-1) \sigma^{2} \\
& S S B=\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}-C . F \\
& Y_{. j}=\sum_{i=1}^{t} Y_{i j}=\sum_{i=1}^{t}\left(\mu+\tau_{i}+\beta_{j}+e_{i j}\right)=t \mu+\sum_{i=1}^{t} \tau_{i}+t \beta_{j}+\sum_{i=1}^{t} e_{i j} \\
& \frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}=\frac{\sum_{j=1}^{r}\left(t \mu+\sum_{i=1}^{t} \tau_{i}+t \beta_{j}+\sum_{i=1}^{t} e_{i j}\right)^{2}}{t} \\
& =\frac{\sum_{j=1}^{r}\binom{t^{2} \mu^{2}+\sum_{i=1}^{t} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+t^{2} \beta_{j}^{2}+\sum_{i=1}^{t} e_{i j}^{2}+\sum_{i \neq g} e_{i j} e_{g j}+2 t \mu \sum_{i=1}^{t} \tau_{i}+2 t^{2} \mu \beta_{j}}{+2 t \mu \sum_{i=1}^{t} e_{i j}+2 \sum_{i=1}^{t} \tau_{i} e_{i j}+2 t \beta_{j} \sum_{i=1}^{t} \tau_{i}+2 t \beta_{j} \sum_{i=1}^{t} e_{i j}}}{t} \\
& t^{2} r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+r \sum_{i \neq j} \tau_{i} \tau_{j}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h} \\
& +2 \operatorname{tr} \mu \sum_{i=1}^{t} \tau_{i}+2 t^{2} \mu \sum_{j=1}^{r} \beta_{j}+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \tau_{i} \\
& =\frac{+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} \tau_{i}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{t^{2} r \mu^{2}+r \sum^{t} \tau_{i}^{2}+r \sum \sum_{i=j} \tau_{i} \tau_{j}+t^{2} \sum^{r} \beta_{j=1}^{2}+\sum^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq} \sum_{j{ }_{j}} e_{i j} e_{g}} \\
& +2 \operatorname{tr} \mu \sum_{i=1}^{t} \tau_{i}+0+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \tau_{i} \\
& +2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} \tau_{i}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j} \\
& t^{2} r \mu^{2}+r \sum_{i=1}^{t} \tau_{i}^{2}+r \sum_{i \neq j} \tau_{i} \tau_{j}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j} e_{g h} \\
& +2 \operatorname{tr} \mu \sum_{i=1}^{t} \tau_{i}+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j}+2 \sum_{i=1}^{t} \sum_{j=1}^{r} e_{i j} \tau_{i} \\
& =\frac{+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} \tau_{i}+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} e_{i j}}{t}
\end{aligned}
$$

Apply expectation on both sides

$$
=\begin{gathered}
t^{2} r \mu^{2}+r \sum_{i=1}^{t} E\left(\tau_{i}^{2}\right)+r \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+\sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}^{2}\right) \\
+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j} e_{g h}\right)+2 \operatorname{tr\mu } \sum_{i=1}^{t} E\left(\tau_{i}\right)+2 t \mu \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j}\right)+2 \sum_{i=1}^{t} \sum_{j=1}^{r} E\left(e_{i j} \tau_{i}\right) \\
+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} E\left(\tau_{i}\right)+2 t \sum_{i=1}^{t} \sum_{j=1}^{r} \beta_{j} E\left(e_{i j}\right) \\
t
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{gathered}
E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]=\operatorname{tr} \mu^{2}+r \sigma_{\tau}^{2}+t \sum_{j=1}^{r} \beta_{j}^{2}+r \sigma^{2} \\
E(S S B)=E\left[\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}\right]-E(C . F) \\
=t r \mu^{2}+r \sigma_{\tau}^{2}+t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+r \sigma^{2}-t r \mu^{2}-r \sigma_{\tau}^{2}-\sigma^{2} \\
=t^{2} \sum_{j=1}^{r} \beta_{j}^{2}+(r-1) \sigma^{2} \\
=t \sum_{j=1}^{r} \beta_{j}^{2}+r(t-1) \sigma_{\tau}^{2}+(t r-1) \sigma^{2}-r(t-1) \sigma_{\tau}^{2}-(t-1) \sigma^{2}-t \sum_{j=1}^{r} \beta_{j}^{2}-(r-1) \sigma^{2} \\
=(t r-1-t+1-r+1) \sigma^{2}=(t r-t-r+1) \sigma^{2} \\
=(t(r-1)-1(r-1)) \sigma^{2}=(t-1)(r-1) \sigma^{2} \\
E(M S E)=E\left[\frac{S S E}{(t-1)(r-1)}\right] \\
=\frac{E(S S E)}{(t-1)(r-1)}=\frac{(t-1)(r-1) \sigma^{2}}{(t-1)(r-1)}=\sigma^{2} \\
=\frac{E(S S T)}{t-1}=\frac{r(t-1) \sigma_{\tau}^{2}+(t-1) \sigma^{2}}{t-1}=\sigma^{2}+r \sigma_{\tau}^{2} \\
=\frac{E(S S B)}{r-1}=\frac{t \sum_{j=1}^{r} \beta_{j}^{2}+(r-1) \sigma^{2}}{r-1}=\sigma^{2}+\frac{t \sum_{j=1}^{r} \beta_{j}^{2}}{r-1}
\end{gathered}
$$

Estimation of Missing Observations

Case I: One Missing Value

Blocks	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{2}}$	\ldots	$\boldsymbol{T}_{\boldsymbol{i}}$	\ldots	$\boldsymbol{T}_{\boldsymbol{t}}$	Total
$\boldsymbol{B}_{\mathbf{1}}$	Y_{11}	Y_{21}	\ldots	$Y_{i 1}$	\ldots	$Y_{t 1}$	$Y_{.1}$
$\boldsymbol{B}_{\mathbf{2}}$	Y_{12}	Y_{22}	\ldots	$Y_{i 2}$	\ldots	$Y_{t 2}$	$Y_{.2}$
\vdots	\vdots	\vdots		\vdots		\vdots	\vdots
$\boldsymbol{B}_{\boldsymbol{j}}$	$Y_{1 j}$	$Y_{2 j}$	\ldots	$Y_{i j}$	\ldots	$Y_{t j}$	$Y_{. j}$
\vdots	\vdots	\vdots	$Y_{c d}$	\vdots		\vdots	$Y_{. d}^{\prime}+Y_{c d}$
$\boldsymbol{B}_{\boldsymbol{r}}$	$Y_{1 r}$	$Y_{2 r}$	\ldots	$Y_{i r}$	\ldots	$Y_{t r}$	$Y_{.1}$
Total	$Y_{1 .}$	$Y_{2 .}$	$Y_{c .}^{\prime}+Y_{c d}$	$Y_{i .}$	\ldots	$Y_{t .}$	$Y_{.}^{\prime}+Y_{c d}$

$C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}\right)^{2}}{t r}$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& S S E=T S S-S S T-S S B \\
& =\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}+\hat{Y}_{c d}^{2}-C . F-\frac{1}{r}\left[\sum_{i=1}^{t} Y_{i .}^{2}+\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)^{2}\right]+C . F-\frac{1}{t}\left[\sum_{j=1}^{r} Y_{. j}^{2}+\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)^{2}\right]+C . F \\
& =\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}+\hat{Y}_{c d}^{2}-\frac{\sum_{i=1}^{t} Y_{i .}^{2}}{r}-\frac{\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)^{2}}{r}-\frac{\sum_{j=1}^{r} Y_{. j}^{2}}{t}-\frac{\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)^{2}}{t}+\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}\right)^{2}}{t r} \\
& \frac{\partial S S E}{\partial \hat{Y}_{c d}}=0 \\
& 0+2 \hat{Y}_{c d}-0-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)}{r}-0-\frac{2\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)}{t}+\frac{2\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}\right)}{t r}=0 \\
& \frac{2 t r \hat{Y}_{c d}-2 t\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)-2 r\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)+2\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}\right)}{t r}=0 \\
& \frac{2\left(\operatorname{tr} \hat{Y}_{c d}-t\left(Y_{c .}^{\prime}+\hat{Y}_{c d}\right)-r\left(Y_{. d}^{\prime}+\widehat{Y}_{c d}\right)+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\widehat{Y}_{c d}\right)\right)}{t r}=0 \\
& \operatorname{tr} \hat{Y}_{c d}-t Y_{c .}^{\prime}-t \hat{Y}_{c d}-r Y_{. d}^{\prime}-r \hat{Y}_{c d}+\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}=0 \\
& (t r-t-r+1) \hat{Y}_{c d}-t Y_{c .}^{\prime}-r Y_{. d}^{\prime}+\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}=0 \\
& (t r-t-r+1) \hat{Y}_{c d}=t Y_{c .}^{\prime}+r Y_{. d}^{\prime}-\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime} \\
& \hat{Y}_{c d}=\frac{t Y_{c .}^{\prime}+r Y_{. d}^{\prime}-\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}}{(t-1)(r-1)}
\end{aligned}
$$

Case II: Two Missing Values in same treatment but different blocks

$$
\begin{aligned}
& C . F=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}\right)^{2}}{t r}=\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\widehat{Y}_{c e}\right)^{2}}{t r} \\
& S S E=T S S-S S T-S S B \\
& =\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}+\hat{Y}_{c d}^{2}+\hat{Y}_{c e}^{2}-C . F-\frac{1}{r}\left[\sum_{i=1}^{t} Y_{i .}^{2}+\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)^{2}\right]+C . F-\frac{1}{t}\left[\sum_{j=1}^{r} Y_{j}^{2}+\left(Y_{. e}^{\prime}+\hat{Y}_{c e}\right)^{2}+\left(Y_{d}^{\prime}+\hat{Y}_{c d}\right)^{2}\right]+C . F
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{align*}
& =\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{2}+\hat{Y}_{c d}^{2}+\hat{Y}_{c e}^{2}-\frac{1}{r}\left[\sum_{i=1}^{t} Y_{i .}^{2}+\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)^{2}\right]-\frac{1}{t}\left[\sum_{j=1}^{r} Y_{. j}^{2}+\left(Y_{. e}^{\prime}+\hat{Y}_{c e}\right)^{2}+\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)^{2}\right] \\
& +\frac{\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)^{2}}{t r} \\
& \frac{\partial S S E}{\partial \hat{Y}_{c d}}=0 \\
& 0+2 \hat{Y}_{c d}+0-0-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)}{r}-0-\frac{2\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)}{t}-0+\frac{2\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)}{t r}=0 \\
& \frac{2 t r \hat{Y}_{c d}-2 t\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)-2 r\left(Y_{d d}^{\prime}+\hat{Y}_{c d}\right)+2\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)}{t r}=0 \\
& \frac{2\left(t r \hat{Y}_{c d}-t\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)-r\left(Y_{. d}^{\prime}+\hat{Y}_{c d}\right)+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)\right)}{t r}=0 \\
& \operatorname{tr} \hat{Y}_{c d}-t Y_{c .}^{\prime}-t \hat{Y}_{c d}-t \hat{Y}_{c e}-r Y_{. d}^{\prime}-r \hat{Y}_{c d}+\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}=0 \\
& (t r-t-r+1) \hat{Y}_{C d}+(1-t) \hat{Y}_{c e}-t Y_{c .}^{\prime}-r Y_{. d}^{\prime}+\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}=0 \\
& (t r-t-r+1) \hat{Y}_{c d}+(1-t) \hat{Y}_{c e}=t Y_{c .}^{\prime}+r Y_{. d}^{\prime}-\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime} \\
& \text { Let } E=t r-t-r+1, \quad F=1-t, \quad Z_{c d}=t Y_{c .}^{\prime}+r Y_{. d}^{\prime}-\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime} \\
& E \hat{Y}_{c d}+F \hat{Y}_{c e}=Z_{c d} \tag{1}\\
& \frac{\partial S S E}{\partial \hat{Y}_{c e}}=0 \\
& 0+0+2 \hat{Y}_{c e}-0-\frac{2\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)}{r}-0-\frac{2\left(Y_{. e}^{\prime}+\hat{Y}_{c e}\right)}{t}-0+\frac{2\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)}{t r}=0 \\
& \frac{2 t r \hat{Y}_{c e}-2 t\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)-2 r\left(Y_{. e}^{\prime}+\hat{Y}_{c e}\right)+2\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\widehat{Y}_{c d}+\hat{Y}_{c e}\right)}{t r}=0 \\
& \frac{2\left(\operatorname{tr} \hat{Y}_{c e}-t\left(Y_{c .}^{\prime}+\widehat{Y}_{c d}+\widehat{Y}_{c e}\right)-r\left(Y_{. e}^{\prime}+\widehat{Y}_{c e}\right)+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\widehat{Y}_{c d}+\widehat{Y}_{c e}\right)\right)}{t r}=0 \\
& \operatorname{tr} \hat{Y}_{c e}-t\left(Y_{c .}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)-r\left(Y_{. e}^{\prime}+\hat{Y}_{c e}\right)+\left(\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\hat{Y}_{c d}+\hat{Y}_{c e}\right)=0 \\
& \operatorname{tr} \hat{Y}_{c e}-t Y_{c .}^{\prime}-t \hat{Y}_{c d}-t \widehat{Y}_{c e}-r Y_{. e}^{\prime}-r \hat{Y}_{c e}+\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}+\widehat{Y}_{c d}+\hat{Y}_{c e}=0 \\
& (t r-t-r+1) \hat{Y}_{c e}+(1-t) \hat{Y}_{c d}-t Y_{c .}^{\prime}-r Y_{. e}^{\prime}+\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime}=0 \\
& (t r-t-r+1) \hat{Y}_{c e}+(1-t) \hat{Y}_{c d}=t Y_{c .}^{\prime}+r Y_{. e}^{\prime}-\sum_{i=1}^{t} \sum_{j=1}^{r} Y_{i j}^{\prime} \\
& E \hat{Y}_{c e}+F \hat{Y}_{c d}=Z_{c e} \tag{2}
\end{align*}
$$

Multiply equation (1) by F and equation (2) by E and then subtract it

$$
\begin{gathered}
E \not \hat{Y}_{c d}+F^{2} \hat{Y}_{c e}=F Z_{c d} \\
\pm E F \hat{Y}_{c d} \pm E^{2} \hat{Y}_{c e}= \pm E Z_{c e} \\
\left(F^{2}-E^{2}\right) \hat{Y}_{c e}=F Z_{c d}-E Z_{c e} \\
\hat{Y}_{c e}=\frac{F Z_{c d}-E Z_{c e}}{\left(F^{2}-E^{2}\right)}
\end{gathered}
$$

Multiply equation (1) by E and equation (2) by F and then subtract it

$$
\begin{gathered}
E \notin \hat{Y}_{c e}+E^{2} \hat{Y}_{c d}=E Z_{c d} \\
\pm E F \hat{Y}_{c e} \pm F^{2} \hat{Y}_{c d}= \pm F Z_{c e} \\
\left(E^{2}-F^{2}\right) \hat{Y}_{c d}=E Z_{c d}-F Z_{c e} \\
\hat{Y}_{c d}=\frac{E Z_{c d}-F Z_{c e}}{\left(E^{2}-F^{2}\right)}
\end{gathered}
$$

Exercise:

Estimate P-missing observations in different treatments and different blocks. Estimate the two missing observations in different treatments but same block.

Efficiency of RCBD relative to CRD

$\mathrm{RE}(\mathrm{RCB}, \mathrm{CR})$: the relative efficiency of the randomized complete block design compared to a completely randomized design. Did blocking increase the precision for comparing treatment means in a given experiment?

$$
R E(R C B, C R)=\frac{M S E_{C R}}{M S E_{R C B}}=\frac{(r-1) M S B+r(t-1) M S E}{(r t-1) M S E}
$$

Latin Square Design

Latin Square Designs are probably not used as much as they should be - they are very efficient designs. Latin square designs allow for two blocking factors. In other words, these designs are used to simultaneously control (or eliminate) two sources of nuisance variability. For instance, if you had a plot of land the fertility of this land might change in both directions, North -- South and East -- West due to soil or moisture gradients. So, both rows and columns can be used as blocking factors. However, you can use Latin squares in lots of other settings. As we shall see, Latin squares can be used as much as the RCBD in industrial experimentation as well as other experiments.
Whenever, you have more than one blocking factor a Latin square design will allow you to remove the variation for these two sources from the error variation. So, consider we had a plot of land, we might have blocked it in columns and rows, i.e. each row is a level of the row factor, and each column is a level of the column factor. We can remove the variation from our measured response in both directions if we consider both rows and columns as factors in our design.
The Latin Square Design gets its name from the fact that we can write it as a square with Latin letters to correspond to the treatments. The treatment factor levels are the Latin letters
in the Latin square design. The number of rows and columns has to correspond to the number of treatment levels. So, if we have four treatments then we would need to have four rows and four columns in order to create a Latin square. This gives us a design where we have each of the treatments and in each row and in each column.

Experimental Layout

Latin square are always constructed by rotation e.g. in case of 4 treatments A,B,C,D we get,

A	B	C	D
B	C	D	A
C	D	A	B
D	A	B	C

Example:
A courier company is interested in deciding between five brand D,P,F,C and R of car for its next purchase of fleet cars.

1. The brands are all comparable in purchase price.
2. The company wants to carry out a study that will enable them to compare the brands w.r.t operating costs.
3. For this purpose they select five drivers (Rows)
4. In addition the study will be carried out over a five week period (Columns=Weeks)
5. Each week a driver is assigned to a car using randomization and a Latin square design.
6. The average cost per mile is recorded at the end of each week and is tabulated below: Drivers

	1	2	3	4	5
1	5.83	6.22	7.67	9.43	6.57
	D	P	F	C	R
2	4.80	7.56	10.34	5.82	9.86
	P	D	C	R	F
3	7.43	11.29	7.01	10.48	9.27
	F	C	R	D	P
4	6.60	9.54	11.11	10.84	15.05
	R	F	D	P	C
5	11.24	6.34	11.30	12.58	16.04
	C	R	P	F	D

$\underline{\text { Statistical Model and Analysis }}$

The linear statistical model for LSD is

$$
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\left\{\begin{array}{l}
i=1,2, \ldots, p \\
j=1,2, \ldots, p \\
k=1,2, \ldots, p
\end{array}\right.
$$

Where
μ True mean effect
τ_{i} effect of i th row
β_{j} effect of j th row
γ_{k} effect of $k t h$ treatment

Formulation of hypotheses:

$$
\begin{gathered}
H_{0}: \gamma_{k}=0 \\
H_{0}^{\prime}: \tau_{i}=0 \\
H_{0}^{\prime \prime}: \beta_{j}=0 \\
H_{1}: \gamma_{k} \neq 0 \\
H_{0}^{\prime}: \tau_{i} \neq 0 \\
H_{0}^{\prime \prime}: \beta_{j} \neq 0
\end{gathered}
$$

Level of significance:

$$
\alpha=\text { 0.05.0.01.0.001.0.10 }
$$

Test Statistic:

$$
F_{1}=\frac{s_{r}^{2}}{s_{e}^{2}}, \quad F_{2}=\frac{s_{c}^{2}}{s_{e}^{2}}, \quad F_{3}=\frac{s_{t}^{2}}{s_{e}^{2}}
$$

S.O.V	d.f	SS	MS	F
Rows	$p-1$	SSR	$s_{r}^{2}=\frac{S S R}{p-1}$	$F_{1}=\frac{s_{r}^{2}}{s_{e}^{2}}$
Columns	$p-1$	SSC	$s_{c}^{2}=\frac{S S C}{p-1}$	$F_{2}=\frac{s_{c}^{2}}{s_{e}^{2}}$
Treatment	$p-1$	SST	$s_{t}^{2}=\frac{S S T}{p-1}$	$F_{3}=\frac{s_{t}^{2}}{s_{e}^{2}}$
Error	$(p-1)(p-2)$	SSE	$s_{e}^{2}=\frac{S S E}{(p-1)(p-2)}$	
Total	$p^{2}-1$	TSS		

Where

$$
\begin{gathered}
C . F=\frac{Y_{\ldots}^{2}}{p^{2}}, \quad S S R=\frac{1}{p} \sum R_{i}^{2}-C . F, S S C=\frac{1}{p} \sum C_{j}^{2}-C . F \\
S S T=\frac{1}{p} \sum T_{k}^{2}-C . F, S S E=T S S-S S R-S S C-S S T
\end{gathered}
$$

C.R

$F_{1} \geq F_{\alpha(p-1,(p-1)(p-2))}$
$F_{2} \geq F_{\alpha(p-1,(p-1)(p-2))}$
$F_{3} \geq F_{\alpha(p-1,(p-1)(p-2))}$

Conclusion

If calculated value of F falls in the critical region then we reject null hypotheses.

Advantages of LSD

1. Greater power than the RBD when there are two external sources of variation.
2. Easy to analyze.

Disadvantages of LSD

1. The number of treatments, rows and columns must be the same.
2. Squares smaller than 5×5 are not practical because of the small number of degrees of freedom for error.

DESIGN AND ANALYSIS OF EXPERIMENT I

3. The effect of each treatment must be approximately the same across rows and columns.

Estimation of Model Prameters

$$
\begin{gathered}
S=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(Y_{i j(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)^{2} \\
\frac{\partial S}{\partial \hat{\mu}}=2 \sum_{i=1}^{p} \sum_{j=1}^{p}\left(Y_{i j(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)(-1)=0 \\
\quad-2 \sum_{i=1}^{p} \sum_{j=1}^{p}\left(Y_{i j(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)=0 \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}-p^{2} \hat{\mu}-p \sum_{i=1}^{p} \hat{\tau}_{i}-p \sum_{j=1}^{p} \hat{\beta}_{j}-p \sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}=p^{2} \hat{\mu}+p \sum_{i=1}^{p} \hat{\tau}_{i}+p \sum_{j=1}^{p} \hat{\beta}_{j}+p \sum_{k=1}^{p} \hat{\gamma}_{k}
\end{gathered}
$$

For unique solutions Put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}=p^{2} \hat{\mu}+0+0+0 \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}=p^{2} \hat{\mu} \\
\hat{\mu}=\frac{\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}}{p^{2}}=\bar{Y} \\
S=\sum_{j=1}^{p}\left(Y_{1 j(k)}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)^{2}+\sum_{j=1}^{p}\left(Y_{2 j(k)}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)^{2} \\
+\sum_{j=1}^{p}\left(Y_{3 j(k)}-\hat{\mu}-\hat{\tau}_{3}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)^{2}+\cdots+\sum_{j=1}^{p}\left(Y_{p j(k)}-\hat{\mu}-\hat{\tau}_{p}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\tau}_{1}, \hat{\tau}_{2}, \hat{\tau}_{3}, \ldots \hat{\tau}_{p}$

$$
\frac{\partial S}{\partial \hat{\tau}_{1}}=2 \sum_{j=1}^{p}\left(Y_{1 j(k)}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)(-1)=0
$$

$$
\begin{aligned}
& -2 \sum_{j=1}^{p}\left(Y_{1 j(k)}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)=0 \\
& \sum_{j=1}^{p} Y_{1 j(k)}-p \hat{\mu}-p \hat{\tau}_{1}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
& \sum_{j=1}^{p} Y_{1 j(k)}=p \hat{\mu}+p \hat{\tau}_{1}+\sum_{j=1}^{p} \hat{\beta}_{j}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
& R_{1}=p \hat{\mu}+p \hat{\tau}_{1}+\sum_{j=1}^{p} \hat{\beta}_{j}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
& \frac{\partial S}{\partial \hat{\tau}_{2}}=2 \sum_{j=1}^{p}\left(Y_{2 j(k)}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)(-1)=0 \\
& -2 \sum_{j=1}^{p}\left(Y_{2 j(k)}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)=0 \\
& \sum_{j=1}^{p} Y_{2 j(k)}-p \hat{\mu}-p \hat{\tau}_{2}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
& \sum_{j=1}^{p} Y_{2 j(k)}=p \hat{\mu}+p \hat{\tau}_{2}+\sum_{j=1}^{p} \hat{\beta}_{j}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
& R_{2}=p \hat{\mu}+p \hat{\tau}_{2}+\sum_{j=1}^{p} \hat{\beta}_{j}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
& \frac{\partial S}{\partial \hat{\tau}_{p}}=2 \sum_{j=1}^{p}\left(Y_{p j(k)}-\hat{\mu}-\hat{\tau}_{p}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)(-1)=0 \\
& -2 \sum_{j=1}^{p}\left(Y_{p j(k)}-\hat{\mu}-\hat{\tau}_{p}-\hat{\beta}_{j}-\hat{\gamma}_{k}\right)=0 \\
& \sum_{j=1}^{p} Y_{p j(k)}-p \hat{\mu}-p \hat{\tau}_{p}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
& \sum_{j=1}^{p} Y_{p j(k)}=p \hat{\mu}+p \hat{\tau}_{p}+\sum_{j=1}^{p} \hat{\beta}_{j}+\sum_{k=1}^{p} \hat{\gamma}_{k}
\end{aligned}
$$

$$
R_{p}=p \hat{\mu}+p \hat{\tau}_{p}+\sum_{j=1}^{p} \hat{\beta}_{j}+\sum_{k=1}^{p} \hat{\gamma}_{k}
$$

For unique solutions Put $\sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0$
From above equations, we get

$$
\begin{aligned}
R_{1} & =p \hat{\mu}+p \hat{\tau}_{1} \\
\hat{\tau}_{1} & =\frac{R_{1}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\tau}_{1} & =\frac{R_{1}}{p}-\overline{\bar{Y}}
\end{aligned}
$$

Similarly

$$
\begin{gathered}
\hat{\tau}_{2}=\frac{R_{2}}{p}-\overline{\bar{Y}} \\
\vdots \\
\vdots \\
\hat{\tau}_{p}=\frac{R_{p}}{p}-\overline{\bar{Y}} \\
S=\sum_{i=1}^{p}\left(Y_{i 1(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}-\hat{\gamma}_{k}\right)^{2}+\sum_{i=1}^{p}\left(Y_{i 2(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}-\hat{\gamma}_{k}\right)^{2} \\
+\sum_{i=1}^{p}\left(Y_{i 3(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{3}-\hat{\gamma}_{k}\right)^{2}+\cdots+\sum_{i=1}^{p}\left(Y_{i p(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{p}-\hat{\gamma}_{k}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \ldots \hat{\beta}_{p}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\beta}_{1}}=2 \sum_{i=1}^{p}\left(Y_{i 1(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}-\hat{\gamma}_{k}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i 1(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}-\hat{\gamma}_{k}\right)=0 \\
\sum_{i=1}^{p} Y_{i 1(k)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-p \hat{\beta}_{1}-\sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
\sum_{i=1}^{p} Y_{i 1(k)}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+p \hat{\beta}_{1}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
C_{1}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+p \hat{\beta}_{1}+\sum_{k=1}^{p} \hat{\gamma}_{k}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\beta}_{2}}=2 \sum_{i=1}^{p}\left(Y_{i 2(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}-\hat{\gamma}_{k}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i 2(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}-\hat{\gamma}_{k}\right)=0 \\
\sum_{i=1}^{p} Y_{i 2(k)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-p \hat{\beta}_{2}-\sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
\sum_{i=1}^{p} Y_{i 2(k)}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+p \hat{\beta}_{2}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
C_{2}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+p \hat{\beta}_{2}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
\frac{\partial S}{\partial \hat{\beta}_{p}}=2 \sum_{i=1}^{p}\left(Y_{i p(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{p}-\hat{\gamma}_{k}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i p(k)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{p}-\hat{\gamma}_{k}\right)=0 \\
p \\
\sum_{i=1}^{p} Y_{i p(k)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-p \hat{\beta}_{p}-\sum_{k=1}^{p} \hat{\gamma}_{k}=0 \\
p \\
\sum_{i=1}^{p} Y_{i p(k)}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+p \hat{\beta}_{p}+\sum_{k=1}^{p} \hat{\gamma}_{k} \\
C_{p}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+p \hat{\beta}_{p}+\sum_{k=1}^{p} \hat{\gamma}_{k}
\end{gathered}
$$

For unique solutions Put $\sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{i=1}^{p} \hat{\tau}_{i}=0$
From above equations, we get

$$
\begin{gathered}
C_{1}=p \hat{\mu}+p \hat{\beta}_{1} \\
\hat{\beta}_{1}=\frac{C_{1}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\beta}_{1}=\frac{C_{1}}{p}-\overline{\bar{Y}}
\end{gathered}
$$

Similarly

$$
\begin{gathered}
\hat{\beta}_{2}=\frac{C_{2}}{p}-\overline{\bar{Y}} \\
\vdots \quad \vdots \\
\hat{\beta}_{p}=\frac{C_{p}}{p}-\overline{\bar{Y}} \\
S=\sum_{i=1}^{p}\left(Y_{i j(1)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}\right)^{2}+\sum_{i=1}^{p}\left(Y_{i j(2)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{2}\right)^{2} \\
+\sum_{i=1}^{p}\left(Y_{i j(3)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{3}\right)^{2}+\cdots+\sum_{i=1}^{p}\left(Y_{i j(p)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{p}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\gamma}_{1}, \hat{\gamma}_{2}, \hat{\gamma}_{3}, \ldots, \hat{\gamma}_{k}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\gamma}_{1}}=2 \sum_{i=1}^{p}\left(Y_{i j(1)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(1)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(1)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-p \hat{\gamma}_{1}=0 \\
\sum_{i=1}^{p} Y_{i j(1)}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+\sum_{j=1}^{p} \hat{\beta}_{j}+p \hat{\gamma}_{1} \\
T_{1}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+\sum_{j=1}^{p} \hat{\beta}_{j}+p \hat{\gamma}_{1} \\
\frac{\partial S}{\partial \hat{\gamma}_{2}}=2 \sum_{i=1}^{p}\left(Y_{i j(2)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{2}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(2)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{2}\right)=0 \\
p \\
\sum_{i=1}^{p} Y_{i j(2)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-p \hat{\gamma}_{2}=0 \\
p \\
\sum_{i=1}^{p} Y_{i j(2)}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+\sum_{j=1}^{p} \hat{\beta}_{j}+p \hat{\gamma}_{2}
\end{gathered}
$$

$$
\begin{gathered}
T_{2}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+\sum_{j=1}^{p} \hat{\beta}_{j}+p \hat{\gamma}_{2} \\
\frac{\partial S}{\partial \hat{\gamma}_{p}}=2 \sum_{i=1}^{p}\left(Y_{i j(p)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{p}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(p)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(1)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-p \hat{\gamma}_{p}=0 \\
\sum_{i=1}^{p} Y_{i j(p)}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+\sum_{j=1}^{p} \hat{\beta}_{j}+p \hat{\gamma}_{p} \\
T_{p}=p \hat{\mu}+\sum_{i=1}^{p} \hat{\tau}_{i}+\sum_{j=1}^{p} \hat{\beta}_{j}+p \hat{\gamma}_{p}
\end{gathered}
$$

For unique solutions Put $\sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0$
From above equations, we get

$$
\begin{gathered}
T_{1}=p \hat{\mu}+p \hat{\gamma}_{1} \\
\hat{\gamma}_{1}=\frac{T_{1}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\gamma}_{1}=\frac{T_{1}}{p}-\overline{\bar{Y}}
\end{gathered}
$$

Similarly

$$
\begin{aligned}
& \hat{\gamma}_{2}=\frac{T_{2}}{p}-\overline{\bar{Y}} \\
& \vdots \\
& \vdots \\
& \hat{\gamma}_{p}=\frac{T_{p}}{p}-\overline{\bar{Y}}
\end{aligned}
$$

Expected Mean Square Error

Fixed Effect Model

Assumptions:

The effect of treatments, rows and columns are fixed and we assume that

1. $\sum_{i=1}^{p} \hat{\tau}_{i}=0$
2. $\sum_{i=1}^{p} \hat{\beta}_{j}=0$
3. $\sum_{i=1}^{p} \hat{\gamma}_{k}=0$
4. $E\left(e_{i j(k)}\right)=0$
5. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+0+0+0+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
p^{4} \mu^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{p^{4} \mu^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)}{p^{2}} \\
E(C . F)=\frac{p^{4} \mu^{2}+p^{2} \sigma^{2}}{p^{2}}=p^{2} \mu^{2}+\sigma^{2} \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)^{2} \\
=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
\left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right)
\end{gathered}
$$

$$
\begin{aligned}
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j} \\
&+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k} \\
&+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+0+0+0+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+0 \\
&+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}^{p} \\
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{p}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)} \\
&+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right) \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0 \\
E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2} \\
E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)-E(C . F) \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
E(T S S)=p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F
\end{gathered}
$$

$$
\begin{gathered}
R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
=p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
=p \mu+p \tau_{i}+0+0+\sum_{j=1}^{p} e_{i j(k)} \\
=p \mu+p \tau_{i}+\sum_{j=1}^{p} e_{i j(k)} \\
\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
=\frac{\sum_{i=1}^{p}\left(p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i n(l)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} e_{i j(k)}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}\right)}{p} \\
p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h}^{j} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
=\frac{2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+0+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}}{p}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k))}\right.} p \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma^{2} \\
E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
=p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2} \\
S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)
\end{gathered}
$$

$$
\begin{gathered}
=p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+0+p \beta_{j}+0+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)} \\
=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)}^{p}\right)^{2}}{p} \\
\left.p^{2} \mu^{2}+p^{2} \beta_{j}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g j(l)}+2 p^{2} \mu \beta_{j}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \beta_{j} \sum_{i=1}^{p} e_{i j(k)}\right) \\
=\frac{p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}} \\
p
\end{gathered}=\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+0+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}{p} . \frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}{p} .
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
& \frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
& E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma^{2} \\
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
& =p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{gathered}
=p \mu+0+0+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
=\frac{\sum_{k=1}^{p}\left(p^{2} \mu^{2}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g h(k)}+2 p^{2} \mu \gamma_{k}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \gamma_{k} \sum_{i=1}^{p} e_{i j(k)}\right)}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i(k)} e_{g h(l)}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{k} e_{i j(k)}} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq \hbar} e_{i j(k)} e_{g h(l)}+0+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{j(k)}}{p}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right)} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2} \\
E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
=p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
=p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2} \\
=p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\left(p^{2}-1\right) \sigma^{2}-p \sum_{i=1}^{p} \tau_{i}^{2}-(p-1) \sigma^{2}-p \sum_{j=1}^{p} \beta_{j}^{2}-(p-1) \sigma^{2}-p \sum_{k=1}^{p} \gamma_{k}^{2}-(p-1) \sigma^{2} \\
=\left(p^{2}-1\right) \sigma^{2}-(p-1) \sigma^{2}-(p-1) \sigma^{2}-(p-1) \sigma^{2} \\
=\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2} \\
=\left(p^{2}-3 p+2\right) \sigma^{2} \\
=\left(p^{2}-2 p-p+2\right) \sigma^{2} \\
=(p(p-2)-1(p-2)) \sigma^{2} \\
=(p-1)(p-2) \sigma^{2}
\end{gathered}
$$

$$
\begin{gathered}
E(M S E)=E\left[\frac{S S E}{(p-1)(p-2)}\right]=\frac{E(S S E)}{(p-1)(p-2)} \\
=\frac{(p-1)(p-2) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
E(M S R)=E\left[\frac{S S R}{p-1}\right]=\frac{E(S S R)}{p-1} \\
=\frac{p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{i=1}^{p} \tau_{i}^{2} \\
E(M S C)=E\left[\frac{S S C}{p-1}\right]=\frac{E(S S C)}{p-1} \\
=\frac{p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{j=1}^{p} \beta_{j}^{2} \\
E(M S T)=E\left[\frac{S S T}{p-1}\right]=\frac{E(S S T)}{p-1} \\
=\frac{p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{k=1}^{p} \gamma_{k}^{2}
\end{gathered}
$$

Random Effect Model

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $\tau_{i} \sim \operatorname{iidN}\left(0, \sigma_{\tau}^{2}\right)$
4. $\beta_{j} \sim \operatorname{iidN}\left(0, \sigma_{\beta}^{2}\right)$
5. $\gamma_{k} \sim i i d N\left(0, \sigma_{\gamma}^{2}\right)$
6. $E\left(\tau_{i} \tau_{j}\right)=0$
7. $E\left(\beta_{i} \beta_{j}\right)=0$
8. $E\left(\gamma_{k} \gamma_{l}\right)=0$
9. $E\left(\tau_{i} \beta_{j}\right)=0$
10. $E\left(\tau_{i} \gamma_{k}\right)=0$
11. $E\left(\beta_{j} \gamma_{k}\right)=0$
12. $E\left(\tau_{i} e_{i j(k)}\right)=0$
13. $E\left(\beta_{j} e_{i j(k)}\right)=0$
14. $E\left(\gamma_{k} e_{i j(k)}\right)=0$

$$
\begin{aligned}
& Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
& S S E=T S S-S S R-S S C-S S T
\end{aligned}
$$

$$
\begin{gathered}
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}}{+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{3} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{3} \mu \sum_{k=1}^{p} \gamma_{k}} \\
+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p^{2} \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p^{2} \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)} \\
+2 p^{2} \sum_{i=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}++2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+\sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right) \\
+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{3} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{3} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{3} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k))+2 p^{2} \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 p^{2} \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)}^{+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)++2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k))}\right.} p^{2}\right. \\
=\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\beta}^{2}+0+p^{3} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0}{p^{2}} \\
=\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{3} \sigma_{\beta}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p^{2}} \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k))}^{2}\right. \\
=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
\left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right)
\end{gathered}
$$

$$
\begin{aligned}
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2} & +p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
& +2 p \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0 \\
& E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)=p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+p(p-1) \sigma_{\beta}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i n(l)} \\
+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{j=1}^{p} e_{i j(k)}+2 p \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 p \tau_{i} \sum_{k=1}^{p} \gamma_{k} \\
+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
& +\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
& +2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)} \\
& =\frac{+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right) \\
& +\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)++2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
& +2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)++2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)=p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{j=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \beta_{j}^{2}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g j(l)} \\
2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \tau_{i} \beta_{j}+2 \sum_{k=1}^{p} \tau_{i} \gamma_{k} \\
+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}\right)}{p} \\
& +\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
& =\frac{+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j}^{2}(k)\right) \\
& +\sum_{i \neq g} \sum_{j \neq n} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
& +2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j}(k)\right)+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} \gamma_{k}\right) \\
& +2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0}{p}
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2} \\
& S S T=\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}-C . F \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq n} e_{i j(k)} e_{g h(l)} \\
2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \gamma_{k}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \tau_{i} \gamma_{k} \\
+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}\right)}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
& +\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right) \\
+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k))}^{p}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k))}\right)\right. \\
+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}^{p}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sigma_{\beta}^{2}+0+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2} \\
E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2}
\end{gathered}
$$

$$
\left.\begin{array}{c}
E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
=p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2} \\
=p(p-1) \sigma_{\tau}^{2}+p(p S E)=E(T S S)-E(S S R)-E(S S C)-E(S S T) \\
-p(p-1) \sigma_{\beta}^{2}+p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2}-p(p-1) \sigma^{2}-p(p-1) \sigma_{\tau}^{2}-(p-1) \sigma^{2} \\
=\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2} \\
=\left(p^{2}-3 p+2\right) \sigma^{2} \\
=(p-2)(p-1) \sigma^{2}
\end{array}\right] \begin{array}{r}
E(S S E) \\
E(M S E)=\frac{(p-2)(p-1) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
E(M S R)=\frac{E(S S R)}{p-1}=\frac{p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\tau}^{2} \\
E(M S C)=\frac{E(S S C)}{p-1}=\frac{p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\beta}^{2} \\
E(M S T)=\frac{E(S S T)}{p-1}=\frac{p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\gamma}^{2}
\end{array}
$$

Mixed Effect Model

Case I: In this model the effect of τ_{j} is random and effect of β_{j} and γ_{k} is

fixed

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $e_{i j(k)} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$
4. $\tau_{i} \sim i i d N\left(0, \sigma_{\tau}^{2}\right)$
5. $E\left(\tau_{i} \tau_{j}\right)=0$
6. $E\left(\tau_{i} e_{i j(k)}\right)=0$
7. $\sum_{j=1}^{p} \beta_{j}=0$
8. $\sum_{k=1}^{p} \gamma_{k}=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+0+0+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{i=1}^{p} \tau_{i} \\
+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation of both sides

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+\sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& =\frac{+2 p^{3} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0}{p^{2}} \\
& E(C . F)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+\sigma^{2} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)^{2} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
& \left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+0+0+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+0+0 \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0+0 \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left[\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j}^{2}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+0+0+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} e_{i j(k)} \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\left(p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i h(l)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} e_{i j(k)}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)}{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)} \\
p
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma^{2} \\
& E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)=p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma^{2} \\
& E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+0+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\begin{array}{l}
\sum_{j=1}^{p}\binom{p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \beta_{j}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \beta_{j}}{+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \beta_{j} \sum_{i=1}^{p} e_{i j(k)}}
\end{array} p}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \beta_{j}}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+0+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \beta_{j}}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \beta_{j}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i}\right) \beta_{j} \\
& =\frac{+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \beta_{j}}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0}{p}
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma^{2}}{p} \\
& E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma^{2} \\
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-\sigma^{2} \\
& =p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2} \\
& S S T=\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}-C . F \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+0+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\binom{p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \gamma_{k}}{+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \gamma_{k} \sum_{i=1}^{p} e_{i j(k)}}}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)} \gamma_{k}}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+0+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)} \gamma_{k}}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)} \gamma_{k}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i}\right) \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right) \\
& +2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}\right) \gamma_{k} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}}{p} \\
& E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2} \\
& E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-\sigma^{2} \\
& =p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S T) \\
& =p(p-1) \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} r_{k}^{2}+\left(p^{2}-1\right) \sigma^{2}-p(p-1) \sigma_{\tau}^{2}-(p-1) \sigma^{2}-p \sum_{j=1}^{p} \beta_{j}^{2}-(p-1) \sigma^{2}-p \sum_{k=1}^{p} r_{k}^{2}-(p-1) \sigma^{2} \\
& =\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2}=\left(p^{2}-3 p+2\right) \sigma^{2} \\
& =(p-2)(p-1) \sigma^{2} \\
& E(M S E)=\frac{E(S S E)}{(p-1)(p-2)}=\frac{(p-2)(p-1) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
& E(M S R)=\frac{E(S S R)}{p-1}=\frac{p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\tau}^{2} \\
& E(M S C)=\frac{E(S S C)}{p-1}=\frac{p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{j=1}^{p} \beta_{j}^{2} \\
& E(M S T)=\frac{E(S S T)}{p-1}=\frac{p \sum_{k=1}^{p} \gamma_{k}^{2}-(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{k=1}^{p} \gamma_{k}^{2}
\end{aligned}
$$

Case II: In this model the effect of β_{j} is random and effect of τ_{i} and $\gamma_{\boldsymbol{k}}$ is

fixed

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $e_{i j(k)} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$
4. $\beta_{j} \sim i i d N\left(0, \sigma_{\beta}^{2}\right)$
5. $E\left(\beta_{i} \beta_{j}\right)=0$
6. $E\left(\beta_{j} e_{i j(k)}\right)=0$
7. $\sum_{i=1}^{p} \tau_{i}=0$
8. $\sum_{k=1}^{p} \gamma_{k}=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+0+p \sum_{j=1}^{p} \beta_{j}+0+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{j=1}^{p} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
p^{4} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{j=1}^{p} \beta_{j} \\
+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation of both sides

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& =\frac{+2 p^{3} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\beta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0}{p^{2}} \\
& E(C . F)=p^{2} \mu^{2}+p \sigma_{\beta}^{2}+\sigma^{2} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)^{2} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
& \left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& \quad+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& \\
& \quad+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+0+2 p \mu \sum_{j=1}^{p} \beta_{j}+0+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+0+0 \\
& \\
& \quad+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}^{p} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)} \\
& \\
& \quad+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right) \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0+0 \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2} \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
E(T S S)=p \sum_{i=1}^{p} \tau_{i}^{2}+p(p-1) \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
\left.Y_{i j(k)}^{p}\right)-E(C . F) \\
R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
=p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)}
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+0+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{j=1}^{p} e_{i j(k)} \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\binom{p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{j} \beta_{j}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i n(l)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{j=1}^{p} e_{i j(k)}}{+2 p \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}}{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{j} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{j} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+0+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{j} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq \hbar} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{j} \beta_{j}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq n} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(\beta_{j}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2} \\
& E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2} \\
& E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F
\end{aligned}
$$

$$
\begin{gathered}
C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
=p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+0+p \beta_{j}+0+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)} \\
\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
=\frac{\sum_{j=1}^{p}\left(p^{2} \mu^{2}+p^{2} \beta_{j}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g j(l)}+2 p^{2} \mu \beta_{j}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \beta_{j} e_{i j(k)}\right)}{p} \\
p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)} \\
=\frac{p}{p}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right) \\
=\frac{p^{3} \mu^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma^{2}+0+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma^{2}}{p} \\
=p^{2} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma^{2} \\
E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)=p^{2} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma^{2} \\
=p^{2} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
=p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2} \\
p(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
= \\
p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}^{p} \\
=p \mu+0+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& =p \mu+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\binom{p^{2} \mu^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \gamma_{k}}{+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}}}{p} \\
& p^{3} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq k} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k} \\
& \frac{+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+0 \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}}{p^{3} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
& +2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j}\right) \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2} \\
& E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2} \\
& E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
& =p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S T) \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+p(p-1) \sigma_{\beta}^{2}+p \sum_{k=1}^{p} r_{k}^{2}+\left(p^{2}-1\right) \sigma^{2}-p \sum_{i=1}^{p} \tau_{i}^{2}-(p-1) \sigma^{2}-p(p-1) \sigma_{\beta}^{2}-(p-1) \sigma^{2}-p \sum_{k=1}^{p} r_{k}^{2}-(p-1) \sigma^{2} \\
& =\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2} \\
& =\left(p^{2}-3 p+2\right) \sigma^{2}=(p-2)(p-1) \sigma^{2}
\end{aligned}
$$

$$
\begin{gathered}
E(M S E)=\frac{E(S S E)}{(p-1)(p-2)}=\frac{(p-1)(p-2) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
E(M S R)=\frac{E(S S R)}{p-1}=\frac{p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{i=1}^{p} \tau_{i}^{2} \\
E(M S C)=\frac{E(S S C)}{p-1}=\frac{p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\beta}^{2} \\
E(M S T)=\frac{E(S S T)}{p-1}=\frac{p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{k=1}^{p} \gamma_{k}^{2}
\end{gathered}
$$

Case III: In this model the effect of γ_{k} is random and effect of τ_{i} and β_{j} is

fixed

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $e_{i j(k)} \sim i i d N\left(0, \sigma^{2}\right)$
4. $\gamma_{k} \sim i i d N\left(0, \sigma_{\gamma}^{2}\right)$
5. $E\left(\gamma_{k} \gamma_{l}\right)=0$
6. $E\left(\gamma_{k} e_{i j(k)}\right)=0$
7. $\sum_{j=1}^{p} \beta_{j}=0$
8. $\sum_{i=1}^{p} \tau_{i}=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+0+0+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
p^{4} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{k=1}^{p} \gamma_{k} \\
+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& =\frac{+2 p^{3} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p^{2}} \\
& E(C . F)=p^{2} \mu^{2}+p \sigma_{\gamma}^{2}+\sigma^{2} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)^{2} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
& \left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+0+0+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+0+0 \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right) \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0
\end{gathered}
$$

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+0+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\left(\begin{array}{c}
\left.p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \begin{array}{l}
\sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i n}(l)+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{j=1}^{p} e_{i j(k)} \\
+2 p \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}\right)
\end{array} p\right.}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+0 \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)} \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
=\frac{\begin{array}{c}
p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} E\left(\gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k)}\right) \\
+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right)
\end{array}}{p}
$$

$$
\begin{aligned}
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+0+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{j=1}^{p}\binom{p^{2} \mu^{2}+p^{2} \beta_{j}^{2}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g j(l)}+2 p^{2} \mu \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}}{+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 p \sum_{i=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j} \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+0 \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)} \\
& =\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \Sigma_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(\nu)}\right) \\
& +2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(\gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right) \\
& \begin{array}{c}
+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
p
\end{array} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)=p^{2} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2} \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+0+0+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\left(p^{2} \mu^{2}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \gamma_{k}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)} \\
& +2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
=\frac{\begin{array}{c}
p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)} \\
+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}}{p} \begin{gathered}
p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)
\end{gathered} p
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)=p^{2} \mu^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2} \\
E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
=p^{2} \mu^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
=p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2} \\
=p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2}-p \sum_{i=1}^{p} \tau_{i}^{2}-(p-1) \sigma^{2}-p \sum_{j=1}^{p} \beta_{j}^{2} \\
-(p-1) \sigma^{2}-p(p-1) \sigma_{\gamma}^{2}-(p-1) \sigma^{2} \\
=\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2} \\
=\left(p^{2}-3 p+2\right) \sigma^{2}=(p-1)(p-2) \sigma^{2} \\
E(M S E)=\frac{E(S S E)}{(p-1)(p-2)}=\frac{(p-1)(p-2) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
E(T S S)-E(S S R)-E(S S C)-E(S S T) \\
E(M S R)=\frac{E(S S R)}{p-1}=\frac{p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{i=1}^{p} \tau_{i}^{2} \\
E(M S C)=\frac{E(S S C)}{p-1}=\frac{p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{j=1}^{p} \beta_{j}^{2} \\
E(M S T)=\frac{E(S S T)}{p-1}=\frac{p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\gamma}^{2}
\end{gathered}
$$

Case IV: In this model the effect of τ_{i} and β_{j} is random and effect of γ_{k} is

fixed

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $e_{i j(k)} \sim i i d N\left(0, \sigma^{2}\right)$
4. $\tau_{i} \sim i i d N\left(0, \sigma_{\tau}^{2}\right)$
5. $E\left(\tau_{i} \tau_{j}\right)=0$
6. $E\left(\tau_{i} e_{i j(k)}\right)=0$
7. $\beta_{j} \sim i i d N\left(0, \sigma_{\beta}^{2}\right)$
8. $E\left(\beta_{i} \beta_{j}\right)=0$
9. $E\left(\beta_{j} e_{i j(k)}\right)=0$
10. $E\left(\tau_{i} \beta_{j}\right)=0$
11. $\sum_{k=1}^{p} \gamma_{k}=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+0+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{3} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+\sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right) \\
+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{3} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{3} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right) \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right) \\
p^{2}
\end{gathered}
$$

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+0+2 \mu \sum_{i=1}^{p} e_{i j}^{p}(k) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} \tau_{i}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} \tau_{i}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} \tau_{i}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right) \\
& +2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0 \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+p(p-1) \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)
\end{aligned}
$$

$$
\begin{gathered}
=p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)}^{p} \\
=p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+0+\sum_{j=1}^{p} e_{i j(k)} \\
=p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{j=1}^{p} e_{i j(k)} \\
\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
=\frac{\sum_{i=1}^{p}\left(\begin{array}{r}
p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i n(l)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j} \\
+2 p \mu \sum_{j=1}^{p} e_{i j(k)}+2 p \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} e_{i j(k)} \\
p \\
+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}
\end{array}\right.}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}^{p}}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right) \\
& +2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right) \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2} \\
& E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+0+\sum_{i=1}^{p} e_{i j(k)}
\end{aligned}
$$

$$
\begin{gathered}
=p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)} \\
\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
=\frac{\sum_{j=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \beta_{j}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g j(l)}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \beta_{j} \\
+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \beta_{j} e_{i j(k)} \\
p
\end{array}\right.}{p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}^{p}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}} \\
=\frac{+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{p}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}}{p}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right) \\
& +\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma^{2} \\
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2} \\
& S S T=\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}-C . F \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)} \\
+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \gamma_{k}+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \tau_{i} \gamma_{k} \\
+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}\right)}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
& +\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

$$
\begin{gathered}
p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{i \neq j} \tau_{i} \tau_{j}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
+\sum_{i \neq g} \sum_{j \neq n} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+0+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
=\frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}^{p}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p} p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{i \neq j} \tau_{i} \tau_{j}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
+\sum_{i \neq g} \sum_{j \neq \hbar} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{p}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
=\frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{gathered}
$$

Apply expectation on both sides
$p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}$
$+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)$
$+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} E\left(\tau_{i}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j k}\right)$
$=\frac{+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \gamma_{k} E\left(\beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} E\left(e_{i j(k)}\right)}{p}$
$=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0}{p}$
$=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}}{p}$
$=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2}$
$E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F)$
$=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-\sigma^{2}$
$=p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2}$
$E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S T)$
$=p(p-1) \sigma_{t}^{2}+p(p-1) \sigma_{\beta}^{2}+p \sum_{k=1}^{p} r_{k}^{2}+\left(p^{2}-1\right) \sigma^{2}-p(p-1) \sigma_{\tau}^{2}-(p-1) \sigma^{2}-p(p-1) \sigma_{\beta}^{2}-(p-1) \sigma^{2}-p \sum_{k=1}^{p} r_{k}^{2}-(p-1) \sigma^{2}$

$$
=\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2}
$$

$$
=\left(p^{2}-3 p+2\right) \sigma^{2}=(p-1)(p-2) \sigma^{2}
$$

$$
E(M S E)=\frac{E(S S E)}{(p-1)(p-2)}=\frac{(p-1)(p-2) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2}
$$

$$
E(M S R)=\frac{E(S S R)}{p-1}=\frac{p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\tau}^{2}
$$

$$
E(M S C)=\frac{E(S S C)}{p-1}=\frac{p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\beta}^{2}
$$

$$
E(M S T)=\frac{E(S S T)}{p-1}=\frac{p \sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{k=1}^{p} \gamma_{k}^{2}
$$

Case V : In this model the effect of τ_{i} and γ_{k} is random and effect of β_{j} is

fixed

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $e_{i j(k)} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$
4. $\tau_{i} \sim i i d N\left(0, \sigma_{\tau}^{2}\right)$
5. $E\left(\tau_{i} \tau_{j}\right)=0$
6. $E\left(\tau_{i} e_{i j(k)}\right)=0$
7. $\gamma_{k} \sim \operatorname{iidN}\left(0, \sigma_{\gamma}^{2}\right)$
8. $E\left(\gamma_{k} \gamma_{l}\right)=0$
9. $E\left(\gamma_{k} e_{i j(k)}\right)=0$
10. $E\left(\tau_{i} \gamma_{k}\right)=0$
11. $\sum_{j=1}^{p} \beta_{j}=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+0+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{3} \mu \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{p} \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
p^{2}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+\sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right) \\
& +\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{3} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{3} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
& \frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p^{2}} \\
& E(C . F)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\gamma}^{2}+\sigma^{2} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)^{2} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
& \left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+0+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+0 \\
& +2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} \tau_{i}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
& +2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} \tau_{i}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
&+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} \tau_{i}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right) \\
&+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0 \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+0+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& =p \mu+p \tau_{i}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\binom{p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq h} e_{i j(k)} e_{i n(l)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{k=1}^{p} \gamma_{k}}{+2 p \mu \sum_{j=1}^{p} e_{i j(k)}+2 p \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)} \\
& +2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k} \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p} \\
& \text { Apply expectation on both sides } \\
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j}(k)\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right.}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
=p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
=p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
=p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2} \\
S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
=C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
=p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
=p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
{ }_{i}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{gathered}
\left.\begin{array}{c}
\left.p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j k}^{2}\right)\right) \\
+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k))}^{p}\right) \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i}\right) \beta_{j}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p}\left(\tau_{i} i_{j(k)}\right)+2 p \sum_{k=1}^{p} \Sigma_{j=1}^{p} \beta_{j} E\left(\gamma_{k}\right) \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)
\end{array}\right) \\
=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}
\end{gathered}
$$

$$
\begin{aligned}
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2} \\
& S S T=\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}-C . F \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+0+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\begin{array}{c}
\sum_{k=1}^{p}\binom{p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \gamma_{k}}{+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}}
\end{array} p}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)} \\
& +2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k} \\
& =\frac{+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
\left.\begin{array}{c}
p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}^{p}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k))}\right.
\end{array}\right) \\
=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2} \\
E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2}
\end{gathered}
$$

$$
\begin{gathered}
=p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2} \\
E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S T) \\
=p(p-1) \sigma_{\tau}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2}-p(p-1) \sigma_{\tau}^{2}-(p-1) \sigma^{2} \\
-p \sum_{j=1}^{p} \beta_{j}^{2}-(p-1) \sigma^{2}-p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2} \\
=\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2} \\
=\left(p^{2}-3 p+2\right) \sigma^{2}=(p-1)(p-2) \sigma^{2} \\
E(M S E)=\frac{E(S S E)}{(p-1)(p-2)}=\frac{(p-1)(p-2) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
E(M S R)=\frac{E(S S R)}{p-1}=\frac{p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\tau}^{2} \\
E(M S C)=\frac{E(S S C)}{p-1}=\frac{p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{j=1}^{p} \beta_{j}^{2} \\
E(M S T)=\frac{E(S S T)}{p-1}=\frac{p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\gamma}^{2}
\end{gathered}
$$

Case VI: In this model the effect of β_{j} and γ_{k} is random and effect of τ_{j} is

fixed

Assumptions:

1. $E\left(e_{i j(k)}\right)=0$
2. $E\left(e_{i j(k)} e_{g h(l)}\right)=0$
3. $e_{i j(k)} \sim i i d N\left(0, \sigma^{2}\right)$
4. $\beta_{j} \sim i i d N\left(0, \sigma_{\beta}^{2}\right)$
5. $E\left(\beta_{i} \beta_{j}\right)=0$
6. $E\left(\beta_{j} e_{i j(k)}\right)=0$
7. $\gamma_{k} \sim \operatorname{iidN}\left(0, \sigma_{\gamma}^{2}\right)$
8. $E\left(\gamma_{k} \gamma_{l}\right)=0$
9. $E\left(\gamma_{k} e_{i j(k)}\right)=0$
10. $E\left(\beta_{j} \gamma_{k}\right)=0$
11. $\sum_{i=1}^{p} \tau_{i}=0$

$$
\begin{gathered}
Y_{i j(k)}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)} \\
S S E=T S S-S S R-S S C-S S T \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}-C . F
\end{gathered}
$$

$$
\begin{gathered}
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+0+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p^{2}} \\
=\frac{p^{4} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{k \neq l}^{p} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}}{+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{3} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{3} \mu \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{p}}+2 p \sum_{i=1}^{p \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}} p^{2}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right) \\
& +\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{3} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{3} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right) \\
& \begin{array}{r}
+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
p^{2} \\
=\frac{p^{4} \mu^{2}+p^{3} \sigma_{\beta}^{2}+0+p^{3} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p^{2}}
\end{array} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\beta}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p^{2}} \\
& E(C . F)=p^{2} \mu^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+\sigma^{2} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right)^{2} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+e_{i j(k)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu e_{i j(k)}+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}\right. \\
& \left.+2 \tau_{i} e_{i j(k)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} e_{i j(k)}+2 \gamma_{k} e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{aligned}
$$

$$
\begin{gathered}
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+0+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+0 \\
+0+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}^{p}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}^{p} \\
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)} \\
+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+2 p \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
& +2 \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k)}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} \beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right) \\
& +2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0 \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+p(p-1) \sigma_{\beta}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& R_{i}=\sum_{j=1}^{p} Y_{i j(k)}=\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)} \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{j=1}^{p} e_{i j(k)}\right)^{2}}{p}
\end{aligned}
$$

$$
=\frac{\sum_{i=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{j \neq \hbar} e_{i j(k)} e_{i n(l)} \\
+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{j=1}^{p} e_{i j(k)}+2 p \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 p \tau_{i} \sum_{k=1}^{p} \gamma_{k} \\
+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k)}+2 \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}\right)}{p} \begin{gathered}
p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{i \neq j} \beta_{i} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2} \\
+\sum_{i \neq g} \sum_{j \neq k} i_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{p} \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k)}+2 p \sum_{j=1}^{p} \beta_{j} \gamma_{k} \\
+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right) \\
& +\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right) \\
& +2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(\beta_{j}\right)+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} \tau_{i} E\left(\gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k)}\right) \\
& =\frac{+2 p \sum_{j=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S R)=E\left(\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& C_{j}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+0+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(p \mu+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
=\frac{\sum_{j=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+p^{2} \beta_{j}^{2}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} e_{i j(k)} e_{g j(l)}^{p}+2 p^{2} \mu \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k} \\
+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{array} p^{p}\right.}{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{k \neq l} \gamma_{k} \gamma_{l}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}} \\
=\frac{+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k)}+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k)}}{p}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}^{2}\right) \\
& +\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k)}\right) \\
& =\frac{+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S C)=E\left(\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2} \\
& S S T=\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}-C . F \\
& T_{k}=\sum_{i=1}^{p} Y_{i j(k)}=\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+e_{i j(k)}\right) \\
& =p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+0+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& =p \mu+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)} \\
& \frac{\sum_{k=1}^{p} T_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k)}\right)^{2}}{p} \\
& =\frac{\begin{array}{c}
\sum_{k=1}^{p}\binom{p^{2} \mu^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq \hbar} e_{i j(k)} e_{g h(l)}+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \gamma_{k}}{+2 p \mu \sum_{i=1}^{p} e_{i j(k)}+2 p \sum_{j=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{j=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \gamma_{k} e_{i j(k)}}
\end{array} p}{p}
\end{aligned}
$$

$$
=\frac{\begin{array}{c}
p^{3} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k)} e_{g h(l)} \\
+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} e_{i j(k)}+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k} \\
+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} e_{i j(k)}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k)}
\end{array}}{p}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j(k)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k)} e_{g h(l)}\right) \\
& +2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(e_{i j}(k)\right)+2 p \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right) \\
& =\frac{+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} e_{i j(k)}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\beta}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2} \\
& E(S S T)=E\left(\frac{\sum_{k=1}^{p} T_{k}^{2}}{p}\right)-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S T) \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+p(p-1) \sigma_{\beta}^{2}+p(p-1) \sigma_{\gamma}^{2}+\left(p^{2}-1\right) \sigma^{2}-p \sum_{i=1}^{p} \tau_{i}^{2}-(p-1) \sigma^{2} \\
& -p(p-1) \sigma_{\beta}^{2}-(p-1) \sigma^{2}-p(p-1) \sigma_{\gamma}^{2}-(p-1) \sigma^{2} \\
& =\left(p^{2}-1-p+1-p+1-p+1\right) \sigma^{2} \\
& =\left(p^{2}-3 p+2\right) \sigma^{2}=(p-1)(p-2) \sigma^{2} \\
& E(M S E)=\frac{E(S S E)}{(p-1)(p-2)}=\frac{(p-1)(p-2) \sigma^{2}}{(p-1)(p-2)}=\sigma^{2} \\
& E(M S R)=\frac{E(S S R)}{p-1}=\frac{p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{i=1}^{p} \tau_{i}^{2} \\
& E(M S C)=\frac{E(S S C)}{p-1}=\frac{p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\beta}^{2} \\
& E(M S T)=\frac{E(S S T)}{p-1}=\frac{p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+p \sigma_{\gamma}^{2}
\end{aligned}
$$

Estimation of missing values

Case I: One missing value in one treatment

Rows	Columns						
	$\mathbf{1}$	$\mathbf{2}$	\ldots	\boldsymbol{j}	\ldots	\boldsymbol{p}	Total
$\mathbf{1}$	$Y_{11(A)}$	$Y_{21(B)}$	\ldots	$Y_{1 j(D)}$	\ldots	$Y_{1 p(Z)}$	R_{1}

$\mathbf{2}$	$Y_{12(E)}$	$Y_{22(D)}$	\ldots	$Y_{2 j(M)}$	\ldots	$Y_{2 p(X)}$	R_{2}
\vdots	\vdots	\vdots		\vdots		\vdots	\vdots
\boldsymbol{i}	$Y_{i 1(F)}$	$Y_{i 2(G)}$	\ldots	$Y_{i j(k)}$	\ldots	$Y_{i p(O)}$	R_{i}
\vdots	\vdots	\vdots	$Y_{a b(D)}$	\vdots		\vdots	$R_{a}^{\prime}+Y_{a b(D)}$
\boldsymbol{p}	$Y_{p 1(Z)}$	$Y_{p 2(N)}$	\ldots	$Y_{p j(L)}$	\ldots	$Y_{p p(Y)}$	R_{p}
Total	C_{1}	C_{2}	$C_{b}^{\prime}+Y_{a b(D)}$	C_{j}	\ldots	C_{p}	$G^{\prime}+Y_{a b(D)}$

Let $Y_{a b(D)}$ is missing and $G=\sum_{i=1}^{p} \sum_{j=1}^{P} Y_{i j(k)}$
Effected Total:

$$
\begin{aligned}
& R_{a}=R_{a}^{\prime}+Y_{a b(D)} \\
& C_{b}=C_{b}^{\prime}+Y_{a b(D)} \\
& T_{D}=T_{D}^{\prime}+Y_{a b(D)} \\
& G=G^{\prime}+Y_{a b(D)} \\
& C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}\right)^{2}}{p^{2}} \\
& S S E=T S S-S S R-S S C-S S T \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}-C . F-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}\right]+C . F \\
& -\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}\right]+C . F-\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}\right]+C . F \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}\right]-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}\right] \\
& -\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}\right]+2 C . F \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}\right]-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}\right] \\
& -\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}\right]+\frac{2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}\right)^{2}}{p^{2}} \\
& \frac{\partial S S E}{\partial Y_{a b(D)}}=0 \\
& 0+2 Y_{a b(D)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-0-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-0-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}\right)}{p^{2}}=0 \\
& 2 Y_{a b(D)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}\right)}{p^{2}}=0 \\
& \frac{2 p^{2} Y_{a b(D)}-2 p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-2 p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-2 p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+4\left(G^{\prime}+Y_{a b(D)}\right)}{p^{2}}=0
\end{aligned}
$$

$$
\begin{gathered}
\frac{2\left(p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(G^{\prime}+Y_{a b(D)}\right)\right)}{p^{2}}=0 \\
p^{2} Y_{a b(D)}-p R_{a}^{\prime}-p Y_{a b(D)}-p C_{b}^{\prime}-p Y_{a b(D)}-p T_{D}^{\prime}-p Y_{a b(D)}+2 G^{\prime}+2 Y_{a b(D)}=0 \\
\left(p^{2}-3 p+2\right) Y_{a b(D)}-p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)+2 G^{\prime}=0 \\
(p-1)(p-2) Y_{a b(D)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime} \\
Y_{a b(D)}=\frac{p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}}{(p-1)(p-2)}
\end{gathered}
$$

Case II: Two missing Observations

(a) Missing in different treatment but same row and different columns

Rows	Columns						
	$\mathbf{1}$	$\mathbf{2}$	\ldots	\boldsymbol{j}	\ldots	\boldsymbol{p}	Total
$\mathbf{1}$	$Y_{11(A)}$	$Y_{21(B)}$	\ldots	$Y_{1 j(D)}$	\ldots	$Y_{1 p(Z)}$	R_{1}
$\mathbf{2}$	$Y_{12(E)}$	$Y_{22(D)}$	\ldots	$Y_{2 j(M)}$	\ldots	$Y_{2 p(X)}$	R_{2}
\vdots	\vdots	\vdots	$Y_{a b(D)}$	\vdots	$Y_{a c(E)}$	\vdots	$R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}$
\boldsymbol{i}	$Y_{i 1(F)}$	$Y_{i 2(G)}$	\ldots	$Y_{i j(k)}$	\ldots	$Y_{i p(O)}$	R_{i}
\vdots	\vdots	\vdots		\vdots		\vdots	\vdots
\boldsymbol{p}	$Y_{p 1(Z)}$	$Y_{p 2(N)}$	\ldots	$Y_{p j(L)}$	\ldots	$Y_{p p(Y)}$	R_{p}
Total	C_{1}	C_{2}	$C_{b}^{\prime}+Y_{a b(D)}$	C_{j}	$C_{c}^{\prime}+Y_{a c(E)}$	C_{p}	$G^{\prime}+Y_{a b(D)}+Y_{a c(E)}$

Effected Total:

$$
\begin{gathered}
R_{a}=R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)} \\
C_{b}=C_{b}^{\prime}+Y_{a b(D)} \\
C_{c}=C_{c}^{\prime}+Y_{a c(E)} \\
T_{D}=T_{D}^{\prime}+Y_{a b(D)} \\
T_{E}=T_{E}^{\prime}+Y_{a c(E)} \\
G=G^{\prime}+Y_{a b(D)}+Y_{a c(E)} \\
=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{a c(E)}^{2}-C . F-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)^{2}\right]+C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)^{2}}{p^{2}} \\
-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}+\left(C_{c}^{\prime}+Y_{a c(E)}\right)^{2}\right]+C . F \\
-\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{a b(E)}\right)^{2}\right]+C . F
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{align*}
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{a c(E)}^{2}-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)^{2}\right]-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}+\left(C_{c}^{\prime}+Y_{a c(E)}\right)^{2}\right] \\
& -\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{a b(E)}\right)^{2}\right]+\frac{2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)^{2}}{p^{2}} \\
& \frac{\partial S S E}{\partial Y_{a b(D)}}=0 \\
& 0+2 Y_{a b(D)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p}-0-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-0-0 \\
& -\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}-0+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p^{2}}=0 \\
& 2 Y_{a b(D)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p}-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k k}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p^{2}}=0 \\
& \frac{2 p^{2} Y_{a b(D)}-2 p\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)-2 p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-2 p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E))}\right)}{p^{2}}=0 \\
& \frac{2\left(p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E))}\right)\right)}{p^{2}}=0 \\
& p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)=0 \\
& p^{2} Y_{a b(D)}-p R_{a}^{\prime}-p Y_{a b(D)}-p Y_{a c(E)}-p C_{b}^{\prime}-p Y_{a b(D)}-p T_{D}^{\prime}-p Y_{a b(D)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{a c(E)}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}-p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)+(2-p) Y_{a c(E)}+2 G^{\prime}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}+(2-p) Y_{a c(E)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime} \\
& \text { Let } F=p^{2}-3 p+2, \quad E=2-p, \quad Z_{a b(D)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime} \\
& F Y_{a b(D)}+E Y_{a c(E)}=Z_{a b(D)} \tag{1}\\
& \frac{\partial S S E}{\partial Y_{a c(E)}}=0 \\
& 0+2 Y_{a c(E)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p}-0-\frac{2\left(C_{c}^{\prime}+Y_{a c(E)}\right)}{p}-0-0 \\
& -\frac{2\left(T_{E}^{\prime}+Y_{a c(E)}\right)}{p}-0+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p^{2}}=0 \\
& 2 Y_{a c(E)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p}-\frac{2\left(C_{c}^{\prime}+Y_{a c(E)}\right)}{p}-\frac{2\left(T_{E}^{\prime}+Y_{a c(E)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p^{2}}=0 \\
& \frac{2 p^{2} Y_{a c(E)}-2 p\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)-2 p\left(C_{c}^{\prime}+Y_{a c(E)}\right)-2 p\left(T_{E}^{\prime}+Y_{a c(E)}\right)+4\left(\sum_{i=1}^{p} \Sigma_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)}{p^{2}}=0 \\
& \frac{2\left(p^{2} Y_{a c(E)}-p\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)-p\left(C_{c}^{\prime}+Y_{a c(E)}\right)-p\left(T_{E}^{\prime}+Y_{a c(E)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)\right)}{p^{2}}=0 \\
& p^{2} Y_{a c(E)}-p\left(R_{a}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)-p\left(C_{c}^{\prime}+Y_{a c(E)}\right)-p\left(T_{E}^{\prime}+Y_{a c(E)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{a c(E)}\right)=0 \\
& p^{2} Y_{a c(E)}-p R_{a}^{\prime}-p Y_{a b(D)}-p Y_{a c(E)}-p C_{c}^{\prime}-p Y_{a c(E)}-p T_{E}^{\prime}-p Y_{a c(E)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{a c(E)}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a c(E)}-p\left(R_{a}^{\prime}+C_{c}^{\prime}+T_{E}^{\prime}\right)+(2-p) Y_{a b(D)}+2 G^{\prime}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a c(E)}+(2-p) Y_{a b(D)}=p\left(R_{a}^{\prime}+C_{c}^{\prime}+T_{E}^{\prime}\right)-2 G^{\prime}
\end{align*}
$$

Let $F=p^{2}-3 p+2, \quad E=2-p, \quad Z_{a c(E)}=p\left(R_{a}^{\prime}+C_{c}^{\prime}+T_{E}^{\prime}\right)-2 G^{\prime}$

$$
\begin{equation*}
F Y_{a c(E)}+E Y_{a b(D)}=Z_{a c(E)} \tag{2}
\end{equation*}
$$

Multiply (1) by E and (2) by F and then subtract it

$$
\begin{gathered}
E F Y_{a b(D)}+E^{2} Y_{a c(E)}=E Z_{a b(D)} \\
\pm E F Y_{a b(D)} \pm F^{2} Y_{a c(E)}= \pm F Z_{a c(E)} \\
\left(E^{2}-F^{2}\right) Y_{a c(E)}=E Z_{a b(D)}-F Z_{a c(E)} \\
Y_{a c(E)}=\frac{E Z_{a b(D)}-F Z_{a c(E)}}{E^{2}-F^{2}}
\end{gathered}
$$

Multiply (1) by F and (2) by E and then subtract it

$$
\begin{gathered}
E F Y_{a c(E)}+F^{2} Y_{a b(D)}=F Z_{a b(D)} \\
\pm Z F Y_{a c(E)} \pm E^{2} Y_{a b(D)}= \pm E Z_{a c(E)} \\
\hline\left(F^{2}-E^{2}\right) Y_{a b(D)}=F Z_{a b(D)}-E Z_{a c(E)} \\
Y_{a b(D)}=\frac{F Z_{a b(D)}-E Z_{a c(E)}}{F^{2}-E^{2}}
\end{gathered}
$$

(b) Missing in different treatment but same column and different rows

Rows	$\mathbf{y y y y y y y}$	Columns					
	$\mathbf{1}$	$\mathbf{2}$	\ldots	\boldsymbol{j}	\ldots	\boldsymbol{p}	Total
$\mathbf{1}$	$Y_{11(A)}$	$Y_{21(B)}$	\ldots	$Y_{1 j(D)}$	\ldots	$Y_{1 p(Z)}$	R_{1}
$\mathbf{2}$	$Y_{12(E)}$	$Y_{22(D)}$	\ldots	$Y_{2 j(M)}$	\ldots	$Y_{2 p(X)}$	R_{2}
\vdots	\vdots	\vdots	$Y_{a b(D)}$	\vdots		\vdots	$R_{a}^{\prime}+Y_{a b(D)}$
\boldsymbol{i}	$Y_{i 1(F)}$	$Y_{i 2(G)}$	\ldots	$Y_{i j(k)}$	\ldots	$Y_{i p(O)}$	R_{i}
\vdots	\vdots	\vdots	$Y_{c b(E)}$	\vdots		\vdots	$R_{c}^{\prime}+Y_{c b(E)}$
\boldsymbol{p}	$Y_{p 1(Z)}$	$Y_{p 2(N)}$	\ldots	$Y_{p j(L)}$	\ldots	$Y_{p p(Y)}$	R_{p}
Total	C_{1}	C_{2}	$C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}$	C_{j}	\ldots	C_{p}	$G^{\prime}+Y_{a b(D)}+Y_{c b(E)}$

Effected Total:

$$
\begin{gathered}
R_{a}=R_{a}^{\prime}+Y_{a b(D)} \\
R_{c}=R_{c}^{\prime}+Y_{c b(E)} \\
C_{b}=C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}^{\prime} \\
T_{D}=T_{D}^{\prime}+Y_{a b(D)} \\
T_{E}=T_{E}^{\prime}+Y_{c b(E)} \\
G=G^{\prime}+Y_{a b(D)}+Y_{c b(E)} \\
=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{c b(E)}^{2}-C . F-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{c b(E)}\right)^{2}\right] \\
C S E=T S S-S S R-S S C-S S T \\
+C . F-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j=1}^{p}+\left(Y_{i j(k)}^{\prime}+Y_{a b(D)}^{\prime}+Y_{c b(E)}\right)^{2}\right. \\
-\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}+\left(T_{E b(E)}^{\prime}+Y_{c b(E)}\right)^{2}\right]+C . F
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

Let $N=p^{2}-3 p+2, \quad M=2-p, \quad Z_{a b(D)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}$

$$
\begin{equation*}
N Y_{a b(D)}+M Y_{c b(E)}=Z_{a b(D)} \tag{1}
\end{equation*}
$$

$$
\frac{\partial S S E}{\partial Y_{c b(E)}}=0
$$

$$
\begin{gathered}
0+2 Y_{c b(E)}+0-0-\frac{2\left(R_{c}^{\prime}+Y_{c b(E)}\right)}{p}-0-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p}-0-0 \\
-\frac{2\left(T_{E}^{\prime}+Y_{c b(E)}\right)}{p}-0+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p^{2}}=0
\end{gathered}
$$

$$
2 Y_{c b(E)}-\frac{2\left(R_{c}^{\prime}+Y_{c b(E)}\right)}{p}-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p}-\frac{2\left(T_{E}^{\prime}+Y_{c b(E)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p^{2}}=0
$$

$$
\frac{2 p^{2} Y_{c b(E)}-2 p\left(R_{c}^{\prime}+Y_{c b(E)}\right)-2 p\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)-2 p\left(T_{E}^{\prime}+Y_{c b(E)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p^{2}}=0
$$

$$
\frac{2\left(p^{2} Y_{c b(E)}-p\left(R_{c}^{\prime}+Y_{c b(E)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)-p\left(T_{E}^{\prime}+Y_{c b(E)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)\right)}{p^{2}}=0
$$

$$
p^{2} Y_{c b(E)}-p\left(R_{c}^{\prime}+Y_{c b(E)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)-p\left(T_{E}^{\prime}+Y_{c b(E)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)=0
$$

$$
p^{2} Y_{c b(E)}-p R_{c}^{\prime}-p Y_{c b(E)}-p C_{b}^{\prime}-p Y_{a b(D)}-p Y_{c b(E)}-p T_{E}^{\prime}-p Y_{c b(E)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{c b(E)}=0
$$

$$
\left(p^{2}-3 p+2\right) Y_{c b(E)}-p\left(R_{c}^{\prime}+C_{b}^{\prime}+T_{E}^{\prime}\right)+(2-p) Y_{a b(D)}+2 G^{\prime}=0
$$

$$
\left(p^{2}-3 p+2\right) Y_{c b(E)}+(2-p) Y_{a b(D)}=p\left(R_{c}^{\prime}+C_{b}^{\prime}+T_{E}^{\prime}\right)-2 G^{\prime}
$$

Let $N=p^{2}-3 p+2, \quad M=2-p, \quad Z_{c b(E)}=p\left(R_{c}^{\prime}+C_{b}^{\prime}+T_{E}^{\prime}\right)-2 G^{\prime}$

$$
\begin{equation*}
N Y_{c b(E)}+M Y_{a b(D)}=Z_{c b(E)} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{c b(E)}^{2}-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{c b(E)}\right)^{2}\right]-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E))}\right)^{2}\right] \\
& -\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{c b(E)}\right)^{2}\right]+\frac{2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)^{2}}{p^{2}} \\
& \frac{\partial S S E}{\partial Y_{a b(D)}}=0 \\
& 0+2 Y_{a b(D)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-0-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p}-0-0 \\
& -\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}-0+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p^{2}}=0 \\
& 2 Y_{a b(D)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p^{2}}=0 \\
& \frac{2 p^{2} Y_{a b(D)}-2 p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-2 p\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)-2 p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)}{p^{2}}=0 \\
& \frac{2\left(p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)\right)}{p^{2}}=0 \\
& p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(c_{b}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c b(E)}\right)=0 \\
& p^{2} Y_{a b(D)}-p R_{a}^{\prime}-p Y_{a b(D)}-p C_{b}^{\prime}-p Y_{a b(D)}-p Y_{c b(E)}-p T_{D}^{\prime}-p Y_{a b(D)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{c b(E)}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}-p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)+(2-p) Y_{c b(E)}+2 G^{\prime}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}+(2-p) Y_{c b(E)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}
\end{aligned}
$$

Multiply (1) by M and (2) by N and then subtract it

$$
\begin{gathered}
M N Y_{a b(D)}+M^{2} Y_{c b(E)}=M Z_{a b(D)} \\
\pm M N Y_{a b(D)} \pm N^{2} Y_{c b(E)}= \pm N Z_{c b(E)} \\
\left(M^{2}-N^{2}\right) Y_{c b(E)}=M Z_{a b(D)}-N Z_{c b(E)} \\
Y_{c b(E)}=\frac{M Z_{a b(D)}-N Z_{c b(E)}}{M^{2}-N^{2}}
\end{gathered}
$$

Multiply (1) by N and (2) by M and then subtract it

$$
\begin{gathered}
M N Y_{c b(E)}+N^{2} Y_{a b(D)}=N Z_{a b(D)} \\
\pm M N Y_{c b(E)} \pm M^{2} Y_{a b(D)}= \pm M Z_{c b(E)} \\
\left(N^{2}-M^{2}\right) Y_{a b(D)}=N Z_{a b(D)}-M Z_{c b(E)} \\
Y_{a b(D)}=\frac{N Z_{a b(D)}-M Z_{c b(E)}}{N^{2}-M^{2}}
\end{gathered}
$$

(c) Missing in different rows and different columns but same treatments

Rows	Columns						
	$\mathbf{1}$	$\mathbf{2}$	\ldots	\boldsymbol{j}	\ldots	\boldsymbol{p}	Total
$\mathbf{1}$	$Y_{11(A)}$	$Y_{21(B)}$	\ldots	$Y_{1 j(D)}$	\ldots	$Y_{1 p(Z)}$	R_{1}
$\mathbf{2}$	$Y_{12(E)}$	$Y_{22(D)}$	\ldots	$Y_{2 j(M)}$	\ldots	$Y_{2 p(X)}$	R_{2}
\vdots	\vdots	\vdots	$Y_{a b(D)}$	\vdots		\vdots	$R_{a}^{\prime}+Y_{a b(D)}$
\boldsymbol{i}	$Y_{i 1(F)}$	$Y_{i 2(G)}$	\ldots	$Y_{i j(k)}$	\ldots	$Y_{i p(O)}$	R_{i}
\vdots	\vdots	\vdots		\vdots	$Y_{c e(D)}$	\vdots	$R_{c}^{\prime}+Y_{c e(D)}$
\boldsymbol{p}	$Y_{p 1(Z)}$	$Y_{p 2(N)}$	\ldots	$Y_{p j(L)}$	\ldots	$Y_{p p(Y)}$	R_{p}
Total	C_{1}	C_{2}	$C_{b}^{\prime}+Y_{a b(D)}$	C_{j}	$C_{e}^{\prime}+Y_{c e(D)}$	C_{p}	$G^{\prime}+Y_{a b(D)}+Y_{c e(D)}$

Effected Total:

$$
\begin{gathered}
R_{a}=R_{a}^{\prime}+Y_{a b(D)} \\
R_{c}=R_{c}^{\prime}+Y_{c e(D)} \\
C_{b}=C_{b}^{\prime}+Y_{a b(D)} \\
C_{e}=C_{e}^{\prime}+Y_{c e(D)} \\
T_{D}=T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)} \\
G=G^{\prime}+Y_{a b(D)}+Y_{c e(D)} \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)^{2}}{p^{2}} \\
S S E=T S S-S S R-S S C-S S T \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{c e(D)}^{2}-C . F-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{c e(D)}\right)^{2}\right] \\
+C . F-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}+\left(C_{e}^{\prime}+Y_{c e(D)}\right)^{2}\right]+C . F \\
-\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)^{2}\right]+C . F
\end{gathered}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{c e(D)}^{2}-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{c e(D)}\right)^{2}\right] \\
& -\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}+\left(C_{e}^{\prime}+Y_{c e(D)}\right)^{2}\right]-\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)^{2}\right] \\
& +\frac{2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)^{2}}{p^{2}} \\
& \frac{\partial S S E}{\partial Y_{a b(D)}}=0 \\
& 0+2 Y_{a b(D)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-0-0-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-0-0 \\
& -\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p^{2}}=0 \\
& 2 Y_{a b(D)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p^{2}}=0 \\
& \frac{2 p^{2} Y_{a b(D)}-2 p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-2 p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-2 p\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p^{2}}=0 \\
& \frac{2\left(p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)\right)}{p^{2}}=0 \\
& p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)=0 \\
& p^{2} Y_{a b(D)}-p R_{a}^{\prime}-p Y_{a b(D)}-p C_{b}^{\prime}-p Y_{a b(D)}-p T_{D}^{\prime}-p Y_{a b(D)}-p Y_{c e(D)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{c e(D)}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}-p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)+(2-p) Y_{c e(D)}+2 G^{\prime}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}+(2-p) Y_{c e(D)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}
\end{aligned}
$$

Let $N=p^{2}-3 p+2, \quad M=2-p, \quad Z_{a b(D)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}$

$$
\begin{equation*}
N Y_{a b(D)}+M Y_{c e(D)}=Z_{a b(D)} \tag{1}
\end{equation*}
$$

$$
\frac{\partial S S E}{\partial Y_{\text {ce }(D)}}=0
$$

$$
\begin{gathered}
0+0+2 Y_{c e(D)}-0-0-\frac{2\left(R_{c}^{\prime}+Y_{c e(D)}\right)}{p}-0-0-\frac{2\left(C_{e}^{\prime}+Y_{c e(D)}\right)}{p}-0 \\
-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p^{2}}=0 \\
\frac{2 Y_{c e(D)}-\frac{2\left(R_{c}^{\prime}+Y_{c e(D)}\right)}{p}-\frac{2\left(C_{e}^{\prime}+Y_{c e(D)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)}{p^{2}}=0}{2\left(R_{c}^{\prime}+Y_{c e(D)}\right)-2 p\left(C_{e}^{\prime}+Y_{c e(D)}\right)-2 p\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)} p^{2}=0 \\
\frac{2\left(p^{2} Y_{c e(D)}-p\left(R_{c}^{\prime}+Y_{c e(D)}\right)-p\left(C_{e}^{\prime}+Y_{c e(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)\right)}{p^{2}}=0 \\
p^{2} Y_{c e(D)}-p\left(R_{c}^{\prime}+Y_{c e(D)}\right)-p\left(C_{e}^{\prime}+Y_{c e(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(D)}\right)=0 \\
p^{2} Y_{c e(D)}-p R_{c}^{\prime}-p Y_{c e(D)}-p C_{e}^{\prime}-p Y_{c e(D)}-p T_{D}^{\prime}-p Y_{a b(D)}-p Y_{c e(D)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{c e(D)}=0 \\
\left(p^{2}-3 p+2\right) Y_{c e(D)}-p\left(R_{c}^{\prime}+C_{e}^{\prime}+T_{D}^{\prime}\right)+(2-p) Y_{a b(D)}+2 G^{\prime}=0
\end{gathered}
$$

$$
\left(p^{2}-3 p+2\right) Y_{c e(D)}+(2-p) Y_{a b(D)}=p\left(R_{c}^{\prime}+C_{e}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}
$$

Let $N=p^{2}-3 p+2, \quad M=2-p, \quad Z_{c e(D)}=p\left(R_{c}^{\prime}+C_{e}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime}$

$$
\begin{equation*}
N Y_{c e(D)}+M Y_{a b(D)}=Z_{c e(D)} \tag{2}
\end{equation*}
$$

Multiply (1) by M and (2) by N and then subtract it

$$
\begin{gathered}
M N Y_{a b(D)}+M^{2} Y_{c e(D)}=M Z_{a b(D)} \\
\pm M N Y_{a b(D)} \pm N^{2} Y_{c e(D)}= \pm N Z_{c e(D)} \\
\left(M^{2}-N^{2}\right) Y_{c e(D)}=M Z_{a b(D)}-N Z_{c e(D)} \\
Y_{c e(D)}=\frac{M Z_{a b(D)}-N Z_{c e(D)}}{M^{2}-N^{2}}
\end{gathered}
$$

Multiply (1) by N and (2) by M and then subtract it

$$
\begin{gathered}
M N Y_{c e(D)}+N^{2} Y_{a b(D)}=N Z_{a b(D)} \\
\underline{\not Z M N Y_{c e(D)} \pm M^{2} Y_{a b(D)}= \pm M Z_{c e(D)}} \begin{array}{c}
\left(N^{2}-M^{2}\right) Y_{a b(D)}=N Z_{a b(D)}-M Z_{c e(D)} \\
Y_{a b(D)}=\frac{N Z_{a b(D)}-M Z_{c e(D)}}{N^{2}-M^{2}}
\end{array} .
\end{gathered}
$$

(d) Missing in different rows columns and treatments

Rows	Columns						
	$\mathbf{1}$	$\mathbf{2}$	\ldots	\boldsymbol{j}	\ldots	\boldsymbol{p}	Total
$\mathbf{1}$	$Y_{11(A)}$	$Y_{21(B)}$	\ldots	$Y_{1 j(D)}$	\ldots	$Y_{1 p(Z)}$	R_{1}
$\mathbf{2}$	$Y_{12(E)}$	$Y_{22(D)}$	\ldots	$Y_{2 j(M)}$	\ldots	$Y_{2 p(X)}$	R_{2}
\vdots	\vdots	\vdots	$Y_{a b(D)}$	\vdots		\vdots	$R_{a}^{\prime}+Y_{a b(D)}$
\boldsymbol{i}	$Y_{i 1(F)}$	$Y_{i 2(G)}$	\ldots	$Y_{i j(k)}$	\ldots	$Y_{i p(O)}$	R_{i}
\vdots	\vdots	\vdots		\vdots	$Y_{c e(E)}$	\vdots	$R_{c}^{\prime}+Y_{c e(E)}$
\boldsymbol{p}	$Y_{p 1(Z)}$	$Y_{p 2(N)}$	\ldots	$Y_{p j(L)}$	\ldots	$Y_{p p(Y)}$	R_{p}
Total	C_{1}	C_{2}	$C_{b}^{\prime}+Y_{a b(D)}$	C_{j}	$C_{e}^{\prime}+Y_{c e(E)}$	C_{p}	$G^{\prime}+Y_{a b(D)}+Y_{c e(E)}$

Effected Total:

$$
\begin{gathered}
R_{a}=R_{a}^{\prime}+Y_{a b(D)} \\
R_{c}=R_{c}^{\prime}+Y_{c e(E)} \\
C_{b}=C_{b}^{\prime}+Y_{a b(D)} \\
C_{e}=C_{e}^{\prime}+Y_{c e(E)} \\
T_{D}=T_{D}^{\prime}+Y_{a b(D)} \\
T_{E}=T_{E}^{\prime}+Y_{c e(E)} \\
G=G^{\prime}+Y_{a b(D)}+Y_{c e(E)} \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)^{2}}{p^{2}} \\
S S E=T S S-S S R-S S C-S S T
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{align*}
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{c e(E)}^{2}-C . F-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{c e(E)}\right)^{2}\right] \\
& +C . F-\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}+\left(C_{e}^{\prime}+Y_{c e(E)}\right)^{2}\right]+C . F \\
& -\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{c e(E)}\right)^{2}\right]+C . F \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{2}+Y_{a b(D)}^{2}+Y_{c e(E)}^{2}-\frac{1}{p}\left[\sum_{i=1}^{p} R_{i}^{2}+\left(R_{a}^{\prime}+Y_{a b(D)}\right)^{2}+\left(R_{c}^{\prime}+Y_{c e(E)}\right)^{2}\right] \\
& -\frac{1}{p}\left[\sum_{j=1}^{p} C_{j}^{2}+\left(C_{b}^{\prime}+Y_{a b(D)}\right)^{2}+\left(C_{e}^{\prime}+Y_{c e(E)}\right)^{2}\right]-\frac{1}{p}\left[\sum_{k=1}^{p} T_{k}^{2}+\left(T_{D}^{\prime}+Y_{a b(D)}\right)^{2}+\left(T_{E}^{\prime}+Y_{c e(E)}\right)^{2}\right] \\
& +\frac{2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)^{2}}{p^{2}} \\
& \frac{\partial S S E}{\partial Y_{a b(D)}}=0 \\
& 0+2 Y_{a b(D)}+0-0-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-0-0-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-0-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}-0 \\
& +\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)}{p^{2}}=0 \\
& 2 Y_{a b(D)}-\frac{2\left(R_{a}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(C_{b}^{\prime}+Y_{a b(D)}\right)}{p}-\frac{2\left(T_{D}^{\prime}+Y_{a b(D)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)}{p^{2}}=0 \\
& \frac{2 p^{2} Y_{a b(D)}-2 p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-2 p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-2 p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)}{p^{2}}=0 \\
& \frac{2\left(p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)\right)}{p^{2}}=0 \\
& p^{2} Y_{a b(D)}-p\left(R_{a}^{\prime}+Y_{a b(D)}\right)-p\left(C_{b}^{\prime}+Y_{a b(D)}\right)-p\left(T_{D}^{\prime}+Y_{a b(D)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)=0 \\
& p^{2} Y_{a b(D)}-p R_{a}^{\prime}-p Y_{a b(D)}-p C_{b}^{\prime}-p Y_{a b(D)}-p T_{D}^{\prime}-p Y_{a b(D)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{c e(E)}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}-p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)+2 Y_{c e(E)}+2 G^{\prime}=0 \\
& \left(p^{2}-3 p+2\right) Y_{a b(D)}+2 Y_{c e(E)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime} \\
& \text { Let } F=p^{2}-3 p+2, \quad Z_{a b(D)}=p\left(R_{a}^{\prime}+C_{b}^{\prime}+T_{D}^{\prime}\right)-2 G^{\prime} \\
& F Y_{a b(D)}+2 Y_{c e(E)}=Z_{a b(D)} \tag{1}\\
& \frac{\partial S S E}{\partial Y_{\text {ce(E) }}}=0 \\
& 0+2 Y_{c e(E)}+0-0-\frac{2\left(R_{c}^{\prime}+Y_{c e(E)}\right)}{p}-0-0-\frac{2\left(C_{e}^{\prime}+Y_{c e(E)}\right)}{p}-0-\frac{2\left(T_{E}^{\prime}+Y_{c e(E)}\right)}{p}-0 \\
& +\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)}{p^{2}}=0 \\
& 2 Y_{c e(E)}-\frac{2\left(R_{c}^{\prime}+Y_{c e(E)}\right)}{p}-\frac{2\left(C_{e}^{\prime}+Y_{c e(E)}\right)}{p}-\frac{2\left(T_{E}^{\prime}+Y_{c e(E)}\right)}{p}+\frac{4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)}{p^{2}}=0
\end{align*}
$$

$$
\begin{gathered}
\frac{2 p^{2} Y_{c e(E)}-2 p\left(R_{c}^{\prime}+Y_{c e(E)}\right)-2 p\left(C_{e}^{\prime}+Y_{c e(E)}\right)-2 p\left(T_{E}^{\prime}+Y_{c e(E)}\right)+4\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)}{p^{2}}=0 \\
\frac{2\left(p^{2} Y_{c e(E)}-p\left(R_{c}^{\prime}+Y_{c e(E)}\right)-p\left(C_{e}^{\prime}+Y_{c e(E)}\right)-p\left(T_{E}^{\prime}+Y_{c e(E)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)\right)}{p^{2}}=0 \\
p^{2} Y_{c e(E)}-p\left(R_{c}^{\prime}+Y_{c e(E)}\right)-p\left(C_{e}^{\prime}+Y_{c e(E)}\right)-p\left(T_{E}^{\prime}+Y_{c e(E)}\right)+2\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+Y_{a b(D)}+Y_{c e(E)}\right)=0 \\
p^{2} Y_{c e(E)}-p R_{c}^{\prime}-p Y_{c e(E)}-p C_{e}^{\prime}-p Y_{c e(E)}-p T_{E}^{\prime}-p Y_{c e(E)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k)}^{\prime}+2 Y_{a b(D)}+2 Y_{c e(E)}=0 \\
\left(p^{2}-3 p+2\right) Y_{c e(E)}-p\left(R_{c}^{\prime}+C_{e}^{\prime}+T_{E}^{\prime}\right)+2 Y_{a b(D)}+2 G^{\prime}=0 \\
\left(p^{2}-3 p+2\right) Y_{c e(E)}+2 Y_{a b(D)}=p\left(R_{c}^{\prime}+C_{e}^{\prime}+T_{E}^{\prime}\right)-2 G^{\prime}
\end{gathered}
$$

Let $F=p^{2}-3 p+2, \quad Z_{c e(E)}=p\left(R_{c}^{\prime}+C_{e}^{\prime}+T_{E}^{\prime}\right)-2 G^{\prime}$

$$
\begin{equation*}
F Y_{c e(E)}+2 Y_{a b(D)}=Z_{c e(E)} \tag{2}
\end{equation*}
$$

Multiply (1) by 2 and (2) by F and then subtract it

$$
\begin{gathered}
2 F Y_{a b(D)}+4 Y_{c e(E)}=2 Z_{a b(D)} \\
\pm 2 \not \subset Y_{a b(D)} \pm F^{2} Y_{c e(E)}= \pm F Z_{c e(E)} \\
\left(4-F^{2}\right) Y_{c e(E)}=2 Z_{a b(D)}-F Z_{c e(E)} \\
Y_{c e(E)}=\frac{2 Z_{a b(D)}-F Z_{c e(E)}}{4-F^{2}}
\end{gathered}
$$

Multiply (1) by F and (2) by 2 and then subtract it

$$
\begin{aligned}
& 2 F Y_{l e(E)}+F^{2} Y_{a b(D)}=F Z_{a b(D)} \\
& \pm 2 F Y_{c e(E)} \pm 4 Y_{a b(D)}= \pm 2 Z_{c e(E)} \\
& \left(F^{2}-4\right) Y_{a b(D)}=N Z_{a b(D)}-2 Z_{c e(E)} \\
& Y_{a b(D)}=\frac{N Z_{a b(D)}-2 Z_{c e(E)}}{F^{2}-4}
\end{aligned}
$$

Efficiency of LSD relative to CRD

RE (LS, CR): the relative efficiency of the Latin square design compared to a completely randomized design. Did accounting for row/column sources of variability increase the precision in estimating the treatment means?

$$
R E(L S, C R)=\frac{M S E_{C R}}{M S E_{L S}}=\frac{M S R+M S C+(p-1) M S E}{(p+1) M S E}
$$

Where p is equal to no. of treatments.

Efficiency of LSD relative to RCBD

RE (LS, RCB): the relative efficiency of the Latin square design compared to a Randomized complete block design.

RE using columns as Blocks in RCBD

$$
R E(L S, R C B)=\frac{M S E_{R C B}}{M S E_{L S D}}=\frac{M S R+(p-1) M S E}{p M S E}
$$

Where p is equal to no. of treatments.

RE using rows as Blocks in RCBD

$$
R E(L S, R C B)=\frac{M S E_{R C B}}{M S E_{L S D}}=\frac{M S C+(p-1) M S E}{p M S E}
$$

An estimated relative efficiency greater than 1 indicates that LSD is more efficient than RCBD whereas less than 1 indicates that RCBD is more efficient than LSD.

Greaco Latin Square Design

A Greaco-Latin square consists of two latin squares (one using the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ the other using greek letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$) such that when the two latin square are supper imposed on each other the letters of one square appear once and only once with the letters of the other square. The two Latin squares are called mutually orthogonal.

Experimental Layout

a 7×7 Greaco-Latin Square

Aa	Be	Cb	Df	Ec	Fg	Gd
Bb	Cf	Dc	Eg	Fd	Ga	Ae
Cc	Dg	Ed	Fa	Ge	Ab	Bf
Dd	Ea	Fe	Gb	Af	Bc	Cg
Ee	Fb	Gf	Ac	Bg	Cd	Da
Ff	Gc	Ag	Bd	Ca	De	Eb
Gg	Ad	Ba	Ce	Db	Ef	Fc

Example:

A researcher is interested in determining the effect of two factors. The percentage of Lysine in the diet and the percentage of Protein in the diet have on Milk Production in cows.
For this reason it is decided to use a Greaco-Latin square design to experimentally determine the two effects of the two factors (Lysine and Protein).
Seven levels of each factor is selected

- $\quad 0.0(\mathrm{~A}), 0.1(\mathrm{~B}), 0.2(\mathrm{C}), 0.3(\mathrm{D}), 0.4(\mathrm{E}), 0.5(\mathrm{~F})$, and $0.6(\mathrm{G}) \%$ for Lysine and
- 2(a), 4(b), 6(c), 8(d), 10(e), 12(f) and $14(\mathrm{~g}) \%$ for Protein.
- Seven animals (cows) are selected at random for the experiment which is to be carried out over seven three-month periods.
A Greaco-Latin Square is the used to assign the 7 X 7 combinations of levels of the two factors (Lysine and Protein) to a period and a cow. The data is tabulated on below:

		1	2	3		5	6	7
Cows	1	304	436	350	504	417	519	432
		($\mathrm{A} \alpha$)	(Be)	($\mathrm{C} \beta$)	(D ϕ)	(E χ)	(F\%)	(G8)
	2	381	505	425	564	494	350	413
		$(\mathrm{B} \beta)$	(C ϕ)	($\mathrm{D} \chi$)	(E\%)	(F8)	(G)	(A ε)
	3	432	566	479	357	461	340	502
		($\mathrm{C} \chi)$	(D γ)	(E\%)	(F α)	(G8)	($\mathrm{A} \beta$)	($\mathrm{B} \phi$)
	4	442	372	536	366	495	425	507
		(D8)	(E α)	(Fe)	(Gß)	($\mathrm{A} \phi$)	(B)	(C γ)
	5	496	449	493	345	509	481	380
		(Eع)	(Fß)	(G ϕ)	($\mathrm{A} \chi$)	(B γ)	(C8)	($\mathrm{D} \alpha$)
	6	534	421	452	427	346	478	397
		(F\$)	(G)	($\mathrm{A} \gamma$)	(B8)	($\mathrm{C} \alpha$)	(D ε)	(Eß)
	7	543	386	435	485	406	554	410
		(G γ)	(A δ)	($\mathrm{B} \alpha$)	(C8)	($\mathrm{D} \beta$)	(E¢)	($\mathrm{F} \chi$)

Statistical Model and Analysis

The linear statistical model for Greaco LSD is

$$
Y_{i j}=\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)} \quad\left\{\begin{array}{l}
i=1,2, \ldots, p \\
j=1,2, \ldots, p \\
k=1,2, \ldots, p \\
m=1,2, \ldots, p
\end{array}\right.
$$

Where
μ True mean effect
τ_{i} ith row effect
$\beta_{j} j$ th column effect
$\gamma_{k} k t h$ Greek letter effect
$\eta_{m} m t h$ Latin letter effect

Formulation of Hypotheses

$$
\begin{gathered}
H_{0}: \tau_{i}=0 \\
H_{0}^{\prime}: \beta_{j}=0 \\
H_{0}^{\prime \prime}: \gamma_{k}=0 \\
H_{0}^{\prime \prime \prime}: \eta_{m}=0 \\
H_{1}: \tau_{i} \neq 0 \\
H_{1}^{\prime}: \beta_{j} \neq 0 \\
H_{1}^{\prime \prime}: \gamma_{k} \neq 0 \\
H_{1}^{\prime \prime \prime}: \eta_{m} \neq 0
\end{gathered}
$$

Level of significance

$$
\alpha=0.05,0.01,0.10,0.001
$$

Test Statistic

$$
F_{1}=\frac{s_{r}^{2}}{s_{e}^{2}}, \quad F_{2}=\frac{s_{c}^{2}}{s_{e}^{2}}, \quad F_{3}=\frac{s_{G}^{2}}{s_{e}^{2}}, \quad F_{4}=\frac{s_{L}^{2}}{s_{e}^{2}}
$$

S.O.V	df	SS	MS	F
Rows	$p-1$	SSR	$s_{r}^{2}=\frac{S S R}{p-1}$	$F_{1}=\frac{s_{r}^{2}}{s_{e}^{2}}$
Columns	$p-1$	SSC	$s_{c}^{2}=\frac{S S C}{p-1}$	$F_{2}=\frac{s_{c}^{2}}{s_{e}^{2}}$
Greek Letters	$p-1$	SSG	$s_{G}^{2}=\frac{S S G}{p-1}$	$F_{3}=\frac{s_{G}^{2}}{s_{e}^{2}}$
Latin Letters	$p-1$	SSL	$s_{L}^{2}=\frac{S S L}{p-1}$	$F_{4}=\frac{s_{L}^{2}}{s_{e}^{2}}$
Error	$(p-1)(p-3)$	SSE	$s_{e}^{2}=\frac{S S E}{(p-1)(p-3)}$	
Total	$p^{2}-1$	TSS		

$C . F=\frac{Y_{\ldots}}{p^{2}}, \quad S S R=\frac{1}{p} \sum R_{i}^{2}-C . F, \quad S S C=\frac{1}{p} \sum C_{j}^{2}-C . F, \quad S S G=\frac{1}{p} \sum G_{k}^{2}-C . F$

$$
S S L=\frac{1}{p} \sum L_{m}^{2}-C . F, \quad S S E=T S S-S S R-S S C-S S G-S S L
$$

C.R:
$F_{1} \geq F_{\alpha((p-1),(p-1)(p-3))}$
$F_{2} \geq F_{\alpha((p-1),(p-1)(p-3))}$
$F_{3} \geq F_{\alpha((p-1),(p-1)(p-3))}$
$F_{4} \geq F_{\alpha((p-1),(p-1)(p-3))}$

Conclusion:

If $F_{\text {cal }}$ falls in critical region then we reject the null hypothesis.

Estimation of Model Parameters

The least square estimates of $\hat{\mu}, \hat{\tau}_{i}, \hat{\beta}_{j}, \hat{\gamma}_{k}$ and $\hat{\eta}_{m}$ are as:

$$
\begin{gathered}
S=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(Y_{i j(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2} \\
\frac{\partial S}{\partial \hat{\mu}}=2 \sum_{i=1}^{p} \sum_{j=1}^{p}\left(Y_{i j(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p} \sum_{j=1}^{p}\left(Y_{i j(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}-p^{2} \hat{\mu}-p \sum_{i=1}^{p} \hat{\tau}_{i}-p \sum_{j=1}^{p} \hat{\beta}_{j}-p \sum_{k=1}^{p} \hat{\gamma}_{k}-p \sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution Put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \quad \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}-p^{2} \hat{\mu}=0
$$

$$
\begin{gathered}
p^{2} \hat{\mu}=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)} \\
\hat{\mu}=\frac{\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}}{p^{2}}=\bar{Y} \\
S=\sum_{j=1}^{p}\left(Y_{1 j(k, m)}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2}+\sum_{j=1}^{p}\left(Y_{2 j(k, m)}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2} \\
+\cdots+\sum_{j=1}^{p}\left(Y_{p j(k, m)}-\hat{\mu}-\hat{\tau}_{p}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\tau}_{1}, \hat{\tau}_{2}, \ldots, \hat{\tau}_{p}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\tau}_{1}}=2 \sum_{j=1}^{p}\left(Y_{1 j(k, m)}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{j=1}^{p}\left(Y_{1 j(k, m)}-\hat{\mu}-\hat{\tau}_{1}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{j=1}^{p} Y_{1 j(k, m)}-p \hat{\mu}-p \hat{\tau}_{1}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \hat{\gamma}_{k}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{j=1}^{p} Y_{1 j(k, m)}-p \hat{\mu}-p \hat{\tau}_{1}=0 \\
p \hat{\tau}_{1}=\sum_{j=1}^{p} Y_{1 j(k, m)}-p \hat{\mu} \\
\hat{\tau}_{1}=\frac{\sum_{j=1}^{p} Y_{1 j(k, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\tau}_{1}=\frac{R_{1}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\tau}_{2}}=2 \sum_{j=1}^{p}\left(Y_{2 j(k, m)}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{j=1}^{p}\left(Y_{2 j(k, m)}-\hat{\mu}-\hat{\tau}_{2}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{j=1}^{p} Y_{2 j(k, m)}-p \hat{\mu}-p \hat{\tau}_{1}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \hat{\gamma}_{k}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\sum_{j=1}^{p} Y_{2 j(k, m)}-p \hat{\mu}-p \hat{\tau}_{2}=0
$$

$$
\begin{gathered}
p \hat{\tau}_{2}=\sum_{j=1}^{p} Y_{2 j(k, m)}-p \hat{\mu} \\
\hat{\tau}_{2}=\frac{\sum_{j=1}^{p} Y_{2 j(k, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\tau}_{2}=\frac{R_{2}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\tau}_{p}}=2 \sum_{j=1}^{p}\left(Y_{p j(k, m)}-\hat{\mu}-\hat{\tau}_{p}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{j=1}^{p}\left(Y_{p j(k, m)}-\hat{\mu}-\hat{\tau}_{p}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{j=1}^{p} Y_{p j(k, m)}-p \hat{\mu}-p \hat{\tau}_{p}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \hat{\gamma}_{k}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{j=1}^{p} Y_{p j(k, m)}-p \hat{\mu}-p \hat{\tau}_{p}=0 \\
p \hat{\tau}_{p}=\sum_{j=1}^{p} Y_{p j(k, m)}-p \hat{\mu} \\
\hat{\tau}_{p}=\frac{\sum_{j=1}^{p} Y_{p j(k, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\tau}_{p}=\frac{R_{p}}{p}-\overline{\bar{Y}} \\
S=\sum_{i=1}^{p}\left(Y_{i 1(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2}+\sum_{i=1}^{p}\left(Y_{i 2(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2}+\cdots \\
+\sum_{i=1}^{p}\left(Y_{i p(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{p}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{p}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\beta}_{1}}=2 \sum_{i=1}^{p}\left(Y_{i 1(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i 1(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{1}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} Y_{i 1(k, m)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-p \hat{\beta}_{1}-\sum_{k=1}^{p} \hat{\gamma}_{k}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i 1(k, m)}-p \hat{\mu}-p \hat{\beta}_{1}=0 \\
p \hat{\beta}_{1}=\sum_{i=1}^{p} Y_{i 1(k, m)}-p \hat{\mu} \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{p} Y_{i 1(k, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\beta}_{1}=\frac{C_{1}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\beta}_{2}}=2 \sum_{i=1}^{p}\left(Y_{i 2(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i 2(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{2}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} Y_{i 2(k, m)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-p \hat{\beta}_{2}-\sum_{k=1}^{p} \hat{\gamma}_{k}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i 2(k, m)}-p \hat{\mu}-p \hat{\beta}_{2}=0 \\
p \hat{\beta}_{2}=\sum_{i=1}^{p} Y_{i 2(k, m)}-p \hat{\mu} \\
\hat{\beta}_{2}=\frac{\sum_{i=1}^{p} Y_{i 2(k, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\beta}_{2}=\frac{C_{2}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\beta}_{p}}=2 \sum_{i=1}^{p}\left(Y_{i p(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{p}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i p(k, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{p}-\hat{\gamma}_{k}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} Y_{i p(k, m)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-p \hat{\beta}_{p}-\sum_{k=1}^{p} \hat{\gamma}_{k}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i p(k, m)}-p \hat{\mu}-p \hat{\beta}_{p}=0 \\
p \hat{\beta}_{p}=\sum_{i=1}^{p} Y_{i p(k, m)}-p \hat{\mu}
\end{gathered}
$$

$$
\begin{gathered}
\hat{\beta}_{p}=\frac{\sum_{i=1}^{p} Y_{i p(k, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\beta}_{p}=\frac{C_{p}}{p}-\overline{\bar{Y}} \\
S=\sum_{i=1}^{p}\left(Y_{i j(1, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}-\hat{\eta}_{m}\right)^{2}+\sum_{i=1}^{p}\left(Y_{i j(2, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{2}-\hat{\eta}_{m}\right)^{2}+\cdots \\
+\sum_{i=1}^{p}\left(Y_{i j(p, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{p}-\hat{\eta}_{m}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\gamma}_{1}, \hat{\gamma}_{2}, \ldots, \hat{\gamma}_{p}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\gamma}_{1}}=2 \sum_{i=1}^{p}\left(Y_{i j(1, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(1, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{1}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(1, m)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-p \hat{\gamma}_{1}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i j(1, m)}-p \hat{\mu}-p \hat{\gamma}_{1}=0 \\
p \hat{\gamma}_{1}=\sum_{i=1}^{p} Y_{i j(1, m)}-p \hat{\mu} \\
\hat{\gamma}_{1}=\frac{\sum_{i=1}^{p} Y_{i j(1, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\gamma}_{1}=\frac{G_{1}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\gamma}_{2}}=2 \sum_{i=1}^{p}\left(Y_{i j(2, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{2}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(2, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{2}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(2, m)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-p \hat{\gamma}_{2}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\sum_{i=1}^{p} Y_{i j(2, m)}-p \hat{\mu}-p \hat{\gamma}_{2}=0
$$

$$
\begin{gathered}
p \hat{\gamma}_{2}=\sum_{i=1}^{p} Y_{i j(2, m)}-p \hat{\mu} \\
\hat{\gamma}_{2}=\frac{\sum_{i=1}^{p} Y_{i j(2, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\gamma}_{2}=\frac{G_{2}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\gamma}_{p}}=2 \sum_{i=1}^{p}\left(Y_{i j(p, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{p}-\hat{\eta}_{m}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(p, m)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{p}-\hat{\eta}_{m}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(p, m)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-p \hat{\gamma}_{p}-\sum_{m=1}^{p} \hat{\eta}_{m}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{m=1}^{p} \hat{\eta}_{m}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i j(p, m)}-p \hat{\mu}-p \hat{\gamma}_{p}=0 \\
p \hat{\gamma}_{p}=\sum_{i=1}^{p} Y_{i j(p, m)}-p \hat{\mu} \\
\hat{\gamma}_{p}=\frac{\sum_{i=1}^{p} Y_{i j(p, m)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\gamma}_{p}=\frac{G_{p}}{p}-\overline{\bar{Y}} \\
S=\sum_{i=1}^{p}\left(Y_{i j(k, 1)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{1}\right)^{2}+\sum_{i=1}^{p}\left(Y_{i j(k, 2)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{2}\right)^{2}+\cdots \\
+\sum_{i=1}^{p}\left(Y_{i j(k, p)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{p}\right)^{2}
\end{gathered}
$$

Differentiate w.r.t $\hat{\eta}_{1}, \hat{\eta}_{2}, \ldots, \hat{\eta}_{p}$

$$
\begin{gathered}
\frac{\partial S}{\partial \hat{\eta}_{1}}=2 \sum_{i=1}^{p}\left(Y_{i j(k, 1)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{1}\right)(-1)=0 \\
\quad-2 \sum_{i=1}^{p}\left(Y_{i j(k, 1)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{1}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(k, 1)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \gamma_{k}-p \hat{\eta}_{1}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i j(k, 1)}-p \hat{\mu}-p \hat{\eta}_{1}=0 \\
p \hat{\eta}_{1}=\sum_{i=1}^{p} Y_{i j(k, 1)}-p \hat{\mu} \\
\hat{\eta}_{1}=\frac{\sum_{i=1}^{p} Y_{i j(k, 1)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\eta}_{1}=\frac{L_{1}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\eta}_{2}}=2 \sum_{i=1}^{p}\left(Y_{i j(k, 2)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{2}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(k, 2)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{2}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(k, 2)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \gamma_{k}-p \hat{\eta}_{2}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i j(k, 2)}-p \hat{\mu}-p \hat{\eta}_{2}=0 \\
p \hat{\eta}_{2}=\sum_{i=1}^{p} Y_{i j(k, 2)}-p \hat{\mu} \\
\hat{\eta}_{2}=\frac{\sum_{i=1}^{p} Y_{i j(k, 2)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\eta}_{2}=\frac{L_{2}}{p}-\overline{\bar{Y}} \\
\frac{\partial S}{\partial \hat{\eta}_{p}}=2 \sum_{i=1}^{p}\left(Y_{i j(k, p)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{p}\right)(-1)=0 \\
-2 \sum_{i=1}^{p}\left(Y_{i j(k, p)}-\hat{\mu}-\hat{\tau}_{i}-\hat{\beta}_{j}-\hat{\gamma}_{k}-\hat{\eta}_{p}\right)=0 \\
\sum_{i=1}^{p} Y_{i j(k, p)}-p \hat{\mu}-\sum_{i=1}^{p} \hat{\tau}_{i}-\sum_{j=1}^{p} \hat{\beta}_{j}-\sum_{k=1}^{p} \gamma_{k}-p \hat{\eta}_{p}=0
\end{gathered}
$$

For unique solution put $\sum_{i=1}^{p} \hat{\tau}_{i}=0, \sum_{j=1}^{p} \hat{\beta}_{j}=0, \sum_{k=1}^{p} \hat{\gamma}_{k}=0$

$$
\begin{gathered}
\sum_{i=1}^{p} Y_{i j(k, p)}-p \hat{\mu}-p \hat{\eta}_{p}=0 \\
p \hat{\eta}_{p}=\sum_{i=1}^{p} Y_{i j(k, p)}-p \hat{\mu}
\end{gathered}
$$

$$
\begin{gathered}
\hat{\eta}_{p}=\frac{\sum_{i=1}^{p} Y_{i j(k, p)}}{p}-\frac{p \hat{\mu}}{p} \\
\hat{\eta}_{p}=\frac{L_{p}}{p}-\overline{\bar{Y}}
\end{gathered}
$$

Expected Mean Square Error

Fixed Effect Model

Assumptions:

1. $e_{i j(k, m)} \sim \operatorname{iidN}\left(0, \sigma^{2}\right)$
2. $E\left(e_{i j(k, m)} e_{g h(l, z)}\right)=0$
3. $\sum_{i=1}^{p} \tau_{i}=0$
4. $\sum_{j=1}^{p} \beta_{j}=0$
5. $\sum_{k=1}^{p} \gamma_{k}=0$
6. $\sum_{m=1}^{p} \eta_{m}=0$

$$
\begin{gathered}
E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S G)-E(S S L) \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+p \sum_{m=1}^{p} \eta_{m}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}\right)^{2}}{p^{2}} \\
=\frac{p^{4} \mu^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}}{p^{2}}
\end{gathered}
$$

Apply expectation on both sides

$$
\begin{aligned}
& E(C . F) \\
& =\frac{p^{4} \mu^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{2} \sigma^{2}+0+0}{p^{2}}=\frac{p^{4} \mu^{2}+p^{2} \sigma^{2}}{p^{2}} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}\right.+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+\eta_{m}^{2}+e_{i j(k, m)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu \eta_{m}+2 \mu e_{i j(k, m)} \\
&+2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}+2 \tau_{i} \eta_{m}+2 \tau_{i} e_{i j(k, m)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} \eta_{m}+2 \beta_{j} e_{i j(k, m)} \\
&\left.+2 \gamma_{k} \eta_{m}+2 \gamma_{k} e_{i j(k, m)}^{p}+2 \eta_{m} e_{i j(k, m)}\right) \\
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i} \\
&+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{p} \\
&+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \tau_{i} \sum_{m=1}^{p} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k, m)} \\
&+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{j=1}^{p} \beta_{j} \sum_{m=1}^{p} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}+2 \sum_{k=1}^{p} \gamma_{k} \sum_{m=1}^{p} \eta_{m} \\
&+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k, m)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{i j(k, m)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+2 p \mu \sum_{i=1}^{p} \tau_{i} \\
&+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right) \\
&+2 \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \tau_{i} \sum_{m=1}^{p} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k, m)}\right) \\
&+2 \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{j=1}^{p} \beta_{j} \sum_{m=1}^{p} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k, m)}\right) \\
&+2 \sum_{k=1}^{p} \gamma_{k} \sum_{m=1}^{p} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} E\left(e_{i j(k, m)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} E\left(e_{i j(k, m)}\right) \\
&=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0 \\
&+0+0+0+0+0+0+0+0 \\
& \quad=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}^{2}\right)-E(C . F)
\end{aligned}
$$

$$
\left.\begin{array}{c}
=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
E(T S S)=p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{m=1}^{p} \eta_{m}+\sum_{j=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p} \\
=\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} e_{i j(k, m)}^{p}\right)^{2}}{p} \\
=\frac{\left.p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{j \neq h} e_{i j(k, m)} e_{i h(l, z)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} e_{i j(k, m)}+2 p \tau_{i} \sum_{j=1}^{p} e_{i j(k, m)}\right)}{p} \\
p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k, m)} \\
p
\end{array}\right)
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right) \\
& \frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} E\left(e_{i j(k, m)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p^{2} \sigma^{2}}{p}=p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma^{2} \\
& E(S S R)=E\left[\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2}
\end{aligned}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
\begin{aligned}
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& \frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p} \\
& =\frac{\sum_{j=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{m=1}^{p} \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
& =\frac{\sum_{j=1}^{p}\left(p \mu+p \beta_{j}+\sum_{i=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
& =\frac{\sum_{j=1}^{p}\left(p^{2} \mu^{2}+p^{2} \beta_{j}^{2}+\sum_{i=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} e_{i j(k, m)} e_{g j(l, z)}+2 p^{2} \mu \beta_{j}+2 p \mu \sum_{i=1}^{p} e_{i j(k, m)}+2 p \beta_{j} \sum_{i=1}^{p} e_{i j(k, m)}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+0 \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} E\left(e_{i j(k, m)}\right)} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+p^{2} \sigma^{2}}{p}=p^{2} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma^{2} \\
=p(S S C)=E\left[\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right]-E(C . F) \\
=p^{2} \mu^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
S S G=\frac{\sum_{j=1}^{p}+(p-1) \sigma^{2}}{p}-C . F \\
=\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{m=1}^{p} \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}^{p}\right.}{p}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{\sum_{k=1}^{p}\left(p \mu+p \gamma_{k}+\sum_{i=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\left(p^{2} \mu^{2}+p^{2} \gamma_{k}^{2}+\sum_{i=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} e_{i j(k, m)} e_{g j(l, z)}+2 p^{2} \mu \gamma_{k}+2 p \mu \sum_{i=1}^{p} e_{i j(k, m)}+2 p \gamma_{k} \sum_{i=1}^{p} e_{i j(k, m)}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k} \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k, m)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+0 \\
& =\frac{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k, m)}}{p} \\
& p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k, m)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{gathered}
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)}{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} E\left(e_{i j(k, m)}\right)} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
=\frac{p^{3} \mu^{2}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+p^{2} \sigma^{2}}{p}=p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2} \\
E(S S G)=E\left[\frac{\sum_{k=1}^{p} G_{k}^{2}}{p}\right]-E(C . F) \\
=p^{2} \mu^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
=\sum_{k=1}^{p} \gamma_{k}^{2}+(p-1) \sigma^{2} \\
S S L=\frac{\sum_{m=1}^{p} L_{m}^{2}}{p}-C . F \\
=\frac{\sum_{m=1}^{p} L_{m}^{2}}{p}=\frac{\sum_{m=1}^{p}\left(\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}^{p}\right)\right)^{2}}{p} \\
=\frac{\sum_{m=1}^{p}\left(p \mu+p \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}^{p}\right)^{2}}{p} \\
=\frac{\left.\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+p \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}^{p}\right)^{2}}{p} \\
=\frac{\left.\sum^{2} \mu^{2}+p^{2} \eta_{m}^{2}+\sum_{i=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} e_{i j(k, m)} e_{g h(l, m)}^{p}+2 p^{2} \mu \eta_{m}+2 p \mu \sum_{i=1}^{p} e_{i j(k, m)}+2 p \eta_{m} \sum_{i=1}^{p} e_{i j(k, m)}\right)}{p} \\
p^{3} \mu^{2}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq n}^{p} e_{i j(k, m)}^{p} e_{g h(l, z)}^{p}+2 p^{2} \mu \sum_{m=1}^{p} \eta_{m} \\
=\frac{\sum_{j=1}^{p} e_{i j(k, m)}^{p}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{i j(k, m)}}{p}
\end{gathered}
$$

DESIGN AND ANALYSIS OF EXPERIMENT I

$$
=\frac{p^{3} \mu^{2}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+0}{+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{i j(k, m)}} \begin{gathered}
p \\
p^{3} \mu^{2}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{p} \\
+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{i j(k, m)}
\end{gathered} p .
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right) \\
& +2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} E\left(e_{i j(k, m)}\right) \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+p^{2} \sigma^{2}+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+p^{2} \sigma^{2}}{p}=p^{2} \mu^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+p \sigma^{2} \\
& E(S S L)=E\left[\frac{\sum_{m=1}^{p} L_{m}^{2}}{p}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+p \sigma^{2}-p^{2} \mu^{2}-\sigma^{2} \\
& =p \sum_{m=1}^{p} \eta_{m}^{2}+(p-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S G)-E(S S L) \\
& =p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+\left(p^{2}-1\right) \sigma^{2}-p \sum_{i=1}^{p} \tau_{i}^{2}-(p-1) \sigma^{2} \\
& -p \sum_{j=1}^{p} \beta_{j}^{2}-(p-1) \sigma^{2}-p \sum_{k=1}^{p} \gamma_{k}^{2}-(p-1) \sigma^{2}-p \sum_{m=1}^{p} \eta_{m}^{2}-(p-1) \sigma^{2} \\
& =\left(p^{2}-1-p+1-p+1-p+1-p+1\right) \sigma^{2} \\
& =\left(p^{2}-4 p+3\right) \sigma^{2}=\left(p^{2}-3 p-p+3\right) \sigma^{2} \\
& =(p(p-3)-1(p-3)) \sigma^{2}=(p-1)(p-3) \sigma^{2} \\
& E(M S E)=\frac{E(S S E)}{(p-1)(p-3)}=\frac{(p-1)(p-3) \sigma^{2}}{(p-1)(p-3)}=\sigma^{2} \\
& E(M S R)=\frac{E(S S R)}{p-1}=\frac{p \sum_{i=1}^{p} \tau_{i}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{i=1}^{p} \tau_{i}^{2} \\
& E(M S C)=\frac{E(S S C)}{p-1}=\frac{p \sum_{j=1}^{p} \beta_{j}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{j=1}^{p} \beta_{j}^{2} \\
& E(M S G)=\frac{E(S S G)}{p-1}=\frac{p \sum_{k=1}^{p} G_{k}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{k=1}^{p} G_{k}^{2}
\end{aligned}
$$

$$
E(M S L)=\frac{E(S S L)}{p-1}=\frac{p \sum_{m=1}^{p} \eta_{m}^{2}+(p-1) \sigma^{2}}{p-1}=\sigma^{2}+\frac{p}{p-1} \sum_{m=1}^{p} \eta_{m}^{2}
$$

Random Effect Model

Assumptions:

1. $e_{i j(k, m)} \sim i i d N\left(0, \sigma^{2}\right)$
2. $E\left(e_{i j(k, m)} e_{g h(l, z)}\right)=0$
3. $E\left(\tau_{i} e_{i j(k, m)}\right)=0$
4. $E\left(\beta_{j} e_{i j(k, m)}\right)=0$
5. $E\left(\gamma_{k} e_{i j(k, m)}\right)=0$
6. $E\left(\eta_{m} e_{i j(k, m)}\right)=0$
7. $\tau_{i} \sim \operatorname{iidN}\left(0, \sigma_{\tau}^{2}\right)$
8. $\beta_{j} \sim \operatorname{iidN}\left(0, \sigma_{\beta}^{2}\right)$
9. $\gamma_{k} \sim \operatorname{iidN}\left(0, \sigma_{\gamma}^{2}\right)$
10. $\eta_{m} \sim \operatorname{iidN}\left(0, \sigma_{\eta}^{2}\right)$
11. $E\left(\tau_{i} \tau_{j}\right)=0$
12. $E\left(\beta_{i} \beta_{j}\right)=0$
13. $E\left(\gamma_{k} \gamma_{l}\right)=0$
14. $E\left(\eta_{m} \eta_{n}\right)=0$
15. $E\left(\tau_{i} \beta_{j}\right)=0$
16. $E\left(\tau_{i} \gamma_{k}\right)=0$
17. $E\left(\tau_{i} \eta_{m}\right)=0$
18. $E\left(\beta_{j} \gamma_{k}\right)=0$
19. $E\left(\beta_{j} \eta_{m}\right)=0$
20. $E\left(\gamma_{k} \eta_{m}\right)=0$

$$
\begin{gathered}
E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S G)-E(S S L) \\
T S S=\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}^{2}-C . F \\
C . F=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}\right)^{2}}{p^{2}}=\frac{\left(\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p^{2}} \\
=\frac{\left(p^{2} \mu+p \sum_{i=1}^{p} \tau_{i}+p \sum_{j=1}^{p} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}+p \sum_{m=1}^{p} \eta_{m}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}\right)^{2}}{p^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+p^{2} \sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq 1} \gamma_{k} \gamma_{l}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2} \\
& \sum \sum_{m \neq \eta} \eta_{m} \eta_{n}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq n} e_{i j(k, m)} e_{g n(L, n)}+2 p^{3} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{3} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{3} \mu \sum_{k=1}^{p} \gamma_{k} \\
& +2 p^{3} \mu \sum_{m=1}^{p} \eta_{m}+2 p^{2} \mu \sum_{i=1}^{p} \Sigma_{j=1}^{p} e_{i j(k, m)}+2 p^{2} \sum_{i=1}^{p} \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 p^{2} \sum_{i=1}^{p} \tau_{i} \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \sum_{i=1}^{p} \tau_{i} \sum_{m=1}^{p} \eta_{m} \\
& +2 p \sum_{i=1}^{p} \Sigma_{j=1}^{p} \tau_{i} e_{i j(k, m)}+2 p^{2} \sum_{j=1}^{p} \beta_{j} \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \sum_{j=1}^{p} \beta_{j} \sum_{m=1}^{p} \eta_{m}+2 p \sum_{i=1}^{p} \Sigma_{j=1}^{p} \beta_{j} e_{i j(k, m)} \\
& =\frac{+2 p^{2} \sum_{k=1}^{p} \gamma_{k} \sum_{m=1}^{p} \eta_{m}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k, m)}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{i j(k, m)}}{p^{2}}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{4} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+\sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+\sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+\sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right) \\
& +p^{2} \sum_{m=1}^{p} E\left(\eta_{m}^{2}\right)+\sum \sum_{m \neq n} E\left(\eta_{m} \eta_{n}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq n} E\left(e_{i j(k, m)} e_{g h n(l, n)}\right)+2 p^{3} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right) \\
& +2 p^{3} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{3} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p^{3} \mu \sum_{m=1}^{p} E\left(\eta_{m}\right)+2 p^{2} \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)+2 p^{2} \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right) \\
& +2 p^{2} \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 p^{2} \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\tau_{i} \eta_{m}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j}(k, m)\right)+2 p^{2} \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right) \\
& +2 p^{2} \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} \beta_{j}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k, m)}\right)+2 p^{2} \sum_{k=1}^{p} \sum_{m=1}^{p} E\left(\gamma_{k} \eta_{m}\right) \\
& +2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k, m)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\eta_{m} e_{i j(k, m)}\right) \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\beta}^{2}+0+p^{3} \sigma_{\gamma}^{2}+0+p^{3} \sigma_{\eta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0}{p^{2}} \\
& =\frac{p^{4} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{3} \sigma_{\beta}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{3} \sigma_{\eta}^{2}+p^{2} \sigma^{2}}{p^{2}} \\
& E(C . F)=p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+\sigma^{2} \\
& \sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j(k, m)}^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)^{2} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p}\left(\mu^{2}+\tau_{i}^{2}+\beta_{j}^{2}+\gamma_{k}^{2}+\eta_{m}^{2}+e_{i j(k, m)}^{2}+2 \mu \tau_{i}+2 \mu \beta_{j}+2 \mu \gamma_{k}+2 \mu \eta_{m}+2 \mu e_{i j(k, m)}\right. \\
& +2 \tau_{i} \beta_{j}+2 \tau_{i} \gamma_{k}+2 \tau_{i} \eta_{m}+2 \tau_{i} e_{i j(k, m)}+2 \beta_{j} \gamma_{k}+2 \beta_{j} \eta_{m}+2 \beta_{j} e_{i j(k, m)} \\
& \left.+2 \gamma_{k} \eta_{m}+2 \gamma_{k} e_{i j(k, m)}+2 \eta_{m} e_{i j(k, m)}\right) \\
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+2 p \mu \sum_{i=1}^{p} \tau_{i} \\
& +2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{m=1}^{p} \tau_{i} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k, m)} \\
& +2 \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \beta_{j} \eta_{m}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}+2 \sum_{k=1}^{p} \sum_{m=1}^{p} \gamma_{k} \eta_{m} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \gamma_{k} e_{i j(k, m)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \eta_{m} e_{i j(k, m)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& =p^{2} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum_{m=1}^{p} E\left(\eta_{m}^{2}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right) \\
& +2 p \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p \mu \sum_{m=1}^{p} E\left(\eta_{m}\right) \\
& +2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
& +2 \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\tau_{i} \eta_{m}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k, m)}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right) \\
& +2 \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\beta_{j} \eta_{m}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k, m)}\right)+2 \sum_{k=1}^{p} \sum_{m=1}^{p} E\left(\gamma_{k} \eta_{m}\right) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\gamma_{k} e_{i j(k, m)}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\eta_{m} e_{i j(k, m)}\right) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0 \\
& +0+0+0+0+0 \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p^{2} \sigma^{2} \\
& E(T S S)=E\left[\sum_{i=1}^{p} \sum_{j=1}^{p} Y_{i j}^{2}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p^{2} \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-p \sigma_{\eta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+p(p-1) \sigma_{\beta}^{2}+p(p-1) \sigma_{\gamma}^{2}+p(p-1) \sigma_{\eta}^{2}+\left(p^{2}-1\right) \sigma^{2} \\
& S S R=\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}-C . F \\
& \frac{\sum_{i=1}^{p} R_{i}^{2}}{p}=\frac{\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\left(p \mu+p \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{m=1}^{p} \eta_{m}+\sum_{j=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
& =\frac{\sum_{i=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+p^{2} \tau_{i}^{2}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}^{2}+\sum \sum_{k \neq 1} \gamma_{k} \gamma_{l}+\sum_{m=1}^{p} \eta_{m}^{2} \\
+\sum \sum_{m \neq n} \eta_{m} \eta_{n}+\sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p^{2} \mu \tau_{i}+2 p \mu \sum_{j=1}^{p} \beta_{j} \\
+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{j=1}^{p} e_{i j(k, m)}^{p+2 p \tau_{i} \sum_{j=1}^{p} \beta_{j}+2 p \tau_{i} \sum_{k=1}^{p} \gamma_{k}} \\
+2 p \tau_{i} \sum_{m=1}^{p} \eta_{m}+22 \tau_{i} \sum_{j=1}^{p} e_{i j(k, m)}^{p}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \beta_{j} \eta_{m} \\
+2 \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}^{p}+2 \sum_{k=1}^{p} \sum_{m=1}^{p} \gamma_{k} \eta_{m}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k, m)}+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \eta_{m} e_{i j(k, m)}
\end{array}\right)}{p}
\end{aligned}
$$

$$
\begin{gathered}
p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} \tau_{i}^{2}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{i \neq j} \beta_{i} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}^{2}+p \sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+p \sum_{m=1}^{p} \eta_{m}^{2} \\
+p \sum_{m \neq n} \eta_{m} \eta_{n}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, z)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j} \\
+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{p}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{k=1}^{p} \sum_{i=1}^{p} \tau_{i} \gamma_{k} \\
+2 p \sum_{m=1}^{p} \sum_{i=1}^{p} \tau_{i} \eta_{m}+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} e_{i j(k, m)}^{p}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \beta_{j} \gamma_{k}+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \beta_{j} \eta_{m} \\
=\frac{+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{j} e_{i j(k, m)}^{p}+2 \sum_{k=1}^{p} \sum_{m=1}^{p} \gamma_{k} \eta_{m}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k, m)}+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \eta_{m} e_{i j(k, m)}}{p}
\end{gathered}
$$

Apply expectation on both sides
$p^{3} \mu^{2}+p^{2} \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+p \sum_{m=1}^{p} E\left(\eta_{m}^{2}\right)$
$+p \sum_{m \neq n} E\left(\eta_{m} \eta_{n}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)$
$+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p^{2} \mu \sum_{m=1}^{p} E\left(\eta_{m}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+$
$2 p \sum_{k=1}^{p} \sum_{i=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 p \sum_{m=1}^{p} \sum_{i=1}^{p} E\left(\tau_{i} \eta_{m}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k, m)}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\beta_{j} \gamma_{k}\right)$ $+2 \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\beta_{j} \eta_{m}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k, m)}\right)+2 \sum_{k=1}^{p} \sum_{m=1}^{p} E\left(\gamma_{k} \eta_{m}\right)$ $+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k, m)}\right)+2 \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} e_{i j(k, m)}\right)$

$$
\begin{aligned}
& p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma_{\eta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0 \\
& =\frac{+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{3} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+p \sigma^{2} \\
& E(S S R)=E\left[\frac{\sum_{i=1}^{p} R_{i}^{2}}{p}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-p \sigma_{\eta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2} \\
& S S C=\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}-C . F \\
& \frac{\sum_{j=1}^{p} C_{j}^{2}}{p}=\frac{\sum_{j=1}^{p}\left(\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p} \\
& =\frac{\sum_{j=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+p \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+\sum_{m=1}^{p} \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}\right)^{2}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p^{2} \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right)+p \sum \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+p \sum_{m=1}^{p} E\left(\eta_{m}^{2}\right) \\
& +p \sum_{m \neq n} E\left(\eta_{m} \eta_{n}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq n} E\left(e_{i j(k, m)} e_{g h(l, z)}\right)+2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right) \\
& +2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p^{2} \mu \sum_{m=1}^{p} E\left(\eta_{m}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right)+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 \sum_{k=1}^{p} \sum_{i=1}^{p} E\left(\tau_{i} \gamma_{k}\right) \\
& +2 \sum_{m=1}^{p} \sum_{i=1}^{p} E\left(\tau_{i} \eta_{m}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} e_{i j(k, m)}\right)+2 p \sum_{k=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} \gamma_{k}\right)+2 p \sum_{m=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} \eta_{m}\right) \\
& =\frac{+2 p \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\beta_{j} e_{i j(k, m)}\right)+2 \sum_{k=1}^{p} \sum_{m=1}^{p} E\left(\gamma_{k} \eta_{m}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k, m)}\right)+2 \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} e_{i j(k, m)}\right)}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+0+p^{2} \sigma_{\eta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{3} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+p \sigma^{2} \\
& E(S S C)=E\left[\frac{\sum_{j=1}^{p} C_{j}^{2}}{p}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-p \sigma_{\eta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2} \\
& S S G=\frac{\sum_{k=1}^{p} G_{k}^{2}}{p}-C . F \\
& \frac{\sum_{k=1}^{p} G_{k}^{2}}{p}=\frac{\sum_{k=1}^{p}\left(\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p} \\
& =\frac{\sum_{k=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+p \gamma_{k}+\sum_{m=1}^{p} \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
& \sum_{k=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \gamma_{k}^{2} \\
+\sum_{m=1}^{p} \eta_{m}^{2}+\sum \sum_{m \neq n} \eta_{m} \eta_{n}+\sum_{i=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} e_{i j(k, m)} e_{g j(l, n)}+2 p \mu \sum_{i=1}^{p} \tau_{i} \\
+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \gamma_{k}+2 p \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} e_{i j(k, m)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
+2 p \gamma_{k} \sum_{i=1}^{p} \tau_{i}+2 \sum_{i=1}^{p} \sum_{m=1}^{p} \tau_{i} \eta_{m}+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k, m)}+2 p \gamma_{k} \sum_{j=1}^{p} \beta_{j} \\
+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \eta_{m} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \beta_{j}+2 p \gamma_{k} \sum_{m=1}^{p} \eta_{m}+2 p \gamma_{k} \sum_{i=1}^{p} e_{i j(k, m)} \\
+2 \sum_{i=1}^{p} \sum_{m=1}^{p} \eta_{m} e_{i j(k, m)}
\end{array}\right) \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum_{i \neq j} \beta_{i} \beta_{j}+p^{2} \sum_{k=1}^{p} \gamma_{k}^{2} \\
& +p \sum_{m=1}^{p} \eta_{m}^{2}+p \sum_{m \neq n} \eta_{m} \eta_{n}+\sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g h(l, n)} \\
& +2 p^{2} \mu \sum_{i=1}^{p} \tau_{i}+2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j}+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} \tau_{i}+2 \sum_{i=1}^{p} \sum_{m=1}^{p} \tau_{i} \eta_{m}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} e_{i j(k, m)} \\
& +2 p \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} \beta_{j}+2 \sum_{j=1}^{p} \sum_{m=1}^{p} \eta_{m} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \beta_{j}+2 p \sum_{m=1}^{p} \sum_{k=1}^{p} \gamma_{k} \eta_{m} \\
& \frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k, m)}+2 \sum_{i=1}^{p} \sum_{m=1}^{p} \eta_{m} e_{i j(k, m)}}{p}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p^{2} \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right) \\
& +p \sum_{m=1}^{p} E\left(\eta_{m}^{2}\right)+p \sum_{m \neq n} E\left(\eta_{m} \eta_{n}\right)+\sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g h(l, n)}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p^{2} \mu \sum_{m=1}^{p} E\left(\eta_{m}\right)+2 p \mu \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)}\right) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} \tau_{i}\right)+2 \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\tau_{i} \eta_{m}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} e_{i j(k, m)}\right) \\
& +2 p \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} \beta_{j}\right)+2 \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} \beta_{j}\right)+2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)} \beta_{j}\right)+2 p \sum_{m=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} \eta_{m}\right) \\
& \frac{+2 p \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k, m)}\right)+2 \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} e_{i j(k, m)}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sigma_{\beta}^{2}+0+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+0+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0 \\
& =\frac{+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{3} \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+p \sigma^{2} \\
& E(S S G)=E\left[\frac{\sum_{k=1}^{p} G_{k}^{2}}{p}\right]-E(C . F) \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p \sigma_{\eta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-p \sigma_{\eta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2} \\
& S S L=\frac{\sum_{m=1}^{p} L_{m}^{2}}{p}-C . F \\
& \frac{\sum_{m=1}^{p} L_{m}^{2}}{p}=\frac{\sum_{m=1}^{p}\left(\sum_{i=1}^{p}\left(\mu+\tau_{i}+\beta_{j}+\gamma_{k}+\eta_{m}+e_{i j(k, m)}\right)\right)^{2}}{p} \\
& =\frac{\sum_{m=1}^{p}\left(p \mu+\sum_{i=1}^{p} \tau_{i}+\sum_{j=1}^{p} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}+p \eta_{m}+\sum_{i=1}^{p} e_{i j(k, m)}\right)^{2}}{p} \\
& =\frac{\sum_{m=1}^{p}\left(\begin{array}{c}
p^{2} \mu^{2}+\sum_{i=1}^{p} \tau_{i}^{2}+\sum \sum_{i \neq j} \tau_{i} \tau_{j}+\sum_{j=1}^{p} \beta_{j}^{2}+\sum \sum_{i \neq j} \beta_{i} \beta_{j}+\sum_{k=1}^{p} \gamma_{k}^{2} \\
+\sum \sum_{k \neq l} \gamma_{k} \gamma_{l}+p^{2} \eta_{m}^{2}+\sum_{i=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} e_{i j(k, m)} e_{g j(l, n)}+2 p \mu \sum_{i=1}^{p} \tau_{i} \\
+2 p \mu \sum_{j=1}^{p} \beta_{j}+2 p \mu \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \mu \eta_{m}+2 p \mu \sum_{i=1}^{p} e_{i j(k, m)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \eta_{m} \sum_{i=1}^{p} \tau_{i}+2 \sum_{i=1}^{p} \tau_{i} e_{i j(k, m)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} \beta_{j} \\
+2 p \eta_{m} \sum_{j=1}^{p} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \beta_{j}+2 p \eta_{m} \sum_{k=1}^{p} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k, m)} \\
+2 p \eta_{m} \sum_{i=1}^{p} e_{i j(k, m)}
\end{array}\right)}{p} \\
& p^{3} \mu^{2}+p \sum_{i=1}^{p} \tau_{i}^{2}+p \sum \sum_{i \neq j} \tau_{i} \tau_{j}+p \sum_{j=1}^{p} \beta_{j}^{2}+p \sum \sum_{i \neq j} \beta_{i} \beta_{j}+p \sum_{k=1}^{p} \gamma_{k}^{2} \\
& +p \sum_{k \neq l} \gamma_{k} \gamma_{l}+p^{2} \sum_{m=1}^{p} \eta_{m}^{2}+\sum_{i=1}^{p} \sum_{m=1}^{p} e_{i j(k, m)}^{2}+\sum_{i \neq g} \sum_{j \neq h} e_{i j(k, m)} e_{g j(l, n)}+2 p^{2} \mu \sum_{i=1}^{p} \tau_{i} \\
& +2 p^{2} \mu \sum_{j=1}^{p} \beta_{j}+2 p^{2} \mu \sum_{k=1}^{p} \gamma_{k}+2 p^{2} \mu \sum_{m=1}^{p} \eta_{m}+2 p \mu \sum_{i=1}^{p} \sum_{m=1}^{p} e_{i j(k, m)}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} \tau_{i} \beta_{j} \\
& +2 \sum_{i=1}^{p} \sum_{k=1}^{p} \tau_{i} \gamma_{k}+2 p \sum_{i=1}^{p} \sum_{m=1}^{p} \tau_{i} \eta_{m}+2 \sum_{i=1}^{p} \sum_{m=1}^{p} \tau_{i} e_{i j(k, m)}+2 \sum_{j=1}^{p} \sum_{k=1}^{p} \gamma_{k} \beta_{j} \\
& +2 p \sum_{j=1}^{p} \sum_{m=1}^{p} \eta_{m} \beta_{j}+2 \sum_{i=1}^{p} \sum_{j=1}^{p} e_{i j(k, m)} \beta_{j}+2 p \sum_{k=1}^{p} \sum_{m=1}^{p} \eta_{m} \gamma_{k}+2 \sum_{i=1}^{p} \sum_{k=1}^{p} \gamma_{k} e_{i j(k, m)} \\
& +2 p \sum_{i=1}^{p} \sum_{m=1}^{p} \eta_{m} e_{i j(k, m)}
\end{aligned}
$$

Apply expectation on both sides

$$
\begin{aligned}
& p^{3} \mu^{2}+p \sum_{i=1}^{p} E\left(\tau_{i}^{2}\right)+p \sum \sum_{i \neq j} E\left(\tau_{i} \tau_{j}\right)+p \sum_{j=1}^{p} E\left(\beta_{j}^{2}\right)+p \sum \sum_{i \neq j} E\left(\beta_{i} \beta_{j}\right)+p \sum_{k=1}^{p} E\left(\gamma_{k}^{2}\right) \\
& +p \sum_{k \neq l} E\left(\gamma_{k} \gamma_{l}\right)+p^{2} \sum_{m=1}^{p} E\left(\eta_{m}^{2}\right)+\sum_{i=1}^{p} \sum_{m=1}^{p} E\left(e_{i j(k, m)}^{2}\right)+\sum_{i \neq g} \sum_{j \neq h} E\left(e_{i j(k, m)} e_{g j(l, n)}\right) \\
& +2 p^{2} \mu \sum_{i=1}^{p} E\left(\tau_{i}\right)+2 p^{2} \mu \sum_{j=1}^{p} E\left(\beta_{j}\right)+2 p^{2} \mu \sum_{k=1}^{p} E\left(\gamma_{k}\right)+2 p^{2} \mu \sum_{m=1}^{p} E\left(\eta_{m}\right) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(\tau_{i} \beta_{j}\right)+2 p \mu \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(e_{i j(k, m)}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\tau_{i} \gamma_{k}\right)+2 p \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\tau_{i} \eta_{m}\right) \\
& +2 \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\tau_{i} e_{i j(k, m)}\right)+2 \sum_{j=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} \beta_{j}\right)+2 p \sum_{j=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} \beta_{j}\right) \\
& +2 \sum_{i=1}^{p} \sum_{j=1}^{p} E\left(e_{i j(k, m)} \beta_{j}\right)+2 p \sum_{k=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} \gamma_{k}\right)+2 \sum_{i=1}^{p} \sum_{k=1}^{p} E\left(\gamma_{k} e_{i j(k, m)}\right) \\
& \frac{+2 p \sum_{i=1}^{p} \sum_{m=1}^{p} E\left(\eta_{m} e_{i j(k, m)}\right)}{p} \\
& p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+0+p^{2} \sigma_{\beta}^{2}+0+p^{2} \sigma_{\gamma}^{2}+0+p^{3} \sigma_{\eta}^{2}+p^{2} \sigma^{2}+0+0+0+0+0+0+0+0+0 \\
& =\frac{+0+0+0+0+0+0+0}{p} \\
& =\frac{p^{3} \mu^{2}+p^{2} \sigma_{\tau}^{2}+p^{2} \sigma_{\beta}^{2}+p^{2} \sigma_{\gamma}^{2}+p^{3} \sigma_{\eta}^{2}+p^{2} \sigma^{2}}{p} \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p \sigma^{2} \\
& E(S S L)=E\left[\frac{\sum_{m=1}^{p} L_{m}^{2}}{p}\right]-E[C . F] \\
& =p^{2} \mu^{2}+p \sigma_{\tau}^{2}+p \sigma_{\beta}^{2}+p \sigma_{\gamma}^{2}+p^{2} \sigma_{\eta}^{2}+p \sigma^{2}-p^{2} \mu^{2}-p \sigma_{\tau}^{2}-p \sigma_{\beta}^{2}-p \sigma_{\gamma}^{2}-p \sigma_{\eta}^{2}-\sigma^{2} \\
& =p(p-1) \sigma_{\eta}^{2}+(p-1) \sigma^{2} \\
& E(S S E)=E(T S S)-E(S S R)-E(S S C)-E(S S G)-E(S S L) \\
& =p(p-1) \sigma_{\tau}^{2}+p(p-1) \sigma_{\beta}^{2}+p(p-1) \sigma_{\gamma}^{2}+p(p-1) \sigma_{\eta}^{2}+\left(p^{2}-1\right) \sigma^{2}-p(p-1) \sigma_{\tau}^{2}-(p-1) \sigma^{2} \\
& -p(p-1) \sigma_{\beta}^{2}-(p-1) \sigma^{2}-p(p-1) \sigma_{\gamma}^{2}-(p-1) \sigma^{2}-p(p-1) \sigma_{\eta}^{2}-(p-1) \sigma^{2} \\
& =\left(p^{2}-1-p+1-p+1-p+1-p+1\right) \sigma^{2} \\
& =\left(p^{2}-4 p+3\right) \sigma^{2}=\left(p^{2}-3 p-p+3\right) \sigma^{2} \\
& =(p(p-3)-1(p-3)) \sigma^{2} \\
& =(p-3)(p-1) \sigma^{2} \\
& E(M S E)=\frac{E(S S E)}{(p-1)(p-3)}=\frac{(p-3)(p-1) \sigma^{2}}{(p-1)(p-3)}=\sigma^{2} \\
& E(M S R)=\frac{E(S S R)}{p-1}=\frac{p(p-1) \sigma_{\tau}^{2}+(p-1) \sigma^{2}}{p-1}=p \sigma_{\tau}^{2}+\sigma^{2} \\
& E(M S C)=\frac{E(S S C)}{p-1}=\frac{p(p-1) \sigma_{\beta}^{2}+(p-1) \sigma^{2}}{p-1}=p \sigma_{\beta}^{2}+\sigma^{2} \\
& E(M S G)=\frac{E(S S G)}{p-1}=\frac{p(p-1) \sigma_{\gamma}^{2}+(p-1) \sigma^{2}}{p-1}=p \sigma_{\gamma}^{2}+\sigma^{2} \\
& E(M S L)=\frac{E(S S L)}{p-1}=\frac{p(p-1) \sigma_{\eta}^{2}+(p-1) \sigma^{2}}{p-1}=p \sigma_{\eta}^{2}+\sigma^{2}
\end{aligned}
$$

