
CHAPTER 3

RESPONSE SURFACE METHODOLOGY

3.1 Introduction

Response surface Methodology (RSM) is a collection of mathematical and 

statistical techniques useful for analysing problems where several independent variables 

influence a dependent variable or response, and the goal is to optimise this response. We

denote the independent variables by .v/ .yj, .y.j ................ .y*. It is assumed that these

variables are continuous and controllable by the experimenter with negligible error. The 

response, ‘v’ is assumed to be a random variable. RSM is used for the design and 

analysis of experiments; it seeks to relate an average response to the value of quantitative 

variables that effect response. RSM answers different kind of questions, such as the 

following [68],

(i) How is a particular response affected by a given set of input variables over 

some specified region of interest?

(ii) To what level the inputs are to be controlled, to give a product simultaneously 

satisfying desired specifications?

(iii) What values of inputs will yield a maximum for a specific response, and what 

is the nature of response surface close to the maximum?

Figure 3.1 is a flow diagram, showing possible paths that can be taken in response 

surface studies.
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The relationship between the dependent variable and independent variables can be 

represented as [68, 70].

y = f(x],x2,x3,.......xk) + s (3.1)

where, e represents the noise or error observed in the response ‘y'.

If we denote the expected response by

E{y) = f(*\>x 2,x3,....... xk) = rj (3.2)

then, the surface represented by

?7 = /(x1,a-2,x3,.......xk) (3.3)

is called the response surface. This surface is drawn between some response such as 

materia] removal rate whose levels are denoted £nT, and number of quantitative variables 

(or factors), whose levels are denoted by.Y/, x?, x3..... x*.

The feature of the surface of greatest interest is often the values of variables x/( xj, x3 

..... x^ for which m is a maximum or minimum.

In most RSM problems, the form of the relationship between the response and the 

independent variables is unknown. Thus, the first step in RSM is to find suitable 

approximation for the true functional relationship between y and the set of independent 

variables. Usually, a low-order polynomial in some region of the independent variable is 

employed.

If the response is well modelled by a linear function of the independent variables, then 

the approximating function is the first-order model [68-85],
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OBJECTIVE

Figure 3.1 Flow Diagram Showing Different Paths in RSM
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y ~ Pox0 + P\x\ + PiX2 +..........Pkxk + £ (A .4)

If there is curvature in the system, then a polynomial of higher degree must be used, such

as second-order model

j' = AA+i>A-+S (3.5)

i=l i=l i<j

Almost all RSM problems use one or both of these models. Of course, it is unlikely that a 

polynomial model will be a reasonable approximation of the true functional relationship 

over tire entire space of the independent variables, but for a relatively small region they 

usually work.

The method of least squares is used to estimate the parameters in the approximating 

polynomials. The response surface analysis is then performed using the fitted surface; If 

the fitted surface is an adequate approximation of the true response function, then 

analysis of the fitted surface will be approximately equivalent to analysis of the actual 

system. The model parameters can be estimated most effectively if proper designs are 

used to collect the data. Designs for fitting response surface are called response surface 

designs.

3.2 First Order Designs

In this case the response surface is fitted with polynomials of first degree.

7 = Poxo + P\x\ + Pixi +.......+ Pkxk (3-6)

or y = b0x0 + byv, + b2x2 +.........+ bkxk (3.7)
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Fitting of a polynomial can be treated as a particular case of multiple linear regressions. 

The 2k factorial design in single or fractional replication, are convenient in exploratory 

work, for fitting a linear relation between the response and variables. Box et al [78, 85- 

86] have discussed the suitable fractional designs for exploring response surfaces.

These designs do not provide any estimate of the experimental error variance. This can 

be obtained

by replication of the whole experiment;

by the use of an estimate from previous experimentation, if there is 

convincing evidence that error variance remains stable through time; 

by adding to the 2k factorial a number of tests made at the point at which all 

‘x’ have the value ‘O’ in the coded scale.

The linear equation in k (x) variables contains (k+1) regression coefficients that must be 

estimated. The smallest experiment to which a linear equation can be fitted is one that 

has (k + 1) observations.

If there is no lack of fit and sufficient precision is obtained, on the basis of this, direction 

of steepest ascent is determined and exploration is continued. Otherwise try with 

transformations of one or more variables and response. Careful blocking and expanding 

the size of design can increase precision. If satisfactory fit and precision is not obtained 

then second order design are to be resorted.

(i)

(ii)

(iii)
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3.3 Second - Order Design

The general form of second-degree polynomial can be represented as equation 3.8 

[68,70], •

y = {bux0 + V, + b2x2 +.... + bkxk)+\bl2xtx2 + 6,3x,x3 +.... + 6(*_, ,*(*_„**)

+ (6,lx|- + b22xl +-••• + bux~k j

The source contains linear terms ,v/, x?. ........ay; squared terms x2, x/, ............. xf2 and

cross product tenns x/.y?, x/x;, ........... x*_/xy.

In order to estimate the regression coefficients in this model, each variable must take at 

least three different levels. Use of factorial designs of 3k will be necessary in this case. 

Main disadvantage of a 3k factorial design is that with more than three variables 

experiments become large. Further, Box and Wilson pointed out that coefficient bn, 1)22. 

..........bu of squared tenns are estimated with relatively low precision.

Box and Wilson developed a new design for fitting the second order response surface. 

The composite designs are constructed by adding further treatment combinations to the 

first order design. Central composite designs consist of additional (2k + 1) treatments,

(0, 0, 0, ...... 0 ); (-a, 0, 0, ........0); (a, 0, 0,...........0 ); ( 0, -a, 0, .......... 0);

(0, a, 0, ...........0); ..................... (0, 0, 0, ...........a)

Total number of treatment combinations is (2k + 2k + 1). The value of ‘a’ can be chosen 

to make the regression coefficient orthogonal to one another. Central composite design 

can be fitted into a sequential program of experimentation.
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3.3.1 Non-Central Composite Design

This design has k extra points, one for each factor. Non-central Composite 

Design is used when 2k factorial experiments have suggested that the point of maximum 

response is near to one of the factor combinations than to the centre. For three-factor 

systems central composite and non-central composite designs are illustrated in Figure 

3.2.

3.3.2 Rotatable Second Order Design

The design used for fitting a second order response surface should be easy to 

compute. Box and Hunter proposed the criterion of rotatability. In a rotatable design, 

standard error is the same for all points.

Box and Hunter showed that a rotatable design is obtained by making test at ns points 

equally spaced around circumference of a circle in the x/, xi plane with centre (0, 0), plus 

one or more tests at the centre. The points on the circumference lie at the vertices of a 

regular polygon inscribed in a circle. Since there are six regression coefficients to be 

detemiined when k = 2, the smallest design consists of a pentagon plus one point at the 

centre.

The replicated points at the centre have two purposes. They provide (n0 -1) degrees of 

freedom for estimating the experimental error, and they determine the precision of y at 

the centre. If there are many replications of the centre point, the standard error ofy is low

at the centre and with a few replications at the centre standard error ofy may be greater.



As a compromise, Box and Hunter suggested that the number of centre points be chosen 

so that standard error of v is approximately the same at the centre as at all points on circle 

with radius ‘1’ in coded unit.

Box and Hunter have derived rotatable second order design for any number of

independent variables .y/, x2, x3, ............... .v*. These designs are composed using the

vertices of regular figures or combinations of regular figures, with one or more points at 

the centre of design array.

For rotatability, the axis arms of measure polytope should be a = 2 k/4. The total number 

of points required for rotatable central composite design is 2k + 2k + n0, where n0 equals 

the number of points at the origin.

3.3.3 Determination of Factor Levels for Optimum Condition

At the outset, the experimenter must decide which factors are to be included in 

the experiments. Sometimes there are initially as may as a dozen or more factors that 

might influence the response. Some preliminary weeding out of factors that seem likely 

to be of minor importance is necessary. The range within which the level of each factor 

is to be varied must also be selected [68-85],

3.4 The Method of Steepest Ascent

RSM is a sequential procedure. Often, when we are at a point on the response 

surface that is remote from the optimum, such as the current operating conditions in
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figure 4.3, there is little curvature in the system and the first order model will be 

appropriate. The objective is to lead the experimenter rapidly and efficiently along a path 

of improvement toward the vicinity of the optimum. Once the region of the optimum has 

been found, a more elaborate model, such as the second-order model, may be employed, 

and an analysis may be performed to locate the optimum. From figure 3.3, we see that 

the analysis of a response surface can be thought of as “climbing a hill,” where the top of 

the hill represents the point of maximum response. If the true optimum is a point of 

minimum response, then we may think of “descending into valley”.

The method of steepest ascent is a sequential procedure for moving sequentially along 

the path of steepest ascent, that is, in the direction of the maximum increase in the 

response. Of course, if minimization is desired, then we call this technique the method of 

steepest decent [68-85]. The eventual objective of the RSM is to determine the optimum 

operating conditions for the system or to determine a region of the factor space in which 

operating requirements are satisfied. When we are remote from the optimum, we usually 

assume that a first order model is an adequate approximation to the true surface in a 

small region of the x’s.

Box and Wilson proposed the method of steepest ascent/decent. The maximum is 

located by means of a series of experiments, each planned from the result of the 

proceeding ones. At the end of each experiment a polynomial approximation to response 

surface is fitted to the results and is used to determine the nature of the next experiment. 

The first experiment has two purposes.
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(i) To fit linear equation

(ii) To test whether the linear approximation fits within the limits of experimental 

errors.

The 2k factorial or functional designs are useful for this purpose.

= Points of Initial 
23 Factorial

x = Points added for 
Composite Design

Non Central Composite Design

Figure 3.2 Central and non-Central Composite Design [68, 70]
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Table 3.1 Central Composite Rotatable Designs [70].
k nc ns Ho Total a Blocking
2 4 4 5 13 1.414 I - Four Points of Squares plus two centre points

II - Four Points at star plus two centre points.
Total number of points in blocked design =12

nJ 8 6 6 20 1.682 I & II - Formed from 14 replicates of 2i factorial 
each with two centre points
III - Six points of star plus two centres points.
Total number of points in blocked design = 20

4 16 8 7 31 2.000 I & II - Formed from 14 replicates of 2s factorial 
each with two centre points. Blocking is 
orthogonal.
Total number of points in blocked design = 30

5 32 10 10 52 2.378 I to IV - Formed from 14 replicates of 2s factorial 
design each with two centre
V - 10 of the star design plus four centre points.
For orthogonal blocking take = 2.336.
Total number of points in blocked design = 54

5 16 12 15 91 2.000 I- - Formed of the 16 points of the 14 replicates of2:' 
factorial plus six centre points.
II - 110 points star design plus one centre point.
For orthogonal blocking take = 2.336
Total number of points in blocked design = 32 
Blocked design = 90

6 64 12 15 91 2.828 I to VIII - Formed from the eight 1/8 replicates of 
the 2& factorial, each with one centre points.
Total number of points in block design = 9
IX - 12 points of star design plus six centre points.
For orthogonal blocking take = 2.336
Total number of points = 32.

6 32 12 9 53 2.378 I & II - Formed from 14 fractions of the */z replicate 
of 2 factorial design. Each block contains 16 points 
plus four centre points. Ill - 12 points of star design 
plus two centre points. For orthogonal blocking take 
= 2.336
Total number of points in blocked design = 54

7 128 14 21 163 3.333 I to XVI - Formed from 1/16 replicates of
2factorial, each block containing 8 points plus an 
additional centre point. XVII - 14 points of star 
design plus 11 centre points For orthogonal 
blocking take 2.364.
Total number of points in blocked design = 169

7 64 14 14 92 2.828 I to VIII - Formed from 1/8 fractions of 14 
replicates of the 2 factorial design. Each block 
containing 8 points plus one point at the centre. IX - 
points of the star design plus four centre points.
For orthogonal blocking take = 2.364.
Total number of points in blocked design = 90
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When the first experiment is complete the region of experimentation is shifted to another 

set of level of x’s. This set is to be chosen so that maximum expected increase in 

response occurs. If the centre of the first experiment is taken as the origin, the problem

is to move from the origin, with x co-ordinates (0, 0, 0 ....... 0) to the point, say P, with

co-ordinates (x xx j..............  x ’*), so that the response 0(x'/, * ’2, x ’3, ........ , x '*) is

maximized.

For the fitted first order model, given by equation 3.9, the contours of r] are a series of 

parallel lines such as that shown in figure 3.4. The direction of steepest ascent is the 

direction in which i] increases most rapidly. This direction is parallel to the normal to the 

fitted response surface. We usually take as the path of steepest ascent the line through the 

centre of the region of interest and normal to the fitted surface. Thus, the steps along the 

path are proportional to the regression coefficients (/?.). The experimenter based on 

process knowledge or other practical considerations determines the actual step size.

Figure 3.3.The sequential nature of RSM [68]
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Experiments are conducted along the path of steepest ascent until no further increase in 

response is observed.

v=A+ZA*« (3-9)
1=1

The change in the response depends upon the size of the jump that is made from 0 to 

point P. By geometrical analogy, the ‘distance’ r from 0 to P is defined as

r = -sj(xal+x'22+x'23+................... + x'2k) (3.10)

Path of this steepest ascent is determined. Exploration is continued with new 

experiments. In course of time a situation is reached in which 2k factorial designs give 

one of the following

(i) The linear equation still appears to fit, but all coefficients bi are small. This is 

the indication of approach of Plateau.

(ii) The lack of fit terms shows that the linear approximation is inadequate. This 

indicates that the experiment is carried out in the region in which curvature of 

the surface exists.

For further exploration, second order designs are used. Second order designs are 

reconstructed by adding additional points to the last 2k factorial experiments.

3.5 Canonical Analysis

Once the stationary point is found, it is usually necessary to characterise the 

response surface in the immediate vicinity if this point. Characterise means determine
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whether the stationary point is a point of maximum or minimum response or a saddle 

point. We also usually want to study the relative sensitivity of the response to the

variables xi, X2, xj, .............. , Ay-. The most straightforward way to do this is to examine a

contour plot of the fitted model. If there are only two or three process variables, the 

construction and interpretation of this contour plot is relatively easy. However, even 

when there are relatively few variables, a more formal analysis, called the Canonical 

analysis, can be useful.

Figure 3.4 First order response surface and path of steepest ascent [68]

To gain an understanding of the nature of the response surface, canonical analysis can be 

effectively used. Canonical analysis transforms the estimated regression equation into a 

simpler form and interprets the resulting expression in terms of geometric concepts.

A canonical equation is an equation transformed to a new co-ordinate system by 

translation of the centre of the old co-ordinates to extreme of the response surface with 

subsequent rotation of the axis to achieve symmetry. Figure 3.5 illustrates the canonical 

transformation procedure. The translation corresponds to deletion of the linear terms; the
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rotation corresponds to the deletion of the cross product terms. Hence canonical 

equations consists only quadratic effects.

Figure 3.5 Transformation of coordinates in to canonical coordinates [70]

Second-degree equation for the two variable x\ and X2 is given by equation 3.11

y = b0 + blxl +b2x2 + buxf +bnx\ + b]2x]x2 (3-11)

The coefficient b| arid bj are called the linear effect; bj i and b22 the quadratic effects and 

b/2 the interactions effect. Canonical equation is

y = ys =buxf + b22 x\ (3.12)

Where ys = predicted response at the centre of response surface.

Figure 3.6 illustrates the contours for second order models with two independent 

variables and Table 3.2 gives the interpretation. The second order response surface with 

three independent variables is represented by equation 3.13.

y — b„ -f-/?,A', +/>,.x2 +by\y +buxf +b22x\ +b2ix2 +/jp.r,x2 +6]Vy,.v3 (3.13)
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(3.14)y, =Kx; +bi X-y
+ 633X3

In general, analysis of k dimensional second-degree fitted surface will follow the same 

lines. From the (k+1) (k +2)/2 coefficients of the original equation, calculate;

(i) The k co-ordinates of the new centre x/s, X2S, ......... x& and value ys of the

response at this point.

(ii) The canonical form of the equation

v = vv = buXj + b22x; + 633X3 +.................. + bkk x2k (3.15)

which contain k coefficients.

(iii) The k equations of the new co-ordinates x’s in terms of the old co-ordinates 
x’s.

Table 3.2 Interpretation of the Canonical Equation [70]
Sr.
No

Case
Relations

Coefficient
Signs

B,, 0,,

Types of 
Curves

Geometric
Interpretation

Centre Figure
3.6

1. Bn= B22 - Circles Circular Hill Maximum (a)
2. B11 = B22 + + Circles Circular Valley Minimum (a)
3. Bn- B22 - Ellipses Elliptical Hill Maximum (b)
4. Bn= B22 + + Ellipses Elliptical Valley Minimum (b)
5. B1 j ~ B22 + Hyperbola Symmetrical

Saddle
Saddle
point

(c)

6. Bi 1= B22 + Hyperbola - do - - do - (c)
7. B11 = B22 + Hyperbola Elongated Saddle - do - (d)
8. B22=0 0 Straight

lines
Stationery Ridge None (e)

9. b22=o 0 Parabolas Rising Ridge At Infinity (f)
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(a) (b> (c)

Figure 3.6 Contours for second order models with two independent variables [70]

3.6 Conclusion

Response Surface Methodology is the tool used to obtain the empirical models of 

the machinability parameters in terms of the variables of electro discharge machining 

after identifying their relative contribution using Taguchi Technique. The method of 

Steepest Ascent/Descent can be effectively used to identify the optimum values of the 

responses.
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