
Alpha Lattice Designs

(1) These are incomplete block designs (sometimes
balanced) that are resolvable.

Resolvable: Incomplete blocks group together into
“super-blocks” that are complete.

Example of a resolvable design for 9 treatments:
Graeco-Latin square (table of these Appendix 6 B)

1 2 3
: 4 5 6

7 8 9

A B C A B C
B C A C A B trts T
C A B B C A

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜=⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎠

Split up treatments by rows, columns, square 1 letters
and square 2 letters (4 superblocks)
 T Letters
 Rows Cols Sq 1 Sq 2

1 4 7 1 2 3 1 2 3 1 2 3
2 5 8 4 5 6 6 4 5 5 6 4
3 6 9 7 8 9 8 9 7 9 7 8

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Note: (optional) for p a prime number, there are p-1
orthogonal pxp Latin squares that you can construct
as shown on page 155. A simplified version follows:

Let i and j represent the row and column number of
an entry in square k, k=1 to p-1.

Square k (1,2,…,p-1) has i j entry (1 through p) given
by k(i-1) + (j-1) reduced modulo p.

Square 1 (k=1), k(i-1)+(j-1) = (i-1)+(j-1).
 row i=1 (i-1=0) has entries 1(0)+(j-1) = j-1 =0 1 2,
 row i=2 has entries 1(2-1)+(j-1) = 1+(j-1) =1 2 0,
 row i=3 has entries 1(3-1)+(j-1) = 2+(j-1) = 2 0 1.

Square 2 has (i,j,) entry 2(i-1)+(j-1).

Rows: (j-1): 0 1 2, 2+(j-1) :2 0 1, 4+(j-1) :1 2 0

(2) Alpha Lattices are resolvable designs with
treatments assigned by cyclic permutations of the
treatment numbers.

Example of cyclic permutation, t=5 treatments
(0,1,2,3,4) in incomplete blocks of size b=3:
 Write down any 3 treatments: (1 3 4)
Keep adding 1 (mod t)

2 4 0
3 0 1
4 1 2
0 2 3
1 3 4

Eventually (t+1=6 steps) you have to get back to the
original pattern (include that one only once).

Rows form the incomplete blocks of the lattice. This
one is not well balanced. The pairs (0,2) and (0,3)
occur in two blocks each whereas the pair (0,4)
appears only once.

You can see that cyclic designs exist for any number
of treatments and any block size. Their properties
(balance and efficiency for comparing means) may be
good or not so good.

(3) The alpha cyclic lattices are obtained by cyclic
incrementing of initial arrays. The initial arrays can
be found in G&G appendix 8A.4 and elsewhere (e.g.
Patterson et al 1978 – see text)

The basic case has the restriction that we have t =ks
treatments in s blocks of size k. These would
generally not be used for a small number of
treatments. They are obtained from initial tables by
the kind of permutation shown above (please see
section 8.7 for more information on properties)

Example: k=4, t=20, so s=5 blocks (of size k=4)
Now we would also want replication so let’s use r=3
replicates.

(A) Go to the table appendix 8A.4 (top array because
s=5)

This appears:

0 0 0 0 0
0 1 2 3 4
0 4 3 2 1
0 2 4 1 3

(B) We want r=3 replicates so we use the first 3
rows. We have k=4 so we use only the first 4
columns. This is our “alpha array” with elements αij
0 0 0 0 row 1
0 1 2 3 row 2
0 4 3 2 row 3

From these elements αij, create the “A-array” by
replacing αij with aij = kαij+(j-1) modulo t
[= 4αij+(j-1) modulo 20 in our example].

Our A-array is thus:
0 1 2 3 0 + (j-1)
0 5 10 15 4α+(j-1) for row 2 α values
0 17 14 11 4α+(j-1) for row 3 α values

(C) The final step: Generate a set of blocks from
each row of the A-array by cyclic permutation,
incrementing by k (4 in our case) modulo t. Here are
the super-sets (rows are the blocks):

* demo Alpha1.sas ;
Data Cyclic;
input t1 t2 t3 t4; k=4; s=5; t=k*s;
set+1;
do i=1 to s;
t1=mod(t1+k,t);
t2=mod(t2+k,t);
t3=mod(t3+k,t);
t4=mod(t4+k,t);
block+1;
output;
end;
cards;
0 1 2 3
0 5 10 15
0 17 14 11
;
proc print noobs;
var t1 t2 t3 t4 block; by set;
proc transpose data=Cyclic out=trans (rename =
(col1=trt) drop=_NAME_) ;
var t1-t4; by set block;
data design; set trans; trt=trt+1;
 *start trts at 1 not 0; ;
proc print data=design; by set; run;
proc freq;
table trt*set/norow nocol nopercent; run;

*********output*************

---------------------------- set=1 ----------------------------

 t1 t2 t3 t4 block

 4 5 6 7 1
 8 9 10 11 2
 12 13 14 15 3
 16 17 18 19 4
 0 1 2 3 5

------------------------- set=2 ------------------------------

 t1 t2 t3 t4 block

 4 9 14 19 6
 8 13 18 3 7
 12 17 2 7 8
 16 1 6 11 9
 0 5 10 15 10

---------------------------- set=3 -----------------------------

 t1 t2 t3 t4 block

 4 1 18 15 11
 8 5 2 19 12
 12 9 6 3 13
 16 13 10 7 14
 0 17 14 11 15

Now suppose we have less treatments, say 17. Pick a
column (say the second with 1, 5, 9, 13, 17) and
eliminate 3 of the treatments (say 1, 5, 9) from all the
blocks. Note that we now have unequal block sizes.
In practice, picking the smallest ks>t (18>17 in our
case) to generate the original sets would be preferred.

Continuing with our demos, Alpha1A.sas generates
an “incidence matrix” with a row for each treatment
and column for each block. The ijth entry is 1 if
treatment i occurs in block j, 0 otherwise. Compute
C=AA’. The ijth entry here is the number of co-
occurrences (in the same block) of treatments i and j.

Block1: (1, 3, 4), Block 2: (2, 3, 4).

1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1 1 1

, '
1 1 1 1 0 1 1 1 1 1 2 2
1 1 1 1 1 1 2 2

A C AA

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

* Demo Alpha1A.sas;

proc iml; reset fw=3;
 use design;
 read all var{trt block} into comb;
 print comb;
 a=shape(0,20,15);
 do i=1 to 60;
 a[comb[i,1],comb[i,2]] = 1;
 end;
 label = {" 1" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9" "10"
 "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"};
 print a [rowname=label colname=label]; c = a*a`;
 print c [rowname=label colname=label];
 rep=vecdiag(c); * extract diagonal;
 print rep;

******* partial output (C) **********

 C
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 1 3 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0
 2 1 3 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0
 3 1 1 3 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1
 4 1 1 1 3 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0
 5 0 1 0 0 3 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1
 6 1 0 1 0 1 3 1 1 1 0 1 0 0 0 0 1 0 0 0 1
 7 0 1 0 1 1 1 3 1 0 1 0 1 1 0 0 0 1 0 0 0
 8 0 0 1 0 1 1 1 3 0 0 1 0 1 1 0 0 1 1 0 0
 9 0 0 1 1 0 1 0 0 3 1 1 1 0 1 0 0 0 0 1 1
 10 0 0 0 1 1 0 1 0 1 3 1 1 1 0 1 0 0 0 0 1
 11 1 0 0 0 0 1 0 1 1 1 3 1 0 1 0 1 1 0 0 0
 12 1 1 0 0 0 0 1 0 1 1 1 3 0 0 1 0 1 1 0 0
 13 0 0 1 1 0 0 1 1 0 1 0 0 3 1 1 1 0 1 0 0
 14 0 0 0 1 0 0 0 1 1 0 1 0 1 3 1 1 1 0 1 0
 15 1 0 0 0 1 0 0 0 0 1 0 1 1 1 3 1 0 1 0 1
 16 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 3 0 0 1 0
 17 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 3 1 1 1
 18 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 3 1 1
 19 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 3 1
 20 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 3

Continuing with our demos, Alpha1B.sas generates
some data from the alpha lattice to illustrate the
analysis. Two datasets are generated. The first has
one observation in each (trt,block) combination.

*Demo Alpha1B.txt - run Alpha1.txt and Alpha1A.txt first;
%let nblks=15;
%let reps=3;

Data effects; drop i;
array BL(&nblks); array S(&reps);
do i=1 to &reps; S(i) = 8*normal(123); end;
 *random set effects;
do i=1 to &nblks; BL(i) = 10*normal(123); end;
* random block effects;
proc print; title "&reps sets of blocks, &nblks total";
run;

data new;
array BL(&nblks) BL1-BL&nblks; array s(&reps) S1-S&reps;
set Design;
if _n_=1 then set effects; retain;
Yield = 50 + 2*(trt-10) + BL(block) + S(set) +
5*normal(123);
keep yield trt block set;
proc print data=New; run;

proc mixed data=new; class trt block set;
model yield = trt;
random set block(set);
estimate "1 vs 2 (1st assoc.)" trt -1 1 ;
estimate "1 vs 3 (1st assoc.)" trt -1 0 1 ;
estimate "1 vs 5 (0th assoc.)" trt -1 0 0 0 1 ;
estimate "1 vs. 7 (0th assoc.)" trt -1 0 0 0 0 0 1;
run;

Data clones; set new;
do clone = 1 to 3;
 Y=yield+.5*normal(123);
output; end;
proc mixed data=clones; class trt block set;
model y = trt;
random set trt*set block(set);
estimate "1 vs 2 (1st assoc.)" trt -1 1 ;
estimate "1 vs 3 (1st assoc.)" trt -1 0 1 ;
estimate "1 vs 5 (0th assoc.)" trt -1 0 0 0 1 ;
estimate "1 vs. 7 (0th assoc.)" trt -1 0 0 0 0 0 1;
run;

Partial output from first MIXED run (no clones)

 Covariance Parameter
 Estimates

 Cov Parm Estimate
 set 182.10
 block(set) 29.9684
 Residual 24.9976

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F
 trt 19 26 13.22 <.0001

 Estimates

 Standard
 Label Estimate Error DF t Value Pr > |t|
 1 vs 2 (1st assoc.) 2.7133 4.4601 26 0.61 0.5482
 1 vs 3 (1st assoc.) 6.8034 4.4601 26 1.53 0.1392
 1 vs 5 (0th assoc.) 7.2214 4.6676 26 1.55 0.1339
 1 vs. 7 (0th assoc.) 12.1324 4.6676 26 2.60 0.0152

With the clones we can get a clean estimate of the
interaction between the treatments (perhaps varieties)
and the sets (perhaps locations).

 Covariance Parameter
 Estimates

 Cov Parm Estimate
 set 181.18
 trt*set 24.3076
 block(set) 30.3991
 Residual 0.2266

 Type 3 Tests of Fixed Effects

 Num Den
 Effect DF DF F Value Pr > F
 trt 19 38 13.47 <.0001

 Estimates

 Standard
 Label Estimate Error DF t Value Pr > |t|
 1 vs 2 (1st assoc.) 2.9771 4.4083 38 0.68 0.5035
 1 vs 3 (1st assoc.) 6.6365 4.4083 38 1.51 0.1405
 1 vs 5 (0th assoc.) 7.7117 4.6152 38 1.67 0.1030
 1 vs. 7 (0th assoc.) 12.4813 4.6152 38 2.70 0.0102

To see how PROC PLAN can generate the three sets
in the alpha array, run the demo Alpha_PLAN.sas.

** Demo Alpha_Plan_notes.sas **;

 * Example: Test 20 families (varieties) in 3 sets of *
 * blocks. In each set (set=superblock), 5 blocks of 4 *
 * families each. Each set contains all 20 families. *
 ***;
 ** block -> number of blocks to print. Try changing to 10;
 ** family -> how many treatments (say families here)
 you want per block;
 ** of ___ how many treatments (families here) there
 are altogether;

proc plan;
 factors block=5 family=4 of 20
 cyclic (1 18 15 12) 4;
 run;

 /*
cyclic (1 2 3 4) 4 ;
cyclic (1 6 11 16) 4;

 */

(output)

 Initial Block
Factor Select Levels Order / Increment

block 5 5 Random
family 4 20 Cyclic (1 18 15 12) / 4

 block ---family--

 4 1 18 15 12
 2 5 2 19 16
 3 9 6 3 20
 5 13 10 7 4
 1 17 14 11 8

