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LEARNING GOALS

By studying this chapter, you will

learn:

• How you can determine the amount

of charge within a closed surface by

examining the electric field on the

surface.

• What is meant by electric flux, and

how to calculate it.

• How Gauss’s law relates the electric

flux through a closed surface to the

charge enclosed by the surface.

• How to use Gauss’s law to calculate

the electric field due to a symmetric

charge distribution.

• Where the charge is located on a

charged conductor.

GAUSS’S LAW

Often, there are both an easy way and a hard way to do a job; the easy way
may involve nothing more than using the right tools. In physics, an impor-
tant tool for simplifying problems is the symmetry properties of systems.

Many physical systems have symmetry; for example, a cylindrical body doesn’t
look any different after you’ve rotated it around its axis, and a charged metal
sphere looks just the same after you’ve turned it about any axis through its center.

Gauss’s law is part of the key to using symmetry considerations to simplify
electric-field calculations. For example, the field of a straight-line or plane-sheet
charge distribution, which we derived in Section 21.5 using some fairly strenuous
integrations, can be obtained in a few lines with the help of Gauss’s law. But
Gauss’s law is more than just a way to make certain calculations easier. Indeed, it
is a fundamental statement about the relationship between electric charges and
electric fields. Among other things, Gauss’s law can help us understand how elec-
tric charge distributes itself over conducting bodies.

Here’s what Gauss’s law is all about. Given any general distribution of charge,
we surround it with an imaginary surface that encloses the charge. Then we look
at the electric field at various points on this imaginary surface. Gauss’s law is a
relationship between the field at all the points on the surface and the total charge
enclosed within the surface. This may sound like a rather indirect way of express-
ing things, but it turns out to be a tremendously useful relationship. Above and
beyond its use as a calculational tool, Gauss’s law can help us gain deeper
insights into electric fields. We will make use of these insights repeatedly in the
next several chapters as we pursue our study of electromagnetism.

22.1 Charge and Electric Flux
In Chapter 21 we asked the question, “Given a charge distribution, what is the
electric field produced by that distribution at a point ?” We saw that the answer
could be found by representing the distribution as an assembly of point charges,

P

? This child acquires an electric charge by touching the charged metal sphere.
The charged hairs on the child’s head repel and stand out. If the child stands
inside a large, charged metal sphere, will her hair stand on end?

The discussion of Gauss’s law in this
section is based on and inspired by the
innovative ideas of Ruth W. Chabay and
Bruce A. Sherwood in Electric and
Magnetic Interactions (John Wiley &
Sons, 1994).



each of which produces an electric field given by Eq. (21.7). The total field at 
is then the vector sum of the fields due to all the point charges.

But there is an alternative relationship between charge distributions and elec-
tric fields. To discover this relationship, let’s stand the question of Chapter 21 on
its head and ask, “If the electric field pattern is known in a given region, what can
we determine about the charge distribution in that region?”

Here’s an example. Consider the box shown in Fig. 22.1a, which may or may
not contain electric charge. We’ll imagine that the box is made of a material that
has no effect on any electric fields; it’s of the same breed as the massless rope and
the frictionless incline. Better still, let the box represent an imaginary surface that
may or may not enclose some charge. We’ll refer to the box as a closed surface
because it completely encloses a volume. How can you determine how much (if
any) electric charge lies within the box?

Knowing that a charge distribution produces an electric field and that an elec-
tric field exerts a force on a test charge, you move a test charge around the
vicinity of the box. By measuring the force experienced by the test charge at
different positions, you make a three-dimensional map of the electric field

outside the box. In the case shown in Fig. 22.1b, the map turns out 
to be the same as that of the electric field produced by a positive point charge 
(Fig. 21.28a). From the details of the map, you can find the exact value of the
point charge inside the box.

To determine the contents of the box, we actually need to measure only on
the surface of the box. In Fig. 22.2a there is a single positive point charge inside
the box, and in Fig. 22.2b there are two such charges. The field patterns on the
surfaces of the boxes are different in detail, but in each case the electric field
points out of the box. Figures 22.2c and 22.2d show cases with one and two neg-
ative point charges, respectively, inside the box. Again, the details of are differ-
ent for the two cases, but the electric field points into each box.

Electric Flux and Enclosed Charge
In Section 21.4 we mentioned the analogy between electric-field vectors and the
velocity vectors of a fluid in motion. This analogy can be helpful, even though an
electric field does not actually “flow.” Using this analogy, in Figs. 22.2a and
22.2b, in which the electric field vectors point out of the surface, we say that
there is an outward electric flux. (The word “flux” comes from a Latin word
meaning “flow.”) In Figs. 22.2c and 22.2d the vectors point into the surface,
and the electric flux is inward.

Figure 22.2 suggests a simple relationship: Positive charge inside the box goes
with an outward electric flux through the box’s surface, and negative charge
inside goes with an inward electric flux. What happens if there is zero charge
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(b) Using a test charge outside the box to probe
the amount of charge inside the box

(a) A box containing an unknown amount of
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22.1 How can you measure the charge
inside a box without opening it?
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22.2 The electric field on the surface of boxes containing (a) a single positive point charge, (b) two positive point charges, 
(c) a single negative point charge, or (d) two negative point charges.
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inside the box? In Fig. 22.3a the box is empty and everywhere, so there is
no electric flux into or out of the box. In Fig. 22.3b, one positive and one negative
point charge of equal magnitude are enclosed within the box, so the net charge
inside the box is zero. There is an electric field, but it “flows into” the box on half
of its surface and “flows out of” the box on the other half. Hence there is no net
electric flux into or out of the box.

The box is again empty in Fig. 22.3c. However, there is charge present outside
the box; the box has been placed with one end parallel to a uniformly charged
infinite sheet, which produces a uniform electric field perpendicular to the sheet
(as we learned in Example 21.11 of Section 21.5). On one end of the box, 
points into the box; on the opposite end, points out of the box; and on the sides,

is parallel to the surface and so points neither into nor out of the box. As in 
Fig. 22.3b, the inward electric flux on one part of the box exactly compensates for
the outward electric flux on the other part. So in all of the cases shown in Fig. 22.3,
there is no net electric flux through the surface of the box, and no net charge is
enclosed in the box.

Figures 22.2 and 22.3 demonstrate a connection between the sign (positive,
negative, or zero) of the net charge enclosed by a closed surface and the sense
(outward, inward, or none) of the net electric flux through the surface. There is
also a connection between the magnitude of the net charge inside the closed sur-
face and the strength of the net “flow” of over the surface. In both Figs. 22.4a
and 22.4b there is a single point charge inside the box, but in Fig. 22.4b the mag-
nitude of the charge is twice as great, and so is everywhere twice as great in
magnitude as in Fig. 22.4a. If we keep in mind the fluid-flow analogy, this means
that the net outward electric flux is also twice as great in Fig. 22.4b as in Fig.
22.4a. This suggests that the net electric flux through the surface of the box is
directly proportional to the magnitude of the net charge enclosed by the box.

This conclusion is independent of the size of the box. In Fig. 22.4c the point
charge is enclosed by a box with twice the linear dimensions of the box in
Fig. 22.4a. The magnitude of the electric field of a point charge decreases with
distance according to so the average magnitude of on each face of the
large box in Fig. 22.4c is just of the average magnitude on the corresponding
face in Fig. 22.4a. But each face of the large box has exactly four times the area
of the corresponding face of the small box. Hence the outward electric flux is the
same for the two boxes if we define electric flux as follows: For each face of the
box, take the product of the average perpendicular component of and the area
of that face; then add up the results from all faces of the box. With this definition
the net electric flux due to a single point charge inside the box is independent of
the size of the box and depends only on the net charge inside the box.
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22.3 Three cases in which there is zero net charge inside a box and no net electric flux through the surface of the box. (a) An empty
box with (b) A box containing one positive and one equal-magnitude negative point charge. (c) An empty box immersed in a
uniform electric field.
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To summarize, for the special cases of a closed surface in the shape of a rectan-
gular box and charge distributions made up of point charges or infinite charged
sheets, we have found:

1. Whether there is a net outward or inward electric flux through a closed sur-
face depends on the sign of the enclosed charge.

2. Charges outside the surface do not give a net electric flux through the sur-
face.

3. The net electric flux is directly proportional to the net amount of charge
enclosed within the surface but is otherwise independent of the size of the
closed surface.

These observations are a qualitative statement of Gauss’s law.
Do these observations hold true for other kinds of charge distributions and for

closed surfaces of arbitrary shape? The answer to these questions will prove to be
yes. But to explain why this is so, we need a precise mathematical statement of
what we mean by electric flux. We develop this in the next section.
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doubles the flux.
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22.4 (a) A box enclosing a positive point
charge (b) Doubling the charge causes
the magnitude of to double, and it dou-
bles the electric flux through the surface.
(c) If the charge stays the same but the
dimensions of the box are doubled, the flux
stays the same. The magnitude of on the
surface decreases by a factor of but the
area through which “flows” increases by
a factor of 4.
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Test Your Understanding of Section 22.1 If all of the dimensions of
the box in Fig. 22.2a are increased by a factor of 3, what effect will this change
have on the electric flux through the box? (i) The flux will be times
greater; (ii) the flux will be 3 times greater; (iii) the flux will be unchanged; (iv) the flux
will be as great; (v) the flux will be as great; (vi) not enough information is
given to decide. ❙
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22.2 Calculating Electric Flux
In the preceding section we introduced the concept of electric flux. We used this
to give a rough qualitative statement of Gauss’s law: The net electric flux through
a closed surface is directly proportional to the net charge inside that surface. To
be able to make full use of this law, we need to know how to calculate electric
flux. To do this, let’s again make use of the analogy between an electric field 
and the field of velocity vectors in a flowing fluid. (Again, keep in mind that
this is only an analogy; an electric field is not a flow.)

Flux: Fluid-Flow Analogy
Figure 22.5 shows a fluid flowing steadily from left to right. Let’s examine the
volume flow rate (in, say, cubic meters per second) through the wire rectan-
gle with area When the area is perpendicular to the flow velocity (Fig. 22.5a)
and the flow velocity is the same at all points in the fluid, the volume flow rate

is the area multiplied by the flow speed 

When the rectangle is tilted at an angle (Fig. 22.5b) so that its face is not per-
pendicular to the area that counts is the silhouette area that we see when we
look in the direction of This area, which is outlined in red and labeled in
Fig. 22.5b, is the projection of the area onto a surface perpendicular to Two
sides of the projected rectangle have the same length as the original one, but the
other two are foreshortened by a factor of so the projected area is equal
to Then the volume flow rate through is

If the wire rectangle is edge-on to the flow, and no fluid
passes through the rectangle.

dV>dt = 0;f = 90°,

dV

dt
= vAcosf

AAcosf.
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Also, is the component of the vector perpendicular to the plane of
the area Calling this component we can rewrite the volume flow rate as

We can express the volume flow rate more compactly by using the concept of
vector area a vector quantity with magnitude and a direction perpendicular to
the plane of the area we are describing. The vector area describes both the size
of an area and its orientation in space. In terms of we can write the volume flow
rate of fluid through the rectangle in Fig. 22.5b as a scalar (dot) product:

Flux of a Uniform Electric Field
Using the analogy between electric field and fluid flow, we now define electric
flux in the same way as we have just defined the volume flow rate of a fluid; we
simply replace the fluid velocity by the electric field The symbol that we use
for electric flux is (the capital Greek letter phi; the subscript is a reminder
that this is electric flux). Consider first a flat area perpendicular to a uniform
electric field (Fig. 22.6a). We define the electric flux through this area to be the
product of the field magnitude and the area 

Roughly speaking, we can picture in terms of the field lines passing through
Increasing the area means that more lines of pass through the area, increas-

ing the flux; a stronger field means more closely spaced lines of and therefore
more lines per unit area, so again the flux increases.

If the area is flat but not perpendicular to the field then fewer field lines
pass through it. In this case the area that counts is the silhouette area that we see
when looking in the direction of This is the area in Fig. 22.6b and is equal
to (compare to Fig. 22.5b). We generalize our definition of electric flux
for a uniform electric field to

(electric flux for uniform flat surface) (22.1)

Since is the component of perpendicular to the area, we can rewrite 
Eq. (22.1) as

(22.2)

In terms of the vector area perpendicular to the area, we can write the elec-
tric flux as the scalar product of and 

(22.3)

Equations (22.1), (22.2), and (22.3) express the electric flux for a flat surface and
a uniform electric field in different but equivalent ways. The SI unit for electric
flux is Note that if the area is edge-on to the field, and are per-
pendicular and the flux is zero (Fig. 22.6c).

We can represent the direction of a vector area by using a unit vector per-
pendicular to the area; stands for “normal.” Then

(22.4)

A surface has two sides, so there are two possible directions for and We
must always specify which direction we choose. In Section 22.1 we related the
charge inside a closed surface to the electric flux through the surface. With a
closed surface we will always choose the direction of to be outward, and wenN
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22.5 The volume flow rate of fluid
through the wire rectangle (a) is when
the area of the rectangle is perpendicular to
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tilted at an angle f.
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Application Flux Through a Basking
Shark’s Mouth
Unlike aggressive carnivorous sharks such as
great whites, a basking shark feeds passively
on plankton in the water that passes through
the shark’s gills as it swims. To survive on
these tiny organisms requires a huge flux of
water through a basking shark’s immense
mouth, which can be up to a meter across.
The water flux—the product of the shark’s
speed through the water and the area of its
mouth—can be up to 0.5 (500 liters per
second, or almost gallons per hour).
In a similar way, the flux of electric field through
a surface depends on the magnitude of the
field and the area of the surface (as well as the
relative orientation of the field and surface).
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will speak of the flux out of a closed surface. Thus what we called “outward elec-
tric flux” in Section 22.1 corresponds to a positive value of and what we
called “inward electric flux” corresponds to a negative value of 

Flux of a Nonuniform Electric Field
What happens if the electric field isn’t uniform but varies from point to point
over the area ? Or what if is part of a curved surface? Then we divide into
many small elements each of which has a unit vector perpendicular to it
and a vector area We calculate the electric flux through each element
and integrate the results to obtain the total flux:

(22.5)

We call this integral the surface integral of the component over the area, or
the surface integral of In specific problems, one form of the integral is
sometimes more convenient than another. Example 22.3 at the end of this section
illustrates the use of Eq. (22.5).

In Eq. (22.5) the electric flux is equal to the average value of the per-
pendicular component of the electric field, multiplied by the area of the surface.
This is the same definition of electric flux that we were led to in Section 22.1,
now expressed more mathematically. In the next section we will see the connec-
tion between the total electric flux through any closed surface, no matter what its
shape, and the amount of charge enclosed within that surface.
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• E and A are perpendicular (the angle
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22.6 A flat surface in a uniform electric field. The electric flux through the surface equals the scalar product of the electric field 
and the area vector .A
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Example 22.1 Electric flux through a disk

A disk of radius 0.10 m is oriented with its normal unit vector 
at to a uniform electric field of magnitude 
(Fig. 22.7). (Since this isn’t a closed surface, it has no “inside”
or “outside.” That’s why we have to specify the direction of 
in the figure.) (a) What is the electric flux through the disk? 
(b) What is the flux through the disk if it is turned so that is
perpendicular to (c) What is the flux through the disk if is
parallel to E
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between its normal and the electric field E
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SOLUTION

IDENTIFY and SET UP: This problem is about a flat surface in a
uniform electric field, so we can apply the ideas of this section. We
calculate the electric flux using Eq. (22.1).

EXECUTE: (a) The area is and the
angle between and is so from Eq. (22.1),

(b) The normal to the disk is now perpendicular to so 
and £E = 0.cos f = 0,90°,

f =E
S

,

= 54 N # m2>C£E = EAcosf = 12.0 * 103 N>C210.0314 m221cos 30°2f = 30°,A
S

� AnNE
S

A = p10.10 m22 = 0.0314 m2

(c) The normal to the disk is parallel to so and

EVALUATE: As a check on our results, note that our answer to part
(b) is smaller than that to part (a), which is in turn smaller than that
to part (c). Is all this as it should be?

= 63 N # m2>C£E = EAcosf = 12.0 * 103 N>C210.0314 m22112cosf = 1:
f = 0E

S
,

Example 22.2 Electric flux through a cube

An imaginary cubical surface of side is in a region of uniform
electric field Find the electric flux through each face of the cube
and the total flux through the cube when (a) it is oriented with two
of its faces perpendicular to (Fig. 22.8a) and (b) the cube is
turned by an angle about a vertical axis (Fig. 22.8b).

SOLUTION

IDENTIFY and SET UP: Since is uniform and each of the six
faces of the cube is flat, we find the flux through each face
using Eqs. (22.3) and (22.4). The total flux through the cube is the
sum of the six individual fluxes.

EXECUTE: (a) Figure 22.8a shows the unit vectors through for
each face; each unit vector points outward from the cube’s closed
surface. The angle between and is 180°, the angle between E

S
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£Ei

E
S

u

E
S

E
S

.
L and is 0°, and the angle between and each of the other four

unit vectors is 90°. Each face of the cube has area so the fluxes
through the faces are

The flux is negative on face 1, where is directed into the cube,
and positive on face 2, where is directed out of the cube. The
total flux through the cube is

(b) The field is directed into faces 1 and 3, so the fluxes
through them are negative; is directed out of faces 2 and 4, so the
fluxes through them are positive. We find

The total flux 
through the surface of the cube is again zero.

EVALUATE: We came to the same conclusion in our discussion of
Fig. 22.3c: There is zero net flux of a uniform electric field through
a closed surface that contains no electric charge.
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22.8 Electric flux of a uniform field through a cubical box of
side in two orientations.L
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Example 22.3 Electric flux through a sphere

A point charge is surrounded by an imaginary
sphere of radius centered on the charge (Fig. 22.9).
Find the resulting electric flux through the sphere.

SOLUTION

IDENTIFY and SET UP: The surface is not flat and the electric field
is not uniform, so to calculate the electric flux (our target variable)

r = 0.20 m
q = +3.0 mC we must use the general definition, Eq. (22.5). We use Eq. (22.5) to

calculate the electric flux (our target variable). Because the sphere
is centered on the point charge, at any point on the spherical sur-
face, is directed out of the sphere perpendicular to the surface.
The positive direction for both and is outward, so 
and the flux through a surface element is This
greatly simplifies the integral in Eq. (22.5).
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22.3 Gauss’s Law
Gauss’s law is an alternative to Coulomb’s law. While completely equivalent to
Coulomb’s law, Gauss’s law provides a different way to express the relationship
between electric charge and electric field. It was formulated by Carl Friedrich Gauss
(1777–1855), one of the greatest mathematicians of all time (Fig. 22.10).

Point Charge Inside a Spherical Surface
Gauss’s law states that the total electric flux through any closed surface (a surface
enclosing a definite volume) is proportional to the total (net) electric charge
inside the surface. In Section 22.1 we observed this relationship qualitatively for
certain special cases; now we’ll develop it more rigorously. We’ll start with the
field of a single positive point charge The field lines radiate out equally in all
directions. We place this charge at the center of an imaginary spherical surface
with radius The magnitude of the electric field at every point on the surface
is given by

At each point on the surface, is perpendicular to the surface, and its magnitude
is the same at every point, just as in Example 22.3 (Section 22.2). The total elec-
tric flux is the product of the field magnitude and the total area of
the sphere:

(22.6)

The flux is independent of the radius R of the sphere. It depends only on the
charge enclosed by the sphere.q
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EXECUTE: We must evaluate the integral of Eq. (22.5), 
. At any point on the sphere of radius r the electric field has

the same magnitude . Hence E can be taken outside
the integral, which becomes where A is the£E = E1dA = EA,

E = q>4pP0r 2
1E dA

£E =

area of the spherical surface: . Hence the total flux
through the sphere is

EVALUATE: The radius of the sphere cancels out of the result for
We would have obtained the same flux with a sphere of radius

2.0 m or 200 m. We came to essentially the same conclusion in our
discussion of Fig. 22.4 in Section 22.1, where we considered rectan-
gular closed surfaces of two different sizes enclosing a point charge.
There we found that the flux of was independent of the size of the
surface; the same result holds true for a spherical surface. Indeed,
the flux through any surface enclosing a single point charge is inde-
pendent of the shape or size of the surface, as we’ll soon see.
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22.9 Electric flux through a sphere centered on a point charge.

Test Your Understanding of Section 22.2 Rank the following sur-
faces in order from most positive to most negative electric flux. (i) a flat rectangu-
lar surface with vector area in a uniform electric field
(ii) a flat circular surface with vector area in a uniform electric field

(iii) a flat square surface with vector area
in a uniform electric field 

(iv) a flat oval surface with vector area in a uniform 
electric field ❙E

S
� 14.0 N>C2ıN � 12.0 N>C2≥N.A

S
� 13.0 m22ıN � 17.0 m22≥NE

S
� 14.0 N>C2ıN � 12.0 N>C2≥N;13.0 m22ıN � 17.0 m22≥N A

S
�12.0 N>C2≥N;E

S
� 14.0 N>C2ıN +

A
S

� 13.0 m22≥N E
S

� 14.0 N>C2≥N;A
S

� 16.0 m22ıN

22.10 Carl Friedrich Gauss helped
develop several branches of mathematics,
including differential geometry, real analy-
sis, and number theory. The “bell curve” of
statistics is one of his inventions. Gauss
also made state-of-the-art investigations of
the earth’s magnetism and calculated the
orbit of the first asteroid to be discovered.
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We can also interpret this result in terms of field lines. Figure 22.11 shows two
spheres with radii and centered on the point charge Every field line that
passes through the smaller sphere also passes through the larger sphere, so the
total flux through each sphere is the same.

What is true of the entire sphere is also true of any portion of its surface. In
Fig. 22.11 an area is outlined on the sphere of radius and then projected
onto the sphere of radius by drawing lines from the center through points on
the boundary of The area projected on the larger sphere is clearly 4 But
since the electric field due to a point charge is inversely proportional to the
field magnitude is as great on the sphere of radius as on the sphere of radius

Hence the electric flux is the same for both areas and is independent of the
radius of the sphere.

Point Charge Inside a Nonspherical Surface
This projection technique shows us how to extend this discussion to nonspherical
surfaces. Instead of a second sphere, let us surround the sphere of radius by a
surface of irregular shape, as in Fig. 22.12a. Consider a small element of area 
on the irregular surface; we note that this area is larger than the corresponding
element on a spherical surface at the same distance from If a normal to 
makes an angle with a radial line from two sides of the area projected onto
the spherical surface are foreshortened by a factor (Fig. 22.12b). The other
two sides are unchanged. Thus the electric flux through the spherical surface ele-
ment is equal to the flux through the corresponding irregular surface
element.

We can divide the entire irregular surface into elements compute the elec-
tric flux for each, and sum the results by integrating, as in Eq. (22.5).
Each of the area elements projects onto a corresponding spherical surface ele-
ment. Thus the total electric flux through the irregular surface, given by any of
the forms of Eq. (22.5), must be the same as the total flux through a sphere,
which Eq. (22.6) shows is equal to Thus, for the irregular surface,

(22.7)

Equation (22.7) holds for a surface of any shape or size, provided only that it is a
closed surface enclosing the charge The circle on the integral sign reminds us
that the integral is always taken over a closed surface.

The area elements and the corresponding unit vectors always point out of
the volume enclosed by the surface. The electric flux is then positive in areas
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22.11 Projection of an element of area
of a sphere of radius onto a concentric

sphere of radius The projection multi-
plies each linear dimension by 2, so the
area element on the larger sphere is 4 dA.
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22.12 Calculating the electric flux
through a nonspherical surface.



where the electric field points out of the surface and negative where it points
inward. Also, is positive at points where points out of the surface and nega-
tive at points where points into the surface.

If the point charge in Fig. 22.12 is negative, the field is directed radially
inward; the angle is then greater than its cosine is negative, and the
integral in Eq. (22.7) is negative. But since is also negative, Eq. (22.7) still
holds.

For a closed surface enclosing no charge,

This is the mathematical statement that when a region contains no charge, any
field lines caused by charges outside the region that enter on one side must leave
again on the other side. (In Section 22.1 we came to the same conclusion by con-
sidering the special case of a rectangular box in a uniform field.) Figure 22.13
illustrates this point. Electric field lines can begin or end inside a region of space
only when there is charge in that region.

General Form of Gauss’s Law
Now comes the final step in obtaining the general form of Gauss’s law. Suppose
the surface encloses not just one point charge but several charges 

The total (resultant) electric field at any point is the vector sum of the 
fields of the individual charges. Let be the total charge enclosed by the sur-
face: Also let be the total field at the position
of the surface area element and let be its component perpendicular to the
plane of that element (that is, parallel to ). Then we can write an equation like
Eq. (22.7) for each charge and its corresponding field and add the results. When
we do, we obtain the general statement of Gauss’s law:

(Gauss’s law) (22.8)

The total electric flux through a closed surface is equal to the total (net) electric
charge inside the surface, divided by

CAUTION Gaussian surfaces are imaginary Remember that the closed surface in
Gauss’s law is imaginary; there need not be any material object at the position of the sur-
face. We often refer to a closed surface used in Gauss’s law as a Gaussian surface. ❙

Using the definition of and the various ways to express electric flux given
in Eq. (22.5), we can express Gauss’s law in the following equivalent forms:

(22.9)

As in Eq. (22.5), the various forms of the integral all express the same thing, the
total electric flux through the Gaussian surface, in different terms. One form is
sometimes more convenient than another.

As an example, Fig. 22.14a shows a spherical Gaussian surface of radius 
around a positive point charge The electric field points out of the Gaussian sur-
face, so at every point on the surface is in the same direction as and

is equal to the field magnitude Since is the same at all pointsEE = q>4pP0 r 2.E�
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Field line
entering surface Same field line

leaving surface

22.13 A point charge outside a closed
surface that encloses no charge. If an
electric field line from the external
charge enters the surface at one point,
it must leave at another.
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on the surface, we can take it outside the integral in Eq. (22.9). Then the remaining
integral is the area of the sphere. Hence Eq. (22.9) becomes

The enclosed charge is just the charge so this agrees with Gauss’s law.
If the Gaussian surface encloses a negative point charge as in Fig. 22.14b, then 
points into the surface at each point in the direction opposite Then 
and is equal to the negative of the field magnitude: 

Equation (22.9) then becomes

This again agrees with Gauss’s law because the enclosed charge in Fig. 22.14b is

In Eqs. (22.8) and (22.9), is always the algebraic sum of all the positive
and negative charges enclosed by the Gaussian surface, and is the total field at
each point on the surface. Also note that in general, this field is caused partly by
charges inside the surface and partly by charges outside. But as Fig. 22.13 shows,
the outside charges do not contribute to the total (net) flux through the surface. So
Eqs. (22.8) and (22.9) are correct even when there are charges outside the surface
that contribute to the electric field at the surface. When the total flux
through the Gaussian surface must be zero, even though some areas may have
positive flux and others may have negative flux (see Fig. 22.3b).

Gauss’s law is the definitive answer to the question we posed at the beginning
of Section 22.1: “If the electric field pattern is known in a given region, what
can we determine about the charge distribution in that region?” It provides a
relationship between the electric field on a closed surface and the charge distri-
bution within that surface. But in some cases we can use Gauss’s law to answer
the reverse question: “If the charge distribution is known, what can we deter-
mine about the electric field that the charge distribution produces?” Gauss’s law
may seem like an unappealing way to address this question, since it may look as
though evaluating the integral in Eq. (22.8) is a hopeless task. Sometimes it is,
but other times it is surprisingly easy. Here’s an example in which no integration
is involved at all; we’ll work out several more examples in the next section.
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22.14 Spherical Gaussian surfaces
around (a) a positive point charge and 
(b) a negative point charge.

Conceptual Example 22.4 Electric flux and enclosed charge

Figure 22.15 shows the field produced by two point charges 
and (an electric dipole). Find the electric flux through each of
the closed surfaces and D.C,B,A,

-q
+q SOLUTION

Gauss’s law, Eq. (22.8), says that the total electric flux through a
closed surface is equal to the total enclosed charge divided by In

Continued

P0.



22.4 Applications of Gauss’s Law
Gauss’s law is valid for any distribution of charges and for any closed surface.
Gauss’s law can be used in two ways. If we know the charge distribution, and if it
has enough symmetry to let us evaluate the integral in Gauss’s law, we can find
the field. Or if we know the field, we can use Gauss’s law to find the charge dis-
tribution, such as charges on conducting surfaces.

In this section we present examples of both kinds of applications. As you
study them, watch for the role played by the symmetry properties of each system.
We will use Gauss’s law to calculate the electric fields caused by several simple
charge distributions; the results are collected in a table in the chapter summary.

In practical problems we often encounter situations in which we want to know
the electric field caused by a charge distribution on a conductor. These calcula-
tions are aided by the following remarkable fact: When excess charge is placed
on a solid conductor and is at rest, it resides entirely on the surface, not in the
interior of the material. (By excess we mean charges other than the ions and free
electrons that make up the neutral conductor.) Here’s the proof. We know from
Section 21.4 that in an electrostatic situation (with all charges at rest) the electric
field at every point in the interior of a conducting material is zero. If were
not zero, the excess charges would move. Suppose we construct a Gaussian sur-
face inside the conductor, such as surface in Fig. 22.17. Because every-
where on this surface, Gauss’s law requires that the net charge inside the surface
is zero. Now imagine shrinking the surface like a collapsing balloon until it
encloses a region so small that we may consider it as a point then the charge at
that point must be zero. We can do this anywhere inside the conductor, so there
can be no excess charge at any point within a solid conductor; any excess charge
must reside on the conductor’s surface. (This result is for a solid conductor. In the
next section we’ll discuss what can happen if the conductor has cavities in its
interior.) We will make use of this fact frequently in the examples that follow.
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E
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S
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Test Your Understanding of Section 22.3 Figure 22.16 shows six point
charges that all lie in the same plane. Five Gaussian surfaces— and

—each enclose part of this plane, and Fig. 22.16 shows the intersection of each
surface with the plane. Rank these five surfaces in order of the electric flux
through them, from most positive to most negative.

❙

S5

S1, S2, S3, S4,

11.0 mC

19.0 mC

S1S2

S4

S3
S5

210.0 mC

27.0 mC

15.0 mC

18.0 mC

22.16 Five Gaussian surfaces and six
point charges.

Conductor
(shown in

cross section)

Charge on surface
of conductor

Gaussian surface A
inside conductor

(shown in
cross section)

22.17 Under electrostatic conditions
(charges not in motion), any excess charge
on a solid conductor resides entirely on the
conductor’s surface.

Fig. 22.15, surface (shown in red) encloses the positive charge, so
surface (in blue) encloses the negative charge, 

so surface (in purple) encloses both charges, 
so and surface (in yellow) encloses no
charges, so Hence, without having to do any integration,
we have and 
These results depend only on the charges enclosed within each
Gaussian surface, not on the precise shapes of the surfaces.

We can draw similar conclusions by examining the electric field
lines. All the field lines that cross surface A are directed out of the
surface, so the flux through A must be positive. Similarly, the flux
through B must be negative since all of the field lines that cross that
surface point inward. For both surface C and surface D, there are as
many field lines pointing into the surface as there are field lines
pointing outward, so the flux through each of these surfaces is zero.

£ED = 0.£EC =£EB = -q>P0,+q>P0,£EA =
Qencl = 0.

DQencl = +q + 1-q2 = 0;
CQencl = -q;

BQencl = +q;
A

C

D
B A

2q

E
S

1q

22.15 The net number of field lines leaving a closed surface is
proportional to the total charge enclosed by that surface.
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Problem-Solving Strategy 22.1 Gauss’s Law

IDENTIFY the relevant concepts: Gauss’s law is most useful when
the charge distribution has spherical, cylindrical, or planar symme-
try. In these cases the symmetry determines the direction of . Then
Gauss’s law yields the magnitude of if we are given the charge
distribution, and vice versa. In either case, begin the analysis by
asking the question: What is the symmetry?

SET UP the problem using the following steps:
1. List the known and unknown quantities and identify the target

variable.
2. Select the appropriate closed, imaginary Gaussian surface. For

spherical symmetry, use a concentric spherical surface. For
cylindrical symmetry, use a coaxial cylindrical surface with flat
ends perpendicular to the axis of symmetry (like a soup can).
For planar symmetry, use a cylindrical surface (like a tuna can)
with its flat ends parallel to the plane.

EXECUTE the solution as follows:
1. Determine the appropriate size and placement of your Gaussian

surface. To evaluate the field magnitude at a particular point,
the surface must include that point. It may help to place one end
of a can-shaped surface within a conductor, where and there-
fore are zero, or to place its ends equidistant from a charged
plane.

2. Evaluate the integral in Eq. (22.9). In this equation 
is the perpendicular component of the total electric field at each
point on the Gaussian surface. A well-chosen Gaussian surface
should make integration trivial or unnecessary. If the surface
comprises several separate surfaces, such as the sides and ends

E�AE� dA

£
E
S

E
S

E
S

of a cylinder, the integral over the entire closed sur-
face is the sum of the integrals over the separate sur-
faces. Consider points 3–6 as you work.

3. If is perpendicular (normal) at every point to a surface with
area if it points outward from the interior of the surface, and
if it has the same magnitude at every point on the surface, then

and over that surface is equal to
(If is inward, then and ) This

should be the case for part or all of your Gaussian surface. If 
is tangent to a surface at every point, then and the inte-
gral over that surface is zero. This may be the case for parts of a
cylindrical Gaussian surface. If at every point on a sur-
face, the integral is zero.

4. Even when there is no charge within a Gaussian surface, the
field at any given point on the surface is not necessarily zero. In
that case, however, the total electric flux through the surface is
always zero.

5. The flux integral can be approximated as the differ-
ence between the numbers of electric lines of force leaving and
entering the Gaussian surface. In this sense the flux gives the
sign of the enclosed charge, but is only proportional to it; zero
flux corresponds to zero enclosed charge.

6. Once you have evaluated use Eq. (22.9) to solve for
your target variable.

EVALUATE your answer: If your result is a function that describes
how the magnitude of the electric field varies with position, ensure
that it makes sense.

AE� dA,
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E
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� 0

E� = 0
E
S1E� dA = -EA.E� = -EE
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EA.

1E� dAE� = E = constant,

A,
E
S

1E� dA
AE� dA

Example 22.5 Field of a charged conducting sphere

We place a total positive charge on a solid conducting sphere
with radius (Fig. 22.18). Find at any point inside or outside the
sphere.

E
S

R
q SOLUTION

IDENTIFY and SET UP: As we discussed earlier in this section, all
of the charge must be on the surface of the sphere. The charge is
free to move on the conductor, and there is no preferred position
on the surface; the charge is therefore distributed uniformly over
the surface, and the system is spherically symmetric. To exploit
this symmetry, we take as our Gaussian surface a sphere of radius 
centered on the conductor. We can calculate the field inside or out-
side the conductor by taking or , respectively. In
either case, the point at which we want to calculate lies on the
Gaussian surface.

EXECUTE: The spherical symmetry means that the direction of the
electric field must be radial; that’s because there is no preferred
direction parallel to the surface, so can have no component par-
allel to the surface. There is also no preferred orientation of the
sphere, so the field magnitude can depend only on the distance 
from the center and must have the same value at all points on the
Gaussian surface.

For the entire conductor is within the Gaussian surface,
so the enclosed charge is The area of the Gaussian surface is

, and is uniform over the surface and perpendicular to it at
each point. The flux integral is then just and 
Eq. (22.8) gives

Continued
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Outside the sphere, the magnitude
of the electric field decreases with
the square of the radial distance
from the center of the sphere:

Inside the sphere, the
electric field is zero:
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22.18 Calculating the electric field of a conducting sphere with
positive charge q. Outside the sphere, the field is the same as if all
of the charge were concentrated at the center of the sphere.
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This expression is the same as that for a point charge; outside the
charged sphere, its field is the same as though the entire charge
were concentrated at its center. Just outside the surface of the
sphere, where 

(at the surface of a charged conducting sphere)

CAUTION Flux can be positive or negative Remember that we
have chosen the charge to be positive. If the charge is negative,
the electric field is radially inward instead of radially outward, and
the electric flux through the Gaussian surface is negative. The 
electric-field magnitudes outside and at the surface of the sphere
are given by the same expressions as above, except that denotes
the magnitude (absolute value) of the charge. ❙

For we again have But now our
Gaussian surface (which lies entirely within the conductor)

E14pr 22 = Qencl>P0.r 6 R

q

q

E =
1

4pP0

q

R2

r = R,

(outside a charged 
conducting sphere)

E =
1

4pP0

q

r 2
  

E14pr 22 =
q

P0
 and

encloses no charge, so . The electric field inside the con-
ductor is therefore zero.

EVALUATE: We already knew that inside a solid conductor
(whether spherical or not) when the charges are at rest. Figure 22.18
shows as a function of the distance from the center of the
sphere. Note that in the limit as the sphere becomes a point
charge; there is then only an “outside,” and the field is everywhere
given by Thus we have deduced Coulomb’s law
from Gauss’s law. (In Section 22.3 we deduced Gauss’s law from
Coulomb’s law; the two laws are equivalent.)

We can also use this method for a conducting spherical shell (a
spherical conductor with a concentric spherical hole inside) if
there is no charge inside the hole. We use a spherical Gaussian sur-
face with radius less than the radius of the hole. If there were a
field inside the hole, it would have to be radial and spherically
symmetric as before, so But now there is no
enclosed charge, so and inside the hole.

Can you use this same technique to find the electric field in the
region between a charged sphere and a concentric hollow conduct-
ing sphere that surrounds it?

E = 0Qencl = 0
E = Qencl>4pP0r 2.

r

E = q>4pP0r 2.

RS 0,
rE

E
S

� 0

Qencl = 0

Example 22.6 Field of a uniform line charge

Electric charge is distributed uniformly along an infinitely long,
thin wire. The charge per unit length is (assumed positive). Find
the electric field using Gauss’s law.

SOLUTION

IDENTIFY and SET UP: We found in Example 21.10 (Section 21.5)
that the field of a uniformly charged, infinite wire is radially out-
ward if is positive and radially inward if is negative, and that
the field magnitude E depends only on the radial distance from the
wire. This suggests that we use a cylindrical Gaussian surface, of
radius and arbitrary length coaxial with the wire and with its
ends perpendicular to the wire (Fig. 22.19).

EXECUTE: The flux through the flat ends of our Gaussian surface is
zero because the radial electric field is parallel to these ends, and
so On the cylindrical part of our surface we have

everywhere. (If were negative, we would havelE
S # nN = E� = E

E
S # nN = 0.

l,r

ll

E
S

l

everywhere.) The area of the cylindrical surface
is so the flux through it—and hence the total flux through
the Gaussian surface—is EA The total enclosed charge
is and so from Gauss’s law, Eq. (22.8),

We found this same result in Example 21.10 with much more
effort.

If is negative, is directed radially inward, and in the above
expression for we must interpret as the absolute value of the
charge per unit length.

EVALUATE: We saw in Example 21.10 that the entire charge on the
wire contributes to the field at any point, and yet we consider only
that part of the charge within the Gaussian surface
when we apply Gauss’s law. There’s nothing inconsistent here; it
takes the entire charge to give the field the properties that allow us
to calculate so easily, and Gauss’s law always applies to the
enclosed charge only. If the wire is short, the symmetry of the infi-
nite wire is lost, and E is not uniform over a coaxial, cylindrical
Gaussian surface. Gauss’s law then cannot be used to find ; we
must solve the problem the hard way, as in Example 21.10.

We can use the Gaussian surface in Fig. 22.19 to show that the
field outside a long, uniformly charged cylinder is the same as
though all the charge were concentrated on a line along its axis
(see Problem 22.42). We can also calculate the electric field in the
space between a charged cylinder and a coaxial hollow conducting
cylinder surrounding it (see Problem 22.39).
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22.19 A coaxial cylindrical Gaussian surface is used to find the
electric field outside an infinitely long, charged wire.
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Example 22.7 Field of an infinite plane sheet of charge

Use Gauss’s law to find the electric field caused by a thin, flat, infi-
nite sheet with a uniform positive surface charge density 

SOLUTION

IDENTIFY and SET UP: In Example 21.11 (Section 21.5) we found
that the field of a uniformly charged infinite sheet is normal to the
sheet, and that its magnitude is independent of the distance from the
sheet. To take advantage of these symmetry properties, we use a
cylindrical Gaussian surface with ends of area A and with its axis
perpendicular to the sheet of charge (Fig. 22.20).

E
S

s.
EXECUTE: The flux through the cylindrical part of our Gaussian
surface is zero because everywhere. The flux through
each flat end of the surface is because 
everywhere, so the total flux through both ends—and hence the
total flux through the Gaussian surface—is The total
enclosed charge is and so from Gauss’s law,

In Example 21.11 we found this same result using a much more
complex calculation.

If is negative, is directed toward the sheet, the flux through
the Gaussian surface in Fig. 22.20 is negative, and in the expres-
sion denotes the magnitude (absolute value) of the
charge density.

EVALUATE: Again we see that, given favorable symmetry, we can
deduce electric fields using Gauss’s law much more easily than
using Coulomb’s law.
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22.20 A cylindrical Gaussian surface is used to find the field of
an infinite plane sheet of charge.

Example 22.8 Field between oppositely charged parallel conducting plates

Two large plane parallel conducting plates are given charges of
equal magnitude and opposite sign; the surface charge densities are

and Find the electric field in the region between the plates.

SOLUTION

IDENTIFY and SET UP: Figure 22.21a shows the field. Because
opposite charges attract, most of the charge accumulates at the oppos-
ing faces of the plates. A small amount of charge resides on the outer
surfaces of the plates, and there is some spreading or “fringing” of

-s .+s

the field at the edges. But if the plates are very large in comparison
to the distance between them, the amount of charge on the outer
surfaces is negligibly small, and the fringing can be neglected
except near the edges. In this case we can assume that the field is
uniform in the interior region between the plates, as in Fig. 22.21b,
and that the charges are distributed uniformly over the opposing
surfaces. To exploit this symmetry, we can use the shaded Gauss-
ian surfaces and These surfaces are cylinders with
flat ends of area ; one end of each surface lies within a plate.A
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In the idealized case
we ignore “fringing”
at the plate edges and
treat the field between
the plates as uniform.

Cylindrical Gaussian
surfaces (seen from
the side)

E
S

Between the two
plates the electric field
is nearly uniform,
pointing from the
positive plate toward
the negative one.

a
b
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(a) Realistic drawing (b) Idealized model

22.21 Electric field between oppositely charged parallel plates.

Continued
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EXECUTE: The left-hand end of surface is within the positive
plate 1. Since the field is zero within the volume of any solid con-
ductor under electrostatic conditions, there is no electric flux
through this end. The electric field between the plates is perpendi-
cular to the right-hand end, so on that end, is equal to and the
flux is this is positive, since is directed out of the Gaussian
surface. There is no flux through the side walls of the cylinder,
since these walls are parallel to So the total flux integral in
Gauss’s law is The net charge enclosed by the cylinder is 
so Eq. (22.8) yields we then have

(field between oppositely charged conducting plates)E =
s

P0

EA = sA>P0;
sA,EA.

E
S

.

E
S

EA;
EE�

S1 The field is uniform and perpendicular to the plates, and its magni-
tude is independent of the distance from either plate. The Gaussian
surface yields the same result. Surfaces and yield to
the left of plate 1 and to the right of plate 2, respectively. We leave
these calculations to you (see Exercise 22.29).

EVALUATE: We obtained the same results in Example 21.11 by using
the principle of superposition of electric fields. The fields due to the
two sheets of charge (one on each plate) are and from Exam-
ple 22.7, both of these have magnitude The total electric field
at any point is the vector sum At points and in
Fig. 22.21b, and point in opposite directions, and their sum is
zero. At point , and are in the same direction; their sum has
magnitude just as we found above using Gauss’s law.E = s>P0,

E
S

2E
S

1b
E
S

2E
S

1

caE
S

� E
S

1 � E
S

2.
s>2P0.

E
S

2;E
S

1

E = 0S3S2S4

Example 22.9 Field of a uniformly charged sphere

Positive electric charge is distributed uniformly throughout the vol-
ume of an insulating sphere with radius Find the magnitude of the
electric field at a point a distance from the center of the sphere.

SOLUTION

IDENTIFY and SET UP: As in Example 22.5, the system is spheri-
cally symmetric. Hence we can use the conclusions of that exam-
ple about the direction and magnitude of To make use of the
spherical symmetry, we choose as our Gaussian surface a sphere
with radius concentric with the charge distribution.

EXECUTE: From symmetry, the direction of is radial at every
point on the Gaussian surface, so and the field magnitude

is the same at every point on the surface. Hence the total electric
flux through the Gaussian surface is the product of and the total
area of the surface —that is, 

The amount of charge enclosed within the Gaussian surface
depends on To find E inside the sphere, we choose The
volume charge density is the charge divided by the volume of
the entire charged sphere of radius 

The volume enclosed by the Gaussian surface is so the
total charge enclosed by that surface is

Then Gauss’s law, Eq. (22.8), becomes

The field magnitude is proportional to the distance of the field
point from the center of the sphere (see the graph of E versus r in
Fig. 22.22).

To find E outside the sphere, we take This surface encloses
the entire charged sphere, so and Gauss’s law gives

(field outside a uniformly
charged sphere)E =

1

4pP0

Q

r 2

4pr 2E =
Q

P0
 or

Qencl = Q,
r 7 R.

r

(field inside a uniformly
charged sphere)

E =
1

4pP0

Qr

R3
 

4pr 2E =
Q

P0

r 3

R3
 or

Qencl = rVencl = a Q

4pR3>3 b A43pr 3 B = Q
r 3

R3

Qencl

4
3pr 3,Vencl

r =
Q

4pR3>3
R :

Qr

r 6 R.r.

£E = 4pr 2E.A = 4pr 2
E

E
E� = E

E
S

r,

E
S

.

rP
R.

Q

The field outside any spherically symmetric charged body varies as
as though the entire charge were concentrated at the center.

This is graphed in Fig. 22.22.
If the charge is negative, is radially inward and in the expres-

sions for we interpret as the absolute value of the charge.

EVALUATE: Notice that if we set in either expression for ,
we get the same result for the magnitude of the
field at the surface of the sphere. This is because the magnitude 
is a continuous function of By contrast, for the charged conduct-
ing sphere of Example 22.5 the electric-field magnitude is
discontinuous at (it jumps from just inside the sphere
to just outside the sphere). In general, the electric
field is discontinuous in magnitude, direction, or both wherever
there is a sheet of charge, such as at the surface of a charged con-
ducting sphere (Example 22.5), at the surface of an infinite charged
sheet (Example 22.7), or at the surface of a charged conducting
plate (Example 22.8).

The approach used here can be applied to any spherically sym-
metric distribution of charge, even if it is not radially uniform, as it
was here. Such charge distributions occur within many atoms and
atomic nuclei, so Gauss’s law is useful in atomic and nuclear
physics.

E
S

E = Q>4pP0R2
E = 0r = R

r.
E

E = Q>4pP0R2
Er = R

QE
E
S

1>r 2,
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22.22 The magnitude of the electric field of a uniformly
charged insulating sphere. Compare this with the field for a con-
ducting sphere (see Fig. 22.18).
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22.5 Charges on Conductors
We have learned that in an electrostatic situation (in which there is no net motion
of charge) the electric field at every point within a conductor is zero and that any
excess charge on a solid conductor is located entirely on its surface (Fig. 22.23a).
But what if there is a cavity inside the conductor (Fig. 22.23b)? If there is no
charge within the cavity, we can use a Gaussian surface such as (which lies
completely within the material of the conductor) to show that the net charge on
the surface of the cavity must be zero, because everywhere on the Gaussian
surface. In fact, we can prove in this situation that there can’t be any charge
anywhere on the cavity surface. We will postpone detailed proof of this statement
until Chapter 23.

Suppose we place a small body with a charge inside a cavity within a conduc-
tor (Fig. 22.23c). The conductor is uncharged and is insulated from the charge 
Again everywhere on surface so according to Gauss’s law the total
charge inside this surface must be zero. Therefore there must be a charge dis-
tributed on the surface of the cavity, drawn there by the charge inside the cavity.
The total charge on the conductor must remain zero, so a charge must appear+q

q
-q

A,E
S

� 0
q.

q

E
S

� 0

A

Example 22.10 Charge on a hollow sphere

A thin-walled, hollow sphere of radius 0.250 m has an unknown
charge distributed uniformly over its surface. At a distance of
0.300 m from the center of the sphere, the electric field points radi-
ally inward and has magnitude How much
charge is on the sphere?

SOLUTION

IDENTIFY and SET UP: The charge distribution is spherically sym-
metric. As in Examples 22.5 and 22.9, it follows that the electric
field is radial everywhere and its magnitude is a function only of
the radial distance from the center of the sphere. We use a spheri-
cal Gaussian surface that is concentric with the charge distribution
and has radius Our target variable is 

EXECUTE: The charge distribution is the same as if the charge were
on the surface of a 0.250-m-radius conducting sphere. Hence we
can borrow the results of Example 22.5. We note that the electric

Qencl = q.r = 0.300 m.

r

1.80 * 102 N>C.

field here is directed toward the sphere, so that q must be negative.
Furthermore, the electric field is directed into the Gaussian sur-
face, so that and 

By Gauss’s law, the flux is equal to the charge on the sphere
(all of which is enclosed by the Gaussian surface) divided by 
Solving for we find

EVALUATE: To determine the charge, we had to know the electric
field at all points on the Gaussian surface so that we could calcu-
late the flux integral. This was possible here because the charge
distribution is highly symmetric. If the charge distribution is irreg-
ular or lacks symmetry, Gauss’s law is not very useful for calculat-
ing the charge distribution from the field, or vice versa.

= -1.80 * 10-9 C = -1.80 nC

* 18.854 * 10-12 C2>N # m2210.300 m22q = -E14pP0r 22 = -11.80 * 102 N>C214p2q,
P0.

q
-E14pr 22.= AE� dA =£EE� = -E

Test Your Understanding of Section 22.4 You place a known amount of
charge on the irregularly shaped conductor shown in Fig. 22.17. If you know the size
and shape of the conductor, can you use Gauss’s law to calculate the electric field at an
arbitrary position outside the conductor? ❙

Q

(a) Solid conductor with charge qC (b) The same conductor with an internal cavity

qC 1 q

(c) An isolated charge q placed in the cavity

–

––
–

–
–– –

q

–
–
–
–
–
––

–

qC
qC

The charge qC resides entirely on the surface of
the conductor. The situation is electrostatic, so
E 5 0 within the conductor.

Arbitrary
Gaussian
surface A

CavityE 5 0 within
conductor

S

S

Because E 5 0 at all points within the conductor,
the electric field at all points on the Gaussian
surface must be zero.

S
For E to be zero at all points on the Gaussian
surface, the surface of the cavity must have a
total charge 2q.

S

22.23 Finding the electric field within a charged conductor.

Application Charge Distribution
Inside a Nerve Cell
The interior of a human nerve cell contains
both positive potassium ions ( ) and nega-
tively charged protein molecules ( ). Potas-
sium ions can flow out of the cell through the
cell membrane, but the much larger protein
molecules cannot. The result is that the inte-
rior of the cell has a net negative charge. (The
fluid outside the cell has a positive charge that
balances this.) The fluid within the cell is a
good conductor, so the molecules distrib-
ute themselves on the outer surface of the
fluid—that is, on the inner surface of the cell
membrane, which is an insulator. This is true
no matter what the shape of the cell.

Pr-

Pr-
K +



Testing Gauss’s Law Experimentally
We can now consider a historic experiment, shown in Fig. 22.25. We mount a
conducting container on an insulating stand. The container is initially uncharged.
Then we hang a charged metal ball from an insulating thread (Fig. 22.25a), lower
it into the container, and put the lid on (Fig. 22.25b). Charges are induced on the
walls of the container, as shown. But now we let the ball touch the inner wall
(Fig. 22.25c). The surface of the ball becomes part of the cavity surface. The sit-
uation is now the same as Fig. 22.23b; if Gauss’s law is correct, the net charge on
the cavity surface must be zero. Thus the ball must lose all its charge. Finally, we
pull the ball out; we find that it has indeed lost all its charge.

This experiment was performed in the 19th century by the English scientist
Michael Faraday, using a metal icepail with a lid, and it is called Faraday’s ice-
pail experiment. The result confirms the validity of Gauss’s law and therefore of

742 CHAPTER 22 Gauss’s Law

Conceptual Example 22.11 A conductor with a cavity

A solid conductor with a cavity carries a total charge of 
Within the cavity, insulated from the conductor, is a point charge
of How much charge is on each surface (inner and outer)
of the conductor?

SOLUTION

Figure 22.24 shows the situation. If the charge in the cavity is
the charge on the inner cavity surface must be 

The conductor carries a total charge of
none of which is in the interior of the material. If is

on the inner surface of the cavity, then there must be 
on the outer surface of the conductor.1+5 nC2 = +2 nC

1+7 nC2 -
+5 nC+7 nC,

-1-5 nC2 = +5 nC.
-q =q = -5 nC,

-5 nC.

+7 nC.

either on its outer surface or inside the material. But we showed that in an elec-
trostatic situation there can’t be any excess charge within the material of a con-
ductor. So we conclude that the charge must appear on the outer surface. By
the same reasoning, if the conductor originally had a charge then the total
charge on the outer surface must be after the charge is inserted into the
cavity.

qqC + q
qC,

+q

22.24 Our sketch for this problem. There is zero electric field
inside the bulk conductor and hence zero flux through the
Gaussian surface shown, so the charge on the cavity wall must be
the opposite of the point charge.
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Once the ball touches the container, it
is part of the interior surface; all the
charge moves to the container’s exterior.

(c)

Metal lid

22.25 (a) A charged conducting ball suspended by an insulating thread outside a conducting container on an insulating stand. (b) The
ball is lowered into the container, and the lid is put on. (c) The ball is touched to the inner surface of the container.



22.5 Charges on Conductors 743

Coulomb’s law. Faraday’s result was significant because Coulomb’s experimen-
tal method, using a torsion balance and dividing of charges, was not very precise;
it is very difficult to confirm the dependence of the electrostatic force by
direct force measurements. By contrast, experiments like Faraday’s test the valid-
ity of Gauss’s law, and therefore of Coulomb’s law, with much greater precision.
Modern versions of this experiment have shown that the exponent 2 in the 
of Coulomb’s law does not differ from precisely 2 by more than . So there
is no reason to believe it is anything other than exactly 2.

The same principle behind Faraday’s icepail experiment is used in a Van de
Graaff electrostatic generator (Fig. 22.26). A charged belt continuously carries
charge to the inside of a conducting shell. By Gauss’s law, there can never be any
charge on the inner surface of this shell, so the charge is immediately carried away
to the outside surface of the shell. As a result, the charge on the shell and the elec-
tric field around it can become very large very rapidly. The Van de Graaff genera-
tor is used as an accelerator of charged particles and for physics demonstrations.

This principle also forms the basis for electrostatic shielding. Suppose
we have a very sensitive electronic instrument that we want to protect from
stray electric fields that might cause erroneous measurements. We surround the
instrument with a conducting box, or we line the walls, floor, and ceiling of the
room with a conducting material such as sheet copper. The external electric field
redistributes the free electrons in the conductor, leaving a net positive charge on
the outer surface in some regions and a net negative charge in others (Fig. 22.27).
This charge distribution causes an additional electric field such that the total field
at every point inside the box is zero, as Gauss’s law says it must be. The charge
distribution on the box also alters the shapes of the field lines near the box, as the
figure shows. Such a setup is often called a Faraday cage. The same physics tells

10-16
1>r 2

1>r 2
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22.26 Cutaway view of the essential parts of a Van de Graaff electrostatic generator.
The electron sink at the bottom draws electrons from the belt, giving it a positive charge;
at the top the belt attracts electrons away from the conducting shell, giving the shell a
positive charge.

?



you that one of the safest places to be in a lightning storm is inside an automo-
bile; if the car is struck by lightning, the charge tends to remain on the metal skin
of the vehicle, and little or no electric field is produced inside the passenger com-
partment.

Field at the Surface of a Conductor
Finally, we note that there is a direct relationship between the field at a point
just outside any conductor and the surface charge density at that point. In gen-
eral, varies from point to point on the surface. We will show in Chapter 23 that
at any such point, the direction of is always perpendicular to the surface. (You
can see this effect in Fig. 22.27a.)

To find a relationship between at any point on the surface and the perpen-
dicular component of the electric field at that point, we construct a Gaussian
surface in the form of a small cylinder (Fig. 22.28). One end face, with area 
lies within the conductor and the other lies just outside. The electric field is
zero at all points within the conductor. Outside the conductor the component
of perpendicular to the side walls of the cylinder is zero, and over the end face
the perpendicular component is equal to (If is positive, the electric field
points out of the conductor and is positive; if is negative, the 
field points inward and is negative.) Hence the total flux through the sur-
face is The charge enclosed within the Gaussian surface is so from
Gauss’s law,

(22.10)

We can check this with the results we have obtained for spherical, cylindrical,
and plane surfaces.

We showed in Example 22.8 that the field magnitude between two infinite flat
oppositely charged conducting plates also equals In this case the field mag-
nitude is the same at all distances from the plates, but in all other cases 
decreases with increasing distance from the surface.

EE
s>P0.

(field at the surface
of a conductor)E�A =

sA

P0
  and  E� =

s

P0

sA,E�A.
E�

sE�

sE� .
E
S

A,

s

E
S

s

s

E
S
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E 5 0

(a) (b)

Field perpendicular to conductor surface

Field pushes electrons
toward left side.

Net positive charge
remains on right side.

E
S

E
S S

–
–
–
–
–
–
––

+
+
+
+
+
+
+

+

22.27 (a) A conducting box (a Faraday cage) immersed in a uniform electric field. The field of the induced charges on the box com-
bines with the uniform field to give zero total field inside the box. (b) This person is inside a Faraday cage, and so is protected from the
powerful electric discharge.

++++ ++++

Outer
surface of
charged
conductor

Gaussian
surface

E� � E

E� � 0

E � 0
A

A

22.28 The field just outside a charged
conductor is perpendicular to the surface,
and its perpendicular component is
equal to s/P0.

E�
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Conceptual Example 22.12 Field at the surface of a conducting sphere

Verify Eq. (22.10) for a conducting sphere with radius and total
charge 

SOLUTION

In Example 22.5 (Section 22.4) we showed that the electric field
just outside the surface is

E =
1

4pP0

q

R2

q.
R The surface charge density is uniform and equal to divided by

the surface area of the sphere:

Comparing these two expressions, we see that which
verifies Eq. (22.10).

E = s>P0,

s =
q

4pR2

q

Example 22.13 Electric field of the earth

The earth (a conductor) has a net electric charge. The resulting
electric field near the surface has an average value of about

directed toward the center of the earth. (a) What is the
corresponding surface charge density? (b) What is the total surface
charge of the earth?

SOLUTION

IDENTIFY and SET UP: We are given the electric-field magnitude at
the surface of the conducting earth. We can calculate the surface
charge density using Eq. (22.10). The total charge Q on the
earth’s surface is then the product of and the earth’s surface area.

EXECUTE: (a) The direction of the field means that is negative
(corresponding to being directed into the surface, so is nega-
tive). From Eq. (22.10),

(b) The earth’s surface area is where 
is the radius of the earth (see Appendix F). The total charge

is the product or4pR 2
Es,Q

106 m
RE = 6.38 *4pR 2

E ,

= -1.33 * 10-9 C>m2 = -1.33 nC>m2

s = P0E� = 18.85 * 10-12 C2>N # m221-150 N>C2
E�E

S
s

s

s

150 N>C,

EVALUATE: You can check our result in part (b) using the result of
Example 22.5. Solving for we find

One electron has a charge of Hence this much
excess negative electric charge corresponds to there being

excess elec-
trons on the earth, or about 7 moles of excess electrons. This is
compensated by an equal deficiency of electrons in the earth’s
upper atmosphere, so the combination of the earth and its atmos-
phere is electrically neutral.

1-6.8 * 105 C2>1-1.60 * 10-19 C2 = 4.2 * 1024

-1.60 * 10-19 C.

= -6.8 * 105 C

=
1

9.0 * 109 N # m2>C2
16.38 * 106 m22 1-150 N>C2Q = 4pP0R2E�

Q,

= -6.8 * 105 C = -680 kC

Q = 4p16.38 * 106 m221-1.33 * 10-9 C>m22

Test Your Understanding of Section 22.5 A hollow conducting sphere has
no net charge. There is a positive point charge at the center of the spherical cavity
within the sphere. You connect a conducting wire from the outside of the sphere to
ground. Will you measure an electric field outside the sphere? ❙

q
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CHAPTER 22 SUMMARY

Point in Electric Field 
Charge Distribution Electric Field Magnitude

Single point charge Distance from 

Charge on surface of conducting sphere with radius Outside sphere, 

Inside sphere, 

Infinite wire, charge per unit length Distance from wire

Infinite conducting cylinder with radius charge per Outside cylinder, 
unit length

Inside cylinder, 

Solid insulating sphere with radius charge distributed Outside sphere, 
uniformly throughout volume

Inside sphere, 

Infinite sheet of charge with uniform charge per unit area Any point

Two oppositely charged conducting plates with surface Any point between plates
charge densities and -s+s

E =
s

P0

E =
s

2P0
s

E =
1

4pP0

Qr

R3
r 6 R

E =
1

4pP0

Q

r 2
r 7 RQR,

E = 0r 6 R

l
E =

1

2pP0

l

r
r 7 RR,

E =
1

2pP0

l

r
rl

E = 0r 6 R

E =
1

4pP0

q

r 2
r 7 RRq

E =
1

4pP0

q

r 2
qrq

Electric flux: Electric flux is a measure of the “flow” of
electric field through a surface. It is equal to the product
of an area element and the perpendicular component of

integrated over a surface. (See Examples 22.1–22.3.)E
S

, (22.5)= LE� dA = LE
S # dA

S

£E = LEcosf dA

AA�

E
S

A
S

ff

R

r

q

dA

E�

Outward normal
to surface

f E
r

Gauss’s law: Gauss’s law states that the total electric
flux through a closed surface, which can be written as
the surface integral of the component of normal to the
surface, equals a constant times the total charge 
enclosed by the surface. Gauss’s law is logically equiva-
lent to Coulomb’s law, but its use greatly simplifies
problems with a high degree of symmetry. (See Exam-
ples 22.4–22.10.)

When excess charge is placed on a conductor and is
at rest, it resides entirely on the surface, and 
everywhere in the material of the conductor. (See Exam-
ples 22.11–22.13.)

E
S

� 0

Qencl

E
S

(22.8), (22.9)=
Qencl

P0

= CE� dA = CE
S # dA

S

£E = CEcosf dA

Electric field of various symmetric charge distributions: The following table lists electric fields caused by several symmetric charge
distributions. In the table, and refer to the magnitudes of the quantities.sq, Q, l,

Charged conductor Just outside the conductor E =
s

P0
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A hydrogen atom is made up of a proton of charge 
and an electron of charge 

The proton may be regarded as a point charge at 
the center of the atom. The motion of the electron causes its charge
to be “smeared out” into a spherical distribution around the proton,
so that the electron is equivalent to a charge per unit volume of

, where is called
the Bohr radius. (a) Find the total amount of the hydrogen atom’s
charge that is enclosed within a sphere with radius centered on
the proton. (b) Find the electric field (magnitude and direction)
caused by the charge of the hydrogen atom as a function of 
(c) Make a graph as a function of r of the ratio of the electric-field
magnitude to the magnitude of the field due to the proton alone.

SOLUTION GUIDE

See MasteringPhysics® study area for a Video Tutor solution.

IDENTIFY and SET UP
1. The charge distribution in this problem is spherically symmet-

ric, just as in Example 22.9, so you can solve it using Gauss’s
law.

2. The charge within a sphere of radius r includes the proton
charge �Q plus the portion of the electron charge distribution
that lies within the sphere. The difference from Example 22.9 is
that the electron charge distribution is not uniform, so the
charge enclosed within a sphere of radius r is not simply the
charge density multiplied by the volume of the sphere.
Instead, you’ll have to do an integral.

4pr 3>3

E

r.

r

a0 = 5.29 * 10-11 mr1r2 = -1Q>pa0
32e-2r>a0

r = 0,10-19 C.
-Q = -1.60 *1.60 * 10-19 C

+Q =

BRIDGING PROBLEM Electric Field Inside a Hydrogen Atom

3. Consider a thin spherical shell centered on the proton, with
radius and infinitesimal thickness . Since the shell is so
thin, every point within the shell is at essentially the same
radius from the proton. Hence the amount of electron charge
within this shell is equal to the electron charge density at
this radius multiplied by the volume dV of the shell. What is dV
in terms of ?

4. The total electron charge within a radius r equals the integral of
from to . Set up this integral (but don’t

solve it yet), and use it to write an expression for the total
charge (including the proton) within a sphere of radius r.

EXECUTE
5. Integrate your expression from step 4 to find the charge within

radius r. Hint: Integrate by substitution: Change the integration
variable from to . You can calculate the integral

using integration by parts, or you can look it up in a
table of integrals or on the World Wide Web.

6. Use Gauss’s law and your results from step 5 to find the electric
field at a distance r from the proton.

7. Find the ratio referred to in part (c) and graph it versus r.
(You’ll actually find it simplest to graph this function versus the
quantity .)

EVALUATE
8. How do your results for the enclosed charge and the electric-

field magnitude behave in the limit ? In the limit ?
Explain your results.

rS qrS 0

r>a0

1x2e-x dx
x = 2r¿>a0r¿

r¿ = rr¿ = 0r1r¿2dV

r¿

r1r¿2
dr¿r¿

Problems For instructor-assigned homework, go to www.masteringphysics.com

DISCUSSION QUESTIONS
Q22.1 A rubber balloon has a single point charge in its interior.
Does the electric flux through the balloon depend on whether or
not it is fully inflated? Explain your reasoning.
Q22.2 Suppose that in Fig. 22.15 both charges were positive. What
would be the fluxes through each of the four surfaces in the
example?
Q22.3 In Fig. 22.15, suppose a third point charge were placed out-
side the purple Gaussian surface Would this affect the electric
flux through any of the surfaces or in the figure? Why or
why not?
Q22.4 A certain region of space bounded by an imaginary closed
surface contains no charge. Is the electric field always zero every-
where on the surface? If not, under what circumstances is it zero
on the surface?
Q22.5 A spherical Gaussian surface encloses a point charge If
the point charge is moved from the center of the sphere to a point
away from the center, does the electric field at a point on the sur-
face change? Does the total flux through the Gaussian surface
change? Explain.

q.

DA, B, C,
C.

Q22.6 You find a sealed box on your doorstep. You suspect that the
box contains several charged metal spheres packed in insulating
material. How can you determine the total net charge inside the
box without opening the box? Or isn’t this possible?
Q22.7 A solid copper sphere has a net positive charge. The charge
is distributed uniformly over the surface of the sphere, and the
electric field inside the sphere is zero. Then a negative point charge
outside the sphere is brought close to the surface of the sphere. Is
all the net charge on the sphere still on its surface? If so, is this
charge still distributed uniformly over the surface? If it is not uni-
form, how is it distributed? Is the electric field inside the sphere
still zero? In each case justify your answers.
Q22.8 If the electric field of a point charge were proportional to

instead of would Gauss’s law still be valid? Explain
your reasoning. (Hint: Consider a spherical Gaussian surface cen-
tered on a single point charge.)
Q22.9 In a conductor, one or more electrons from each atom are
free to roam throughout the volume of the conductor. Does this
contradict the statement that any excess charge on a solid conduc-
tor must reside on its surface? Why or why not?

1>r 2,1>r 3

., .., ...: Problems of increasing difficulty. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems
requiring calculus. BIO: Biosciences problems.
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Q22.10 You charge up the van de Graaff generator shown in 
Fig. 22.26, and then bring an identical but uncharged hollow con-
ducting sphere near it, without letting the two spheres touch.
Sketch the distribution of charges on the second sphere. What is
the net flux through the second sphere? What is the electric field
inside the second sphere?
Q22.11 A lightning rod is a rounded copper rod mounted on top of
a building and welded to a heavy copper cable running down into
the ground. Lightning rods are used to protect houses and barns
from lightning; the lightning current runs through the copper rather
than through the building. Why? Why should the end of the rod be
rounded?
Q22.12 A solid conductor has a cavity in its interior. Would the
presence of a point charge inside the cavity affect the electric field
outside the conductor? Why or why not? Would the presence of a
point charge outside the conductor affect the electric field inside
the cavity? Again, why or why not?
Q22.13 Explain this statement: “In a static situation, the electric
field at the surface of a conductor can have no component parallel
to the surface because this would violate the condition that the
charges on the surface are at rest.” Would this same statement be
valid for the electric field at the surface of an insulator? Explain
your answer and the reason for any differences between the cases
of a conductor and an insulator.
Q22.14 In a certain region of space, the electric field is uniform.
(a) Use Gauss’s law to prove that this region of space must be elec-
trically neutral; that is, the volume charge density must be zero.
(b) Is the converse true? That is, in a region of space where there is
no charge, must be uniform? Explain.
Q22.15 (a) In a certain region of space, the volume charge density

has a uniform positive value. Can be uniform in this region?
Explain. (b) Suppose that in this region of uniform positive there
is a “bubble” within which Can be uniform within this
bubble? Explain.

EXERCISES
Section 22.2 Calculating Electric Flux
22.1 . A flat sheet of paper of area is oriented so that the
normal to the sheet is at an angle of to a uniform electric field of
magnitude (a) Find the magnitude of the electric flux
through the sheet. (b) Does the answer to part (a) depend on the shape
of the sheet? Why or why not? (c) For what angle between the nor-
mal to the sheet and the electric field is the magnitude of the flux
through the sheet (i) largest and (ii) smallest? Explain your answers.
22.2 .. A flat sheet is in the shape of a rectangle with sides of
lengths 0.400 m and 0.600 m. The sheet is immersed in a uniform
electric field of magnitude that is directed at from
the plane of the sheet (Fig. E22.2). Find the magnitude of the elec-
tric flux through the sheet.

22.3 . You measure an electric field of at a dis-
tance of 0.150 m from a point charge. There is no other source of
electric field in the region other than this point charge. (a) What is
the electric flux through the surface of a sphere that has this charge
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at its center and that has radius 0.150 m? (b) What is the magnitude
of this charge?
22.4 . It was shown in Example 21.11 (Section 21.5) that the
electric field due to an infinite line of charge is perpendicular to the
line and has magnitude Consider an imaginary
cylinder with radius and length that has
an infinite line of positive charge running along its axis. The
charge per unit length on the line is (a) What is
the electric flux through the cylinder due to this infinite line of
charge? (b) What is the flux through the cylinder if its radius is
increased to (c) What is the flux through the cylin-
der if its length is increased to 
22.5 .. A hemispherical surface with radius in a region of uni-
form electric field has its axis aligned parallel to the direction of
the field. Calculate the flux through the surface.
22.6 . The cube in Fig. E22.6
has sides of length 
The electric field is uniform,
has magnitude 

and is parallel to the
-plane at an angle of 

measured from the -axis
toward the -axis. (a) What is
the electric flux through each
of the six cube faces 

and (b) What is the
total electric flux through all
faces of the cube?

Section 22.3 Gauss’s Law
22.7 . BIO As discussed in Section 22.5, human nerve cells have
a net negative charge and the material in the interior of the cell is a
good conductor. If a cell has a net charge of �8.65 pC, what are
the magnitude and direction (inward or outward) of the net flux
through the cell boundary?
22.8 . The three small spheres shown in Fig. E22.8 carry charges

and Find the net
electric flux through each of the following closed surfaces shown
in cross section in the figure: (a) (b) (c) (d) (e) 
(f) Do your answers to parts (a)–(e) depend on how the charge is
distributed over each small sphere? Why or why not?

22.9 .. A charged paint is spread in a very thin uniform layer
over the surface of a plastic sphere of diameter 12.0 cm, giving it a
charge of Find the electric field (a) just inside the paint
layer; (b) just outside the paint layer; (c) 5.00 cm outside the sur-
face of the paint layer.
22.10 . A point charge is located on the x-axis at

and a second point charge is on the 
y-axis at What is the total electric flux due to these
two point charges through a spherical surface centered at the origin
and with radius (a) 0.500 m, (b) 1.50 m, (c) 2.50 m?
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22.11 . A point charge is at the center of a cube with
sides of length 0.500 m. (a) What is the electric flux through one of
the six faces of the cube? (b) How would your answer to part 
(a) change if the sides were 0.250 m long? Explain.
22.12 . Electric Fields in an Atom. The nuclei of large atoms,
such as uranium, with 92 protons, can be modeled as spherically
symmetric spheres of charge. The radius of the uranium nucleus is
approximately (a) What is the electric field this
nucleus produces just outside its surface? (b) What magnitude of
electric field does it produce at the distance of the electrons, which
is about (c) The electrons can be modeled as
forming a uniform shell of negative charge. What net electric field
do they produce at the location of the nucleus?
22.13 . A point charge of is located on the x-axis at

next to a spherical surface of radius 3.00 m centered
at the origin. (a) Calculate the magnitude of the electric field at

(b) Calculate the magnitude of the electric field at
(c) According to Gauss’s law, the net flux through

the sphere is zero because it contains no charge. Yet the field due to
the external charge is much stronger on the near side of the sphere
(i.e., at ) than on the far side (at ). How,
then, can the flux into the sphere (on the near side) equal the flux
out of it (on the far side)? Explain. A sketch will help.

Section 22.4 Applications of Gauss’s Law and
Section 22.5 Charges on Conductors
22.14 .. A solid metal sphere with radius 0.450 m carries a net
charge of 0.250 nC. Find the magnitude of the electric field (a) at a
point 0.100 m outside the surface of the sphere and (b) at a point
inside the sphere, 0.100 m below the surface.
22.15 .. Two very long uniform lines of charge are parallel and
are separated by 0.300 m. Each line of charge has charge per unit
length . What magnitude of force does one line of
charge exert on a 0.0500-m section of the other line of charge?
22.16 . Some planetary scientists have suggested that the planet
Mars has an electric field somewhat similar to that of the earth,
producing a net electric flux of at the
planet’s surface, directed toward the center of the planet. Calcu-
late: (a) the total electric charge on the planet; (b) the electric field
at the planet’s surface (refer to the astronomical data inside the
back cover); (c) the charge density on Mars, assuming all the
charge is uniformly distributed over the planet’s surface.
22.17 .. How many excess electrons must be added to an isolated
spherical conductor 32.0 cm in diameter to produce an electric
field of just outside the surface?
22.18 .. The electric field 0.400 m from a very long uniform line
of charge is How much charge is contained in a 2.00-cm
section of the line?
22.19 .. A very long uniform line of charge has charge per unit
length and lies along the x-axis. A second long uni-
form line of charge has charge per unit length and is
parallel to the -axis at What is the net electric field
(magnitude and direction) at the following points on the y-axis:
(a) and (b) 
22.20 . (a) At a distance of 0.200 cm from the center of a charged
conducting sphere with radius 0.100 cm, the electric field is

What is the electric field 0.600 cm from the center of the
sphere? (b) At a distance of 0.200 cm from the axis of a very long
charged conducting cylinder with radius 0.100 cm, the electric
field is What is the electric field 0.600 cm from the axis
of the cylinder? (c) At a distance of 0.200 cm from a large uniform
sheet of charge, the electric field is What is the electric
field 1.20 cm from the sheet?
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x = 3.00 m.

x = 4.00 m,
+5.00 mC

1.0 * 10-10 m?

7.4 * 10-15 m.

6.20-mC 22.21 .. A hollow, conducting sphere with an outer radius of
0.250 m and an inner radius of 0.200 m has a uniform surface
charge density of A charge of is
now introduced into the cavity inside the sphere. (a) What is the new
charge density on the outside of the sphere? (b) Calculate the
strength of the electric field just outside the sphere. (c) What is the
electric flux through a spherical surface just inside the inner sur-
face of the sphere?
22.22 .. A point charge of is located in the center of a
spherical cavity of radius 6.50 cm inside an insulating charged
solid. The charge density in the solid is 
Calculate the electric field inside the solid at a distance of 9.50 cm
from the center of the cavity.
22.23 .. The electric field at a distance of 0.145 m from the sur-
face of a solid insulating sphere with radius 0.355 m is 
(a) Assuming the sphere’s charge is uniformly distributed, what is
the charge density inside it? (b) Calculate the electric field inside
the sphere at a distance of 0.200 m from the center.
22.24 .. CP A very small object with mass and
positive charge is projected directly toward a very
large insulating sheet of positive charge that has uniform surface
charge density . The object is initially 0.400 m
from the sheet. What initial speed must the object have in order for
its closest distance of approach to the sheet to be 0.100 m?
22.25 .. CP At time a proton is a distance of 0.360 m from
a very large insulating sheet of charge and is moving parallel to the
sheet with speed . The sheet has uniform surface
charge density . What is the speed of the proton
at ?
22.26 .. CP An electron is released from rest at a distance of 
0.300 m from a large insulating sheet of charge that has uniform sur-
face charge density . (a) How much work is
done on the electron by the electric field of the sheet as the electron
moves from its initial position to a point 0.050 m from the sheet? (b)
What is the speed of the electron when it is 0.050 m from the sheet?
22.27 ... CP CALC An insulating sphere of radius 
has uniform charge density . A small
object that can be treated as a point charge is released from rest
just outside the surface of the sphere. The small object has positive
charge . How much work does the electric
field of the sphere do on the object as the object moves to a point
very far from the sphere?
22.28 . A conductor with an inner cavity, like that shown in Fig.
22.23c, carries a total charge of The charge within the
cavity, insulated from the conductor, is How much
charge is on (a) the inner surface of the conductor and (b) the outer
surface of the conductor?
22.29 . Apply Gauss’s law to the Gaussian surfaces and

in Fig. 22.21b to calculate the electric field between and outside
the plates.
22.30 . A square insulating sheet 80.0 cm on a side is held hori-
zontally. The sheet has 7.50 nC of charge spread uniformly over its
area. (a) Calculate the electric field at a point 0.100 mm above the
center of the sheet. (b) Estimate the electric field at a point 100 m
above the center of the sheet. (c) Would the answers to parts (a) and
(b) be different if the sheet were made of a conducting material?
Why or why not?
22.31 . An infinitely long cylindrical conductor has radius and
uniform surface charge density (a) In terms of and what is the
charge per unit length for the cylinder? (b) In terms of what is
the magnitude of the electric field produced by the charged cylinder
at a distance from its axis? (c) Express the result of part (b) in
terms of and show that the electric field outside the cylinder is thel
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same as if all the charge were on the axis. Compare your result to the
result for a line of charge in Example 22.6 (Section 22.4).
22.32 . Two very large, nonconduct-
ing plastic sheets, each 10.0 cm thick,
carry uniform charge densities 

and on their surfaces, as
shown in Fig. E22.32. These surface
charge densities have the values 

and
Use Gauss’s law to find the

magnitude and direction of the electric
field at the following points, far from
the edges of these sheets: (a) point 5.00 cm from the left face of
the left-hand sheet; (b) point 1.25 cm from the inner surface of the
right-hand sheet; (c) point in the middle of the right-hand sheet.
22.33 . A negative charge is placed inside the cavity of a
hollow metal solid. The outside of the solid is grounded by con-
necting a conducting wire between it and the earth. (a) Is there
any excess charge induced on the inner surface of the piece of
metal? If so, find its sign and magnitude. (b) Is there any excess
charge on the outside of the piece of metal? Why or why not? 
(c) Is there an electric field in the cavity? Explain. (d) Is there an
electric field within the metal? Why or why not? Is there an elec-
tric field outside the piece of metal? Explain why or why not. 
(e) Would someone outside the solid measure an electric field
due to the charge Is it reasonable to say that the grounded
conductor has shielded the region from the effects of the charge

In principle, could the same thing be done for gravity? Why
or why not?

PROBLEMS
22.34 .. A cube has sides of length It is placed
with one corner at the origin as shown in Fig. E22.6. The electric
field is not uniform but is given by 

(a) Find the electric flux through each of the six
cube faces and (b) Find the total electric
charge inside the cube.
22.35 . The electric field in 
Fig. P22.35 is everywhere parallel
to the -axis, so the components 
and are zero. The -component
of the field depends on but not
on and At points in the -plane
(where ), 
(a) What is the electric flux through
surface I in Fig. P22.35? (b) What
is the electric flux through sur-
face II? (c) The volume shown in
the figure is a small section of a
very large insulating slab 1.0 m thick. If there is a total charge of

within the volume shown, what are the magnitude and
direction of at the face opposite surface I? (d) Is the electric field
produced only by charges within the slab, or is the field also due to
charges outside the slab? How can you tell?
22.36 .. CALC In a region of space there is an electric field that
is in the z-direction and that has magnitude .
Find the flux for this field through a square in the xy-plane at 
and with side length 0.350 m. One side of the square is along the 

x-axis and another side is along the y-axis.++
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22.37 .. The electric field at
one face of a parallelepiped is uni-
form over the entire face and is
directed out of the face. At the oppo-
site face, the electric field is also
uniform over the entire face and is
directed into that face (Fig. P22.37).
The two faces in question are
inclined at from the horizontal,
while and are both horizon-
tal; has a magnitude of and has a magni-
tude of (a) Assuming that no other electric field
lines cross the surfaces of the parallelepiped, determine the net
charge contained within. (b) Is the electric field produced only by
the charges within the parallelepiped, or is the field also due to
charges outside the parallelepiped? How can you tell?
22.38 . A long line carrying a uniform linear charge density

runs parallel to and 10.0 cm from the surface of a
large, flat plastic sheet that has a uniform surface charge density of

on one side. Find the location of all points where an
particle would feel no force due to this arrangement of charged

objects.
22.39 . The Coaxial Cable. A long coaxial cable consists of an
inner cylindrical conductor with radius and an outer coaxial
cylinder with inner radius and outer radius The outer cylinder
is mounted on insulating supports and has no net charge. The inner
cylinder has a uniform positive charge per unit length Calculate
the electric field (a) at any point between the cylinders a distance 
from the axis and (b) at any point outside the outer cylinder. 
(c) Graph the magnitude of the electric field as a function of the
distance from the axis of the cable, from to 
(d) Find the charge per unit length on the inner surface and on the
outer surface of the outer cylinder.
22.40 . A very long conducting tube (hollow cylinder) has inner
radius and outer radius It carries charge per unit length 
where is a positive constant with units of A line of charge
lies along the axis of the tube. The line of charge has charge per
unit length (a) Calculate the electric field in terms of and 
the distance from the axis of the tube for (i) (ii)

(iii) Show your results in a graph of as a
function of (b) What is the charge per unit length on (i) the inner
surface of the tube and (ii) the outer surface of the tube?
22.41 . Repeat Problem 22.40, but now let the conducting tube
have charge per unit length As in Problem 22.40, the line of
charge has charge per unit length 
22.42 . A very long, solid cylinder with radius has positive
charge uniformly distributed throughout it, with charge per unit
volume (a) Derive the expression for the electric field inside the
volume at a distance from the axis of the cylinder in terms of 
the charge density (b) What is the electric field at a point outside
the volume in terms of the charge
per unit length in the cylinder?
(c) Compare the answers to parts
(a) and (b) for (d) Graph
the electric-field magnitude as a
function of from to
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sheet, as shown in Fig. P22.43. The charge density on the surface
of the sheet is uniform and equal to Find the
angle of the thread.
22.44 . A Sphere in a Sphere. A solid conducting sphere car-
rying charge has radius It is inside a concentric hollow con-
ducting sphere with inner radius and outer radius The hollow
sphere has no net charge. (a) Derive expressions for the electric-
field magnitude in terms of the distance from the center for the
regions and (b) Graph the
magnitude of the electric field as a function of from to

(c) What is the charge on the inner surface of the hollow
sphere? (d) On the outer surface? (e) Represent the charge of the
small sphere by four plus signs. Sketch the field lines of the system
within a spherical volume of radius 2
22.45 . A solid conducting sphere with radius that carries posi-
tive charge is concentric with a very thin insulating shell of radius

that also carries charge The charge is distributed uniformly
over the insulating shell. (a) Find the electric field (magnitude and
direction) in each of the regions and

(b) Graph the electric-field magnitude as a function of 
22.46 . A conducting spherical shell with inner
radius and outer radius has a positive point
charge located at its center. The total charge on
the shell is and it is insulated from its sur-
roundings (Fig. P22.46). (a) Derive expressions
for the electric-field magnitude in terms of the
distance from the center for the regions

and (b) What is the surface
charge density on the inner surface of the conducting shell? 
(c) What is the surface charge density on the outer surface of the con-
ducting shell? (d) Sketch the electric field lines and the location of all
charges. (e) Graph the electric-field magnitude as a function of 
22.47 . Concentric Spherical Shells. A
small conducting spherical shell with inner
radius and outer radius is concentric with
a larger conducting spherical shell with inner
radius and outer radius (Fig. P22.47).
The inner shell has total charge and
the outer shell has charge (a) Calcu-
late the electric field (magnitude and direc-
tion) in terms of and the distance from
the common center of the two shells for 
(i) (ii) (iii) (iv) 
(v) Show your results in a graph of the radial component of

as a function of (b) What is the total charge on the (i) inner sur-
face of the small shell; (ii) outer surface of the small shell; (iii) inner
surface of the large shell; (iv) outer surface of the large shell?
22.48 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.49 . Repeat Problem 22.47, but now let the outer shell have
charge As in Problem 22.47, the inner shell has charge 
22.50 . A solid conducting sphere with radius carries a positive
total charge The sphere is surrounded by an insulating shell
with inner radius and outer radius The insulating shell has a
uniform charge density (a) Find the value of so that the net
charge of the entire system is zero. (b) If has the value found in
part (a), find the electric field (magnitude and direction) in each of
the regions and Show your
results in a graph of the radial component of as a function of 
(c) As a general rule, the electric field is discontinuous only at
locations where there is a thin sheet of charge. Explain how your
results in part (b) agree with this rule.
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22.51 . Negative charge is distributed uniformly over the
surface of a thin spherical insulating shell with radius Calculate
the force (magnitude and direction) that the shell exerts on a positive
point charge located (a) a distance from the center of 
the shell (outside the shell) and (b) a distance from the center
of the shell (inside the shell).
22.52 .. (a) How many excess electrons must be distributed uni-
formly within the volume of an isolated plastic sphere 30.0 cm
in diameter to produce an electric field of just outside
the surface of the sphere? (b) What is the electric field at a point
10.0 cm outside the surface of the sphere?
22.53 ... CALC An insulating hollow sphere has inner radius a
and outer radius b. Within the insulating material the volume
charge density is given by , where is a positive con-
stant. (a) In terms of and a, what is the magnitude of the electric
field at a distance r from the center of the shell, where ?
(b) A point charge q is placed at the center of the hollow space, at

. In terms of and a, what value must q have (sign and mag-
nitude) in order for the electric field to be constant in the region

, and what then is the value of the constant field in this
region?
22.54 .. CP Thomson’s Model of the Atom. In the early years
of the 20th century, a leading model of the structure of the atom
was that of the English physicist J. J. Thomson (the discoverer of
the electron). In Thomson’s model, an atom consisted of a sphere
of positively charged material in which were embedded negatively
charged electrons, like chocolate chips in a ball of cookie dough.
Consider such an atom consisting of one electron with mass and
charge which may be regarded as a point charge, and a uni-
formly charged sphere of charge and radius (a) Explain why
the equilibrium position of the electron is at the center of the
nucleus. (b) In Thomson’s model, it was assumed that the positive
material provided little or no resistance to the motion of the elec-
tron. If the electron is displaced from equilibrium by a distance less
than show that the resulting motion of the electron will be simple
harmonic, and calculate the frequency of oscillation. (Hint: Review
the definition of simple harmonic motion in Section 14.2. If it can
be shown that the net force on the electron is of this form, then it
follows that the motion is simple harmonic. Conversely, if the net
force on the electron does not follow this form, the motion is not
simple harmonic.) (c) By Thomson’s time, it was known that
excited atoms emit light waves of only certain frequencies. In his
model, the frequency of emitted light is the same as the oscillation
frequency of the electron or electrons in the atom. What would the
radius of a Thomson-model atom have to be for it to produce red light
of frequency Compare your answer to the radii of
real atoms, which are of the order of (see Appendix F for
data about the electron). (d) If the electron were displaced from
equilibrium by a distance greater than would the electron oscil-
late? Would its motion be simple harmonic? Explain your reason-
ing. (Historical note: In 1910, the atomic nucleus was discovered,
proving the Thomson model to be incorrect. An atom’s positive
charge is not spread over its volume as
Thomson supposed, but is concentrated in
the tiny nucleus of radius to

)
22.55 . Thomson’s Model of the Atom,
Continued. Using Thomson’s (outdated)
model of the atom described in Problem
22.54, consider an atom consisting of two
electrons, each of charge embedded in
a sphere of charge and radius InR.+2e
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equilibrium, each electron is a distance from the center of the
atom (Fig. P22.55). Find the distance in terms of the other prop-
erties of the atom.
22.56 . A Uniformly Charged Slab. A slab of insulating mate-
rial has thickness and is oriented so that its faces are parallel to
the -plane and given by the planes and The -
and -dimensions of the slab are very large compared to and may
be treated as essentially infinite. The slab has a uniform positive
charge density (a) Explain why the electric field due to the slab
is zero at the center of the slab (b) Using Gauss’s law,
find the electric field due to the slab (magnitude and direction) at
all points in space.
22.57 . CALC A Nonuniformly Charged Slab. Repeat Problem
22.56, but now let the charge density of the slab be given by

where is a positive constant.
22.58 . CALC A nonuniform, but spherically symmetric, distribu-
tion of charge has a charge density given as follows:

where is a positive constant. (a) Find the total charge contained
in the charge distribution. (b) Obtain an expression for the electric
field in the region (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.
22.59 . CP CALC Gauss’s Law for Gravitation. The gravita-
tional force between two point masses separated by a distance is
proportional to just like the electric force between two point
charges. Because of this similarity between gravitational and elec-
tric interactions, there is also a Gauss’s law for gravitation. (a) Let

be the acceleration due to gravity caused by a point mass at
the origin, so that Consider a spherical Gaussian
surface with radius centered on this point mass, and show that the
flux of through this surface is given by

(b) By following the same logical steps used in Section 22.3 to
obtain Gauss’s law for the electric field, show that the flux of 
through any closed surface is given by

where is the total mass enclosed within the closed surface.
22.60 . CP Applying Gauss’s Law for Gravitation. Using
Gauss’s law for gravitation (derived in part (b) of Problem 22.59),
show that the following statements are true: (a) For any spherically
symmetric mass distribution with total mass the acceleration due
to gravity outside the distribution is the same as though all the mass
were concentrated at the center. (Hint: See Example 22.5 in Section
22.4.) (b) At any point inside a spherically symmetric shell of mass,
the acceleration due to gravity is zero. (Hint: See Example 22.5.) 
(c) If we could drill a hole through a spherically symmetric planet to
its center, and if the density were uniform, we would find that the
magnitude of is directly proportional to the distance from the
center. (Hint: See Example 22.9 in Section 22.4.) We proved these
results in Section 13.6 using some fairly strenuous analysis; the
proofs using Gauss’s law for gravitation are much easier.
22.61 . (a) An insulating sphere with radius has a uniform
charge density The sphere is not centered at the origin but at

Show that the electric field inside the sphere is given byrS � b
S
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d
d (b) An insulating sphere

of radius has a spherical hole of radius 
located within its volume and centered a dis-
tance from the center of the sphere, where

(a cross section of the sphere is
shown in Fig. P22.61). The solid part of the
sphere has a uniform volume charge density

Find the magnitude and direction of the
electric field inside the hole, and show that is uniform over the
entire hole. [Hint: Use the principle of superposition and the result
of part (a).]
22.62 . A very long, solid insulating
cylinder with radius has a cylindrical
hole with radius bored along its entire
length. The axis of the hole is a distance 
from the axis of the cylinder, where 

(Fig. P22.62). The solid material
of the cylinder has a uniform volume
charge density Find the magnitude and
direction of the electric field inside the
hole, and show that is uniform over the
entire hole. (Hint: See Problem 22.61.)
22.63 . Positive charge is
distributed uniformly over each
of two spherical volumes with
radius One sphere of charge
is centered at the origin and the
other at (Fig. P22.63).
Find the magnitude and direc-
tion of the net electric field due
to these two distributions of
charge at the following points on the -axis: (a) (b)

(c) (d) 
22.64 . Repeat Problem 22.63, but now let the left-hand sphere
have positive charge and let the right-hand sphere have negative
charge 
22.65 .. CALC A nonuniform, but spherically symmetric, distri-
bution of charge has a charge density given as follows:

where is a positive constant. (a) Show that the total
charge contained in the charge distribution is (b) Show that the
electric field in the region is identical to that produced by a
point charge at (c) Obtain an expression for the electric
field in the region (d) Graph the electric-field magnitude 
as a function of (e) Find the value of at which the electric field
is maximum, and find the value of that maximum field.

CHALLENGE PROBLEMS
22.66 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given by

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of as a function of Do this separately for allr.E
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three regions. Express your answers in terms of the total charge 
Be sure to check that your results agree on the boundaries of the
regions. (c) What fraction of the total charge is contained within the
region (d) If an electron with charge is oscillat-
ing back and forth about (the center of the distribution) with
an amplitude less than show that the motion is simple har-
monic. (Hint: Review the discussion of simple harmonic motion in
Section 14.2. If, and only if, the net force on the electron is propor-
tional to its displacement from equilibrium, then the motion is sim-
ple harmonic.) (e) What is the period of the motion in part (d)? (f) If
the amplitude of the motion described in part (e) is greater than

is the motion still simple harmonic? Why or why not?
22.67 ... CP CALC A region in space contains a total positive
charge that is distributed spherically such that the volume
charge density is given byr1r2Q

R>2,

R>2,
r = 0

q¿ = -er … R>2?

Q.

Here is a positive constant having units of (a) Determine
in terms of and (b) Using Gauss’s law, derive an expression

for the magnitude of the electric field as a function of Do this
separately for all three regions. Express your answers in terms of
the total charge (c) What fraction of the total charge is con-
tained within the region (d) What is the magnitude
of at (e) If an electron with charge is
released from rest at any point in any of the three regions, the
resulting motion will be oscillatory but not simple harmonic.
Why? (See Challenge Problem 22.66.)
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Chapter Opening Question ?
No. The electric field inside a cavity within a conductor is zero, so
there is no electric effect on the child. (See Section 22.5.)

Test Your Understanding Questions
22.1 Answer: (iii) Each part of the surface of the box will be three
times farther from the charge so the electric field will be

as strong. But the area of the box will increase by a factor
of Hence the electric flux will be multiplied by a factor of

In other words, the flux will be unchanged.
22.2 Answer: (iv), (ii), (i), (iii) In each case the electric field is
uniform, so the flux is We use the relationships for
the scalar products of unit vectors: In
case (i) we have (the electric
field and vector area are perpendicular, so there is zero flux). In 
case (ii) we have 

Similarly, in case (iii) we
have

and in
case (iv) we have 

22.3 Answer: and (tie) Gauss’s law tells us that
the flux through a closed surface is proportional to the amount of
charge enclosed within that surface. So an ordering of these sur-
faces by their fluxes is the same as an ordering by the amount of
enclosed charge. Surface encloses no charge, surface en-
closes surface en-
closes surface encloses

and surface encloses

22.4 Answer: no You might be tempted to draw a Gaussian sur-
face that is an enlarged version of the conductor, with the same
shape and placed so that it completely encloses the conductor.

15.0 mC2 = 6.0 mC.
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While you know the flux through this Gaussian surface (by
Gauss’s law, it’s ), the direction of the electric field
need not be perpendicular to the surface and the magnitude of the
field need not be the same at all points on the surface. It’s not pos-
sible to do the flux integral and we can’t calculate the
electric field. Gauss’s law is useful for calculating the electric field
only when the charge distribution is highly symmetric.
22.5 Answer: no Before you connect the wire to the sphere, the
presence of the point charge will induce a charge on the inner
surface of the hollow sphere and a charge on the outer surface
(the net charge on the sphere is zero). There will be an electric
field outside the sphere due to the charge on the outer surface.
Once you touch the conducting wire to the sphere, however, elec-
trons will flow from ground to the outer surface of the sphere to
neutralize the charge there (see Fig. 21.7c). As a result the sphere
will have no charge on its outer surface and no electric field out-
side.
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23
LEARNING GOALS

By studying this chapter, you will

learn:

• How to calculate the electric poten-

tial energy of a collection of charges.

• The meaning and significance of

electric potential.

• How to calculate the electric potential

that a collection of charges produces

at a point in space.

• How to use equipotential surfaces to

visualize how the electric potential

varies in space.

• How to use electric potential to 

calculate the electric field.

ELECTRIC POTENTIAL

This chapter is about energy associated with electrical interactions. Every
time you turn on a light, listen to an MP3 player, or talk on a mobile phone,
you are using electrical energy, an indispensable ingredient of our techno-

logical society. In Chapters 6 and 7 we introduced the concepts of work and
energy in the context of mechanics; now we’ll combine these concepts with what
we’ve learned about electric charge, electric forces, and electric fields. Just as we
found for many problems in mechanics, using energy ideas makes it easier to
solve a variety of problems in electricity.

When a charged particle moves in an electric field, the field exerts a force
that can do work on the particle. This work can always be expressed in terms of
electric potential energy. Just as gravitational potential energy depends on the
height of a mass above the earth’s surface, electric potential energy depends on
the position of the charged particle in the electric field. We’ll describe electric
potential energy using a new concept called electric potential, or simply potential.
In circuits, a difference in potential from one point to another is often called
voltage. The concepts of potential and voltage are crucial to understanding how
electric circuits work and have equally important applications to electron beams
used in cancer radiotherapy, high-energy particle accelerators, and many other
devices.

23.1 Electric Potential Energy
The concepts of work, potential energy, and conservation of energy proved to
be extremely useful in our study of mechanics. In this section we’ll show that
these concepts are just as useful for understanding and analyzing electrical
interactions.

? In one type of welding, electric charge flows between the welding tool and the
metal pieces that are to be joined together. This produces a glowing arc
whose high temperature fuses the pieces together. Why must the tool be held
close to the pieces being welded?


