## Chapter 19 Split-Plot Designs

Split-plot designs are needed when the levels of some treatment factors are more difficult to change during the experiment than those of others. The designs have a nested blocking structure: split plots are nested within whole plots, which may be nested within blocks.

Example. An experiment is to compare the yield of three varieties of oats (factor $\boldsymbol{A}$ with $\boldsymbol{a}=\mathbf{3}$ levels) and four different levels of manure (factor B with b=4 levels). Suppose 6 farmers agree to participate in the experiment and each will designate a farm field for the experiment (blocking factor with $s=6$ levels). Since it is easier to plant a variety of oat in a large field, the experimenter uses a split-plot design as follows:

1. To divide each block into three equal sized plots (whole plots), and each plot is assigned a variety of oat according to a randomized block design.
2. Each whole plot is divided into 4 plots (split-plots) and the four levels of manure are randomly assigned to the 4 splitplots.

A model for such a split-plot design is the following:

$$
\begin{aligned}
Y_{h i j}=\mu & +\theta_{h}+\alpha_{i}+\epsilon_{i(h)}^{W} \\
& +\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{j(h i)}^{S}
\end{aligned}
$$

where $\epsilon_{i(h)}^{W}$ i.i.d. $\sim N\left(0, \sigma_{W}^{2}\right), \epsilon_{j(h i)}^{S}$ i.i.d. $\sim N\left(0, \sigma_{S}^{2}\right)$ and are mutually
independent, $\mathrm{h}=1,2, \ldots, \mathrm{~s}, \mathrm{i}=1,2, \ldots, \mathrm{a}, \mathrm{j}=1,2, \ldots, \mathrm{~b}$.
Note the nested blocking structure: whole plots are nested within the blocks, and split-plots are nested within the whole plots.

Two kinds of errors: $\epsilon_{i(h)}^{W}$ representing the random effects of the whole plots, and $\epsilon_{j(h i)}^{S}$ representing the random effects of splitplots and random noises.

ANOVA Table for split-plot designs:

| Source of Variation | D.F. | SS | MS | Ratio |
| :---: | :---: | :---: | :---: | :---: |
| Block | s-1 | SS $\theta$ | - | - |
| A | a-1 | SSA | MSA | MSA/MSE ${ }^{\text {w }}$ |
| Whole-plot error | (s-1)(a-1) | SSE ${ }^{\text {w }}$ | MSE ${ }^{\text {w }}$ |  |
| B | b-1 | SSB | MSB | MSB/MSE ${ }^{\text {s }}$ |
| AB | (a-1)(b-1) | SSAB | MSAB | MSAB/MSE ${ }^{\text {s }}$ |
| Split-plot error | $\mathrm{a}(\mathrm{b}-1)(\mathrm{s}-1)$ |  | MSE ${ }^{\text {s }}$ |  |
| Total | n-1 | Sstotal |  |  |

For calculations of the sums of squares, please see table 19.2 on page 679 .

Note for testing of equal effects of factor A, the whole-plot mean square error is used. It should also be used for main effect contrasts of factor A. For tests or main effect contrasts of factor B , or AB interaction contrasts, the split-plot mean square error
is used.

For main effects and interaction contrasts, the methods of multiple comparison of Bonferroni, Scheffe, Tukey, Dunnett, and Hsu can be used as usual.

Remark: If either levels of factor are assigned to whole plots as an incomplete block design, or the levels of factor B are assigned to split-plots as an incomplete design, the formulas of the sum of squares should be adjusted. But the degrees of freedom will remain the same. Estimates for main effects and interaction contrasts should be adjusted also.

In general, within-whole-plot comparisons will generally be more precise than between-whole-plot comparisons. If the levels of all factors are easy to change, split-plot designs are recommended only when there is considerably less interest in one or more of the treatment factors.

## SAS Programs

1. Complete block designs
```
*** analysis of variance; * method 1;
PROC GLM;
    CLASSES BLOCK A B WP;
    MODEL Y = BLOCK A WP(BLOCK) B A*B/E1;
    RANDOM BLOCK WP(BLOCK) /TEST;
    MEANS A / DUNNETT('O') ALPHA=0.01 CLDIFF E=WP(BLOCK);
    MEANS B / DUNNETT('0') ALPHA=0.01 CLDIFF;
RUN;
```

2. Complete block designs or incomplete block designs
```
*** analysis of variance; * method 2;
PROC GLM;
    CLASSES BLOCK A B;
    MODEL Y = BLOCK A BLOCK*A B A*B;
    RANDOM BLOCK A*BLOCK/TEST;
    MEANS A / DUNNETT('0') ALPHA=0.01 CLDIFF E=BLOCK*A;
    MEANS B / DUNNETT('0') ALPHA=0.01 CLDIFF;
Run;
```

Note the second method does not use the whole-plot as a random factor as in methods one. It makes use of the fact that the whole-plot error sum of squares uses the same degrees of freedom as the interactions between the block factor and the whole-plot factor.

## Example of Split-Plot Design and Analysis: The Oats Experiment

An experiment on the yield of three varieties (factor A) and four different levels of manure (factor B) was described by Yates (Complex Experiments, 1935). The experiment area was divided into $s=6$ blocks. Each of these was then subdivided into $a=3$ whole plots. The varieties of oats were sown on the whole plots according to a randomized complete block design. Each whole plot was then divided into $\mathrm{b}=4$ split-plots and the levels of manure were applied to the split plots according to a randomized complete block design. The design and data were shown in Table 19.3, page 682.

1. Write down an appropriate model for this experiment.
2.Do the varieties of oats and the levels of manure have significant interaction effects?
2. Do the varieties of oats have significantly different effects?
3. Do the levels of manure have significantly different effects?
4. Find simultaneous $95 \%$ confidence intervals for all treatment-versus-control comparisons for the varieties(Variety 0 is the control).
5. Find simultaneous $95 \%$ confidence intervals for all treatment-versus-control comparisons for the levels of manure (Level 0 is the control).

## SAS Program:

```
*** analysis of variance; * method 1;
PROC GLM;
    CLASSES BLOCK A B WP;
    MODEL Y = BLOCK A WP(BLOCK) B A*B / E1;
    RANDOM BLOCK WP(BLOCK) / TEST;
    MEANS A / DUNNETT('O') ALPHA=0.01 CLDIFF E=WP(BLOCK);
    MEANS B / DUNNETT('0') ALPHA=0.01 CLDIFF;
title 'method 1';
;
*** analysis of variance; * method 2;
DATA; SET OAT;
PROC GLM;
    CLASSES BLOCK A B;
    MODEL Y = BLOCK A BLOCK*A B A*B;
    RANDOM BLOCK A*BLOCK/TEST;
    LSMEANS A / PDIFF=CONTROL CL ADJUST=DUNNETT ALPHA=0.01 E=BLOCK*A;
    LSMEANS B / PDIFF=CONTROL CL ADJUST=DUNNETT ALPHA=0.01;
title 'Method 2';
run;
```

The two methods give identical results. Result from method 1 is given in the book (p689). Provided below are results from method 2 .

General Linear Models Procedure

|  |  | Sum of | Mean |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | DF | Squares | Square | F | $\begin{array}{r} \text { Value } \\ 9.56 \end{array}$ | Pr $>\mathrm{F}$ |
| Model | 26 | 44017.194 | 1692.969 |  |  | 0.0001 |
| Error | 45 | 7968.750 | 177.083 |  |  |  |
| Corrected Total | 71 | 51985.944 |  |  |  |  |
|  | R-Square | C.V. | Root MSE |  |  | Y Mean |
|  | 0.846713 | 12.79887 | 13.307 |  |  | 103.97 |
| Source | DF | Type I SS | Mean Square | F | Value | Pr $>\mathrm{F}$ |
| BLOCK | 5 | 15875.278 | 3175.056 |  | 17.93 | 0.0001 |
| A | 2 | 1786.361 | 893.181 |  | 5.04 | 0.0106 |
| BLOCK*A | 10 | 6013.306 | 601.331 |  | 3.40 | 0.0023 |
| B | 3 | 20020.500 | 6673.500 |  | 37.69 | 0.0001 |
| $A * B$ | 6 | 321.750 | 53.625 |  | 0.30 | 0.9322 |
| Source | DF | Type III SS | Mean Square | F | Value | Pr $>\mathrm{F}$ |
| BLOCK | 5 | 15875.278 | 3175.056 |  | 17.93 | 0.0001 |
| A | 2 | 1786.361 | 893.181 |  | 5.04 | 0.0106 |
| BLOCK*A | 10 | 6013.306 | 601.331 |  | 3.40 | 0.0023 |
| B | 3 | 20020.500 | 6673.500 |  | 37.69 | 0.0001 |
| $A * B$ | 6 | 321.750 | 53.625 |  | 0.30 | 0.9322 |

Source Type III Expected Mean Square
BLOCK Var(Error) + 4 Var (BLOCK*A) + 12 Var (BLOCK)
$A \quad \operatorname{Var}(E r r o r)+4 \operatorname{Var}(B L O C K * A)+Q(A, A * B)$
BLOCK*A $\operatorname{Var}(E r r o r)+4 \operatorname{Var}(B L O C K * A)$
$B \quad \operatorname{Var}(E r r o r)+Q(B, A * B)$
$A * B \quad \operatorname{Var}($ Error $)+Q(A * B)$
Tests of Hypotheses for Mixed Model Analysis of Variance
Dependent Variable: Y
Source: BLOCK
Error: MS (BLOCK*A)

| Denominator | Denominator |  |  |
| :---: | :---: | ---: | ---: |
| DF | MS | Falue | Pr $>$ F |
| 10 | 601.33055556 | 5.2801 | 0.0124 |

Source: A *
Error: MS (BLOCK*A)
Denominator Denominator

| DF | Type III MS | DF | MS | F Value | Pr $\gg$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 893.18055556 | 10 | 601.33055556 | 1.4853 | 0.2724 |

*     - This test assumes one or more other fixed effects are zero.

Source: BLOCK*A
Error: MS (Error)

|  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| DF | Type III MS | Denominator | Denominator |  |  |
| 10 | 601.33055556 | DF | MS | F Value | Pr $>$ F |
|  | 45 | 177.08333333 | 3.3957 | 0.0023 |  |

Source: B *
Error: MS (Error)
Denominator Denominator

|  |  | Denominator | Denominator |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DF | Type III MS | DF | MS | F Value | Pr $>$ |
| 3 | 6673.5 | 45 | 177.08333333 | 37.6856 | 0.0001 |

*     - This test assumes one or more other fixed effects are zero. Source: A*B
Error: MS (Error)

|  |  | Denominator | Denominator |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DF | Type III MS | DF | MS | F Value | Pr $>$ F |
| 6 | 53.625 | 45 | 177.08333333 | 0.3028 | 0.9322 |



