





Characters, working modulo 3, for 3×3 factorial	Characters, working modulo 2, for $2 \times 2 \times 2$ factorial
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
For 3 blocks of size 3, can alias blocks with any character.	A+B+C (1 degree of freedom for) the A-by-B-by-C interaction

0/25

p^t rows ar	d columns, <i>p^m</i> treatment	$d = p^{m-t}$	A 2^3 factorial experiment in 4 rows and 4 columns
	d columns d columns d columns		
<i>d</i> rows		confound $d - 1$ df \leftarrow with rows using 'row characters' confound $d - 1$ df	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
<i>u</i> lows		$\leftarrow \text{ with rows using} \\ \text{`row characters'} \\ \text{confound } d-1 \text{ df}$	auxiliary design $\frac{\boxed{A=1 \ A=0}}{\boxed{A=0 \ A=1}}$
<i>d</i> rows	confound confound confound	← with rows using 'row characters'	$\frac{\text{Efficiency factors}}{A \ B \ C \ A+B \ A+C \ B+C \ A+B+C}$
	d-1 df d-1 df d-1 df	117 > 1, comound $7 - 1$ un	Rows 0 0 0 0 0 0 0.5 0.5
	with with with	with subsquares, and then arrange in Latin square	Columns 0 0 0 0.5 0.5 0 0
	columns columns columns		Rows.Columns 1 1 1 0.5 0.5 0.5 0.5

Important condition on characters	A 3 ³ factorial ex	xperiment i	n two 9	×9 squ	uares	
A + B = 0 $A + B = 1$ $A + C = 0$ $A + C = 1$ $B + C = 0$ $(1, 1, 1)$ $(1, 0, 0)$ $(0, 0, 0)$ $(0, 1, 1)$ $B + C = 1$ $(1, 1, 0)$ $(1, 0, 1)$ $(0, 1, 0)$ $(0, 0, 1)$ $A + B + C = 0$ $(0, 0, 0)$ $(0, 1, 1)$ $(1, 0, 1)$ $(1, 1, 0)$ $A + B + C = 1$ $(0, 0, 1)$ $(0, 1, 0)$ $(1, 1, 1)$ $(1, 0, 0)$ auxiliary design $A = 1$ $A = 0$		$\frac{A+B+2C}{B}$	+2B+2C	B+2C		A+2B+2C
A = 0 A = 1			ficiency fa		B-by-C	A-by-B-by-C
Row characters $B+C, A+B+C$ Column characters $A+B, A+C$ Unit character A	Rows.Columns		1	$\frac{5}{6}$	$\frac{5}{6}$	$\frac{2}{3}$
Any 2 or 3 characters, all of different sorts, must be linearly independent.						14/25

Quasi-Latin rectangles	Method 1a: $r_1 = r_2 = 1$
An (extended) quasi-Latin rectangle is a row-column design with • <i>k</i> rows and <i>l</i> columns; • <i>v</i> treatments, each replicated <i>r</i> times, so that $vr = kl$. We consider the special case where • $v = p^m$ for some prime <i>p</i> ; • $k = p^t r_1$ and $l = p^u r_2$; • $t + u \ge m$ so that $r_3 = p^{t+u-m}$ is an integer and $r = r_1 r_2 r_3$. The previous construction (Rao's) has $t = u$ and $r_1 = r_2 = 1$.	This is similar to the previous construction. A 2 ⁴ factorial experiment in a 4 × 8 rectangle. $ \begin{array}{c ccc} \hline \hline confound \\ A+B+C+D \\ \hline confound \\ A+C \\ \hline \hline confound A+B+C, \\ A+B+D and C+D \\ B+C+D and A+B \\ \hline \hline The character to confound with sub-rectangles must not be > a row character > a column character > the sum of a row character and a column character.$
15/	The unique possibility is $B + D$.

Method 1b: $r_1 > 1$	Method 1 in general
A 3^3 factorial experiment in a 12×9 rectangle. Divide the rectangle into boxes whose size is a power of 3. $ \frac{3 \text{ rows} 5 6 4 8 9 7 2 3 1 1}{3 \text{ rows} 6 4 5 9 7 8 3 1 2} 1 1 1 1 1 1 1 1 1 $	 v = p^m, k = p^tr₁, l = p^ur₂, vr₃ = p^{t+u}. We need row characters unless u = m. We need column characters unless t = m. We need unit characters and the first type of auxiliary design if r₃ > 1. We need the second sort of auxiliary design if r₁ > 1. We need the third sort of auxiliary design if r₂ > 1. It is rare for all three of r₁, r₂ and r₃ to be greater than 1. The condition on characters must be satisfied.

Method 2: k divides v , and v divides l	A 2^3 experiment in a 4×8 rectangle
 To avoid the difficulties caused by restricted choice of unit character: 1. use column characters as before; 2. the number of columns is a multiple of <i>v</i>, so use the algorithm from Hall's Marriage Theorem to re-arrange the treatments in each column so that each row consists of complete replicates. 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Method 3: Segmentation and recursion	A 2^3 factorial experiment in 4 rows and 6 columns		
 Partition the rows as k = k₁ + k₂ and the columns as l = l₁ + l₂, in such a way that v divides all k_il_j and that k₁ and l₁ are divisible by large powers of p. Use one of Methods 1, 2 and 3 in each segment. Where two segments have rows in common, use the same row characters to compensate for loss of information. Where two segments have columns in common, use the same column characters to compensate for loss of information. 	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Extensions	Advantages
 These methods can be adapted to designs for several unrelated rectangles rectangles/(rows × columns); several rectangles with contiguous rows rows × (blocks/columns); contiguity in both directions (big rows/small rows) × (big columns/small columns). 	 All designs have orthogonal factorial structure (general balance with respect to the factorial decomposition), which means that, within any stratum, estimators of different treatment effects are orthogonal to each other and so the order of fitting does not matter. The construction methods are very flexible, allowing the designer of the experiment to decide which treatment effects should have the largest efficiency factors in the bottom stratum.

References

- F. Yates (1937) The Design and Analysis of Factorial Experiments. *Technical Communication* 35, Imperial Bureau of Soil Science.
 C. R. Rao (1946) Confounded factorial designs in quasi-Latin squares. *Sankhyā* 7, 295–304.
 M. J. R. Healy (1951) Latin rectangle designs for 2ⁿ factorial experiments on 32 plots. *Journal of Agricultural Science* 41, 315–316.
 T. T. Tran (2009) Design and analysis of experiments for assessing indigenous plant species. PhD thesis, University of South Australia.
 C. J. Brien, R. A. Bailey, T. T. Tran and J. Bolund (2012) Quasi-Latin designs.
 - Electronic Journal of Statistics 6, 1900–1925.