
Quasi-Latin designs for experiments in rectangles

R. A. Bailey
University of St Andrews /

Queen Mary University of London (emerita)

MODA, June 2013

1/25

Abstract

Yates, Healy and Rao generalized Latin squares to
quasi-Latin squares. A factorial set of treatments is applied to the
cells of a square array in such a way that

I no treatment occurs more than once in any row or column and
I the partial confounding with rows and with columns corresponds

to standard factorial effects.

In recent joint work with Chris Brien, Thao Tran and John Tolund (all
then at the University of South Australia), I have extended these
methods to deal with rectangles, or collections of rectangles, which
commonly occur in experiments in glasshouses. The user has
considerable freedom over the choice of confounding patterns.
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Indian Agricultural Research Institute, Delhi, 2006
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Waite Institute, Adelaide, Australia, 2010
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Les Serres D’Auteuil, April 2011
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A glasshouse

6

N

Glasshouses often have their axes aligned North–South and
East–West (for example, Les Serres D’Auteuil),
so experiments in glasshouses should use rows and columns as blocks.
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Quasi-Latin square designs

A quasi-Latin square is a square containing one or more complete
replicates of the treatments, where no row or column contains all
treatments.

1 2 3 4
5 6 7 8
3 8 1 6
7 4 5 2

Suppose that we have a square of size k× k;
that we have v treatments;
that vr = k2;
and that v = dk, so that k = dr.
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Idea of Construction: k rows and k columns, dk treatments

d rows

d rows

d rows

d columns d columns d columns

← whole replicate

← whole replicate

← whole replicate

↑ ↑ ↑
whole whole whole

replicate replicate replicate
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Characters, working modulo 3, for 3×3 factorial

Characters Treatments
Factor A 0 0 0 1 1 1 2 2 2
Factor B 0 1 2 0 1 2 0 1 2

A+B 0 1 2 1 2 0 2 0 1
A+2B 0 2 1 1 0 2 2 1 0
2A+B 0 1 2 2 0 1 1 2 0
2A+2B 0 2 1 2 1 0 1 0 2

2A 0 0 0 2 2 2 1 1 1
2B 0 2 1 0 2 1 0 2 1
I 0 0 0 0 0 0 0 0 0

A≡ 2A main effect of A
B≡ 2B main effect of B

A+B≡ 2A+2B 2 degrees of freedom for the A-by-B interaction
A+2B≡ 2A+B 2 degrees of freedom for the A-by-B interaction,

orthogonal to the previous 2

For 3 blocks of size 3, can alias blocks with any character.
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Characters, working modulo 2, for 2×2×2 factorial

Characters Treatments
Factor A 0 0 0 0 1 1 1 1
Factor B 0 0 1 1 0 0 1 1
Factor C 0 1 0 1 0 1 0 1

A+B 0 0 1 1 1 1 0 0
A+C 0 1 0 1 1 0 1 0
B+C 0 1 1 0 0 1 1 0

A+B+C 0 1 1 0 1 0 0 1
I 0 0 0 0 0 0 0 0

A main effect of A
B main effect of B
C main effect of C

A+B (1 degree of freedom for) the A-by-B interaction
A+C (1 degree of freedom for) the A-by-C interaction
B+C (1 degree of freedom for) the B-by-C interaction

A+B+C (1 degree of freedom for) the A-by-B-by-C interaction
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pt rows and columns, pm treatments, d = pm−t

d rows

d rows

d rows

d columns d columns d columns

←

←

←

confound d − 1 df
with rows using
‘row characters’

confound d − 1 df
with rows using
‘row characters’

confound d − 1 df
with rows using
‘row characters’

↑ ↑ ↑
confound
d−1 df
with
columns

confound
d−1 df
with
columns

confound
d−1 df
with
columns

If r > 1, confound r−1 df
with subsquares, and then
arrange in Latin square
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A 23 factorial experiment in 4 rows and 4 columns

A+B = 0 A+B = 1 A+C = 0 A+C = 1
B+C = 0 (1,1,1) (1,0,0) (0,0,0) (0,1,1)
B+C = 1 (1,1,0) (1,0,1) (0,1,0) (0,0,1)
A+B+C = 0 (0,0,0) (0,1,1) (1,0,1) (1,1,0)
A+B+C = 1 (0,0,1) (0,1,0) (1,1,1) (1,0,0)

auxiliary design
A = 1 A = 0
A = 0 A = 1

Efficiency factors
A B C A+B A+C B+C A+B+C

Rows 0 0 0 0 0 0.5 0.5
Columns 0 0 0 0.5 0.5 0 0
Rows.Columns 1 1 1 0.5 0.5 0.5 0.5
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Important condition on characters

A+B = 0 A+B = 1 A+C = 0 A+C = 1
B+C = 0 (1,1,1) (1,0,0) (0,0,0) (0,1,1)
B+C = 1 (1,1,0) (1,0,1) (0,1,0) (0,0,1)
A+B+C = 0 (0,0,0) (0,1,1) (1,0,1) (1,1,0)
A+B+C = 1 (0,0,1) (0,1,0) (1,1,1) (1,0,0)

auxiliary design
A = 1 A = 0
A = 0 A = 1

Row characters B+C, A+B+C
Column characters A+B, A+C
Unit character A

Any 2 or 3 characters, all of different sorts, must be linearly
independent.
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A 33 factorial experiment in two 9×9 squares

Characters Square I Square II
Rows A+C A+B+C A+2B+C B+C A+B+C A+2B+2C
Columns A+2C A+B+2C A+2B+2C B+2C A+2B+C A+B+2C
Subsquares B A

Efficiency factors
main effects A-by-B A-by-C B-by-C A-by-B-by-C

Rows.Columns 1 1
5
6

5
6

2
3
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Quasi-Latin rectangles

An (extended) quasi-Latin rectangle is a row-column design with
I k rows and l columns;
I v treatments, each replicated r times, so that vr = kl.

We consider the special case where
I v = pm for some prime p;
I k = ptr1 and l = pur2;
I t+u≥ m so that r3 = pt+u−m is an integer and r = r1r2r3.

The previous construction (Rao’s) has t = u and r1 = r2 = 1.
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Method 1a: r1 = r2 = 1

This is similar to the previous construction.

A 24 factorial experiment in a 4×8 rectangle.

confound
A+B+C+D
confound
A+C

confound A+B+C, confound A+C+D,
A+B+D and C+D B+C+D and A+B

The character to confound with sub-rectangles must not be
I a row character
I a column character
I the sum of a row character and a column character.

The unique possibility is B+D.
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Method 1b: r1 > 1

A 33 factorial experiment in a 12×9 rectangle.
Divide the rectangle into boxes whose size is a power of 3.

3 rows 5 6 4 8 9 7 2 3 1
3 rows 6 4 5 9 7 8 3 1 2
3 rows 8 9 7 2 3 1 5 6 4
3 rows 9 7 8 3 1 2 6 4 5

1. Confound A+B+C, A+2B, 2A+C and 2B+C
(these will be the column characters)
to get 9 “groups” of size 3 (the same size as the boxes).

2. Arrange groups 1–9 in a good 4×9 row–column design
(r2 = 4 and this is another type of auxiliary design).

3. Confound other characters in each set of 3 rows:
for example, A+B+2C, A+2B+C, 2A+B+C, B+C
(these will be the row characters).

4. Here r3 = 1 and so there is no need for unit characters or the first
type of auxiliary design. 17/25

Method 1 in general

v = pm, k = ptr1, l = pur2, vr3 = pt+u.

I We need row characters unless u = m.
I We need column characters unless t = m.
I We need unit characters and the first type of auxiliary design if

r3 > 1.
I We need the second sort of auxiliary design if r1 > 1.
I We need the third sort of auxiliary design if r2 > 1.
I It is rare for all three of r1, r2 and r3 to be greater than 1.
I The condition on characters must be satisfied.
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Method 2: k divides v, and v divides l

To avoid the difficulties caused by restricted choice of unit character:

1. use column characters as before;

2. the number of columns is a multiple of v,
so use the algorithm from Hall’s Marriage Theorem
to re-arrange the treatments in each column
so that each row consists of complete replicates.
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A 23 experiment in a 4×8 rectangle

confound confound confound confound
A+B+C A+B A+C B+C

(0,0,0) (1,0,0) (0,0,0) (1,0,0) (0,0,0) (1,0,0) (0,0,0) (0,1,0)
(1,1,0) (0,1,0) (0,0,1) (1,0,1) (0,1,0) (1,1,0) (1,0,0) (1,1,0)
(1,0,1) (0,0,1) (1,1,0) (0,1,0) (1,0,1) (0,0,1) (0,1,1) (0,0,1)
0,1,1) (1,1,1) (1,1,1) (0,1,1) (1,1,1) (0,1,1) (1,1,1) (1,0,1)

Re-arrange treatments in each column to make each row a complete
replicate:

(0,0,0) (1,0,0) (0,0,1) (1,0,1) (0,1,0) (0,1,1) (1,1,1) (1,1,0)
(1,1,0) (1,1,1) (0,0,0) (1,0,0) (1,0,1) (0,0,1) (0,1,1) (0,1,0)
(1,0,1) (0,1,0) (1,1,1) (0,1,1) (0,0,0) (1,1,0) (1,0,0) (0,0,1)
(0,1,1) (0,0,1) (1,1,0) (0,1,0) (1,1,1) (1,0,0) (0,0,0) (1,0,1)
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Method 3: Segmentation and recursion

I Partition the rows as k = k1 + k2 and the columns as l = l1 + l2,
in such a way that v divides all kilj
and that k1 and l1 are divisible by large powers of p.

I Use one of Methods 1, 2 and 3 in each segment.
I Where two segments have rows in common, use the same row

characters to compensate for loss of information.
I Where two segments have columns in common, use the same

column characters to compensate for loss of information.
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A 23 factorial experiment in 4 rows and 6 columns

B+C B+C A+B+C A+B+C A+B+C A+B+C
= 0 = 1 = 0 = 1 = 0 = 1

A+B = 0 (1,1,1) (1,1,0) (0,0,0) (0,0,1) (0,1,1) (1,0,0) ∗
A+B = 1 (1,0,0) (1,0,1) (0,1,1) (0,1,0) (0,0,0) (1,1,1)
A+C = 0 (0,0,0) (0,1,0) (1,0,1) (1,1,1) (1,1,0) (0,0,1)
A+C = 1 (0,1,1) (0,0,1) (1,1,0) (1,0,0) (1,0,1) (0,1,0)

∗ the last two columns of the first row have
I A+B = 1 (to compensate for first four columns)
I A+C = 1 (to use A+C)
I B+C = 0 (no need for linear independence from a

column character used in the first segment).
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Extensions

These methods can be adapted to designs for
I several unrelated rectangles

rectangles/(rows× columns);

I several rectangles with contiguous rows

rows× (blocks/columns);

I contiguity in both directions

(big rows/small rows)× (big columns/small columns).
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Advantages

I All designs have orthogonal factorial structure
(general balance with respect to the factorial decomposition),
which means that, within any stratum, estimators of different
treatment effects are orthogonal to each other
and so the order of fitting does not matter.

I The construction methods are very flexible, allowing the
designer of the experiment to decide which treatment effects
should have the largest efficiency factors in the bottom stratum.
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