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Chapter 6

Testing

1 Neyman Pearson Tests

Basic Notation. Consider the hypothesis testing problem as in Examples 5.1.4 and 5.5.4, but
with Θ0 = {0}, Θ1 = {1} (simple hypotheses). Let φ be a critical function (or decision rule); let
α = size or level ≡ E0φ(X); and let β = power = E1φ(X).

Theorem 1.1 (Neyman - Pearson lemma). Let P0 and P1 have densities p0 and p1 with respect
to some dominating measure µ (recall that µ = P0 + P1 always works). Let 0 ≤ α ≤ 1. Then:
(i) There exists a constant k and a critical function φ of the form

φ(x) =

{
1 if p1(x) > kp0(x)
0 if p1(x) < kp0(x)

(1)

such that

E0φ(X) = α.(2)

(ii) The test of (1) and (2) is a most powerful α level test of P0 versus P1.
(iii) If φ is a most powerful level α test of P0 versus P1, then it must be of the form (1) a.e. µ. It
also satisfies (2) unless there is a test of size < α with power = 1.

Corollary 1 If 0 < α < 1 and β is the power of the most powerful level α test, then α < β unless
P0 = P1.

Proof. Let 0 < α < 1.
(i) Now

P0(p1(X) > cp0(X)) = P0(Y ≡ p1(X)/p0(X) > c) = 1− FY (c).

Let k ≡ inf{c : 1− FY (c) < α}, and if P0(Y = k) > 0, let γ ≡ (α − P0(Y > k))/P0(Y = k). Thus
with

φ(x) =


1 if p1(x) > kp0(x)
γ if p1(x) = kp0(x)
0 if p1(x) < kp0(x),

we have

E0φ(X) = P0(Y > k) + γP0(Y = k) = α.

3



4 CHAPTER 6. TESTING

(ii) Let φ∗ be another test with E0φ
∗ ≤ α. Now∫

X
(φ− φ∗)(p1 − kp0)dµ =

∫
[φ−φ∗>0]∪[φ−φ∗<0]

(φ− φ∗)(p1 − kp0)dµ ≥ 0,

and this implies that

βφ − βφ∗ =

∫
X

(φ− φ∗)p1dµ

≥ k

∫
X

(φ− φ∗)p0dµ = k(α− E0φ
∗) ≥ 0.

Thus φ is most powerful.
(iii) Let φ∗ be most powerful of level α. Define φ as in (i). Then∫

X
(φ− φ∗)(p1 − kp0)dµ =

∫
[φ 6=φ∗]∩[p1−kp0 6=0]

(φ− φ∗)(p1 − kp0)dµ{
≥ 0 as in (ii)
> 0 if µ([φ 6= φ∗] ∩ [p1 6= kp0]) > 0

= 0

since > 0 contradicts φ∗ being most powerful. Thus µ([φ 6= φ∗] ∩ [p1 6= kp0]) = 0. Thus φ∗ = φ on
the set where p1 6= kp0. If φ∗ were of size < α and power < 1, then it would be possible to include
more points (or parts of points) in the rejection region, and thereby increase the power, until either
the power is 1 or the size is α. Thus either E0φ

∗(X) = α or E1φ
∗(X) = 1.

Corollary proof. φ#(x) ≡ α has power α, so β ≥ α. If β = α, then φ# ≡ α is in fact most
powerful; and hence (iii) shows that φ(x) = α satisfies (i); that is, p1(x) = kp0(x) a.e. µ. Thus
k = 1 and P1 = P0. 2

• If α = 0, let k =∞ and φ(x) = 1 whenever p1(x)/p0(x) =∞; this is γ = 1.

• If α = 1, let k = 0 and γ = 1, so that we reject for all x with p1(x) > 0 or p0(x) > 0.

Definition 1.1 If the family of densities {pθ : θ ∈ [θ0, θ1] ⊂ R} is such that pθ′(x)/pθ(x) is
nondecreasing in T (x) for each θ < θ′, then the family is said to have monotone likelihood ratio
(MLR).

Definition 1.2 A test is of size α if

sup
θ∈Θ0

Eθφ(X) = α.

Let Cα ≡ {φ : φ is of size α}. A test φ0 is uniformly most powerful of size α (UMP of size α) if it
has size α and

Eθφ0(X) ≥ Eθφ(X) for all θ ∈ Θ1 and all φ ∈ Cα.
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Theorem 1.2 (Karlin - Rubin). Suppose that X has density pθ with MLR in T (x).
(i) Then there exists a UMP level α test of H : θ ≤ θ0 versus K : θ > θ0 which is of the form

φ(x) =


1 if T (x) > c
γ if T (x) = c
0 if T (x) < c

with Eθ0φ(X) = α.
(ii) β(θ) = Eθφ(X) is increasing in θ for β < 1.
(iii) For all θ′ this same test is the UMP level α′ ≡ β(θ′) test of H ′ : θ ≤ θ′ versus K ′ : θ > θ′.
(iv) For all θ < θ0, the test of (i) minimizes β(θ) among all tests satisfying α = Eθ0φ.

Proof. (i) and (ii): The most powerful level α test of θ0 versus θ1 > θ0 is the φ above, by the
Neyman - Pearson lemma, which guarantees the existence of c and γ. Thus φ is UMP of θ0 versus
θ > θ0. According to the NP lemma (ii), this same test is most powerful of θ′ versus θ′′; thus (ii)
follows from the NP corollary. Thus φ is also level α in the smaller class of tests of H versus K; and
hence is UMP there also: note that with Cα ≡ {φ : supθ≤θ0 Eθφ = α} and Cθ0α ≡ {φ : Eθ0φ ≤ α},
Cα ⊂ Cθ0α .
(iii) The same argument works.
(iv) To minimize power, just apply the NP lemma with inequalities reversed. 2

Example 1.1 (Hypergeometric). Suppose that we sample without replacement n items from a
population of N items of which θ = D are defective. Let X ≡ number of defective items in the
sample. Then

PD(X = x) ≡ pD(x) =

(
D
x

)(
N−D
n−x

)(
N
n

) , for x = 0 ∨ (n−N +D), . . . , D ∧ n.

Since

pD+1(x)

pD(x)
=

D + 1

N −D
N −D − n+ x

D + 1− x

is increasing in x, this family of distributions has MLR in T (X) = X. Thus the UMP test of
H : D ≤ D0 versus K : D > D0 rejects H if X is “too big”: φ(X) = 1{X > c}+γ1{X = c} where

PD0(X > c) + γPD0(X = c) = α.

Reminder: E(X) = nD/N and V ar(X) = n(D/N)(1−D/N)(1− (n− 1)/(N − 1)).

Example 1.2 (One-parameter exponential families). Suppose that

pθ(x) = c(θ) exp(Q(θ)T (x))h(x)

with respect to the dominating measure µ where Q(θ) is increasing in θ. Then

φ(X) =


1 if T (x) > c
γ if T (x) = c
0 if T (x) < c

with Eθ0φ(X) = α is UMP level α for testing H : θ ≤ θ0 versus K : θ > θ0. [See pages 70 - 71 in
TSH for binomial, negative binomial, Poisson, and exponential examples].
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Example 1.3 (Log-concave location family). Suppose that g is a density with respect to Lebesgue
measure on R, and let pθ(x) = g(x−θ), θ ∈ R. Then pθ has MLR in x if and only if g is log-concave.
To see that pθ has MLR in x if g is log-concave, note that the MLR holds if and only if

g(x− θ′)
g(x− θ)

≤ g(x′ − θ′)
g(x′ − θ)

for all x < x′, θ < θ′;

this holds if and only if

log g(x− θ′)− log g(x− θ) ≤ log g(x′ − θ′)− log g(x′ − θ),

or equivalently

log g(x′ − θ) + log g(x− θ′) ≤ log g(x− θ) + log g(x′ − θ′).(3)

Now let t ≡ (x′ − x)/(x′ − x+ θ′ − θ) and note that

x− θ = t(x− θ′) + (1− t)(x′ − θ),
x′ − θ′ = (1− t)(x− θ′) + t(x′ − θ).

Thus log-concavity of g implies that

log g(x− θ) ≥ t log g(x− θ′) + (1− t) log g(x′ − θ), and

log g(x′ − θ′) ≥ (1− t) log g(x− θ′) + t log g(x′ − θ).

Adding these yields (3), so MLR holds. To prove that the MLR property of pθ implies that g is
log-concave, let a < b be any real numbers, and set x− θ′ = a, x′− θ = b, x− θ = x′− θ′. But then
x− θ = x′ − θ′ = (a+ b)/2 and (3) becomes

log g(a) + log g(b) ≤ 2 log g((a+ b)/2).

Since this holds for all a, b ∈ R and g is measurable, this implies that g is concave by a theorem of
Sierpinski (1920).

Example 1.4 (Noncentral t, χ2, and F distributions). The noncentral t, χ2, and F distributions
have MLR in their noncentrality parameters. See Lehmann and Romano, page 224 for the t
distribution; see Lehmann and Romano problem 7.4, page 307 for the χ2 and F distributions.

Example 1.5 (Counterexample: Cauchy location family). The Cauchy location family pθ(x) =
π−1(1 + (x− θ)2)−1 does not have MLR.

Theorem 1.3 (Generalized Neyman-Pearson lemma). Let f0, f1, . . . , fm be real-valued, µ−integrable
functions defined on a Euclidean space X . Let φ0 be any function of the form

φ0(x) =


1 if f0(x) > k1f1(x) + · · ·+ kmfm(x)
γ(x) if f0(x) = k1f1(x) + · · ·+ kmfm(x)
0 if f0(x) < k1f1(x) + · · ·+ kmfm(x)

where 0 ≤ γ(x) ≤ 1. Then φ0 maximizes∫
φf0dµ
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over all φ, 0 ≤ φ ≤ 1 such that∫
φfidµ =

∫
φ0fidµ, i = 1, . . . ,m.

If kj ≥ 0 for j = 1, . . . ,m, then φ0 maximizes
∫
φf0dµ over all functions φ, 0 ≤ φ ≤ 1 such that∫

φfidµ ≤
∫
φ0fidµ, i = 1, . . . ,m.

Proof. Note that∫
(φ0 − φ)(f0 −

k∑
j=1

kjfj)dµ ≥ 0

since the integrand is ≥ 0 by the definition of φ0. Hence∫
(φ0 − φ)f0dµ ≥

m∑
j=1

kj

∫
(φ0 − φ)fjdµ ≥ 0

in either of the above cases, and hence∫
φ0f0dµ ≥

∫
φf0dµ.

This is a “short form” of the generalized Neyman-Pearson lemma; for a “long form” with more
details and existence results, see Lehmann and Romano, TSH, page 77. 2

Example 1.6 Suppose that X1, . . . , Xn are i.i.d. from the Cauchy location family

p(x; θ) =
1

π

1

1 + (x− θ)2
,

and consider testing H : θ = θ0 versus θ > θ0. Can we find a test φ of size α such that φ maximizes

d

dθ
βφ(θ0) =

d

dθ
Eθφ(X)

∣∣∣
θ=θ0

?

For any test φ the power is given by

βφ(θ) = Eθφ(X) =

∫
φ(x)p(x; θ)dx,

so, if the interchange of d/dθ and
∫

is justifiable, then

β′φ(θ) =

∫
φ(x)

∂

∂θ
p(x; θ)dx.

Thus, by the generalized N-P lemma, any test of the form

φ(x) =


1 if ∂

∂θp(x; θ0) > kp(x; θ0)

γ(x) if ∂
∂θp(x; θ0) = kp(x; θ0)

0 if ∂
∂θp(x; θ0) < kp(x; θ0)
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maximizes β′φ(θ0) among all φ with Eθ0φ(X) ≤ α. This test is said to be locally most powerful of
size α; cf. Ferguson, section 5.5, page 235. But

∂

∂θ
p(x; θ0) > kp(x; θ0)

is equivalent to

∂
∂θp(x; θ0)

p(x; θ0)
> k,

or

∂

∂θ
log p(x; θ0) > k,

or

Sn(θ0) =
1√
n

n∑
i=1

l̇θ(Xi; θ0) > k′.

hence for the Cauchy family (with θ0 ≡ 0 without loss of generality), since

∂

∂θ
log p(x; θ) =

2(x− θ)
1 + (x− θ)2

,

the locally most powerful test is given by

φ(X) =

{
1 if n−1/2

∑n
i=1

2Xi
1+X2

i
> k′

0 if n−1/2
∑n

i=1
2Xi

1+X2
i
< k′

where k′ is such that E0φ(X) = α. Under θ = θ0 ≡ 0, with Yi ≡ 2Xi/(1 +X2
i ),

E0Yi = 0, Var0(Yi) = 1/2.

Hence, by the CLT, k′ may be approximated by 2−1/2zα where P (Z > zα) = α. (It would be
possible refine this first order approximation to k′ by way of an Edgeworth expansion; see e.g.
Shorack (2000), page 392.)

Note that x/(1 + x2)→ 0 as x→∞. Thus, if α < 1/2 so that k′ > 0, the rejection set of φ is
a bounded set in Rn; and since the probability that X = (X1, . . . , Xn) is in any given bounded set
tends to 0 as θ →∞, βφ(θ)→ 0 as θ →∞.

Example 1.7 Now consider the calculations of the previous example, but for pθ(x) = g(x − θ)
where g is log-concave with finite Fisher information for location Ig ≡

∫
(g′(x))2/g(x)dx < ∞.

Suppose that X1, . . . , Xn are i.i.d. pθ for some θ ∈ R. It is easily seen that the locally most
powerful test of H : θ = θ0 versus K : θ > θ0 is of the form

φ(X) =

{
1, if Sn(θ0) > k
0, if Sn(θ0) ≤ k

where

Sn(θ0) =
1√
n

n∑
i=1

{−g
′

g
(Xi − θ0)}.
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Since Sn(θ0) →d N(0, Ig) under θ0, taking k =
√
Igzα yields a test of approximate size α for n

large. We are interested in monotonicity of the power function βφ(θ) of this test. Now Xi
d
= Yi + θ

where Yi are i.i.d. g, and by log-concavity of g we know that g′/g is decreasing and hence that
−g′/g is increasing. Thus it follows that under Pθ

Sn(θ0)
d
=

1√
n

n∑
i=1

{
−g
′

g
(Yi + θ − θ0)

}
increases as θ increases, and hence

βφ(θ) = Pθ(Sn(θ0) >
√
Igzα)

= P0

(
1√
n

n∑
i=1

−g
′

g
(Yi + θ − θ0) >

√
Igzα

)

is non-decreasing as a function of θ. This example includes the cases when g is Normal, Laplace,
logistic, Gamma with shape parameter larger than 2, and many more.

Consistency of Neyman - Pearson tests

Let P and Q be probability measures, and suppose that p and q are their densities with respect
to a common σ− finite measure µ on (X ,A). Recall that the Hellinger distance H(P,Q) between
P and Q is given by

H2(P,Q) =
1

2

∫
(
√
p−√q)2dµ = 1−

∫
√
pqdµ = 1− ρ(P,Q)

where ρ(P,Q) ≡
∫ √

pqdµ is the Hellinger affinity between P and Q.

Proposition 1.1 H(P,Q) = 0 if and only if p = q a.e. µ if and only if ρ(P,Q) = 1. Furthermore
ρ(P,Q) = 0 if and only if

√
p ⊥ √q in the Hilbert space L2(µ).

Recall that if X1, . . . , Xn are i.i.d. P or Q with joint densities

pn(x) = p(x) =

n∏
i=1

p(xi), or qn(x) = q(x) =

n∏
i=1

q(xi),

then ρ(Pn, Qn) = ρ(P,Q)n → 0 unless p = q a.e. µ (which implies ρ(P,Q) = 1).

Theorem 1.4 (Size and power consistency of Neyman-Pearson type tests). For testing p versus q
the test

φn(x) =

{
1 if qn(x) > knpn(x)
0 if qn(x) < knpn(x)

with 0 < a1 ≤ kn ≤ a2 <∞ for all n ≥ 1 is size and power consistent if P 6= Q: both probabilities
of error converge to zero as n→∞. In fact,

EPφn(X) ≤ k−1/2
n ρ(P,Q)n ≤ a−1/2

1 ρ(P,Q)n,

EQ(1− φn(X)) ≤ k1/2
n ρ(P,Q)n ≤ a1/2

2 ρ(P,Q)n.
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Proof. For the type I error probability we have

EPφn(X) =

∫
φn(x)pn(x)dµ(x) =

∫
φn(x)p1/2

n (x)p1/2
n (x)dµ(x)

≤ k−1/2
n

∫
φn(x)p1/2

n (x)q1/2
n (x)dµ(x)

≤ k−1/2
n

∫
p1/2
n (x)q1/2

n (x)dµ(x) = k−1/2
n ρ(Pn, Qn) = k−1/2

n ρ(P,Q)n.

The argument for type II errors is similar:

EQ(1− φn(X)) =

∫
(1− φn(x))qn(x)dµ(x) =

∫
(1− φn(x))q1/2

n (x)q1/2
n (x)dµ(x)

≤ k1/2
n

∫
(1− φn(x))p1/2

n (x)q1/2
n (x)dµ(x)

≤ k1/2
n

∫
p1/2
n (x)q1/2

n (x)dµ(x) = k1/2
n ρ(Pn, Qn) = k+1/2

n ρ(P,Q)n.

Now suppose that P = Pθ0 and Q = Pθn where Pθ ∈ P ≡ {Pθ : θ ∈ Θ} is Hellinger differentiable
at θ0 and θn = θ0 + n−1/2h. Thus

nH2(Pθ0 , Pθn) =
1

2
n

∫
{√pθn −

√
pθ0}2dµ

→ 1

2

1

4
hT I(θ0)h,

and consequently

ρ(Pθ0 , Pθn)n =

(
1− nH2(Pθ0 , Pθn)

n

)n
→ exp

(
−1

8
hT I(θ0)h

)
.

Hence from the same argument used to prove Theorem 1.4,

lim sup
n→∞

Eθ0φn(X) ≤ a−1/2
1 exp

(
−1

8
hT I(θ0)h

)
,(a)

while

lim sup
n→∞

Eθn(1− φn(X)) ≤ a+1/2
2 exp

(
−1

8
hT I(θ0)h

)
.(b)

If we choose kn = a for all n and fix h and a so that a−1/2 exp(−hT I(θ0)h/8) = α, then
√
a =

α−1 exp(−hT I(θ0)h/8), and hence the RHS of (b) is given by α−1 exp(−hT I(θ0)h/4).
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2 Unbiased Tests; Conditional Tests; Permutation Tests

2.1 Unbiased Tests

Notation: Consider testing

H : θ ∈ Θ0 versus K : θ ∈ Θ1

where X ∼ Pθ, for some θ ∈ Θ = Θ0 + Θ1, is observed. Let φ denote a critical (or test) function.

Definition 2.1 φ is unbiased if βφ(θ) ≥ α for all θ ∈ Θ1 and βφ(θ) ≤ α for all θ ∈ Θ0. φ is similar
on the boundary (SOB) if

βφ(θ) = α for all θ ∈ Θ0 ∩Θ1 ≡ ΘB.

Remark 2.1 If φ is a UMP level α test, then φ is unbiased. Proof: compare φ with the trivial
test function φ0 ≡ α.

Remark 2.2 If φ is unbiased and βφ(θ) is continuous for θ ∈ Θ, then φ is SOB. Proof: Let θn’s in
Θ0 converge to θ0 ∈ ΘB. Then βφ(θ0) = limn βφ(θn) ≤ α. Similarly βφ(θ0) ≥ α by considering θn’s
in Θ1 converging to θ0. Hence βφ(θ0) = α.

Definition 2.2 A uniformly most powerful unbiased level α test is a test φ0 for which

Eθφ0 ≥ Eθφ for all θ ∈ Θ1

and for all unbiased level α tests φ.

Lemma 2.1 If P = {Pθ : θ ∈ Θ} is such that βφ(θ) is continuous for all test functions φ, then
if φ0 is UMP SOB for H versus K and if φ0 is level α for H versus K, then φ0 is UMP unbiased
(UMPU) for H versus K.

Proof. The unbiased tests are a subset of the SOB tests by remark 2.2. Since φ0 is UMP SOB,
it is thus at least as powerful as any unbiased test. But φ0 is unbiased since its power is greater
than or equal to that of the SOB test φ ≡ α, and since it is level α. Thus φ0 is UMPU. 2

Remark 2.3 For a multiparameter exponential family with densities

dPθ
dµ

(x) = c(θ) exp(
∑

θjTj(x)),

with θ = (θ1, . . . , θd) ∈ Rd, the power function βφ(θ) is continuous in θ for all φ.

Proof. Apply theorem 2.7.1 of chapter 2 of Lehmann and Romano (2005) with φ ≡ 1 to find
that c(θ) is continuous; then apply it again with φ denoting an arbitrary critical function. 2
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2.2 Application to one-parameter exponential families

Suppose that

pθ(x) = c(θ) exp(θT (x))h(x)

for θ ∈ Θ ⊂ R with respect to a σ−finite measure µ on some subset of Rn.

Problems: Test

(1) H1 : θ ≤ θ0 versus K1 : θ > θ0;
(2) H2 : θ ≤ θ1 or θ ≥ θ2 versus K2 : θ1 < θ < θ2;
(3) H3 : θ1 ≤ θ ≤ θ2 versus K3 : θ < θ1 or θ2 < θ;
(4) H4 : θ = θ0 versus K4 : θ 6= θ0.

Theorem 2.1 (1) The test φ1 with Eθ0φ1(T ) = α given by

φ1(T (X)) =


1 if T (X) > c
γ if T (X) = c
0 if T (X) < c

is UMP for H1 versus K1.
(2) The test φ2 with Eθiφ2(T ) = α, i = 1, 2 given by

φ2(T (X)) =


1 if c1 < T (X) < c2

γi if T (X) = ci
0 if otherwise

is UMP for H2 versus K2.
(3) The test φ3 with Eθiφ3(T ) = α, i = 1, 2 given by

φ3(T (X)) =


1 if T (X) < c1 or T (X) > c2

γi if T (X) = ci
0 if otherwise

is UMPU for H3 versus K3.
(4) The test φ4 with Eθ0φ4(T ) = α and Eθ0Tφ4(T ) = αEθ0T given by

φ4(T (X)) =


1 if T (X) < c1 or T (X) > c2

γi if T (X) = ci
0 if otherwise

is UMPU for H4 versus K3. Furthermore, if T is symmetrically distributed about a under θ0, then
Eθ0φ4(T ) = α, c2 = 2a − c1 and γ1 = γ2 determine the constants. The characteristic behavior of
the power of these four tests is as follows:

Proof. (1) and (2) were proved earlier using the NP lemma (via MLR) and its generalized
version respectively. For (2), see pages 81-82 in Lehmann and Romano (2005). For (3), see Lehmann
and Romano (2005), page 121.

(4) We need only consider tests φ(x) = ψ(T (x)) based on the sufficient statistic T , whose
distribution is of the form pθ(t) = c(θ)eθt with respect to some σ−finite measure ν. Since all power
functions are continuous in the case of an exponential family, it follows that any unbiased test ψ
satisfies α = βψ(θ0) = Eθ0ψ(T ) and has a minimum at θ0.
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But by theorem 2.7.1, chapter 2, TSH, βψ is differentiable, and can be differentiated under the
integral sign; hence

β′ψ(θ) =
d

dθ

∫
ψ(t)c(θ) exp(θt)dν(t)

=
c′(θ)

c(θ)
Eθψ(T ) + Eθ(Tψ(T ))

= (−EθT )Eθψ(T ) + Eθ(Tψ(T ))

since, with ψ0 ≡ α, 0 = β′ψ0
(θ) = c′(θ)/c(θ) + Eθ(T ). Thus

0 = β′ψ(θ0) = Eθ0(Tψ(T ))− αEθ0T.

Thus any unbiased test ψ(T ) satisfies the two conditions of the statement of our theorem. We will
apply the generalized NP lemma to show that φ as given is UMPU.

Let

M ≡ {(Eθ0ψ(T ), Eθ0Tψ(T )) : ψ(T ) is a critical function}.

Then M is convex and contains {(u, uEθ0T ) : 0 < u < 1}. Also M contains points (α, v) with
v > αEθ0T ; since, by problem 18 of chapter 3, Lehmann TSH, there exist tests (UMP one-sided
ones) having β′(θ0) > 0. Likewise M contains points (α, v) with v < αEθ0T . Hence (α, αEθ0T ) is
an interior point of M .

Thus, by the generalized NP lemma (iv), there exist k1, k2 such that

ψ(t) =

{
1 when c(θ0)(k1 + k2t)e

θ0t < c(θ′)eθ
′t

0 when c(θ0)(k1 + k2t)e
θ0t > c(θ′)eθ

′t

=

{
1 when a1 + a2t < ebt

0 when a1 + a2t > ebt
(a)

having the property that it maximizes Eθ′ψ(T ). But the region described in (a) is either one-sided
or else the complement of an interval. By theorem 3.1.6 it cannot be one-sided (since one-sided
tests have strictly monotone power functions violating β′(θ0) = 0). Thus

ψ(T ) =

{
1 if T < c1 or T > c2

0 if c1 < T < c2.
(b)

Since this test does not depend on θ′ 6= θ0, it is the UMP (within the class of level α tests having
β′(θ0) = 0) test of H4 versus K4. Since ψ0 ≡ α is in this class, ψ is unbiased. And this class of test
includes the unbiased tests. Hence ψ is UMPU.

If T is distributed symmetrically about some point a under θ0, then any test ψ symmetric about
a that satisfies Eθ0ψ(T ) = α will also satisfy

Eθ0Tψ(T ) = Eθ0(T − a)ψ(T ) + aEθ0ψ(T ) = 0 + aα = αEθ0T

automatically. 2
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2.3 UMPU tests for families with nuisance parameter via conditioning

Definition 2.3 Let T be sufficient for PB ≡ {Pθ : θ ∈ ΘB}, and let PT ≡ {P Tθ : θ ∈ ΘB}. A test
function φ is said to have Neyman structure with respect to T if

E(φ(X)|T ) = α a.s. PT .

Remark 2.4 If φ has Neyman structure with respect to T , then φ is SOB.

Proof. Eθφ(X) = EθE(φ(X)|T ) = Eθα = α for all θ ∈ ΘB. 2

Theorem 2.2 Let X be a random variable with distribution Pθ ∈ P = {Pθ : θ ∈ Θ}, and let T
be sufficient for PB = {Pθ : θ ∈ ΘB}. Then all SOB tests have Neyman structure with respect
T if and only if the family of distributions PT ≡ {P Tθ : θ ∈ ΘB} is boundedly complete: i.e. if
EPh(T ) = 0 for all P ∈ PT with h bounded, then h = 0 a.e. PT .

Proof. Suppose that PT is boundedly complete. Let φ be a SOB level α test; and define
ψ(T ) ≡ E(φ(X)|T ). Now

Eθ(ψ(T )− α) = Eθ(E(φ(X)|T ))− α
= Eθφ(X)− α = 0

for all θ ∈ ΘB, and since ψ(T )− α is bounded, the bounded completeness of PT implies ψ(T ) = α
a.e. PT . Hence α = ψ(T ) = E(φ(X)|T ) a.e. PT , and φ has Neyman structure with respect to T .

Now suppose that all SOB tests have Neyman structure. Assume PT is not boundedly complete.
Then there exists h such that |h| ≤some M with Eθh(T ) = 0 for all θ ∈ ΘB and h(T ) 6= 0 with
probability > 0 for some θ0 ∈ ΘB. Define φ(T ) ≡ ch(T ) + α where c ≡ {α ∧ (1 − α)}/M . Then
0 ≤ φ(T ) ≤ 1 so φ is a critical function, and Eθφ(T ) = α for all θ ∈ ΘB, so that φ is SOB. But
E(φ(T )|T ) = φ(T ) 6= α with probability > 0 for the above θ0, so φ does not have Neyman structure.
This is a contradiction, and hence it follows that indeed PT is boundedly complete. 2

Remark 2.5 Suppose that:
(i) All critical functions φ have continuous power functions βφ.
(ii) T is sufficient for PB = {Pθ : θ ∈ ΘB} and PT ≡ {P Tθ : θ ∈ ΘB} is boundedly complete.
(Remark 2.3 says that (i) is always true for exponential families pθ(x) = c(θ) exp(

∑
θjTj(x)); and

theorem 4.3.1, TSH, page 116, allows us to check (ii) for these same families.) Then all unbiased
tests are SOB and all SOB tests have Neyman structure. Thus if we can find a UMP Neyman
structure test φ0 and we can show that φ0 is unbiased, then φ0 is UMPU. Why is it easier to find
UMP Neyman structure tests? Neyman structure tests are characterized by having conditional
probability of rejection equal to α on each surface T = t. But the distribution on each such surface
is independent of θ ∈ ΘB because T is sufficient for PT . Thus the problem has been reduced to
testing a one parameter hypothesis for each fixed value of t; and in many problems we can easily
find the most powerful test of this simple hypothesis.

Example 2.1 (Comparing two Poisson distributions).

Example 2.2 (Comparing two Binomial distributions).
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Example 2.3 (Comparing two normal means when variances are equal).

Example 2.4 (Paired normals with nuisance shifts).

2.4 Application to general exponential families; k−parameter

Consider the exponential family P = {Pθ,ξ} given by

pθ,ξ(x) = c(θ, ξ) exp(θU(x) +

k∑
i=1

ξiTi(x))

with respect to a σ−finite dominating measure µ on some subset of Rn where Θ is convex, has
dimension k + 1, and contains interior points θi, i = 1, 2.

Problems: Test

(1) H1 : θ ≤ θ0 versus K1 : θ > θ0;
(2) H2 : θ ≤ θ1 or θ ≥ θ2 versus K2 : θ1 < θ < θ2;
(3) H3 : θ1 ≤ θ ≤ θ2 versus K3 : θ < θ1 or θ2 < θ;
(4) H4 : θ = θ0 versus K4 : θ 6= θ0.

Theorem 2.3 The following are UMPU tests for the hypothesis testing problems 1-4 respectively:
(1) The test φ1 given by

φ1(x) =


1 if U > c(t)
γ(t) if U = c(t)
0 if if U < c(t)

where Eθ0(φ1(U)|T = t) = α is UMPU for H1 versus K1.
(2) The test φ2 given by

φ2(x) =


1 if c1(t) < U < c2(t)
γi(t) if U = ci(t)
0 if if else

where Eθi(φ2(U)|T = t) = α, i = 1, 2, is UMPU for H2 versus K2.
(3) The test φ3 given by

φ3(x) =


1 if U < c1(t) or U > c2(t)
γi(t) if U = ci(t)
0 if if else

where Eθi(φ3(U)|T = t) = α, i = 1, 2 is UMPU for H3 versus K3.
(4) The test φ4 given by

φ4(x) =


1 if U < c1(t) or U > c2(t)
γi(t) if U = ci(t)
0 if if else

where Eθ0(φ4(U)|T = t) = α and Eθ0{Uφ4(U)|T = t} = αEθ0{U |T = t} is UMPU for H4 versus
K4.
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Remark 2.6 If V = h(U, T ) is increasing in U for each fixed t and is independent of T on ΘB,
then

φ(x) =


1 if V > c
γ if V = c
0 if V < c

is UMPU in (1).

Remark 2.7 If h ≡ h(U, T ) = a(t)U+b(t) with a(t) > 0, then the second constraint in (4) becomes

Eθ0

{
V − b(t)
a(t)

φ|T = t

}
= αEθ0

{
V − b(t)
a(t)

|T = t

}
or Eθ0(V φ|T = t) = αEθ0(V |T = t), and if this V is independent of T on the boundary, then the
test is unconditional.

2.5 Permutation Tests

Consider testing

Hc : X1, . . . , Xm, Y1, . . . , Yn are i.i.d. with df F ∈ Fc

where Fc is the collection of all continuous distribution functions on R, versus

K1 : X1, . . . , Xm, Y1, . . . , Yn have joint density function h.

We seek a most powerful similar test: φ is similar if

E(F,F )φ(X,Y ) = α for all F ∈ Fc.(1)

But if Z ≡ (Z1, . . . , ZN ) with N ≡ m + n denotes the ordered values of the combined sample
X1, . . . , Xm, Y1, . . . , Yn, then when Hc is true, Z is sufficient and complete; see e.g. Lehmann and
Romano, TSH, page 118. Hence (1) holds if and only if (by theorem 2.2)

E(φ(X,Y )|Z = z) = α for a.e. z = (z1, . . . , zN )

=
∑
π∈Π

φ(πz)
1

N !
=
∑
z′

φ(z′)
1

N !
(2)

where the sum is over all N ! permutations z′ of z. Thus if α = I/N !, then any test which is
performed conditionally on Z = z and rejects for exactly I of the N ! permutations z′ of z is a level
α similar test; moreover (2) says that any level α similar test is of this form.

Definition 2.4 Tests satisfying (2) are called permutation tests. (Thus a test of Hc versus K1 is
similar if and only if it is a permutation test.)

We now need to find a most powerful permutation test by maximizing the conditional power.
But

Eh(φ(X,Y )|Z = z) =
∑
z′

φ(z′)
h(z′)∑
h(z′′)

.
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Since the conditional densities under the composite null hypothesis and under the simple alternative
h are

p0(z′|z) =
1

N !
and p1(z′|z) =

h(z′)∑
h(z′′)

, z′ ∈ {πz : π ∈ Π},

the conditional power is maximized by rejecting for large values of

p1(z′|z)
p0(z′|z)

= Kzh(z′) with Kz =
N !∑
h(z′′)

.

Thus, at level α = I/N ! we reject if

h(z′) > c(z)

where c(z) is chosen so that we reject for exactly I of the N ! permutations z′ of z; or else we use a
randomized version of such a test.

Example 2.5 Suppose now that we specify a particular alternative:

K1 :
X1, . . . , Xm are i.i.d. N(θ1, σ

2)
Y1, . . . , Yn are i.i.d. N(θ2, σ

2)

where θ1 < θ2 and σ2 are fixed constants. Then the similar test of Hc that is most powerful again
this simple K1 rejects H for those permutations z′ of z which lead to large values of

(2πσ2)−N/2 exp

{
− 1

2σ2

(
m∑
1

(Xi − θ1)2 +

n∑
1

(Yj − θ2)2

)}
,

or small values of

m∑
1

(Xi − θ1)2 +

n∑
1

(Yj − θ2)2

=
m∑
1

X2
i +

n∑
1

Y 2
j +mθ2

1 + nθ2
2 − 2θ1

m∑
i=1

Xi − 2θ2

n∑
j=1

Yj ,

or large values of

θ1

m∑
1

Xi + θ2

n∑
1

Yj −
mθ1 + nθ2

N
(
m∑
1

Xi +
n∑
1

Yj)

=
mn

N
(θ2 − θ1)(Y −X),

or large values of

Y −X,

or large values of

θ1

m∑
1

Xi + θ2

n∑
1

Yj − θ1(
m∑
1

Xi +
n∑
1

Yj) = (θ2 − θ1)
n∑
j=1

Yj ,
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or large values of √
mn
N (Y −X)√

1
N−2

{∑
Z2
i −

(
∑
Zi)2

N − mn
N (Y −X)2

}
=

√
mn
N (Y −X)√

1
N−2

{∑
(Xi −X)2 +

∑
(Yj − Y )2

} ≡ τ.
Thus the most powerful similar test of Hc versus K1 is

φ(z′) =

{
1 if τ > cα(z)
0 if τ < cα(z)

where cα(z) is chosen so that exactly αN ! of the permutations z′ lead to rejection (if this is possible;
if not we can use a randomized test). But we know that τ takes on at most

(
N
m

)
distinct values

according to each of the
(
N
m

)
assignments zc of m of the zi’s to be Xi’s. Thus

φ(zc) =

{
1 if τ(zc) > cα(z)
0 if τ(zc) < cα(z)

(3)

where cα(z) is chosen so that exactly α
(
N
m

)
of the assignments zc of m of the zi’s to be Xi’s leads

to rejection.
Since the test (3) does not depend on which θ1 < θ2 or σ2 we started with, the test is actually

a UMP similar test of Hc versus K ≡ ∪θ1<θ2,σ2K1; i.e. different normal distributions with θ1 < θ2,
σ2 unknown.

Example 2.6 Suppose that (X1, X2) = (56, 72), (Y1, Y2, Y3) = (68, 47, 86). Thus X = 64, Y = 67,
Y − X = 3. Here Z = (47, 56, 68, 72, 86), and

(
5
2

)
= 5!/(2!3!) = 10. (Note that 5! = 120.) Note

Table 6.1:
(

5
2

)
Possible Values of τ , N = 5, m = 2

combination 47 56 68 72 86 Y −X
∑
Yj τ

1 Y Y Y X X −22.0 171 −1.436
2 Y Y X Y X −18.7 175 −1.219
3 Y X Y Y X −8.7 187 −0.566
4 Y Y X X Y −7.0 189 −0.457
5 X Y Y Y X −1.2 196 −0.076
6 Y X Y X Y 3.0 201 0.196
7 Y X X Y Y 6.3 205 0.414
8 X Y Y X Y 10.5 210 0.686
9 X Y X Y Y 13.8 214 0.903
10 X X Y Y Y 23.8 226 1.556

that
(

20
10

)
= 184, 756, and, by Stirling’s formula (m! ∼

√
2πm(m/e)m) that(

2m

m

)
∼ 1√

πm
22m as m→∞,
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so the exact permutation test is difficult computationally for all but small sample sizes. But
sampling from the permutation distribution is always possible.

Remark 2.8 We will call the present test “reject if τ > cα(z)” the permutation t - test; it is the
UMP similar test of Hc versus K specified above. If we consider the smaller null hypothesis

HG : X1, . . . , Xm, Y1, . . . , Yn i.i.d. N(θ, σ2) with θ, σ2 unknown,

then we recall that the classical t -test “reject if τ > tm+n−2,α” is the UMPU test of HG versus K.

The classical t−test has greater power than the permutation t−test for HG; but is not a similar
test of Hc. If we could show that for a.e. z the numbers

cα(z) and tm+n−2,α

where just about equal, then the classical t−test and the permutation t−test would be almost
identical.

Theorem 2.4 If F ∈ Fc has EF |X|2 <∞ and if 0 < lim inf(m/N) ≤ lim sup(m/N) < 1, then

cα(z)→ zα

where P (N(0, 1) > zα) = α. Since we also know that tm+n−2,α → zα, it follows that cα(z) −
tm+n−2,α → 0.

Proof. Let an urn contain balls numbered z1, . . . , zN . Let Y1, . . . , Yn denote the numbers on n
balls drawn without replacement. let z = N−1

∑N
i=1 zi, σ

2
z = N−1

∑N
1 (zi − z)2, m = N − n. Then

EY = z, and σ2
N ≡ V ar(Y ) =

(
1− n− 1

N − 1

)
σ2
z

n
.

Moreover, by the Wald - Wolfowitz - Noether - Hájek finite sampling CLT

Y − z
σN

→d N(0, 1)

as long as the Noether condition

ηN ≡
max1≤i≤N |zi − z|2∑N

i=1 |zi − z|2
→ 0(a)

holds.

Now rewrite the permutation t− statistic τ : note that

Y −X = Y − 1

m

m∑
1

Xi −
1

m

n∑
1

Yi +
n

m
Y

=
N

m
(Y − z),
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and hence

τ =

√
mn
N (Y −X)√

1
N−2

{∑
Z2
i −

(
∑
Zi)2

N − mn
N (Y −X)2

}

=

√
N
N−1

Y−z√
1
n

(1− n−1
N−1

)√
N
N−2σ

2
z − 1

N−2
N
N−1

(Y−z)2
1
n

(1− n−1
N−1

)

=

√
N − 2

N − 1

(Y − z)/σN√
1− 1

N−1
(Y−z)2
σ2
N

→d 1 · Z√
1− 0 · Z2

= Z ∼ N(0, 1)

if

Y − z
σN

→d Z ∼ N(0, 1)

in probability or, better yet, almost surely; i.e. if

P

(
Y − z
σN

≤ t
∣∣∣Z = z

)
→ Φ(t)

in probability or almost surely. But this holds under the present hypotheses in view of the finite -
sampling CLT 2.5 which follows, if we can show that

ηN →a.s. 0(b)

where ηN is key quantity in the Noether condition (a). To accomplish this note that even under
the alternative hypothesis F 6= G and EF |X|2 <∞, EG|Y |2 <∞,

1

N

N∑
i=1

(Zi − Z)2 =
1

N

{
N∑
i=1

Z2
i −NZ

2

}

=
(m− 1)

N
S2
X +

(n− 1)

N
S2
Y

→a.s. λσ2
X + (1− λ)σ2

Y ≥ min{σ2
X , σ

2
Y } > 0

for any subsequence N → ∞ for which λN ≡ m/N → λ, and hence the denominator of ηN
(divided by N) has a positive limit inferior almost surely. To see that the numerator converges
almost surely to zero, first recall that max1≤i≤n |Xi|/n →a.s. 0 if and only if EF |X1| < ∞. Hence
max1≤i≤n |Xi|2/n →a.s. 0 if and only if EF |X1|2 < ∞. Thus we rewrite the numerator divided by
N as

1

N
max
i≤N
|Zi − Z|2 ≤ 2

N

{
max
i≤N
|Zi|2 + Z

2
}

≤ 2

N

{
max{max

i≤m
|Xi|2, max

j≤n
|Yj |2}+

(m
N
X +

n

N
Y
)2
}

≤ 2 max{ 1

m
max
i≤m
|Xi|2,

1

n
max
j≤n
|Yj |2}+

2

N

(m
N
X +

n

N
Y
)2

→a.s. 0 + 0.
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Hence (b) holds (even under the alternative if EFX
2 <∞ and EGY

2 <∞). 2

Theorem 2.5 (Wald - Wolfowitz - Noether - Hájek finite - sampling central limit theorem). If
0 < lim inf(m/N) ≤ lim sup(m/N) < 1, then

Y − z
σN

→d Z ∼ N(0, 1) as N →∞

if and only if

ηN ≡
max1≤i≤N |zi − z|2∑N

i=1 |zi − z|2
→ 0 as N →∞.(4)

Moreover,

sup
t

∣∣∣P (Y − z
σN

≤ t
)
− Φ(t)

∣∣∣ ≤ 5

(
N

m ∧ n
ηN

)1/4

for all N ≥ 1.

Proof. See Hájek, Ann. Math. Statist. 32, 506 - 523. For still better rates under stronger
conditions, see Bolthausen (1984). 2
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3 Invariance in Testing; Rank Methods

3.1 Notation and Basic Results

Let (X ,A, Pθ) be a probability space for all θ ∈ Θ, and suppose θ 6= θ′ implies Pθ 6= Pθ′ . We
observe X ∼ Pθ.

Suppose that g : X → X is one-to-one, onto X , and measurable, and suppose that the distri-
bution of gX when X ∼ Pθ is some Pθ′ = Pgθ; that is

Pθ(gX ∈ A) = Pḡθ(X ∈ A) for all A ∈ A,(1)

or equivalently

Pθ(g
−1A) = Pḡθ(A) for all A ∈ A;

or, equivalently,

Pθ(A) = Pḡθ(gA) for all A ∈ A.

Hence

Eθh(g(X)) = Eḡθh(X).(2)

Suppose that ḡΘ = Θ.
Let G denote a group of such tranformations g. We want to test H : θ ∈ ΘH versus K : θ ∈ ΘK .

Proposition 3.1 G is a group of one-to-one transformations of Θ onto Θ and is homomorphic to
G.

Proof. Suppose that ḡθ1 = ḡθ2. Then Pθ1 = Pθ2 by (1). Thus θ1 = θ2 by assumption. Thus
ḡ ∈ G is one-to-one.

Closure, associativity, and identity are easy.
If X ∼ Pθ, then g1X ∼ Pḡ1θ, and (g2 ◦g1)X = g2 ◦ (g1X) ∼ Pḡ2◦ḡ1θ, while (g2 ◦g1)X ∼ Pg2◦g1 , so

g2 ◦ g1 = ḡ2 ◦ ḡ1. If X ∼ Pθ, then g−1X ∼ P
g−1θ

, so g ◦ g−1X ∼ Pḡ◦ ¯g−1θ, while g ◦ g−1X = X ∼ Pθ,
so ḡ ◦ g−1 = ē; thus ḡ−1 = g−1, and G is a group. 2

Definition 3.1 A group of one-to-one transformations of X onto X is said to leave the testing
problem H versus K invariant provided ḡΘ = Θ and ḡΘH = ΘH for all g ∈ G.

3.2 Orbits and maximal invariants

Definition 3.2 x1 ∼ x2mod(G) if x2 = g(x1) for some g ∈ G.

Proposition 3.2 ∼ is an equivalence relation.

Proof. Reflexive: x1 ∼ x1 since x1 = e(x1).
Symmetric: g(x1) = x2 implies g−1(x2) = x1.
Transitive: x1 ∼ x2 and x2 ∼ x3 implies x1 ∼ x3 since g1(x1) = x2 and g2(x2) = x3 implies
(g2 ◦ g1)(x1) = x3. 2
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Definition 3.3 The equivalence classes of ∼ are called the orbits of G. Thus orbit(x) = {g(x) :
g ∈ G}. A function φ defined on the sample space X is invariant if φ(g(x)) = φ(x) for all x ∈ X
and all g ∈ G.

Proposition 3.3 A test function φ is invariant if and only if φ is constant on each orbit of G.

Proof. This follows immediately from the definitions. 2

Definition 3.4 A measurable function T : X → Rk for some k is a maximal invariant for G (or
GMI), if T is invariant and T (x1) = T (x2) implies x1 ∼ x2. That is, T is constant on the orbits of
G and takes on distinct values on distinct orbits.

Theorem 3.1 Let T be a GMI. Then φ is invariant if and only if there exists a function h such
that φ(x) = h(T (x)) for all x ∈ X .

Proof. Suppose that φ(x) = h(T (x)). Then

φ(gx) = h(T (gx)) = h(T (x)) = φ(x),

so φ is invariant.
On the other hand, suppose that φ is G−invariant. Then T (x1) = T (x2) implies x1 ∼ x2 implies

g(x1) = x2 for some g ∈ G. Thus φ(x2) = φ(gx1) = φ(x1); that is, φ is constant on the orbit. It
follows that φ is a function of T . 2

3.3 Examples

Example 3.1 (Translation group). Suppose that X = Rn and G = {g : gx = x + c1, c ∈ R}.
Then T (x) = (x1 − xn, . . . , xn−1 − xn) is a GMI.
Proof: Clearly T is invariant. Suppose that T (x) = T (x∗). Then xi = x∗i − (x∗n − xn) for i =
1, . . . , n− 1, and this holds trivially for i = n. Thus x∗ = g(x) = x+ c1 with c = (x∗n − xn).

Example 3.2 (Scale group). Suppose that X = {x ∈ Rn : xn 6= 0}, and G = {g : gx = cx, c ∈
R \ {0}}. Then T (x) = (x1/xn, . . . , xn−1/xn) is a GMI.
Proof: Clearly T is invariant. Suppose that T (x) = T (x∗). Then x∗i = (x∗n/xn)xi for i = 1, . . . , n−1,
this holds trivially for i = n. Thus x∗ = g(x) = cx with c = (x∗n/xn).

Example 3.3 (Orthogonal group). Suppose that X = Rn and G = {g : gx = Γx, Γ an n ×
n orthogonal matrix}. Then T (x) = xTx =

∑n
i=1 x

2
i is a GMI.

Proof: T (gx) = xTΓTΓx = xTx, so T is invariant. Suppose that T (x) = T (x∗). Then there exists
Γ = Γx,x∗ such that x∗ = Γx.

Example 3.4 (Permutation group). Suppose that X = Rn \ {ties}, and G = {g : g(x) = πx =
(xπ(1), . . . , xπ(n)) for some permutation π = (π(1), . . . , π(n)) of {1, . . . , n}. Note that #(G) = n!.
Then T (x) = (x(1), . . . , x(n)) ≡ x(·), the vector of ordered x’s is a GMI.
Proof. T (gx) = T (πx) = x(·) = T (x), so T is invariant. Moreover, if T (x∗) = T (x), then x∗ = πx
for some π ∈ Π, so T is maximal.
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Example 3.5 (Rank transformation group). Suppose that X = {x ∈ Rn : xi 6= xj for all i 6=
j} = Rn \ {ties}, and G = {g : g(x) = (f(x1), . . . , f(xn)), f continuous and strictly increasing}.
Then T (x) ≡ r = (r1, . . . , rn) where ri ≡ #{j ≤ n : xj ≤ xi} denotes the rank of xi (among
x1, . . . , xn).
Proof: T is clearly invariant. If T (x∗) = T (x), then, relabeling if necessary, we have a picture as
follows:

Example 3.6 (Sign group). Suppose that X = Rn and that G = {g, e}n where g(x) = −x and
e(x) = x. Then T (x) = (|x1|, . . . , |xn|) is a GMI.

Example 3.7 (Affine group). Suppose that X = {x ∈ Rn : xn−1 6= xn} and that G = {g : g(x) =
ax+ b1 with a 6= 0, b ∈ R}. Then

T (x) =

(
x1 − xn
xn−1 − xn

, . . . ,
xn−2 − xn
xn−1 − xn

)
is a GMI. Note that

T (x) =

(
x1 − x̄
s

, . . . ,
xn − x̄
s

)
is also a GMI (on X ≡ {x ∈ Rn : s > 0} where s2 ≡ n−1

∑n
i=1(xi − x̄)2).

Remark 3.1 In the previous example G = G2⊕G1 = scale⊕translation = {g2◦g1 : g1 ∈ G1, g2 ∈
G2}. Then Y = (x1−xn, x2−xn, . . . , xn−1−xn) is a G1− MI. In the space of the G1−MI we have
Z = (y1/yn−1, . . . , yn−2/yn−1) is a G2−MI. Thus Z is the GMI. If this works, it is OK; see theorem
2 on page 218 of TSH. But it doesn’t always work. When G = G2 ⊕ G1, it does work if G1 is a
normal subgroup of G. [Recall that G1 is a normal subgroup of G if and only if gG1g

−1 = G1 for
all g ∈ G.]

Example 3.8 (Signed rank transformation group). Suppose that X = RN \{ties} as in example 3.5
(but with N instead of n), but now let and

G = {g : g(x) = (f(x1), . . . , f(xN )), f is odd, continuous, and strictly increasing}.

Then T (x) = (r, s) = (r1, . . . , rm, s1, . . . , sn) where r1, . . . , rm denote the ranks of |xi1 |, . . . , |xim |
among |x1|, . . . , |xN | and s1, . . . , sn denote the rank of |xj1 |, . . . , |xjn | among |x1|, . . . , |xN | and where
xi1 , . . . , xim < 0 < xj1 , . . . , xjn .
Proof: T is clearly invariant. To show maximal invariance, the picture is much as in example 3.5,
but with the function f being odd; see Lehmann TSH pages 316 - 317.
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Example 3.9 Suppose that X = {(x1, x2) : x2 > 0} and that G = {g : g(x) = (x1+b, x2), b ∈ R}.
Then T (x) = x2 is a GMI.

Example 3.10 Suppose that X = {(x1, x2) : x2 > 0} as in example 3.9, but now suppose that
the group G = {g : g(x) = (cx1, cx2), c > 0} or G = {g : g(x) = (cx1, |c|x2), |c| 6= 0}. Then
T (x) = x1/x2 is a GMI in the first case (c > 0), and T (x) = |x1|/x2 is a GMI in the second case
(c 6= 0).

Example 3.11 Suppose that X = {(x1, x2, x3, x4) : x3, x4 > 0} and that G = {g : g(x) =
(cx1 + a, cx2 + b, cx3, cx4), a, b ∈ R, c > 0}. Then T (x) = x3/x4 is a GMI.

3.4 UMP G-invariant tests

Theorem 3.2 If T (X) is any G−invariant function and if ν(θ) is a GMI, then the distribution of
T (X) depends on θ only through ν(θ).

Proof. Suppose that ν(θ1) = ν(θ2). Then there exists ḡ ∈ G such that gθ1 = θ2. Let g be the
element of G corresponding to ḡ ∈ G. Then by (1)

Pθ1(T (X) ∈ A) = Pθ1(T (gX) ∈ A) = Pḡθ1(T (X) ∈ A) = Pθ2(T (X) ∈ A)

for all A ∈ A. Thus the distribution of T is a function of ν(θ). 2

Theorem 3.3 Suppose that H versus K is invariant under G. Let T (X) and δ ≡ ν(θ) denote
the GMI and the GMI; and suppose both are real-valued. Suppose that the densities pδ(t) =
(dP Tδ /dµ)(t) with respect to some σ−finite measure µ have MLR in T ; and suppose that H versus
K is equivalent to H1 : δ ≤ δ0 versus K1 : δ > δ0. Then there exists a UMP G− invariant level α
test of H versus K given by

ψ(T ) =


1 if T > c
γ if T = c
0 if T < c

with Eδ0ψ(T ) = α.

Proof. By theorem 3.1 any G−invariant test φ is of the form φ = ψ(T ). By theorem 3.2,
the distribution of T depends only on δ. Thus our theorem for UMP tests when there is MLR
completes the proof. 2

Example 3.12 Tests of σ2 for N(µ, σ2). Let X1, . . . , Xn be i.i.d. N(µ, σ2). Consider testing
H : σ ≤ σ0 versus K : σ > σ0. Then G = {g : g(x) = x+ c1, c ∈ R} leaves H versus K invariant.
By sufficiency we can restrict attention to tests based on X and S ≡

∑n
1 (Xi −X)2. let G∗ denote

the induced group g∗(X,S) = (X + c, S). Thus S is a G∗MI by example 3.9. Now S ∼ σ2χ2
n−1,

which has MLR in S. Thus by theorem 3.3, the UMP G∗−invariant test of H versus K rejects
H if S > σ2

0χ
2
n−1,α. By theorem 6.5.3, Lehmann and Romano, TSH (2005), page 229, it is also

the UMP G-invariant test; also see Ferguson, page 157. (Recall from chapter 2 that this optimal
normal theory test has undesirable robustness of level problems when the data fail to be normally
distributed.)
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Example 3.13 Two-sample t - test. Let X1, . . . , Xm be i.i.d. N(µ, σ2) and Y1, . . . , Yn be i.i.d.
N(ν, σ2), and consider testing H : ν ≤ µ versus K : ν > µ. By sufficiency we can restrict
attention to tests based on (X,Y , S) with S =

∑
(Xi − X)2 +

∑
(Yi − Y )2. Then the group

G = {g : g(x) = ax+ b1, a > 0, b ∈ R} leaves H versus K invariant and if G∗ denotes the induced
group

g∗(X,Y , S) = (aX + b, aY + b, a2S),

then T (X,Y , S) = (Y −X)/
√
S is a G∗−MI. Note that

t ≡
√

mn
N (Y −X)√

S
N−2

=

√
mn

N
(N − 2)T ∼ tm+n−2(δ)

with δ ≡
√
mn/N(ν − µ)/σ, and that H versus K is equivalent to H ′ : δ ≤ 0 versus K ′ : δ > 0.

Since the non-central t−distributions have MLR, the UMP G∗−invariant test of H versus K is the
two-sample t−test, “reject H if t > tm+n−2,α”.

Example 3.14 (Sampling inspection by variables). Let Y, Y1, . . . , Yn be i.i.d. N(µ, σ2). Let p ≡
P (Y ≤ y0) ≡ P (good) for some fixed number y0. Consider testing H : p ≥ p0 versus K : p < p0.
Now

p = P (Y ≤ y0) = P

(
Y − y0 − (µ− y0)

σ
≤ y0 − µ

σ

)
= P

(
X − θ
σ

≤ − θ
σ

)
where Xi ≡ Yi − y0 ∼ N(θ ≡ µ− y0, σ

2)

= Φ(−θ/σ) = 1− Φ(θ/σ),

or θ/σ = Φ−1(1− p). Thus, on the basis of X1, . . . , Xn we wish to test H : θ/σ ≤ c0 ≡ Φ−1(1− p0)
versus K : θ/σ > c0. Now X, S =

√
S2 are sufficient. Also, H versus K is invariant under the group

of example 3.10 with c > 0; and a GMI in the space of the sufficient statistic is T =
√
nX/S. Now

T ∼ tn−1(δ) where δ ≡
√
nθ/σ, and the family of distributions has MLR in T . Also H versus K is

equivalent to H ′ : δ ≤ δ0 ≡
√
nΦ−1(1− p0) versus K ′ : δ > δ0. Thus the UMP G−invariant level α

test of H versus K rejects H if T > tn−1,α(δ0). [Note the use of the non-central t-distribution as a
null distribution here!]

Example 3.15 (ANOVA - General Linear Model). The canonical form of ANOVA is as follows:

Θ : Z ∼ Nn(η, σ2I), η ∈ Vk ⊂ Rn

where Vk is a subspace of Rn with dimension k < n,

and ηi = 0, i = k + 1, . . . , n,

Θ0 : Z ∼ Nn(η, σ2I), η ∈ Vk−r ⊂ Rn

where Vk−r is a subspace of Vk with dimension r < k, and

and ηi = 0, i = 1, . . . , r, k + 1, . . . , n.
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We let

G1 ≡ {g1 : g1z = (z1, . . . , zr, zr+1 + ∆r+1, . . . , zk + ∆k, zk+1, . . . , zn), with ∆i ∈ R} ,

G2 =

{
g2 : g2z = (z∗1 , . . . , z

∗
r , zr+1, . . . , zk, zk+1, . . . , zn),

(z∗1 , . . . , z
∗
r ) an orthogonal transformation of (z1, . . . , zr)

}
,

G3 =

{
g3 : g3z = (z1, . . . , zr, zr+1, . . . , zk, z

∗
k+1, . . . , z

∗
n),

(z∗k+1, . . . , z
∗
n) an orthogonal transformation of (zk+1, . . . , zn)

}
,

G4 = {g4 : g4z = cz, where c 6= 0};

and, finally

G ≡ G4 ⊕G3 ⊕G2 ⊕G1 ≡ {g4 ◦ g3 ◦ g2 ◦ g1 : gi ∈ Gi, i = 1, . . . , 4}.

Then H versus K is invariant under G.
Now T1(z) = (z1, . . . , zr, zk+1, . . . , zn) is a G1MI.

In the space of the G1MI, a G2MI is T2(z) = (
∑r

i=1 z
2
i , zk+1, . . . , zn).

In the space of the G2 ⊕G1MI, a G3MI is T3(z) = (
∑r

i=1 z
2
i ,
∑n

i=k+1 z
2
i ).

In the space of the G3 ⊕G2 ⊕G1MI, a G4MI is T (z) = ((n− k)/r)
(∑r

1 z
2
i /
∑n

k+1 z
2
i

)
.

Now T (z) is a GMI; thus any G−invariant test function for H versus K is a function of T (z)
by theorem 3.1. Similarly,

(σ2, η1, . . . , ηr) is a G1MI;

(σ2,
r∑
i=1

η2
i ) is a G2 ⊕G1MI; and a G3 ⊕G2 ⊕G1MI;

and

δ2 ≡ λ2 =

∑r
i=1 η

2
i

σ2
is a GMI.

Thus the distribution of any invariant test depends only on δ2.
Now T ∼ Fr,n−k(δ2), which has MLR in T . Also, H versus K is equivalent to H ′ : δ = 0 versus

K ′ : δ > 0. Thus the UMP G−invariant test of H versus K rejects H when T > Fr,n−k,α.

Reduction to canonical form

The above analysis has been developed for the linear model in canonical form. Now the question
is: how do we reduce a model stated in a more usual way to the canonical form? Suppose that

X ∼ Nn(ξ, σ2I)

where ξ ≡ EX = Aθ ∈ L, where A is a (known) n × k matrix of rank k, θ is a k × 1 vector of
(unknown) parameters, and L is the k−dimensional subspace of Rn spanned by the columns of the
matrix A. Let B be a given r × k matrix, and consider testing

H : Bθ = 0 or ξ ∈ L1

where L1 is a (k − r)−dimensional subspace of Rn.
To transform this form of the testing problem to canonical form, let T be an n× n orthogonal

matrix with:

(i) the last n− k rows of T are orthogonal to L; i.e. orthogonal to the columns of A.
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(ii) the rows r + 1, . . . , k of T span L1.

Then set Z = TX. We compute

η ≡ EZ = TAθ = Tξ,

and note that:

(a) ηk+1 = · · · = ηn = 0 always by (i).

(b) η1 = · · · = ηr = 0 under H by (ii) since the first r rows of T are orthogonal to L1.

Now we will re-express the F−statistic we have derived in terms of the X’s:

S2(η) ≡
n∑
i=1

(Zi − ηi)2 =
k∑
i=1

(Zi − ηi)2 +
n∑

i=k+1

Z2
i

≥
n∑

i=k+1

Z2
i

by taking ηi = η̂i = Zi, i = 1, . . . , k. But since T is orthogonal, η = Tξ, and Z = TX,

S2(η) = ‖Z − η‖2 = (Z − η)T (Z − η)(3)

= (X − ξ)T (X − ξ) =

n∑
i=1

(Xi − ξi)2(4)

so that

min
ξ∈L

n∑
i=1

(Xi − ξi)2 =
n∑
i=1

(Xi − ξ̂i)2 =
n∑

i=k+1

Z2
i(5)

where ξ̂ is the Least Squares (LS) estimator of ξ under ξ = Aθ ∈ L. Similarly, under H : ξ ∈ L1

(or η1 = · · · = ηr = 0 in the canonical form),

S2(η) =
r∑
i=1

Z2
i +

k∑
i=r+1

(Zi − ηi)2 +
n∑

i=k+1

Z2
i

≥
r∑
i=1

Z2
i +

n∑
k+1

Z2
i

by taking ηi = ˆ̂ηi = Zi for i = r + 1, . . . , k, and hence by (4)

min
ξ∈L1

n∑
i=1

(Xi − ξi)2 ≡
n∑
i=1

(Xi − ˆ̂
ξi)

2 =
r∑
i=1

Z2
i +

n∑
i=k+1

Z2
i(6)

where
ˆ̂
ξ is the least squares estimate of ξ under the hypothesis ξ ∈ L1. Combining (5) and (6)

yields

r∑
i=1

Z2
i =

n∑
i=1

(Xi − ˆ̂
ξi)

2 −
n∑
i=1

(Xi − ξ̂i)2;
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here L1 is a subspace of dimension k − r contained in L, which is a subspace of dimension k
contained in Rn. Now since X − ξ̂ ⊥ L

X − ξ̂ ⊥ L; in particular, X − ξ̂ ⊥ ξ̂ − ˆ̂
ξ ∈ L.(7)

Hence

‖X − ˆ̂
ξ‖2 = ‖X − ξ̂‖2 + ‖ξ̂ − ˆ̂

ξ‖2

by (7), and we have

r∑
i=1

Z2
i = ‖ξ̂ − ˆ̂

ξ‖2 =

n∑
i=1

(ξ̂i − ˆ̂
ξi)

2,

and the F−statistics which yields the UMP G−invariant test of H : ξ ∈ L1 versus K : ξ /∈ L1

may be written as

F =

∑n
i=1(ξ̂i − ˆ̂

ξi)
2/r∑n

i=1(Xi − ξ̂i)2/(n− k)
=

{∑n
i=1(Xi − ˆ̂

ξi)
2 −

∑n
i=1(Xi − ξ̂i)2

}
/r∑n

i=1(Xi − ξ̂i)2/(n− k)
.

To re-express the noncentrality parameter of the distribution of F under the alternative hypothesis
in terms of ξ (instead of η), let ξ ∈ L, and let ξ0 denote the projection of ξ onto L1: thus

ξ = ξ0 + (ξ − ξ0) where ξ0 ∈ L1 and ξ − ξ0 ⊥ L1. Then

δ2 =
r∑
i=1

η2
i /σ

2 =
n∑
i=1

{ξ̂i(ξ)− ˆ̂
ξi(ξ)}2/σ2 =

n∑
i=1

{ξi − ξ0
i }2/σ2.

3.5 Rank tests

First we need to be able to compute probabilities for rank vectors. Our first job here is to develop
a fundamental formula due to Hoeffding which allows us to do this.

Let Z1, . . . , ZN be independent real-valued random variables with densities f1, . . . , fN respec-
tively. Let

Ri ≡ rank of Zi in Z1, . . . , ZN = #{j ≤ N : Zj ≤ Zi} = NFN (Zi)

for i = 1, . . . , N where FN is the empirical distribution of the Zi’s. Thus

P (R = r) =

∫
· · ·
∫
S
f1(z1) · · · fN (zN )dz1 · · · dzN

where

S ≡ {z : Ri(z) = ri, i = 1, . . . , N} = {z : zd1 < · · · < zdN }

where d = r−1, the inverse permutation, r ◦d = r ◦ r−1 = e. (Example: N = 3; z = (10, 5, 8). Then
r = (3, 1, 2) and d = (2, 3, 1).) Hence, letting zdi ≡ vi,

S = {V1 < · · · < VN},
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and

P (R = r) =

∫
· · ·
∫
v1<···<vN

f1(vr1) · · · fN (vrN )

N !h(vr1) · · ·h(vrN )
N !h(v1) · · ·h(vN )dv

=
1

N !
E
f1(V(r1)) · · · fN (V(rN ))

h(V(r1)) · · ·h(V(rN ))

where V(1) < · · · < V(N) are the order statistics of a sample of size N from h. This formula is one
version of Hoeffding’s formula.

Of course, sometimes direct calculation succeeds immediately. Here are two simple, but impor-
tant, examples:

Example 3.16 Suppose that Fi = F∆i with ∆i > 0, i = 1, . . . , N and F continuous. Then

P (R = e) = P (X1 < · · · < XN ) =

∫
· · ·
∫
x1<···<xN

N∏
i=1

dF∆i(xi)

=

∫
· · ·
∫

0≤u1≤···≤uN≤1

N∏
i=1

∆iu
∆i−1
i dui

=

∫
· · ·
∫

0≤u2≤···≤uN≤1

N∏
i=3

∆iu
∆i−1
i ∆2u

∆1+∆2−1
2 du2 · · · duN

= · · · =

N∏
i=1

∆i∑i
j=1 ∆j

.

This yields any probability P (R = r), r ∈ Π, by relabeling:

P (R = r) =

N∏
i=1

∆di∑i
j=1 ∆dj

.

Example 3.17 (Proportional hazards alternative). Similarly, suppose that (1 − Fi) = (1 − F )∆i

with ∆i > 0, i = 1, . . . , N and F continuous; this is equivalent to Λi ≡ − log(1−Fi) = ∆i{− log(1−
F )} = ∆iΛ, the proportional hazards model. Then

P (R = e) = P (X1 < · · · < XN ) =

∫
· · ·
∫
x1<···<xN

N∏
i=1

d{1− (1− F (xi))
∆i}

=

∫
· · ·
∫

0≤u1≤···≤uN≤1

N∏
i=1

∆i(1− ui)∆i−1dui

= · · · =
N∏
i=1

∆i∑N
j=i ∆j

.

This yields any probability P (R = r), r ∈ Π, by relabeling:

P (R = r) =

N∏
i=1

∆di∑N
j=i ∆dj

.



3. INVARIANCE IN TESTING; RANK METHODS 31

Now suppose that X1, . . . , Xm are i.i.d. F and Y1, . . . , Yn are i.i.d. G, F,G ∈ Fc; and let G
denote the group of all strictly increasing continuous transformations of the real line onto itself,
example 3.5.

Proposition 3.4
A. The two-sample problem of testing H : F = G versus K : F <s G, F,G ∈ Fc, is invariant
under G.
B. The rank vector R is a G−MI.
C. ψ(u) = G ◦ F−1(u) is a G−MI.
D. The ordered Y ranks Q1 < · · · < Qn are sufficient for R; Qi ≡ NHN (G−1

n (i/n)), i = 1, . . . , n.
E. Hoeffding’s formula: suppose that F and G have densities f and g respectively, and that
f(x) = 0 implies g(x) = 0. Then

P (Q = q) =
1(
N
n

)Ef


n∏
j=1

g(V(qj))

f(V(qj))


where V(1) < · · · < V(N) are the order statistics of a sample of size N from F . Furthermore, this
probability may be rewritten as

P (Q = q) =
1(
N
n

)E


n∏
j=1

ψ′(U(qj))


where U(1) < · · · < U(N) are the order statistics of a sample of N Uniform(0, 1) random variables.

Proof. Statements A - C follow easily from the preceding development. To prove E, we
specialize Hoeffding’s formula by taking fi = f for i = 1, . . . ,m, fi = g for i = m + 1, . . . , N , and
h = f . Then

P (R = r) =
1

N !
EF

 n∏
j=1

g

f
(V(rm+j))

 =
1

N !
EF

 n∏
j=1

g

f
(V(qj))

 .

Hence

P (Q = q) =
∑

r: q(r)=q

P (R = r) =
1

N !
EF

 n∏
j=1

g

f
(V(qj))

 ∑
r: q(r)=q

1

=
m!n!

N !
EF

 n∏
j=1

g

f
(V(qj))

 .

Note that the claimed sufficiency of Q for R in D follows from these computations.
To see the second formula, note that ψ′(u) = (g/f)(F−1(u)), and that

(F−1(U(1), . . . , F
−1(U(N)))

d
= (V(1), . . . , V(N)).

2

Here are several applications of Hoeffding’s formula: we use the preceding results to find locally
most powerful rank tests in several different two-sample testing problems: location, scale, and
Lehmann alternatives of the proportional hazards type.
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Proposition 3.5 (Locally most powerful rank test for location). Suppose that F has an absolutely
continuous density f for which

∫
|f ′(x)|dx < ∞. Then the locally most powerful rank test of

H : F = G versus K : G = F (· − θ) with θ > 0 is of the form

φ(q) =


1 if SN ≡

∑n
j=1EF

(
−f ′

f (V(qj))
)
> kα

γ if SN = kα
0 if SN < kα

where V(1) < · · · < V(N) are the order statistics in a sample of size N from F .

Proof. For a rank test, φ = φ(Q), we want to maximize the slope of the power function at
θ = 0: i.e. to maximize the slope at θ = 0 of

βφ(θ) = Eθφ(Q) =
∑
q

φ(q)Pθ(Q = q).

To do this we clearly want to find those q for which

d

dθ
Pθ(Q = q)

∣∣∣
θ=0

is large. But, by using proposition 3.4 and differentiation under the expectation (which can be
justified by the assumption that

∫
|f ′(x)|dx <∞),

d

dθ
Pθ(Q = q)

∣∣∣
θ=0

=
d

dθ

1(
N
n

)EF { n∏
i=1

f(V(qj) − θ)
f(V(qj))

}∣∣∣
θ=0

=
1(
N
n

)EF { d

dθ

n∏
i=1

f(V(qj) − θ)
f(V(qj))

∣∣∣
θ=0

}

=
1(
N
n

)EF
−

n∑
j=1

f ′

f
(V(qj))


since

d

dθ

n∏
j=1

f(xj − θ)
f(xj)

=
n∑
k=1

n∏
j=1,j 6=k

f(xj − θ)
f(xj)

∣∣∣
θ=0

{
−f
′(xk − θ)
f(xk)

∣∣∣
θ=0

}

= −
n∑
k=1

f ′

f
(xk).

2

Example 3.18 If F is N(µ, σ2), then without loss (by the monotone transformation g(X) =
(X−µ)/σ, we may take F = Φ, the standardN(0, 1) distribution function. Then−(f ′/f)(x) = x, so
E{(−f ′/f)(V(i))} = E(Z(i)) where Z(1) < · · · < Z(N) are the order statistics of N standard normal
(N(0, 1)) random variables, and SN =

∑n
j=1E(Z(qj)). Note that E(Z(i)) may be approximated by

Φ−1(i/(N + 1)), or by Φ−1((3i− 1)/(3N + 1)).
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Example 3.19 If F is logistic, f(x) = e−x/(1 + e−x)2, then f = F (1− F ), and −f ′/f = 2F − 1.

Since F (V(i))
d
= U(i) where U1, . . . , UN are uniform(0, 1) random variables with EU(i) = i/(N + 1),

the LMPRT of F versus G = F (· − θ) rejects H for large values of SN =
∑n

j=1Qj ; this is the
Wilcoxon statistic.

Proposition 3.6 (Locally most powerful rank test for scale). Suppose that F has an absolutely
continuous density f for which

∫
|xf ′(x)|dx < ∞. Then the locally most powerful rank test of

H : F = G versus K : G = F (·/θ) with θ > 1 is of the form

φ(q) =


1 if SN ≡

∑n
j=1 aN (qj) > kα

γ if SN = kα
0 if SN < kα

where

aN (i) ≡ EF {−1− V(i)
f ′

f
(V(i))}

and V(1) < · · · < V(N) are the order statistics in a sample of size N from F .

Example 3.20 If f(x) = e−x1[0,∞)(x), then (f ′/f)(x) = −1, and hence aN (i) = EF {−1 + V(i)} =
EF {V(i) − 1} where V(i) are the order statistics of a sample of size N from F . But

V(i)
d
=

i∑
j=1

Zj
N − j + 1

where Zj are i.i.d. exponential(1), and hence

E(V(i)) =

i∑
j=1

1

N − j + 1
=

N∑
k=N−i+1

1

k
= E{− log(1− U(i))}

since F−1(t) = − log(1 − t). These are the Savage scores for testing exponential scale change; the
approximate scores are

aN (i) = − log

(
1− i

N + 1

)
− 1 , i = 1, . . . , N,

and the resulting test is sometimes called the “log-rank” test. Its modern derivation in survival
analysis is via different considerations which allow for the introduction of censoring, and rewritten
in a martingale framework. [Recall that

∑N
k=1 k

−1 − logN → γ = .5772 · · ·, Euler’s constant, as
N →∞, so

N∑
k=N−i+1

1

k
=

N∑
k=1

1

k
−
N−i∑
k=1

1

k

=

N∑
k=1

1

k
− logN −

(
N−i∑
k=1

1

k
− log(N − i)

)
− log(1− i

N
)

=̇ − log(1− i

N
)
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for large N .]
Note that when F is exponential(1), then

(1−G(x)) = 1− F (x/θ) = exp(−x/θ) = (1− F (x))1/θ,

or, ΛG = (1/θ)ΛF = ∆ΛF with ∆ = 1/θ. Hence

ψ(u) = 1− (1− u)1/θ = 1− (1− u)∆,

and ψ′(u) = ∆(1 − u)∆−1. Since the distribution of the ranks is the same for all (F,G) pairs
with the same ψ, it follows that in fact the Savage test is the locally most powerful rank test of
H : F = G versus the Lehmann alternative K : (1−G) = (1− F )∆, ∆ < 1.

Example 3.21 If F is N(0, σ2), the LMPRT of F = G versus K : G = F (·/θ), θ > 1, rejects for
large values of SN ≡

∑n
j=1 aN (Qj) where aN (i) ≡ E(Z2

(i)) and Z(1) < · · · < Z(N) is an ordered

sample from N(0, 1). The approximate scores are (Φ−1(i/(N + 1))2.

Remark 3.2 Note that any rank statistic of the form SN can be rewritten in terms of empirical
distributions as follows:

SN =

n∑
j=1

aN (Qj) =

n∑
j=1

aN (Rm+j) =

N∑
i=1

aN (i)ZNi

where ZNi = 0 or 1 according as the ith largest of the combined sample is an X or Y . Let
HN (x) = empirical df of the combined sample. Then H−1

N (i/N) = ith largest of the combined
sample, nGn(H−1

N (i/N)) = the number of Yi’s ≤ H−1
N (i/N), and ZNi = ∆{nGn(H−1

N )}(i/N) where
∆h(y) ≡ h(y)− h(y−). Therefore we can write

SN =

N∑
i=1

aN (i)ZNi =

n∑
i=1

aN (i)∆{nGn(H−1
N )}(i/N)

= n

∫ 1

0
φN (u)dGn(H−1

N (u))

where φN (u) ≡
∑N

i=1 aN (i)1{(i− 1)/N < u ≤ i/N} for 0 < u < 1. If φN → φ and λN → λ, then it
is often true that under alternatives F 6= G,

1

n
SN =

∫ 1

0
φN (u)dGn ◦H−1

N (u)→a.s.

∫ 1

0
φ(u)dG ◦H−1(u)

where H = λF + (1− λ)G.
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4 Efficiency of Tests

4.1 The Power of two tests

Example 4.1 (Power of the one-sample t−test:) Let X1, . . . , Xn be i.i.d. (θ, σ2). We wish to test
H : θ ≤ θ0 versus K : θ > θ0. The classical test of H versus K rejects H when tn ≡

√
n(X−θ0)/S >

tn−1,α.
(i) This test has asymptotically correct level of significance (assuming E(X2) <∞ as we have by
hypothesis) since, with Z ∼ N(0, 1),

Pθ0(tn > tn−1,α)→ P (Z > zα) = α.

(ii) This test is consistent since, when a fixed θ > θ0 is true

tn =

√
n(X − θ)
S

+

√
n(θ − θ0)

S
→d Z +∞ =∞

and tn−1,α → zα so that Pθ(tn > tn−1,α)→ 1.
(iii) If X1, . . . , Xn are i.i.d (θn, σ

2 ≡ (θ0 + n−1/2cn, σ
2) where cn → c, then

tn =

√
n(X − θn)

S
+
cn
S

→d Z +
c

σ
∼ N(c/σ, 1).

Let βtn(θ) denote the power of the t−test based on X1, . . . , Xn against the alternative θ. Then

βtn(θn) = βtn(θ0 + n−1/2cn)(1)

= Pθ0+cn/
√
n(tn > tn−1,α)→ P (N(c/σ, 1) > zα).(2)

Example 4.2 Let X1, . . . , Xn be i.i.d. with d.f. F = F0(· − θ) where F0 has unique median 0 (so
that F0(0) = 1/2). We wish to testH : θ ≤ θ0 versusK : θ > θ0. Let Yi ≡ 1{Xi ≥ θ0} = 1[θ0,∞)(Xi)

for i = 1, . . . , n. The sign test of H versus K rejects H when Sn ≡
√
n(Y n − 1/2) exceeds the

upper α percentage sn,α of its distribution when θ0 is true.
(i) When θ0 is true, Yi is Bernoulli(1/2) so that Sn →d Z/2 ∼ N(0, 1/4). Since the exact
distribution of nY n =

∑n
1 Yi is Binomial(n, 1/2) for all d.f.’s F as above, the test has exact level

of significance α for all such F .
(ii) This test is consistent, since when a θ exceeding θ0 is true

Sn =
√
n(Y − Pθ(X ≥ θ0)) +

√
n{Pθ(X > θ0)− 1/2)}

→d N(0, p(1− p)) +∞ =∞

with p ≡ 1− F (θ0 − θ) > 1/2 so that Pθ(Sn > sn,α)→ 1.
(iii) If X1, . . . , Xn are i.i.d. F0(· − (θ0 + n−1/2dn)) where dn → d as n → ∞ and where we now
assume that F0 has a strictly positive derivative f0 at 0. Then, using F0(0) = 1/2, we have

Sn =
√
n(Y − Pθ0+dn/

√
n(X ≥ θ0)) +

√
n{Pθ0+dn/

√
n(X > θ0)− 1/2)}

= n−1/2
{

Binomial(n, 1− F0(−dn/
√
n))− n(1− F0(−dn/

√
n))
}

+
√
n(F0(0)− F0(−dn/

√
n))

→d Z/2 + df0(0) ∼ N(df0(0), 1/4).
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Thus the power of the sign test β2
n(θ) satisfies

βsn(θ0 + n−1/2dn) → P (Z/2 + df0(0) > zα/2) = P (Z > zα − 2df0(0)

= P (N(2df0(0), 1) > zα).(3)

4.2 Pitman Efficiency

Definition 4.1 Pitman efficiency is defined to be the limiting ratio of the sample sizes that produce
equal asymptotic power against the same sequence of alternatives.

Now equal asymptotic power β in (2) and (3) requires that

c

σ
= 2df0(0).(4)

If the t−test is based on Nt observations and the sign test is based on Ns observations, then equal
alternatives in example 4.1 and example 4.2 requires that

cNt/
√
Nt = dNs/

√
Ns.(5)

Thus the Pitman efficiency es,t of the sign test with respect to the t test is just the limiting value
of Nt/Ns subject to (4) and (5). Thus

Nt

Ns
=
c2
Nt

d2
Ns

→ c2

d2
= 4σ2f2

0 (0) = es,t.

Exercise 4.1 Evaluate es,t = 4σ2f2
0 (0) in case:

(i) f0 is Uniform(−a, a);
(ii) f0 is Normal(0, a2);
(iii) f0 is Logistic(0, a): (i.e. f0(x) = a−1e−x/a/[1 + exp(−x/a)]2.
(iv) f0 is t with k degrees of freedom;
(v) f0 is double - exponential(a); f0(x) = (2a)−1 exp(−a|x|).

A General calculation

We now consider the problem more generally. Suppose that X1, . . . , XN have a joint distribution
Pθ where θ is a real-valued parameter. We wish to test H : θ ≤ θ0 versus K : θ > θ0. Suppose that
the T1 test and the T2 test are both consistent tests of H versus K; and that the Ti test rejects H
if the statistic TN,i exceeds the upper α percent point of its distribution when θ = θ0. Since both
tests are consistent, it is useless to compare their limiting power under fixed alternatives; hence
we will compare their power on a sequence of alternatives that approach θ0 from above at the rate
1/
√
N .

Suppose that for each c > 0 the statistics TN,i satisfy

Pθ0+cN/
√
N (TN,i ≤ x)→ P (N(cµi, σ

x
i ) = P (N(cµi/σi, 1) ≤ x)

for all x as N →∞ for any sequence of cN ’s converging to c. Let the T1− test (the T2−test) use N1

(use N2) observations against the sequence of alternatives cN1/
√
N1 (the sequence of alternatives

cN2/
√
N2) where cN1 → c1 (where cN2 → c2). Equal asymptotic power requires

c1µ1

σ1
=
c2µ2

σ2
,
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and equal alternatives requires

cN1√
N1

=
cN2√
N2

;

solving these simultaneously leads to

N2

N1
=
c2
N2

c2
N1

→ (µ1/σ1)2

(µ2/σ2)2
= e1,2.(6)

Note that the efficiency e1,2 is independent of the common level of significance α of the tests, of the
particular value of the asymptotic power β, and of the particular sequences that converge to the
values of c1 and c2 that are specified by the choice of β. Since so much is summarized in a single
number, the procedure is bound to have some shortcomings; however it can be extremely useful
and informative.

The quantity εi ≡ (µi/σi)
2 is called the efficacy of the Ti−test, and hence the efficiency e1,2 is

the ratio of the efficacies.

Exercise 4.2 Define your idea of what the exact small sample efficiency es,t(α, β, n) of the sign test
with respect to the t−test should be. Compute some values of it in case X1, . . . , Xn are normal,
and compare these values with the asymptotic value es,t = 2/π=̇.6366 . . . that was obtained in
exercise 4.1.

Exercise 4.3 Now redefine Pitman efficiency to be the ratio of the squared distances from the
alternative to the hypothesized valued θ0 that produce equal asymptotic power as equal sample
sized approach infinity. Show that you get the same answer as before.

Note that if T1 and T2 are estimating the same thing (that is, if µ1 = µ2), then e1,2 is just the
ratio of the limiting variances.

Also note that the typical test of H : θ ≤ θ0 versus K : θ > θ0 is of the form: reject H if
√
n(T − Eθ0(T ))√
V arθ0(

√
n(T ))

> kn,α → zα.

Thus when θ0 + c/
√
n is true, intuitively we have (letting m(θ) ≡ Eθ(T ), and σ2

0 ≡ V arθ0(
√
nT )),

√
n(T − Eθ0(T ))√
V arθ0(

√
n(T ))

=

√
V arθ0+c/

√
n(
√
n(T ))√

V arθ0(
√
n(T ))

√
n(T − Eθ0+c/

√
n(T ))√

V arθ0+c/
√
n(
√
n(T ))

+

√
n(m(θ0 + c/

√
n)−m(θ0)√

V arθ0(
√
n(T ))

→d 1 · Z +
cm′(θ0)

σ0
∼ N(cm′(θ0)/σ0, 1).

Thus we expect (m′(θ0)/σ0)2 to be the efficacy.

Exercise 4.4 Now consider testing H : θ = θ0 versus K : θ 6= θ0 on the basis of a two-sided test
based on either the T1 or the T2 statistics consider previously. Show that the same formula for
Pitman efficiency is appropriate for the two-side test also.
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Exercise 4.5 Again consider testing H : θ = θ0 versus K : θ 6= θ0; but suppose now that

Tn,i →d χ
2
k(c

2δ2
i ) as n→∞

under any sequence of alternatives θ0 + cn/
√
n having cn → c > 0 as n → ∞. Here k is a fixed

interger, and the limiting random variable has a noncentral chi-square distribution. Show that the
Pitman efficiency criterion leads to e1,2 = δ2

1/δ
2
2 .

4.2 Some two-sample tests

Example 4.3 (The two-sample t−test). Let X1, . . . , Xm and Y1, . . . , Yn be independent samples
from the distribution functions F and G = F (· − θ) respectively. The classical test of H : θ ≤ 0
versus K : θ > 0 rejects H if

tm,n ≡
√

mn
N (Y −X)√

m−1
N−2S

2
X + n−1

N−2S
2
Y

> tm+n−2,α.

(As noted in section 6.2,this test has certain optimality properties when F is a normal distribution.)
If F is any d.f. having finite variance, then:

(i) When θ = 0 we have tm,n →d N(0, 1) provided m ∧ n→∞.

(ii) When θ > 0 is true, then the test is consistent as m ∧ n→∞.

(iii) If λN ≡ m/N → λ ∈ (0, 1) as m ∧ n→∞, then

Pθ=c/
√
N (tm,n > tm+n−2,α)→ P (c

√
λ(1− λ)/σ, 1) > zα).

Thus the efficacy of the two-sample t−test is

εt = λ(1− λ)/σ2.(7)

Example 4.4 (The Mann-Whitney and Wilcoxon tests). Let X1, . . . , Xm be i.i.d. F and let
Y1, . . . , Yn be i.i.d. G where F and G are continuous d.f.’s, and consider testing H : F = G versus
K : F <s G (i.e. G(x) ≤ F (x) for all x and G(x) < F (x) for some x).

The Wilcoxon test is “reject H if Wm,n ≡
∑n

j=1Qj =
∑n

j=1Rm+j is too big”. Tables of the
exact null distribution of Wm,n for small m,n are available, so the level is exactly α. Moreover, if
H is true,

Wm,n − EH(Wm,n)√
V arH(Wm,n)

=
Wm,n − n(N + 1)/2√

mn(N + 1)/12
→d N(0, 1)

provided m ∧ n → ∞; this follows from the Wald-Wolfowitz-Noether-Hájek permutational CLT
since

N

m ∧ n
ηN ≡

N

m ∧ n
maxi |ai − a|2∑N

1 (ai − a)2
=

1

m ∧ n
(N − 1)2/4

(N2 − 1)/12
→ 0

provided m ∧ n→∞.
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The Mann-Whitney test is described as follows: let

Um,n ≡
1

mn

m∑
i=1

n∑
j=1

1{Xi ≤ Yj}.

Mann and Whitney proposed to reject H if Um,n is “too big”. Since

mnUm,n + n(n+ 1)/2 = Wm,n,

when H is true we have

Um,n − 1/2√
(N + 1)/12mn

→d N(0, 1) as m ∧ n→∞.

For arbitrary F and G

EUm,n = E1{X ≤ Y } = P (X ≤ Y ) =

∫
FdG,

while, for arbitrary continuous F and G

V ar(
√
mnUm,n) = (n− 1)

∫
(1−G)2dF

+ (m− 1)

∫
F 2dG− (N − 1)

(∫
FdG

)2

+

∫
FdG

= (n− 1)V ar(1−G(X)) + (m− 1)V ar(F (Y )) +

∫
FdG(1−

∫
FdG).

We now consider the local alternatives Y
d
= X + c/

√
N , or G = F (· − c/

√
N). We also suppose

that λN = m/N → λ. Then

Um,n − 1/2√
(N + 1)/12mn

=
Um,n −

∫
FdG√

(N + 1)/12mn
+

∫
FdG− 1/2√

(N + 1)/12mn

≡ Zm,n + am,n

where it seems intuitive that Zm,n →d Z ∼ N(0, 1) as N →∞ and

am,n =

√
12mn

N(N + 1)

√
N

{∫
FdG− 1

2

}

=

√
12mn

N(N + 1)

√
N

{∫
F (x)dF (x− c/

√
N)−

∫
FdF

}

=

√
12mn

N(N + 1)

∫ √
N(F (x− c/

√
N)− F (x))dF (x)

→
√

12λ(1− λ)c

∫
f2(x)dx

assuming that F has density f with
∫
f2(x)dx <∞. Thus under (F,G) = (F, F (· − c/

√
N))

Um,n − 1/2√
(N + 1)/12mn

→d Z + c
√

12λ(1− λ)

∫
f2 ∼ N(c

√
12λ(1− λ)

∫
f2, 1).
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Thus the efficacy of the U−test is

εU = 12λ(1− λ)

(∫
f2(x)dx

)2

.(8)

Combining the efficacies in (7) and (8) for the t−test and the U−test respectively gives the
Pitman efficiency of the U−test with respect to the t−test:

eU,t(F ) =
12λ(1− λ){

∫
f2}2

λ(1− λ)/σ2
= 12σ2

(∫
f2

)2

.

Proposition 4.1 eU,t(F ) ≥ 108/125 = .864 . . ..

Proof. first note that eU,t(F ) = eU,t(F (·−a)/c). Thus it suffices to minimize
∫
f2(x)dx subject

to the restrictions∫
x2f(x)dx = 1,

∫
xf(x)dx = 0, f(x) ≥ 0,

∫
f(x)dx = 1.

Consider minimizing

B(f) ≡
∫ ∞
−∞
{f2(x) + f(x)2b(x2 − a2)}dx

with b > 0 subject to f ≥ 0 and
∫
f(x)dx = 0. Now

f2(x) + 2bf(x)(x2 − a2) = f(x){f(x) + 2b(x2 − a2)}
= A{A+ 2b(x2 − a2) ≥ 0 for |x| ≥ a.

Thus take f(x) = 0 for |x| ≥ a and minimize the integrand pointwise for |x| ≤ a. This yields
A ≡ f(x) = b(a2−x2). Thus the minimizer fa,b(x) ≡ f = b(a2−x2)1[−a,a](x). Choosing a and b so

that
∫
x2f(x)dx = 1 and

∫
f(x) = 1 yields a =

√
5, b = 3

√
5/100, and hence

∫
f2(x)dx = 3

√
5/25.

Hence

eU,t ≥ 12{
∫
f2
a,b(x)dx}2 = 12(9 · 5)/625 = 108/125.

2

Proof of asymptotic normality of Um,n under local alternatives Suppose that

XN,1, . . . , XN,m are i.i.d. FN

YN,1 . . . , YN,n are i.i.d. GN

where FN , GN , and H are continuous df’s satisfying ‖FN − H‖∞ → 0 and ‖GN − H‖∞ → 0
as N → ∞. Let Fm and Gn denote the empirical df’s of XN,1 . . . , XN,m and YN,1, . . . , YN,m
respectively. Now

Um,n =

∫
FmdGn.
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Consider√
mn

N

(
Um,n −

1

2

)
=

√
mn

N

(∫
FmdGn −

∫
FNdGN +

∫
FNdGN −

1

2

)
=

√
mn

N

{∫
(Fm − FN )dGn +

∫
FNd(Gn −GN )

}
+

√
mn

N

(∫
FNdGN −

∫
GNdGN

)
d
=

√
n

N

∫
Um(FN )dGn −

√
m

N

∫
Vn(GN )dFN +

(
N + 1

12N

)1/2

am,n;

here Um is the empirical process of m i.i.d. Uniform(0, 1) rv’s and Vn is the empirical process of n
i.i.d. Uniform(0, 1) rv’s independent of the random variables used to define Um. Thus for special
constructions of Um and Vn and independent Brownian bridge processes U and V,√

mn

N

(
Um,n −

1

2

)
→d

√
1− λ

∫
U(H)dH −

√
λ

∫
V(H)dH +

1√
12
a

=

∫ 1

0
{
√

1− λU(t)−
√
λV(t)}dt+

a√
12

d
=

∫ 1

0
U(t)dt+

a√
12

d
=

1√
12

(Z + a) ∼ 1√
12
N(a, 1)

since

σ2 =

∫ 1

0

∫ 1

0
(s ∧ t− st)dsdt =

1

12
.

Convergence of the first term above is justified by:

|
∫

Um(FN )dGn −
∫

U(H)dH|

≤ |
∫

(Um(FN )− U(FN ))dGn|+ |
∫

(U(FN )− U(H))dGn|

+ |
∫

U(H)d(Gn −H)|

≤ ‖Um − U‖
∫
dGn + ‖U(FN )− U(H)‖

∫
dGn

+ |
∫

U(H)d(Gn −H)|

→a.s. 0 + 0 + 0 = 0

where the convergence of the first term follows by the special (Skorokhod) construction of {Um,U}
and

∫
dGn = 1; the convergence of the second term follows from ‖Fn − H‖ → 0 and uniform

continuity of U for a.e. fixed ω; and converence of the third term follows from Helly-Bray since
U(H) is a bounded continuous function a.s. and Gn →d H almost surely. To see this last claim,
note that

‖Gn −H‖ = ‖Gn −GN +GN −H‖
≤ n−1/2‖Vn(GN )‖+ ‖GN −H‖
≤ n−1/2‖Vn(GN )− V(GN )‖+ n−1/2‖V‖+ ‖GN −H‖
→a.s. 0 + 0 + 0 = 0.



42 CHAPTER 6. TESTING

Exercise 4.6 Evaluate eU,t(F ) = 12σ2(
∫
f2(x)dx)2 in case:

(i) f is Uniform[−a, a].

(ii) f is Normal.

(iii) f is Logistic.

(iv) f is tk.

(v) f is double-exponential.

Exercise 4.7 (General behavior of the centering constants for Um,n). Suppose that

‖
√
N(f

1/2
N − h1/2)− 1

2
αh1/2‖2 → 0, and ‖

√
N(g

1/2
N − h1/2)− 1

2
βh1/2‖2 → 0.

Then

‖
√
N(FN −H)−

∫ ·
−∞

αdH‖∞ → 0, and ‖
√
N(GN −H)−

∫ ·
−∞

βdH‖∞ → 0.

Show that this implies (using
∫
αdH = 0 =

∫
βdH) that

am,n →
√

12λ(1− λ)

∫
(1−H)(α− β)dH.

Check that the result for shift alternatives H ≡ F and G = F (· − c/
√
N) follows with α = 0 and

β = −f ′/f .

4.4 Pitman efficiency via Le Cam’s third lemma.

Often the limiting power and efficacy of a test can be easily derived via Le Cam’s third lemma,
lemma 3.3.14. Recall tht the essence of that lemma is that the joint limiting distribution of a
statistic and the local log-likelihood ratio under the null hypothesis determines the joint limiting
distribution of the statistic and the local log-likelhood ratio under the sequence of local alternatives.
Here we simply illustrate this approach with the examples considered in section 6.4.1.

Example 4.5 The one-sample t−test again. Let X1, . . . , Xn be i.i.d. F = F0(· − θ) with
θ = EF (X). Consider testing H : θ ≤ θ0 versus K : θ > θ0 using tn ≡

√
n(X − θ0)/S. Suppose

that F0 has an absolutely continuous density f0 and that I0 ≡
∫

(f ′0/f0)2f0dx < ∞. Let Ln ≡∏n
i=1(fn/f)(Xi) where fn(x) = f0(x − θn), θn = θ0 + c/

√
n, and f(x) = f0(x − θ0). Thus with

l̇(x) ≡ −(f ′/f)(x), under Pn = Pnf ,

logLn =
c√
n

n∑
i=1

l̇(Xi)−
c2

2
I(f0) + op(1),

and, hence under Pn with pn(x) =
∏n
i=1 f(xi),(

tn
logLn

)
→d N2

((
0

−(c2/2)I(f0)

)
,

(
1 σtL
σtL c2I(f0)

))
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where

σtL = eEf
X − θ0

σ
l̇(X) = cEf0

{
−f
′
0(X)

f0(X)

}
.

But

1 =
θn − θ0

c/
√
n

=
1

c/
√
n
{Efn(X)− Ef (X)} = Ef

{
X

(
(fn/f)(X)− 1

c/
√
n

)}
,

where the right side converges to Ef{X(−f ′/f)(X)}. Thus 1 = Ef{X(−f ′/f)(X)} and σtL = c/σ.
Hence it follows from Le Cam’s third lemma with qn(x) =

∏n
i=1 fn(xi) that, under Qn,(

tn
logLn

)
→d N2

((
c/σ

+(c2/2)I(f0)

)
,

(
1 σtL
σtL c2I(f0)

))
.

Hence the efficacy of the t−test is (again) εt = 1/σ2.

Example 4.6 The one-sample sign test again. Now consider the sign statistic Sn =
√
n(Y −

1/2) where Yi ≡ 1(θ0,∞)(Xi) and Ln is as above. Then under Pn with pn(x) =
∏n
i=1 f(xi),(

Sn
logLn

)
→d N2

((
0

+(c2/2)I(f0)

)
,

(
1 σSL
σSL c2I(f0)

))
where

σSL ≡ cEf1(θ0,∞)(X)l̇(X) = −c
∫ ∞
θ0

f ′

f
(x)f(x)dx = cf(θ0).

Hence, by Le Cam’s third lemma(
Sn

logLn

)
→d N2

((
cf(θ0)

+(c2/2)I(f0)

)
,

(
1 cf(θ0)

cf(θ0) c2I(f0)

))
and it follows that the efficacy of the sign test is εS = 4f2(θ0) = 4f2

0 (0). Combining the two efficacies
εt and εS yields the Pitman efficiency of the sign test relative to the t−test, eS,t = 4σ2f2

0 (0).
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5 Confidence Sets and p−values

The theory of testing that has been developed in the previous sections in this chapter connects
with with estimation theory via the construction of confidence sets. The material outlined in this
section is drawn in large part from Sections 3.5 (pages 72-77) and 5.4 (pages 161-162) of Lehmann
and Romano (2005), and Section 5.8 (pages 257 - 264) of Ferguson (1967).

First, a definition:

Definition 5.1 Let {S(x)} ≡ {S(x) : x ∈ X} be a family of subsets of the parameter space Θ for
a given sample space X . Then {S(x)} is said to be a family of confidence sets of confidence level
1− α if

Pθ(S(X) contains θ) = Pθ(θ ∈ S(X)) = 1− α.

Construction of confidence sets from tests: Let A(θ0) denotes the acceptance region of a size
α nonrandomized test ϕ of the hypothesis H0 : θ = θ0 against any alternative. That is

ϕ(x) =

{
1 if x /∈ A(θ0)
0 if x ∈ A(θ0)

where Pθ0(X ∈ A(θ0)) = 1−α. If we consider the sets A(θ), θ ∈ Θ, we have a family of acceptance
regions, each a subset of X such that

Pθ(X ∈ A(θ)) = 1− α.

Define S(x) = {θ : x ∈ A(θ)}, so that {θ ∈ S(X)} = {X ∈ A(θ)}. Then it follows that

Pθ(θ ∈ S(X)) = Pθ(X ∈ A(θ)) = 1− α,

so the resulting family {S(x) : x ∈ X} is a family of confidence sets of level 1− α.

Here are three examples:

Example 5.1 Suppose that X ∼ N(µ, 1), and consider testing H : µ = µ0 versus K : µ > µ0.
By the Karlin - Rubin theorem, the UMP test is ϕ(X) = 1{X > µ0 + zα} with acceptance region
A(µ0) = {x : x ≤ µ0 + zα}. Thus

A(µ) = {x : x ≤ µ+ zα},
S(x) = {µ : µ ≥ x− zα}.

Thus it follows that

1− α = Pµ(X ≤ µ+ zα) = Pµ(µ ≥ X − zα)

= Pµ(µ ≥ µα(X)) with µα(X) ≡ X − zα
= Pµ(µ ∈ [µα(X),∞)) = Pµ(µ ∈ S(X))

where S(X) ≡ [µα(X),∞) = [X − zα,∞), and hence the family S(X) is a family of 1 − α level
confidence sets for µ.
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Example 5.2 Suppose that X1, . . . , Xn are i.i.d. with continuous distribution function F on [0, 1].
Consider testing H : F = F0 (continuous) versus K : F <s F0 (i.e. F (x) ≥ F0(x) with strict
inequality for some x). One natural test statistic is

Rn ≡ sup
0<x≤1

Fn(x)

F0(x)
.

Now by Theorem 2.3.1 (and the discussion in Section 2.4) Fn
d
= Gn(F0) where Gn is the empirical

distribution function of i.i.d. Uniform(0, 1) random variables ξ1, . . . , ξn. Therefore

PF0(Rn > r) = PF0

(
sup

0<x≤1

Gn(F0(x))

F0(x)
> r

)
= P

(
sup

0<u<1

Gn(u)

u
> r

)
= 1/r, for r ≥ 1;

this is a result due to Daniels (1945); see e.g. Shorack and Wellner (1986), Theorem 9.1.2, page
345 . Thus the test

ϕ(X) =

{
1, if Rn > 1/α
0, if Rn ≤ 1/α,

is a size α test with acceptance region

A(F0) =

{
X : sup

0<x≤1

Fn(x)

F0(x)
≤ 1/α

}
= {X : αFn(x) ≤ F0(x) for all 0 < x ≤ 1} ,

A(F ) = {X : αFn(x) ≤ F (x) for all 0 < x ≤ 1} ,
S(X) = {F : F (x) ≥ αFn(x) for all 0 < x ≤ 1}.

Thus

PF {F ∈ S(X)} = PF (F : F (x) ≥ αFn(x) for all 0 < x ≤ 1)

= PF

(
sup

0<x≤1

Fn(x)

F (x)
≤ 1/α

)
= 1− α.

Example 5.3 Suppose that X1, . . . , Xn are i.i.d. Weibull (α, β) as in Example 3.x.y. Consider
testing H : (α, β) = (α0, β0) versus K : (α, β) 6= (α0, β0). From the theory developed in Chapter
4 we know that the likelihood ratio test based on the statistic

λn ≡ λn(α0, β0) ≡
supα>0,β>0 Ln(α, β)

Ln(α0, β0)

satisfies

2 log λn(α0, β0)→d χ
2
2

when α0, β0 are true. Therefore the acceptance sets

An(α0, β0) = {X : 2 log λn(α0, β0) ≤ χ2
2,δ}
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where P (χ2
2 > χ2

2,δ) = δ satisfy

Pα0,β0(An(α0, β0))→ 1− δ, as n→∞,

and, similarly,

Pα,β(An(α, β))→ 1− δ, as n→∞.

But then

Pα,β(An(α, β)) = Pα,β((α, β) ∈ Sn(X))→ 1− δ

for the associated confidence sets

Sn(X) = {(α, β) ∈ R+2 : 2 log λn(α, β) ≤ χ2
2,δ}.

How should we choose a family of confidence sets? One natural criterion is to minimize the
probability of covering false values. That is, we should try to make

Pθ′(θ ∈ S(X))

small if θ 6= θ′. It turns out that optimality properties of tests carry over or translate into optimality
properties of confidence sets. One version of this is given in the following theorem.

Theorem 5.1 Let A(θ0) be the acceptance region of a UMP test of size α of the hypothesis
H0 : θ = θ0 versus H1 : θ ∈ Θ1. Then {S(x)} defined by

{θ ∈ S(x)} = {x ∈ A(θ)}

minimizes Pθ′(θ ∈ S(X)) for all θ′ ∈ Θ1 among all level 1− α families of confidence sets.

See e.g. Lehmann and Romano (2005), pages 72 - 77 and 164 - 168.
Suppose that θ = (ν, ξ) ∈ Θ, ν ∈ R, ξ ∈ Rk for some k. A lower confidence bound for ν is a

function ν(x) such that
Pν,ξ(ν(X) ≤ ν) ≥ 1− α for all ν, ξ.

Similarly, a confidence interval for ν at confidence level 1− α is given by ν(x), ν(x) satisfying

Pν,ξ(ν(X) ≤ ν ≤ νX)) ≥ 1− α for all ν, ξ.

Connection with estimation: If ν(X) satisfies

Pν,ξ(ν(X) ≤ ν) = Pν,ξ(ν(X) ≥ ν) = 1/2,

then ν(X) is a median unbiased estimator of ν. For the use of this in developing “R-estimators of
location”, see e.g. Hodges and Lehmann (1963).

p-values:
See Lehmann and Romano, pages 57, 63-65, 97-98, 108-109, and 139.
Consider a family of tests ϕα(X) = 1Acα(X) of H versus K with rejection regions Acα satisfying

Acα ⊂ Acα′ if α < α′.(1)
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Let

p̂ = p̂(X) ≡ inf{α : X ∈ Acα}
= smallest significance value for which H

would be rejected for the observed data X

≡ p-value of the test(s) ϕα.

Example 5.4 Suppose that X ∼ N(µ, σ2), σ2 known. For testing H : µ = 0 versus K : µ > 0,
the UMP test is given by

Acα = {x : x > σzα}, zα ≡ Φ−1(1− α)

= {x : Φ(x/σ) > Φ(zα) = 1− α}
= {x : 1− Φ(x/σ) < α},

so p̂(X) = 1− Φ(X/σ). Alternatively,

p̂(X(ω)) = P0(X ≥ x)|x=X(ω) =
(

1− Φ
(x
σ

)) ∣∣∣
x=X(ω)

.

Note that

P0(p̂ ≤ u) = P0(1− Φ(X/σ) ≤ u) = P0(Φ(X/σ) ≥ 1− u) = u

for 0 < u < 1 since Φ(X/σ) ∼ Uniform(0, 1) under P0.

Lemma 5.1 Suppose that X ∼ Pθ for some θ ∈ Θ and H : θ ∈ Θ0. Suppose that the test φ of H
versus K has rejection regions Acα satisfying the nesting property (1).
(i) If

sup
θ∈Θ0

Pθ(X ∈ Acα) ≤ α for all 0 < α < 1,

then the distribution of p̂ under θ ∈ Θ0 satisfies

Pθ(p̂ ≤ u) ≤ u for all 0 ≤ u ≤ 1.

(ii) If for θ ∈ Θ0

Pθ(X ∈ Acα) = α for all 0 < α < 1,

then

Pθ(p̂ ≤ u) = u for all 0 ≤ u ≤ 1, and θ ∈ Θ0.

Proof. (i) If θ ∈ Θ0, then {p̂ ≤ u} ⊂ {X ∈ Acv} for all u < v. Thus Pθ(p̂ ≤ u) ≤ Pθ(X ∈ Acv) ≤ v
for all v > u, and hence, letting v ↘ u, Pθ(p̂ ≤ u) ≤ u.
(ii) Since {X ∈ Acu} ⊂ {p̂ ≤ u},

Pθ(p̂ ≤ u) ≥ Pθ(X ∈ Acu) = u.

But since also Pθ(p̂ ≤ u) ≤ u from (i), the claimed equality follows. 2
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Example 5.5 (Test for µ when X ∼ N(µ, σ2), continued.) What is the distribution of p̂ under
µ > 0?

Pµ(p̂ ≤ u) = Pµ(1− Φ(X/σ) ≤ u) = Pµ(X ≥ σΦ−1(1− u))

= Pµ

(
X − µ
σ

≥ Φ−1(1− u)− µ

σ

)
= 1− Φ(Φ−1(1− u)− µ/σ).

Note that since
Φ−1(1− u)− µ/σ ≤ Φ−1(1− u),

it follows that
Φ(Φ−1(1− u)− µ/σ) ≤ 1− u,

and hence
Pµ(p̂ ≤ u) = 1− Φ(Φ−1(1− u)− µ/σ) ≥ 1− (1− u) = u.


