
Lecture Notes 10

Uniformly Most Powerful Tests (UMP)

1 The Neyman-Pearson Test

Definition 1 Let Cα denote all level α tests. A test in Cα with power function β is uniformly

most powerful (UMP) if the following holds: if β′ is the power function of any other test in

Cα then β(θ) ≥ β′(θ) for all θ ∈ Θ1.

Let us define a test function which we call φ(Xn) such that we have for a size α test φ with

rejection region R,

φ(xn) =

{
1 when xn ∈ R
0 when xn ∈ Rc

Thus for a non-randomized test, φ(xn) is simply the indicator function of the critical region

R. Now clearly the probability of rejection is

Eθ0 [φ(Xn)] =

∫
φ(xn)f(xn; θ)dxn = Pθ0(X

n ∈ R).

Recall the general problem is: for some α ∈ [0, 1], we select φ so as to maximize the

power

maximize β(θ) = Eθφ(Xn) for θ ∈ Θ1

subject to β(θ) = Eθφ(Xn) ≤ α for θ ∈ Θ0

with typical choices being α = .01, .05, .10. That is, the experimenter controls the Type I

error. If this approach is taken, then the experimenter should specify the null and alterna-

tive hypotheses so that it is most important to control the Type I Error probability while

maximizing the power of rejecting H0 when H1 is true.

Theorem 2 (Neyman-Pearson Lemma) Consider testing H0 : θ = θ0 versus H1 : θ = θ1.

(Simple null and simple alternative), where the pdf or pmf corresponding to θi is f(x, θi), i =

0, 1. Suppose use a test with rejection region R that satisfies

xn ∈ R when f(xn; θ1) > kf(xn; θ0) (1)

xn ∈ Rc when f(xn; θ1) < kf(xn; θ0) (2)

for some k ≥ 0, and

Pθ0(X
n ∈ R) = α.

Then this test is a UMP level α test.
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Remark 3 This Lemma and its proof is taken from Theorem 8.3.12 Casella & Berger, Part

(a).

Proof. We will prove the theorem for the case such that f(x, θi), i = 0, 1 are the pdfs

of continuous rvs. The proof for discrete rvs will be left as a homework problem. Note that

any test satisfying

Pθ0(X
n ∈ R) = Eθ0 [φ(Xn)] =

∫
φ(xn)f(xn; θ)dxn = α.

is a size α and hence level α test because

sup
θ∈Θ0

Pθ(X
n ∈ R) = Pθ0(X

n ∈ R) = α.

Let φ(xn) be the test function corresponding to (1) and (2). Let φ′(xn) be the test function

of any other level α test, and β(θ) and β′(θ) be the power functions corresponding to φ and

0 ≤ φ′ ≤ 1 respectively. We now have for every xn,

(φ(xn)− φ′(xn))(f(xn; θ1)− kf(xn, θ0)) ≥ 0 (3)

and hence

0 ≤
∫

[φ(xn)− φ′(xn)](f(xn; θ1)− kf(xn, θ0))dxn

= β(θ1)− β′(θ1)− k(β(θ0)− β′(θ0)) (4)

Thus it is clear that

β(θ1)− β′(θ1) ≥ k(β(θ0)− β′(θ0)) ≥ 0

and hence φ has greater power than φ′. Since φ′ was an arbitrary level α test and θ1 the

only point in Θ1, φ is the UMP level α test. �

Exercise 1:

1. Prove this for the discrete case.

2. Verify (3) holds.

3. Expand the integrals and verify each of the β items in (4).

Notes:

1. In general it is hard to find UMP tests. Sometimes they don’t even exist. Still, we can

find tests with good properties.

2. There is a certain class of problems for which they do exist: One-sided problem with

Monotone likelihood ratio, which we will study next time.
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2 Randomization in a Neyman-Pearson Test (Optional

material)

Now, can you construct size α test for α = 0.05 for testing

H0 : θ0 =
1

2
against H1 : θ1 =

1

4
?

Here is the more complete version of the Neyman-Pearson Lemma. It fixes the prob-

lem that is inherent in discrete distributions: without randomization, some α may not be

achievable.

Theorem 4 (Neyman-Pearson Lemma) (Optional material) Consider testing H0 : θ =

θ0 versus H1 : θ = θ1. (Simple null and simple alternative), where the pdf or pmf corre-

sponding to θi is f(x, θi), i = 0, 1.

1. Existence: for each α ∈ [0, 1] there exists a test φ and a constant ∞ ≥ k ≥ 0 such that

Eθ0 [φ(Xn)] = α and (5)

φ(xn) =

{
1 when f(xn; θ1) > kf(xn; θ0)
0 when f(xn; θ1) < kf(xn; θ0)

(6)

where randomization of φ(xn) is permitted in case f(xn; θ1) = kf(xn; θ0).

2. Sufficient condition for a MPT. If a test satisfies (5) and (6) for some k, then it is

most powerful test for testing H0 : θ = θ0 against H1 : θ = θ1 at level α.

3. Necessary condition for a MPT. If φ is a most powerful test at level α for testing

H0 against H1, then for some k it satisfies (6) a.e. (except on a set A such that

Pθ0(A) = Pθ1(A) = 0. It also satisfies (5) unless there exists a test of size < α with

power 1.

Notes:

1. Implicitly, the test function for Neyman-Pearson Test is:

φNP(xn) =


1 when f(xn; θ1) > kf(xn; θ0)
q when f(xn; θ1) = kf(xn; θ0)
0 when f(xn; θ1) < kf(xn; θ0)

The interpretation is that we toss a coin with probability of heads φ(xn) and reject

H0 iff the coin shows heads. Such randomized tests are not used in practice. They are

only used to show that with randomization, likelihood ratio tests are unbeatable no

matter what the size of α is.
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2. In other words, reject H0 if Xn = xn such that xn satisfies

Ln(θ1;xn)

Ln(θ0;xn)
=
f(xn; θ1)

f(xn; θ0)
> k

as R ⊃ {xn : f(xn; θ1) > kf(xn; θ0)}. Now

Eθ0 [φ(Xn)] = Pθ0(X
n ∈ R) = Pθ0(Reject H0)

= Pθ0(f(Xn; θ1) > kf(Xn; θ0)) + qPθ0(f(Xn; θ1) = kf(Xn; θ0))

= α.

3 Exponential Family and Monotone Likelihood Ratio

Models

Definition 5 The family of models {Pθ : θ ∈ Θ} with Θ ⊂ R is said to be a monotone

likelihood ratio (MLR) family in T if for θ1 < θ2, the distribution Pθ1 and Pθ2 are distinct,

and there exists a statistic T (x) such that the ratio f(x; θ2)/f(x; θ1) is an increasing function

of T (x).

Suppose the family of models {Pθ : θ ∈ Θ} with Θ ⊂ R is a monotone likelihood ratio

(MLR) family in T . Furthermore, suppose that a univariate random variable T (Xn) is a

sufficient statistic for θ, then the pdfs or pmfs {g(t; θ) : θ ∈ Θ} for the sufficient statistic T

is a also monotone function of t:

λ(xn) =
f(xn; θ2)

f(xn; θ1)
=
h(xn)g(T (xn); θ2)

h(xn)g(T (xn); θ1)
=
g(T (xn); θ2)

g(T (xn); θ1)
:= λ̃(t(xn))

by the factorization theorem.

Example 6 We can rewrite an exponential family in terms of a natural parametrization.

We have

f(x; θ) = h(x) exp{η(θ)t(x)−B(θ))}

define

B(θ) = log

∫
h(x) exp{η(θ)t(x)}dx

If η(θ) is strictly increasing in θ ∈ Θ, then this family is MLR to be defined in Definition 5.

For example a Poisson can be written as

f(x; η(λ)) = exp{η(λ)x− λ}/x!

where the natural parameter is η(λ) = log λ.
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Example 7 For Xn = xn, we have

f(xn; θ) =
∏
i

h(xi) exp{η(θ)
n∑
i=1

t(xi)− nB(θ))}.

Write the joint distribution of the i.i.d Bernoulli random variables X1, . . . , Xn using the

exponential family expression: for T (Xn) =
∑n

i=1 t(Xi) =
∑n

i=1Xi, we have

Pθ(x
n) =

(
n

T

)
θT (1− θ)n−T =

(
n

T

)
exp

(
log

θ

1− θ
T (xn) + n log(1− θ)

)
(7)

We consider the following special case where the Null hypothesis is simple.

Example 8 Suppose X1, . . . , Xn ∼ Bernoulli(θ).

H0 : θ0 =
1

2
H1 : θ >

1

2
.

Then T (Xn) =
∑n

i=1Xi then

Pθ(X
n) =

(
n

T

)
θT (1− θ)n−T =

(
n

T

)(
θ

1− θ

)T
(1− θ)n (8)

Now clearly for θ1 > θ0, the likelihood ratio

Pθ1(X
n)

Pθ0(X
n)

=

(
θ1(1− θ0)

θ0(1− θ1)

)T [
1− θ1

1− θ0

]n
(9)

is an increasing function of T .

The construction of our test does not depend on which particular θ ∈ H1 that is chosen;

for example, if we fix H1 : θ = 3/4 or H1 : θ = 3/5, we would have constructed the same test

given the knowledge that the size α = 1/25 of the test is always:

Pθ0 = 1/25.

Now for θ1 = 3/4 or 3/5, we can compute

β(θ) = Pθ1(
5∑
i=1

Xi = 5) = θ5
1.

This is an example of the Neyman-Pearson Test, and hence a UMP level α test for α = 1/25.
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Exercise I: Compute k and β(θ1) in the example above for θ1 = 3/4 and θ1 = 3/5 respec-

tively. Convince yourself that when the size of the test is fixed at α = 1/25, you will have

constructed the same test for the following three problems:

1. H1 : θ = 3/4 or

2. H1 : θ = 3/5 or

3. H1 : θ > 1
2
.

4 The Karlin-Rubin Theorem

We present the theorem for the more general Right-sided Alternative Hypotheses problem:

Null hypothesis: H0 : θ ≤ θ0

Alternative hypothesis: H1 : θ > θ0

Theorem 9 (Karlin-Rubin, CB Theorem 8.3.17) Consider testing the Right-sided Alterna-

tive Hypotheses problem as immediately above. Suppose T (X) is a sufficient statistic for θ

and the family of pdfs or pmfs {g(t; θ) : θ ∈ Θ} for the sufficient statistic T has a nonde-

creasing MLR. Then for any t0, the test that rejects H0 iff T > t0 is a UMP level α test,

where α = Pθ0(T > t0).

You are required to remember the Karlin-Rubin Theorem, and
apply it in your problems.

5 Proof of Karlin Rubin Theorem

We first state the following

Corollary 10 (Corollary 8.3.13) Consider testing H0 : θ = θ0 versus H1 : θ = θ1. Suppose

T (Xn) is a sufficient statistic for θ and g(t; θi) is the pdf or pmf of the sufficient statistic T

corresponding to θi i = 0, 1. Then any test based on T with rejection region S, which is a

subset of the sample space of T , is a UMP level α test if it satisfies

t ∈ S when
g(t; θ1)

g(t; θ0)
> k (10)

t ∈ Sc when
g(t; θ1)

g(t; θ0)
< k (11)

for some k ≥ 0, where α = Pθ0(T ∈ S).
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Proof of Theorem 9. Consider testing the Right-sided Alternative Hypotheses prob-

lem as stated in Theorem 9.

Let β(θ) = Pθ(T > t0) be the power function of the test. Fix θ′ > θ0. Consider testing

H ′0 : θ = θ0 against H ′1 : θ = θ′

Since the family of pdfs or pmfs of T has an MLR, β(θ) is nondecreasing (cf. Exercise 8.34

in the book), so

(i)

sup
θ≤θ0

β(θ) = β(θ0),

and this is a level α test.

(ii) If we define

k′ = inf
t∈T

g(t; θ′)

g(t; θ0)
,

where

T = {t : t > t0 and either g(t|θ′) > 0 or g(t|θ0) > 0} ,

it follows that

T > t0 ⇔
g(t; θ′)

g(t; θ0)
> k′.

We now invoke the following Corollary 10 of the Neyman-Pearson Lemma (see proof in the

book), and the facts as stated in (i) and (ii), to conclude that

β(θ′) ≥ β∗(θ′)

where β∗(θ′) is the power function for any other level α test of H ′0, that is, any test satisfying

β(θ0) ≤ α.

However, any level α test of H0 with power function β∗ satisfies

β∗(θ0) ≤ sup
θ≤θ0

β∗(θ) ≤ α.

Thus

β(θ′) ≥ β∗(θ′)
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for any level α test of H0. Since θ′ was arbitrary, the test is a UMP level α = Pθ0(T > t0).

This is the end of the proof of the Karlin Rubin Theorem 9. �

Remarks:

Finally, because the class of tests with level α for H0 : θ ≤ θ0 against H1 : θ > θ0 (First

problem):

maximize β(θ) = Eθφ(Xn) for θ ∈ Θ1

subject to sup
θ∈Θ0

β(θ) ≤ α

is contained in the class of tests with level α for H0 : θ = θ0 against H1 : θ > θ0 (Second

problem) by comparing the set of inequality above with the set of optimization function

below:

maximize β(θ) = Eθφ(Xn) for θ ∈ Θ1

subject to β(θ0) = Eθ0φ(Xn) ≤ α

and because φ(T ) maximizes the power over this larger class of tests, it is UMP for the First

problem also.

6 Review on hypothesis testing

We have gone through the four related problems on hypothesis testing. You can find reference

in CB 8.2, 8.3.1, and 8.3.2.

Let X1, . . . , Xn ∼ N(θ, 1)

1. Find the most powerful level α test of

H0 : θ = θ0 against H1 : θ = θ1

where θ1 > θ0

2. Find the most powerful level α test of

H0 : θ = θ0 against H1 : θ > θ0

3. Find the most powerful level α test of

H0 : θ ≤ θ0 against H1 : θ > θ0

4. And the LRT for:

H0 : θ = θ0, against H1 : θ 6= θ0.

8



UMP tests exist for the first three problems.

Exercises I:

1. Apply the proof in the Karlin-Rubin Theorem to each of these three settings to con-

vince yourself that they all use the same test statistic and the same rejection region.

2. UMP test does not exist for the last problem. A rigorous argument is given in the

text Example 8.3.19. You should read it.
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