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Chapter 8

Testing

• A statistical hypothesis test is a method of making decisions using 

experimental data. A result is called statistically significant if it is unlikely 

to have occurred by chance. 

• These decisions are made using (null) hypothesis tests. A hypothesis 

can specify a particular value for a population parameter, say θ=θ0.
Then, the test can be used to answer a question like:

Assuming θ0 is true, what is the probability of observing a value for 
the test statistic that is at least as big as the value that was actually 
observed?

• Uses of hypothesis testing: 

- Check the validity of theories or models. 

- Check if new data can cast doubt on established facts. 

Hypothesis Testing
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• We will emphasize statistical hypothesis testing under the classical 

approach (frequentist school). 

• There is a Bayesian approach to hypothesis testing. The decisions 

regarding the parameter θ are based on the posterior probability –i.e., 
the conditional probability that is computed after the relevant 

evidence (the data, X) is taken into account. Based on the posterior 

probabilities associated with different hypothetical values for θ , we 
asses which hypothesis about θ is more likely. 

Posterior:  p(θ | X)  α p(θ) p(X | θ). (α: proportional)

p(θ): Prior. 

p(X | θ): Likelihood

Hypothesis Testing

• In general, there are two kinds of hypotheses: 

(1) About the form of the probability distribution 

Example: Is the random variable normally distributed?

(2) About the parameters of a distribution function 

Example: Is the mean of a distribution equal to 0?

• The second class is the traditional material of econometrics. We may 

test whether the effect of income on consumption is greater than

one, or whether the size coefficient on a CAPM regression is equal to 

zero. 

Hypothesis Testing
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• Hypothesis testing involves the comparison between two competing 

hypothesis (sometimes, they represent partitions of the world).

– The null hypothesis, denoted H0, is sometimes referred to as the 

maintained hypothesis.

– The alternative hypothesis, denoted H1, is the hypothesis that will 

be considered if the null hypothesis is “rejected.”

• Idea: We collect a sample of data X1,…Xn.  This sample is a 

multivariate random variable, En (an element of an Euclidean space). 

Then, based on this sample, we follow a decision rule:

– If the multivariate random variable is contained in space R, we 
reject the null hypothesis.

– Alternatively, if the random variable is in the complement of the 

space R (RC) we fail to reject the null hypothesis.

Hypothesis Testing

• Decision rule:

The set R is called the region of rejection or the critical region of the test

• The rejection region is defined in terms of a statistics T(X ), called the 

test statistic. Note that like any other statistic, T(X) is a random variable. 

Given this test statistic, the decision rule can then be written as:
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• What we present as classical approach is a synthesized approach.

• Ronal Fisher defined only H0. Under his approach we:

1. Identify H0.

2. Determine the appropriate T(X) and its distribution under the 

assumption that H0 is true.

3. Calculate T(X) from the data.

4. Determine the achieved significance level that corresponds to the 

T(X) using the distribution under the assumption that H0 is true.

5. Reject H0 if the achieved significance level is sufficiently small. 

Otherwise, reach no conclusion.

• This construct leads to the question of what p-value is sufficiently 

small as to warrant rejection of H0. Fisher favored 5% or 1%.

Hypothesis Testing: A brief comment

• Neyman and Pearson in their approach added H1. Steps:

1. Identify H0 and a complementary hypothesis, H1.

2. Determine the appropriate T(X) and its distribution under the

assumption that H1 is true.

3. Specify a significance level (α), and determine the corresponding 

critical value of T(X) under the assumption that H1 is true.

4. Calculate T(X) from the data.

5. Reject H1 and accept H0 if the T(X) is further than the critical value

from E[T(X)|H0 true].

• The Neyman-Pearson approach is important in decision theory. The 

final step is assigned a risk function computed as the expected loss 

from making an error.

Hypothesis Testing: A brief comment
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• There are two types of hypothesis regarding parameters:

(1) A simple hypothesis.  Under this scenario, we test the value of a 

parameter against a single alternative. 

Example: H0:θ=θ0 against H1:θ=θ1.

(2) A composite hypothesis. Under this scenario, we test whether the 
effect of income on consumption is greater than one.  Implicit in this 

test is several alternative values. 

Example: H0:θ>θ0 against H1:θ<θ1.

• Definition: Simple and composite hypotheses

A hypothesis is called simple if it specifies the values of all the 

parameters of a probability distribution, say θ=θ0. Otherwise, it is called 
composite.

Hypothesis Testing

• Definition: Type I and Type II errors

A Type I error is the error of rejecting H0 when it is true.  A Type II error

is the error of accepting H0 when it is false (that is when H1 is true). 

• Notation: Probability of Type I error: α = P[X ∈ R|H0]

Probability of Type II error: β = P[X ∈ RC|H1]

• Definition: Power of the test

The probability of rejecting H0 based on a test procedure is called the 

power of the test. It is a function of the value of the parameters tested, θ:

π = π(θ) = P[X ∈ R].

Note: when θ ∈ H1 => π(θ) = 1- β(θ). .

Type I and Type II Errors
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• We want π(θ) to be near 0 for θ ∈ H0, and π(θ) to be near 1 for θ ∈
H1.

• Definition: Level of significance

When θ ∈ H0 α, π(θ) gives you the probability of Type I error. This 
probability depends on θ. The maximum value of this when θ ∈ H0 is 

called level of significance (significance level) of a test, denoted by α. Thus,

α = supθ ∈ H0 P[X ∈ R|H0] = supθ ∈ H0 π(θ)

Define a level α test to be a test with supθ ∈ H0 π(θ) ≤ α.

Sometimes, α. is called the size of a test.

Type I and Type II Errors

Need to control both types of error:

α = P(rejecting Ho|Ho)

β = P(not rejecting Ho|H1)

Correct decisionType I errorReject Ho

Type II errorCorrect decisionCannot reject 

(“accept”) Ho

H1 true (Ho false)Ho trueDecision

State of World

Type I and Type II Errors
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Example. Let X have the density

This is a triangular probability density function. 

We test H0:θ=0 against H1:θ=1, using a single observation of X.

Type I and Type II Errors: Example

( )
1for 1

1for  1

+≤≤−+=

<≤−+−=

θθθ

θθθ

xx

xxxf

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50

0 1

t



Chapter 8 - Testing

Type I and Type II errors –i.e., the areas of the isosceles triangles-

are then defined by the choice of t, the cut off region:

Deriving β in terms of α yields:
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Type I and Type II Errors: Example
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• The choice of any t yields an admissible test.  However, any 

randomized test is inadmissible.

• Theorem.

The set of admissible characteristics plotted on the α,β plane is a 

continuous, monotonically decreasing, convex function which starts at 

a point with [0,1] on the β axis and ends at a point within the [0,1] on 

the α axis.

Type I and Type II Errors: Example
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• There is a natural trade-off between Type I and Type II errors. It is 

impossible to minimize both. 

• Q: How do we select a test?

Assume that we want to compare two critical regions R1 and R2.  

Assume that we choose either confidence region R1or R2 randomly with 

probabilities δ and 1-δ, respectively.  This is called a randomized test.

If the probabilities of the two types of error for R1 and R2 are (α1,β1) 

and (α2,β2) respectively.  The probability of each type of error becomes: 

The values (α,β) are the characteristics of the test.
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Type I and Type II Errors

• Definition: More Powerful Test

Let (α1,β1) and (α2,β2) be the characteristics of two tests.  The first 

test is more powerful (better) than the second test if α1 ≤ α2, and β1  ≤ β2

with a strict inequality holding for at least one point.

If we cannot determine that one test is better by the definition, we 

could consider the relative cost of each type of error.  Classical 

statisticians typically do not consider the relative cost of the two errors 

because of the subjective nature of this comparison.

Note: Bayesian statisticians compare the relative cost of the two errors 

using a loss function.

More Powerful Test
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• Definition: Admissible test

A test is inadmissible if there exits another test, which is better.   
Otherwise, it is called admissible.

• Definition: Most powerful test of size α

R is the most powerful test of size α if α(R)=α and for any test R1 of size 
α, β(R) ≤ β(R1).

• Definition: Most powerful test of level α

R is the most powerful test of level α (that is, such that α(R) ≤ α) and for 
any test R1 of level α (that is, α(R1) ≤ α), if β(R) ≤ β(R1).

Most Powerful Test

• Definition: Uniformly most powerful (UMP) test

R is the uniformly most powerful test of level α (that is, such that α(R) ≤ α)
and for every test R1 of level α (that is, α(R1) ≤ α), if π(R) ≤ π(R1).

“For every test”: for alternative values of θ1 in H1:θ=θ1. . 

• Choosing between admissible test statistics in the (α,β) plane is 
similar to the choice of a consumer choosing a consumption point in 

utility theory.  Similarly, the tradeoff problem between α and β can be 
characterized as a ratio. 

• This idea is the basis of the Neyman-Pearson Lemma to construct a test 

of a hypothesis about θ: H0:θ=θ0 against H1:θ=θ1.

UMP Test
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• Neyman-Pearson Lemma provides a procedure for selecting the 

best test of a simple hypothesis about θ: H0:θ=θ0 against H1:θ=θ1.

• Let L(x|θ) be the joint density function of X. We determine R

based on the ratio L(x|θ1)/L(x|θ0). (This ratio is called the likelihood 

ratio.) The bigger this ratio, the more likely the rejection of H0. 

Neyman-Pearson Lemma

Jerzy Neyman (1894-1981) Egon Pearson (1895-1980)

Consider testing a simple hypothesis H0:θ = θ0 vs. H1: θ = θ1, where 

the pdf corresponding to θi is L(x|θi), i=0,1, using a test with 
rejection region R that satisfies

(1) x ∈R if  L(x|θ1) > k L(x|θ0) 

x ∈Rc if  L(x|θ1) < k L(x|θ0), 

for some k ≥ 0, and

(2) α = P[X ∈ R|H0]

Then,

(a) Any test that satisfies (1) and (2) is a UMP level α test.

(b) If there exists a test satisfying (1) and (2) with k > 0, then every 

UMP level α test satisfies (2) and every UMP level α test satisfies (1) 

except perhaps on a set A satisfying P[X∈A|H0] = P[X∈A|H1]=0

Neyman-Pearson Lemma
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We will reject H0 if ln λ(x) > ln k.  But, this reduces to    > d, where d
is selected to give a size α test.

Thus, the critical region is R = { x:   > d }, 

and P[   > d|θ=θ0 ]= α.

Under H0, we have z=   - θ0 ~ N(0,1)

=> P[   > d|θ=θ0 ]= P[ z > (d- θ0)|θ=θ0 ]= α.

=> d = zα+ θ0.

=> R = { x:    > zα+ θ0}.

Note: We reject H0 if the sample mean is greater than zα+ θ0. But, R
is independent of θ1 and it is the same for any θ1>θ0. Thus, R gives a 
UMP for H0:θ = θ0 vs. H1: θ > θ0.
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Neyman-Pearson Lemma: Example
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• In general, we have no basis to pick θ1. We need a procedure to test 
composite hypothesis, preferably with a UMP. 

Definition: Monotone Likelihood Ratio

The model f(X,θ) has the monotone likelihood ratio property in u(X) if there 

exists a real valued function u(X) such that the likelihood ratio 

λ= L(x|θ1)/L(x|θ0) is a non-decreasing function of u(X) for each 

choice of θ1 and θ0. with θ1>θ0.

If L(x|θ1) satisfies the MLRP with respect to L(x|θ0) the higher the 

observed value u(X), the more likely it was drawn from distribution 

L(x|θ1) rather than L(x|θ0).

Monotone Likelihood Ratio
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• Consider the exponential family: 

L(X;θ) = exp{ΣiU(Xi) – A(θ) ΣiT(Xi) + n B(θ)}.

Then, ln λ= ΣiT(Xi) [A(θ1)–A(θ0)] + nB(θ1) – nB(θ0).

Let u(X)=ΣiT(Xi). 

Then, 

δln λ/ δu = [A(θ1)–A(θ0)] >0, if A(.) is monotonic in θ.

In addition, u(X) is a sufficient statistic..

• Some distributions  with MLRP in T(X)= Σi xi: normal (with σ

known), exponential, binomial, Poisson.

Monotone Likelihood Ratio

Theorem: Karlin-Rubin (KR) Theorem

Suppose we are testing H0:θ≤θ0 vs. H1:θ>θ0. Let T(X) be a sufficient 
statistic, and the family of distributions g(.) has the MLRP in T(X). 

Then,, for any t0 the test with rejection region T>t0 is UMP level α, 

where α = Pr(T>t0|θ0).

Proof:

Let π(θ) be the power function for the test mentioned in KR.

π(θ) is nondecreasing, meaning for any θ1>θ2,

π(θ1) ≥ π(θ2)

Pr(T(X) > t0|θ1). ≥ Pr(T(X) >t0|θ2).

This implies supθ ∈ H0 π(θ) = π(θ0) ≤ α = , so the test is level .

Karlin-Rubin Theorem
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Proof (continuation):

Now, consider testing the simple hypotheses H0:θ=θ0 vs. H1’:θ=θ’, with 
θ0 >θ’.

Define

k’ = inft∈ Ψ g(t|θ’)/g(t|θ0). 

where Ψ is the region where t>t0 and at least one of the densities is 

nonzero. Then, from the MLRP in T(X) of g,

T(X) > t0 ≡ g(t|θ’)/g(t|θ0) > k’

Thus, π(θ) satisfies the definition of the test given in the NP Lemma

for testing H0:θ=θ0 vs. H1’:θ=θ’, thus it is the UMP test for those 

hypotheses. Since θ’ was arbitrary, the test is simultaneously most 

powerful for every θ’>θ0, thus it is UMP level  for the composite 
alternative hypothesis. ■

Karlin-Rubin Theorem

Goal: Find the UMP level α test of H0:θ≤θ0 vs. H1:θ>θ0 (similar for 
H0:θ≥θ0 vs. H1:θ<θ0)

1. If possible, find a univariate sufficient statistic T(X). Verify its 

density has an MLR (might be non-decreasing or non-increasing, 

just show it is monotonic).

2. KR states the UMP level α test is either 1) reject if T>t0 or 2) reject 

if T<t0. Which way depends on the direction of the MLR and the 

direction of H1.

3. Derive E[T] as a function of θ. Choose the direction to reject (T>t0
or T<t0) based on whether E[T] is higher or lower for θ in H1. If 
E[T] is higher for values in H1, reject when T>t0, otherwise reject 

for T<t0.

KR Theorem: Practical Use
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4. t0 is the appropriate percentile of the distribution of T when θ=θ0. 
This percentile is either the α percentile (if you reject for T<t0) or 

the 1- α percentile (if you reject for T>t0).

KR Theorem: Practical Use

Samuel Karlin (1924-2007)

Herman Rubin (1926)

• For most two-sided hypotheses –i.e., H0:θ=θ0 vs. H1:θ≠θ0-, no UMP 
level  test exists. 

• Simply intuition: the test which is UMP for θ<θ0 is not the same as the 

test which is UMP for θ>θ0. A UMP test must be most powerful across 
every value in H1.

• Definition: Unbiased Test

A test is said to be unbiased when 

π(θ) ≥ α for all θ ∈ H1 and

P[Type I error]: P[X ∈ R|H0] = π(θ) ≤ α for all θ ∈ H0.

Unbiased test => π(θ0) < π(θ1) for all θ0 in H0 and θ1 in H1.

Most two-sided tests we use are UMP level α unbiased (UMPU) tests. 

Nonexistence of UMP tests



Chapter 8 - Testing

• So far, we have produced UMP level α tests for simple versus simple 

hypotheses (H0:θ=θ0 vs. H1:θ=θ1) and one sided tests with MLRP 

(H0:θ≤θ0 vs. H1:θ>θ0)..

• There are a lot of unsolved problems. In particular,

(1) We did not cover unbiased tests in detail, but they are often simply 

combinations of the UMP tests in each directions

(2) Karlin-Rubin discussed univariate sufficient statistics, which leaves 

out every problem with more than one parameter (for example testing 
the equality of means from two populations). 

(3) Every problem without an MLR is left out.

.

Some problems left for students

• Power function (again)

We define the power function as π(θ) = P[X ∈ R]. Ideally, we want π(θ) 
to be near 0 for θ ∈ H0, and π(θ) to be near 1 for θ ∈ H1.

The classical (frequentist) approach is to look in the class of all level α

tests (all tests with supθ ∈ H0 π(θ) ≤ α) and find the MP one available.

• In some cases there is a UMP level α test, as given by the Neyman

Pearson Lemma (simply hypotheses) and the Karlin Rubin Theorem 

(one sided alternatives with univariate sufficient statistics with MLRP). 

But, in many cases, there is no UMP test.

• When no UMP test exists,  we turn to general methods that produce 

“good” tests.

No UMP test
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• Likelihood Ratio (LR) Tests

• Bayesian Tests - can be examined for their frequentist properties even 

if you are not a Bayesian.

• Pivot Tests - Tests based on a function of the parameter and data 

whose distribution does not depend on unknown parameters. Wald, 
Score and LR tests are examples of asymptotically pivotal tests.

• Wald Tests - Based on the asymptotic normality of the MLE

• Score tests - Based on the asymptotic normality of the log-likelihood

General Methods

• Pivot Test: A tests whose distribution does not depend on unknown 

parameters. 

• Example: Suppose you draw X from a N(µ, σ2).

Asymptotic theory implies that     is asymptotically N(µ, σ2/N).

This statistic is not asymptotically pivotal statistic because it depends

on an unknown parameter, σ2 (even if you specify µ0 under H0). 

On the other hand, the t-statistic, t = (     - µ0)/s is asymptotically N(0, 1). 

This is asymptotically pivotal since 0 and 1 are known! 

Most statistics are not asymptotically pivotal. Many popular test statistics 
-for example, Wald, LR- are asymptotically pivotal because they are 

distributed as χ2 with known df or follow an N(0, 1) distribution.

Pivot Tests

_

x

_

x
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• Define the likelihood ratio (LR) statistic 

λ(X) = supθ ∈ H0 L(X|θ)/ supθ L(X|θ)

Note:

Numerator: maximum of the LF within H0

Denominator: maximum of the LF within the entire parameter space, 

which occurs at the MLE.

• Reject H0 if λ(X) <k,     where k is determined by 

Prob[0 < λ(X) < k|θ ∈ H0] = α.

Likelihood Ratio Tests

• Properties of  λ(X) = supθ ∈ H0 L(X|θ)/ supθ L(X|θ)

(1) 0 ≤ λ(X) ≤ 1, with λ(X)  = 1 if the supremum of the likelihood occurs 
within H0. 

Intuition of test: If the likelihood is much larger outside H0 -i.e., in the 

unrestricted space-, then λ(X) will be small and H0 should be rejected.

(2) Under general assumptions, -2 ln λ(X) ~ χp
2, where p is the 

difference in df between the H0 and the general parameter space.

(3) For simple hypotheses, the numerator and denominator of the LR 

test are simply the likelihoods under H0 and H1. The LR test reduces to a 

test specified by the NP Lemma.

Properties of the LR statistic λ(X)
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Example: λ(X) for a X~N(θ,σ2) for H0:θ=θ0 vs. H1:θ≠θ0. Assume σ2 is 
known.

Likelihood Ratio Tests: Example I
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Note: Finding k is not needed.

Why? We know the left hand side is distributed as a χp
2, thus (-2 ln k) 

needs to be the 1- α percentile of a χp
2. We need not solve explicitly for 

k, we just need the rejection rule.

Example: λ(X) for a X~exponential (λ) for H0: λ=λ0 vs. H1: λ≠λ0.

L(X|θ)= λn exp(-λ Σi xi) = λ
n exp(-λ n  ) => λMLE=1/

Likelihood Ratio Tests: Example II
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We need to find k such that P[λ(X)<k] = α. Unfortunately, this is not 
analytically feasible. We know the distribution of     is Gamma(n; λ/n), 

but we cannot get further.

It is, however, possible to determine the cutoff point, k, by simulation

(set n, λ0).
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Chapter 8 - Testing

Asymptotic Distribution of the LRT – Simple H0
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Asymptotic Distribution of the LRT – Simple H0

Proof: Expand L(x|θ) around     , the MLE.n
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