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TUTORIAL TO ROBUST STATISTICS

PETER J. ROUSSEEUW

SUMMARY

In this tutorial we first illustrate the effect of outliers on classical statistics such as the sample average.
This motivates the use of robust techniques. For univariate data the sample median is a robust estimator
of location, and the dispersion can also be estimated robustly. The resulting ‘z-scores’ are well suited to
detect outliers. The sample median can be generalized to very large data sets, which is useful for robust
‘averaging’ of curves or images. For multivariate data a robust regression procedure is described. lts
standardized residuals allow us to identify the outliers. Finally, a survey of related approaches is given.
(This review overlaps with earlier work by the same author, which appeared elsewhere.)
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1. INTRODUCTION

The least squares method is currently the most popular approach to estimation because of
tradition and ease of computation. However, real data sets frequently contain outliers, which
may be mistakes or exceptional observations. In this situation least squares becomes
unreliable. Two things often happen: the estimates become totally incorrect and (somewhat
surprisingly) the outliers themselves are hidden, which means that one does not notice them
at all. To remedy this problem, robust statistical techniques have been developed that (a) still
give a trustworthy answer when the data are contaminated and (b) allow us to easily identify
the outliers at the same time.

The structure of this paper is as follows. In Section 2 we introduce the notions of outliers
and robustness in the special case of estimating a central value of a batch of numbers. The
discussion focuses on the comparison of the sample average with the sample median. Also, we
consider the situation of very large data sets and its application to robust ‘averaging’ of curves
and images.

In Section 3 we arrive at the regression situation, starting with simple regression and then
continuing with multiple regression. We then consider some alternative regression estimators
and finally mention other situations in which robust techniques have been made available.

Throughout this review we restrict attention to robust methods that are both intuitively
appealing and very powerful (in the sense that they can handle a sizable fraction of outliers
if they have to). Our emphasis will be on the application of these methods rather than on their
theoretical properties.
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2. ROBUST ESTIMATION IN ONE DIMENSION

2.1. Outliers and robustness
Suppose that we have five measurements of a concentration:
5-59, 5-:66, 5-63, 5-57, 5-60 ¢}

and that we want to estimate its true value. For this one commonly computes the sample
average:
_ 5-59+5:66+5-63+5-57+5:60
X= =5-61
5
A less well-known estimator is the sample median. We sort the observations from smallest to

largest:

5:-57<5-59<5-60<5:63<5-66

The sample median is then the middle observation, yielding 5-60. (If the number of
observations is even, then we take the average of the two observations in the middle.) In this
example the median does not coincide with the average, but they are close to each other. The
median and the average are both called location estimators because they measure the general
position of the data.

Let us now suppose that one of these concentrations has been wrongly recorded, so the data
become

5-59, 5-66, 5-63, 55-7, 5-60 (2)

Outliers of this kind occur frequently and may be due to copying mistakes (yielding a
misplaced decimal point, or the permutation of two digits). It is even possible that the outlying
observation is not incorrect but was made under exceptional circumstances (e.g. a seismic
quake) or belongs to another population (e.g. it may have been the concentration of a different
compound). Anyway, let us look at the effect of such an outlier on the estimate. For the

average we find
j=5-59+5-66+5-563+55-7+5-60= 15-64

which is utterly useless. For the median we sort the data again:

5-59<5:60<5:63<5°66<55-7

yielding the value 5-63 which is still quite reasonable. The outlier has changed the median only
slightly. We say that the median is a robust estimator, unlike the average which is very sensitive
to outliers.

In many classical statistics courses the sample median is not even mentioned. The average
is typically preferred because of several reasons, such as its ease of computation and the fact
that it lends itself to elementary mathematical manipulations. Its usual justification is its
optimality at Gaussian distributions, but this is a circular reasoning because Gauss actually
introduced the Gaussian distribution as the best framework for the sample average! (The
central limit theorem does say that the sum of many small terms tends to a Gaussian
distribution, but outliers are often caused by a single large term.) Very few distributions
occurring in practice are perfectly Gaussian. In the field of robust statistics we try to construct
techniques that are not affected much by violations of the Gaussian assumption.



ROBUST STATISTICS 3

There are several ways to investigate how robust a procedure is. The influence function® of
an estimator describes the effect of one outlier; for a detailed description of this approach see
Reference 2. Another possibility is to simulate contaminated data sets and to try out how well
the estimator does on them, as in Reference 3. In this paper we will restrict attention to a more
simple and yet far-reaching tool, namely the breakdown point, which was developed by
Hodges,* Hampel® and Donoho and Huber.® The breakdown point of an estimator is the
smallest fraction of the observations that have to be replaced to make the estimator
unbounded. In this definition one can choose which observations are replaced, as well as the
magnitude of the outliers, in the least favourable way.

The breakdown point of the average, applied to a sample {xi, x2, ..., X»} of n observations,
is equal to 1/n because it is sufficient to replace a single observation by a large value. On the
other hand, the sample median possesses the best possible breakdown point, namely 50%.
Indeed, we have to replace at least half of the observations by outlying values in order to be
certain that the middle observation is among them. (Here the outliers are chosen in the least
favourable way; that is, all on the same side of the original sample.) In fact, when fewer than
half of the observations are replaced, the median stays inside the range of the original data
values.

Of course, when considering breakdown points we do not forget about the usual criteria
such as consistency of the estimator (meaning that the result becomes more and more precise
when the number of observations increases). Also, any location estimator 7 should be
equivariant when the data are multiplied by a constant and when a constant is added to them:

T({exi+ d, ...,exn+ d})=cT({x1, ..., xn} )+ d 3)

There are quite a few other location estimators satisfying these properties. Many classes exist,
such as the types A, D, L, M, P, R, S and W (for a survey see Reference 2, pp. 100—116).
However, in this paper we shall focus on the sample median because it is a typical robust
estimator.

Next to the sample’s location we often want to estimate its scale (or ‘spread’) as well. A scale
estimator S should be equivariant in the sense that

S({exi+ d,....cxn+ d})) =] c|S({x1, --v» Xn}) 4)

where the absolute value is needed because a scale estimate is always positive. The classical
scale estimator is the sample standard deviation:

S({xl,...,xnn:\/(n%A 1(x,-—f)z) (5)
which is, however, notoriously non-robust because it can become very large (‘explosion’) in
the presence of even a single outlier. For our contaminated data set (2) the standard deviation
becomes 22-40, whereas it was only 0-0354 for the original data (1). Therefore the breakdown
point of the standard deviation is merely 1/n. An extremely robust estimator of scale is the
MAD, given by the median of all absolute distances from the sample median:

S =1-483 median | x; — median (x;) (6)
Jj=1,..,n i=1,...,n
in which 1-483 is a correction factor to make the estimator consistent with the usual scale
parameter of Gaussian distributions. Like the sample median, the MAD also has a breakdown
point of 50%. The MAD of the contaminated sample (2) is the same as for the original sample
(1), namely 0-0445.
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When we have estimators of location and scale we can build an outlier identifier. Indeed,
what is an outlier? We have to specify with respect to what it is outlying. An outlier is a value
which differs from the majority of the points. That is, it lies far from the location T relative
to the scale S. We therefore have to compute the standardized observations:

z'_x,'—T
' S

These z; (which are sometimes called ‘z-scores’) then have to be compared to some cut-off
value. If | z;| is larger than 2-5, we will identify the observation x;. (If there are no outliers
and the x; come from a Gaussian distribution, the probability that | zi| > 2-5 is very small.
The choice of the cut-off value 2-5 is to a certain extent arbitrary.) Which estimators 7 and
S should we use? If we insert the average for T and the usual standard deviation (5) for S,
then we obtain the classical ‘studentized deviate’, which is quite useless. For our contaminated
data set (2) we obtain the following z::

—~0-45, —0-45, —-0-45, 1-79, -0-45

(M

none of which come even near the cut-off value. The classical z; fail because of two reasons:
first, because one subtracts a location estimate T which has moved towards the outlier; and
secondly, because one divides by a scale estimate S which has exploded. Both deficiencies are
easily repaired by inserting robust estimators, such as the sample median for T and the MAD
of (6) for S. This robust identifier correctly tells us that there are no outliers in the original
sample (1). On the other hand, for the contaminated sample (2) we obtain the z;-values

-0-90, 0-67, 0-00, 1125-17, —0-67

one of which exceeds the cut-off 450 times! This example is but one illustration of a more
general principle, which says that outliers can easily be identified by comparing data with a
robust fit.

2.2. Large data sets and averaging curves and images

Up to now we have assumed that we keep the data at our disposition and that we can go back
to them several times. For instance, in order to compute the sample median we need to store
all the values in the computer’s memory so that we can sort them. However, one sometimes
encounters situations where so many data are arriving in real time that they cannot be stored.
In such situations one has nearly always restricted attention to the sample average, which needs
very little memory space. The average can be computed with an updating mechanism, so only
a single pass through the data is necessary. For instance, the following Fortran lines may be
used:

SUM =0
DO 10 1=1,N
10 SUM = SUM + ENTERI(I)
AVERA = SUM/N

where ENTER is a function that reads, records, generates or otherwise accesses the ith
observation. It is therefore not necessary to store the data in central memory. It is commonly
thought that all robust estimators need to store at least the data themselves, thereby consuming
n storage spaces, which in certain applications is unfeasible.

To remedy this problem, Rousseeuw and Bassett” introduced a new robust estimator which
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can also be computed by means of a single-pass updating mechanism, without having to store
all the observations. Let us assume that n = b* where b and k are integers. The remedian with
base b proceeds by computing medians of groups of b observations, yielding b* ! estimates
on which this procedure is iterated, and so on, until only a single estimate remains. When
implemented properly, this method merely needs k arrays of size b which are continuously
reused. Figure 1 illustrates the remedian with base 11 and exponent 4. The data enter at the
top and array 1 is filled with the first eleven observations. Then the median of these eleven
observations is stored in the first element of array 2, and array 1 is used again for the second
group of eleven observations, the median of which will be put in the second position of array
2. After some time array 2 is full too and its median is stored in the first position of array 3,
and so on. When 11* = 14 641 data values have passed by, array 4 is complete and its median
becomes the final estimate. This method used only 44 storage positions and its speed is of the
same order of magnitude as that of the average or the median. A physical analogy is the
mileage recorder in a car: compare the first array with the rightmost wheel that counts the
individual miles, the second array with the wheel indicating tens of miles, etc. This also
explains why b is called the base, as in the terminology of positional number systems. (We
could take b =10, but we prefer odd b because then the medians are easy to compute.)

The remedian with base b merely needs bk storage spaces for data sets with n = b¥ values.
The total storage only increases as the logarithm of n because bk = b logy(n). (When n is not
a power of b, Rousseeuw and Bassett compute a weighted median at the last step, which does
not need more storage.) The following lines implement the remedian of Figure 1:

ENTERING DATA

ARRAY 1

ARRAY 2

ARRAY 3

ARRAY 4

ESTIMATE

Figure 1. Mechanism of the remedian with base 11 and exponent 4, using 44 storage spaces for a data
set of size n=11% = 14 641
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CcC A PROGRAM FOR THE REMEDIAN

cc —-————-=-——-—-—-———-
DIMENSION A1(11),A2(11),A3(11),A4(11)
DO 40 M=1,11

DO 30 L=1,11
DO 20 K=1,11
DO 10 J=1,11
F=1+1

10 A1(J)=ENTERI()
20 A2(K)=FMED(A1)
30 A3(L)=FMED(A2)
40 A4(M)=FMED{A3)
REMED =FMED(A4)
WRITE(*,*)REMED
STOP
END

where FMED is a function which returns the median of an array of eleven numbers.

The remedian transforms properly when all observations x; are replaced by cx; + d. Like the
sample median, it is even equivariant with respect to any monotone transformation of the x;,
such as a power function or an exponential. Rousseeuw and Bassett showed that the remedian
is a consistent estimator of the underlying population median, investigated its sampling
distribution and computed its breakdown point. Alternative approaches are due to Martin and
Masreliez,® Pearl,® Tierney!® and Tukey.!!

An important application of the remedian is to curve averaging. Suppose we want to obtain
a certain curve corresponding to a physical phenomenon. A curve can be registered by means
of a list of its function values x(¢) at equally spaced arguments ¢ (usually ¢ stands for time).
Unfortunately, the observed values of x(z) are subject to noise of various sources. Therefore
one repeats the experiment several times, yielding » curves in all, so the data are of the form

{xi(t); t=1,...,M} for i=1,...n 8)

One wants to combine the n curves to estimate the true underlying shape. The classical
approach is averaging, by which one computes the curve

n
xm:l >oxi(t), t=1,...,.M )
ni=1
In the case of Gaussian noise and no outliers, averaging makes good sense because then the
noise goes down for large n. The averaging technique is built into many special-purpose
recorders (e.g. in hospitals).
Usually M and n are quite large, making it impractical to store all the observed curves in
central memory. This precludes calculation of the ‘median curve’
median x;(¢), t=1,....M (10)

i=1,...,n

as well as many other robust summaries. We propose to compute the remedian curve

rgmedian xi®), t=1,....M (1)

i=1,...,n

instead, because it is a robust single-pass method. The above Fortran program can be adapted
quite easily to produce the remedian curve, by replacing the arrays Al, A2, A3, and A4 of
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length 11 by matrices with eleven rows and M columns. For b = 11 and & = 4 the total storage
becomes 44 M, whereas the plain median would have needed 14 641 M positions.

Let us consider an example. The electroretinagram (ERG) is used in ophthalmology to
examine disorders of the visual system. When the patient’s eye is exposed to a white flash of
light, it develops an electric potential that may be recorded by a contact lens electrode. The
ERG curve shows the evolution of the evoked potential (expressed in microvolts) as a function
of the time (in milliseconds) elapsed after the flash. The bottom curve in Figure 2(b) is a typical
ERG of a healthy patient (from Reference 12). The important features are the four peaks

(denoted by a, b, OP;, and OP;), in particular their z-co-ordinates, which are used for medical
diagnosis.
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Figure 2. (a) Bundle of simulated electroretinagrams (ERG), some with Gaussian noise and others with
various kinds of contamination. (b) Plot with typical ERG (bottom curve), the average of the simulated
ERGs (upper curve) and their remedian (middle curve)
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When the ERG curve is recorded only once, the noise typically dominates the signal so that
no peak can be found. The current solution is to record many curves by repeating the stimulus
flash light and then to average them. However, the average curve is often deformed and
difficult to interpret owing to a high amount of contamination caused by electrical interference,
involuntary eye movements and other artefacts.

It is quite feasible to replace the averaging routine in the recording instrument by the
remedian, because the latter is equally fast and needs little storage. To verify if this
replacement is worthwhile, computer simulations were performed in which both the average
and the remedian were calculated for a bundle of curves, some of which were contaminated.
The basic curve was the ERG of Figure 2(b) measured at M = 320 time units. Figure 2(a)
contains n = 81 curves (in ophthalmology more curves are used, but this would make the
display overcrowded). The curves were generated as follows: with probability 0-7, curve ¢
is the basic ERG plus some Gaussian noise with modest scale. With probability 0-1 the
xi(t)-values are multiplied by a random factor greater than unity. With probability 0-2
the curve models a response at half the usual speed, again with magnified x;(t)-values.

The upper curve in Figure 2(b) is the average of the ERG curves in Figure 2(a). It has been
greatly affected by the contamination, which caused a substantial upward shift. What is worse,
the average has one peak too many, rendering medical diagnosis difficult. Averaging often
produces results like this in actual clinical practice. On the other hand, the 3% remedian lies
very near to the original ERG and is virtually undamaged by the contamination.

Many other applications of robust curve averaging could be envisaged, for instance in
spectroscopy. Median-type procedures can also be used to estimate horizontal shifts between
spectrograms. 314

Averaging also occurs in image analysis. An image may be described as a rectangular grid
of pixels, each with a corresponding number x(r,c) indicating its grey intensity. When n
images are observed one after another, the data are

{xi(r,¢); r=1,...,R and c¢=1,...,C} for i=1,...,n (12)

where R is the number of rows and C the number of columns. In one application, images of
a crystallographic lattice were recorded by means of an electron microscope, with R =512,
C =512 and n = 10 000. Usually such images are averaged to obtain a sharp result, but in this
case averaging did not work well because in many images a part of the lattice was contaminated
or even destroyed by the radiation of the microscope itself. Computing plain medians was not
feasible because there were nRC = 2 621 440 000 data values in all, which could not be stored
in central memory. One can, however, compute the remedian image given by
remedian x;(r,¢) for r=1,...,.R and c¢c=1,...,C (13)
i=1,...,n
The computation of remedian curves (or images) may be speeded up if one has access to
parallel computing facilities, because one can let each processor work on a different portion
of the curve.

3. ROBUST REGRESSION

3.1. Simple regression
In simple regression one assumes a relation of the type

yi=Bo+ Bixi+ & (14)
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in which x; is called the explanatory variable or regressor and y; is the response variable. The
intercept Bo and the slope B; have to be estimated from the data {(x1, y1),..., (X, Yn)}-
Classical theory assumes the & to be Gaussian.

In simple regression the observations (x;, y;) are two-dimensional, so they can be plotted.
Regression users should always draw this plot first because it shows whether the data are
roughly linear, and any unusual structures will be clearly visible. In this section we begin with
the simple regression situation in which the phenomena are most easily visualized, after which
we continue with multiple regression for which robust methods are much more necessary.

Applying a regression estimator to such a bivariate data set with n observations yields the
regression coefficients Bo and B;. Although the true parameters 8o and 8; are unknown, one
can insert these Bo and B; in (14) to yield

Pi=Bo+ Bixi (15)

where §; is called the estimated value of y;. The residual r; of the ith case is the difference
between the observed value and the estimated value:

ri=yi—Jyi (16)

The most popular regression estimator (dating back to Gauss and Legendre, around 1800)
is the least squares method (LS) given by

n
minimize ), r} (17)

Bo, B1 i=1
The basic idea was to make all the residuals very small. Gauss preferred the LS criterion to
other objective functions because in this way the regression coefficients could be computed
explicitly from the data. Afterwards, Gauss introduced the Gaussian distribution as the
distribution for which LS is optimal. Since then, the LS method has been theoretically justified

in many other ways (e.g. the Gauss—Markov theorem) that are equally circular.

More recently, people began to realize that actual data often do not satisfy the Gaussian
assumption, with dramatic effects on the LS results. Let us look at some plots illustrating the
effect of outliers. Figure 3(a) is the scatterplot of five points, (x1, y1), ..., (X5, ¥s), which almost
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Figure 3. (a) Five points and their least squares regression line, (b) Same data with one outlier in the
y-direction
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lie on a straight line. In such a situation the LS solution fits the data very well, as can be seen
from the LS line § = 8o + B1x in the plot. However, suppose that someone gets a wrong value
of ys; because of a recording or copying mistake. Then (x4, y4) may be rather far away from
the ‘ideal’ line. Figure 3(b) displays such a situation, where the fourth point has moved up
from its original position (indicated by the dashed circle). This point is called an outlier in the
y-direction and has a rather large effect on the LS line in Figure 3(b). Such vertical outliers
have received most attention in the literature, because in designed experiments the values of
x; are preselected and then one only expects outliers in the yi.

In observational studies (‘happenstance data’) the x; are not fixed but are themselves
observed quantities subject to random variability. In that case, outliers can also occur in the
xi. (And note that even in designed experiments one may have data entry mistakes in the x;!)
For the effect of such an outlier we turn to Figure 4. In Figure 4(a) we again see five points
with a well-fitting LS line. If we now record x; wrongly, we obtain Figure 4(b). The resulting
point is called an outlier in the x-direction and its effect on LS is very large because it actually
tilts the LS line. Therefore the point (x;, 1) is called a leverage point, in analogy to the notion
of leverage in mechanics. This large ‘pull’ on the LS estimator can be explained as follows.
Because x; lies far away, the residual r; from the original line (as shown in Figure 4(a))
becomes a very large (negative) value, contributing very much to Z r# for that line. Therefore
the original line cannot be selected from an LS perspective, and indeed the line of Figure 4(b)
possesses the smallest & r7 because it has tilted to reduce that large r?, even if the other terms,
ri, ..., r% have increased somewhat.

In general, we call an observation (x, yx) a leverage point whenever xi lies far from the
bulk of the observed x; in the data. Note that this does not take yk into account. In Figure 5
the point (xx, y«) lies close to the linear pattern set by the majority of the data, so it can be
considered a ‘good’ leverage point. On the other hand, the point (xs, ys) in Figure 4(b) is a
bad leverage point. Therefore, to say that an observation (xk, y«) is a leverage point refers only
to its potential for influencing the regression coefficients Bo and B, due to its outlying
component X.

When a point (x;, y;) violates the linear relation of the majority, we will call it a regression
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y-axis
{
y-axis

0.00 - 0.00 |- -
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Figure 4. (a) Five points with their least squares regression line. (b) Same data with one outlier in the
x-direction
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Figure 5. The point (xx, y«x) is a leverage point because x; is outlying. However, (x, yx) is not a
regression outlier because it matches the linear pattern set by the other data points.

outlier, taking into account both x; and y; simultaneously. In other words, a regression outlier
is either a vertical outlier or a bad leverage point.

It is often thought that regression outliers can be identified by looking at the LS residuals.
Unfortunately, things are not that simple. For example, consider again Figure 4(b). Case 1,
being a bad leverage point, has tilted the LS line so much that it is now quite close to that line.
Consequently, the residual r; = y; — J; is a small (negative) number. The residuals r; and rs
are much larger, although they correspond to good points. If one were to apply a rule such
as ‘delete the points with largest LS residuals’, then the good points would have to be deleted
first! Of course, in simple regression there is really no problem at all because one can actually
look at the data, but we shall see that in multiple regression the outliers often remain invisible
in spite of a careful inspection of LS residuals.

From the examples in Figures 3 and 4 we know that even a single regression outlier can
totally offset the LS estimator (provided it is far away). This implies that the breakdown point
of the LS method is merely 1/n (which is not so surprising because the LS estimator generalizes
the sample average we studied above). A first step toward a more robust regression estimator
came from Edgeworth,'® who argued that outliers have a very large effect on LS because the
residuals r; are being squared in (17). Therefore he proposed the least absolute values method
given by

minimize ), |7 (18)
Bo, 61 i=1
This technique is often referred to as L, regression, whereas least squares is called L,. (For
recent surveys on L; see Reference 16.) Unfortunately, L; is only robust with respect to
vertical outliers, but it does not protect against bad leverage points. Indeed, in the example
of Figure 4(b) the leverage point attracts the L, line as much as the LS line. Therefore the
breakdown point of the L; method is still no better than 1/n.

There exist many other techniques, with varying degree of robustness. To avoid a digression
at this stage, we will concentrate on one approach first and leave descriptions of other methods
to Section 3.3 below. We want an estimator with a high breakdown point, which can be used
to analyse messy data sets as well as clean ones. Let us look again at (17). A more natural name
for the LS method (in fact, the name you would expect when seeing its formula for the first
time) is least sum of squares. Apparently, few people have objected to the deletion of the word
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Figure 6. Robustness of LMS regression with respect to (a) an outlier in the y-direction and (b) an outlier
in the x-direction

‘sum’ — as if the only sensible thing to do with n numbers would be add them. However,
adding the r? is equivalent to using their average (dividing by n does not change the
minimization) and we have seen that the average is not robust. Why not replace the sum
by a median, which is very robust? This yields the least median of squares (LMS) method
proposed by Rousseuw: !’

minimize median r? (19)
. Bo, Bt i=1,.,n

It turns out that this estimator is very robust with respect to outliers in y as well as outliers
in x. In Figure 6 we see that the LMS yields the desired fit for the examples of Figures 3(b)
and 4(b). Its breakdown point is 50%, the highest possible value. This means that the LMS
can cope with several outliers at the same time, in the sense that the result will still be
trustworthy. Its basic principle is to fit the majority of the data, after which outliers may be
identified as those points that lie far away from the robust fit; that is, the cases with large
positive or large negative residuals. In Figure 6(a) the fourth case possesses a considerable LMS
residual, and that of case 1 in Figure 6(b) is even more apparent.

The LMS line has an intuitive geometric interpretation because it lies at the centre of the
narrowest strip covering half of the points. Note that this interpretation is simpler than that
of least squares! It also provides some insight as to why the LMS is not much attracted by
outliers. Using this geometric interpretation, it is possible to construct an algorithm for the
LMS line, which is described in Chap. 5 of Reference 18. That book is devoted to LMS and
other high-breakdown methods. It is also a user manual for the Fortran program PROGRESS
(Program for RObust reGRESSion) which computes LMS regression on IBM-PCs and other
machines.

Let us look at an example from astronomy. The data in Tablel form the
Hertzsprung—Russell diagram of the star cluster CYG OB, which contains 47 stars in the
direction of Cygnus. Here x; is the logarithmic temperature at the star surface as determined
by spectroscopy and y; is the logarithm of its light intensity. The data originally appeared in
Reference 19.

The Hertzsprung—Russell diagram itself is shown in Figure 7. It is the scatterplot of these
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points, where the log temperature is plotted from right to left. In the plot we see two groups
of points: the majority, which seem to follow a steep band; and the four stars in the upper
right corner. These parts in the diagram are well known in astronomy. The 43 stars are said
to belong to the main sequence, whereas the four remaining stars are called giants. (The giants
are the points with indices 11, 20, 30 and 34.)

Applying the LMS estimator to these data yields the solid line y = 3-898x — 12-298, which
fits the main sequence nicely. On the other hand, the LS solution y= —0-409x+ 6:78
corresponds to the dashed line in Figure 7, which has been pulled away by the four giant stars

Table 1. Simple regression data: the Hertzsprung—Russell diagram of the star
cluster CYG OBI

i Xi yi i Xi Yi i Xi Yi
1 4-37 5-23 17 4-23 3-94 33 4-45 5-22
2 4-56 5-74 18 4-42 4-18 34 3-49 6-29
3 4-26 4-93 19 4-23 4-18 35 4-23 4-34
4 4-56 5-74 20 3-49 5-89 36 4-62 5-62
5 4-30 5-19 21 4-29 4-38 37 4-53 5-10
6 4-46 5-46 22 4-29 4-22 38 4-45 5-22
7 3-84 4-65 23 4-42 4-42 39 4-53 5-18
8 4-57 5-27 24 4-49 4-85 40 4-43 5-57
9 4-26 5-57 25 4-38 5-02 41 4-38 4-62
10 4-37 5-12 26 4-42 4-66 42 4-45 5-06
11 3-49 5-73 27 4-29 4-66 43 4-50 5-34
12 4-43 5-45 28 4-38 4-90 44 4-45 5-34
13 4-48 5-42 29 4-22 4-39 45 4-55 5-54
14 4-01 4-05 30 3-48 6-05 46 4-45 4-98
15 4-29 4-26 31 4-38 4-42 47 4-42 4-50
16 4-42 4-58 32 4-56 5-10

=

%

g

50 48 46 44 42 40 38 36 34
Log temperature

Figure 7. Hertzsprung—Russell diagram of the star cluster CYG OBI1 with the LS fit (dashed line) and
the LMS fit (solid line)
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(which it does not fit well either). These are outliers but not mistakes. It would be more
appropriate to say that the data come from two different populations. The two groups can
easily be distinguished on the basis of their LMS residuals (the large residuals correspond to
the giant stars), whereas the LS residuals are rather homogeneous and do not allow us to
separate the giants from the main-sequence stars.

Several other examples from different fields can be found in Reference 18. We also
computed LMS regression lines in analytical chemistry examples. %

3.2. Multiple regression

By extending the simple regression framework (14) to several explanatory variables, we obtain
the multiple regression model

yi=Bo+ Bixit + -+ BpXip + Ei (20)
Each data point is of the form (xii, ..., Xip, yi), containing p regressors and one response
variable. The classical LS estimator of Bo, 81, ..., 8p corresponds to
n
minimize ), rf 21)
Bo,--sBp  i=1

in which the residuals r; are given by

ri=yi—Ji=yi—Bo—Bixii = - — BoXip (22)
As before, the LS estimator is very vulnerable to outliers in the response variable and to
outliers in the regressors. Our main handicap is that the observations (Xii, ..., Xip, yi) have

p + 1 dimensions so they cannot be plotted, and hence we cannot spot the outliers by eye. The
worst problem is with observational studies, because they may contain leverage points; that is,
points for which (x«i, ..., Xkp) lies far from the bulk of the (xii, ..., Xip) in the data. This is
a major concern because

(1) least squares is affected more by leverage points than by vertical outliers, as was already
seen in Figure 4(b)

(2) there are p regressors as opposed to only one response variable, so leverage points are
more likely to occur than vertical outliers

(3) it becomes very difficult to identify leverage points owing to the higher dimensionality.

An illustration of the third aspect is given in Figure 8, which plots xi versus xi; for some data
set. In this plot we easily see two leverage points, which are, however, invisible when the '
variables x; and x;; are considered separately. (Indeed, the one-dimensional sample
{X11, X21, -.-, Xn1} does not contain outliers and neither does {xi2, X22, ..., Xn2}.) When there
are more than two regressors, even more complicated configurations are possible. In general,
it is not sufficient to look at each variable separately or at scatterplots of pairs of variables.

We are mostly concerned with regression outliers; that is, cases for which (xi1, ..., Xip, Vi)
violates the linear relation followed by the majority of the data, taking into account the
response variable as well as the regressors. Already in simple regression we saw that the outliers
cannot always be identified by means of their LS residuals. In order to identify the outliers,
we need to know what the bulk of the data are like. This calls for a high-breakdown estimator
such as LMS, which is defined analogously by’

minimize median r} : (23)
Bo,...xBp  i=1,.,0
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Figure 8. Plot of the explanatory variables xi and xi2 of a regression data set. There are two leverage
points (indicated by the dashed circle) which are not outlying in either of the co-ordinates

The LMS has a breakdown point of 50% even in multiple regression; only its computation time
goes up. Rousseeuw?! also proposed the least trimmed squares (LTS) estimator given by
h
minimize ré) ‘ (24)
Bov...Bp i=1
where réy < réy € - < rin are the ordered squared residuals (note that the residuals are first
squared and then ordered) and h = n/2. The LTS has the same high breakdown point.

In order to decide whether a residual from a robust regression is unusually large, we have
to compare it to something. For this purpose we need to estimate the spread of the &. In
classical theory the & have a Gaussian distribution with an unknown scale parameter denoted
by o. When using LS, o is estimated by

6=\/(——1—— Z r;2> (25)
n—-p-1;0

where the r; are the LS residuals. For LMS regression the corresponding scale estimate becomes

G=1-483 J <median r,-2> (26)
i=1,....n
where the r; are the residuals from the LMS fit and 1-483 is the appropriate constant to make
6 a consistent estimator of o. The LMS scale estimate has itself a 50% breakdown point,
whereas the LS scale has 0% breakdown because it explodes easily.
By analogy to the one-dimensional z-scores (7), we consider the standardized residuals
y @7)

~

g

If | rif G| is larger than 2-5, we will consider the ith case to be a regression outlier. Inserting
the LS residuals for r; and the LS scale for § makes no sense, because leverage points often
have small LS residuals, and even when some LS residuals are large, they will blow up & and
hence be divided by a large denominator in (27). As in one dimension, outliers can be identified
by inserting robust estimators, in this case by considering the residuals from the LMS fit and
dividing them by the LMS scale.

Let us look at a real data example to illustrate the need for a robust regression method. The
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Table 2. Stackloss data with standardized residuals

Standarized

residual
i Xi1 Xi2 Xi3 Vi LS LMS
1 80 27 89 42 1-00 7-70
2 80 27 88 37 -0-59 3-74
3 75 25 90 37 1-40 7-14
4 62 24 87 28 1-76 7-64
5 62 22 87 18 -0-53 0-28
6 62 23 87 18 -0-93 0-00
7 62 24 93 19 -0-74 0-51
8 62 24 93 20 -0-43 1-30
9 58 23 87 15 -0-97 -0-11
10 58 18 80 14 0-39 0-51
11 58 18 89 14 0-81 0-51
12 58 17 88 13 0-86 0-00
13 58 18 82 11 —-0-44 —-1-87
14 58 19 93 12 -0-02 —-1-36
15 50 18 89 8 0-73 0-28
16 50 18 86 7 0-28 —-0-51
17 50 19 72 8 —-0-47 0-00
18 50 19 79 8 -0-14 0-00
19 50 20 80 9 -0-18 0-51
20 56 20 82 15 0-44 1-87
21 70 20 91 15 -2-23 —-6-06

well-known stackloss data of Brownlee®? describe the operation of a chemical plant for the
oxidation of ammonia to nitric acid. The data consist of 21 four-dimensional observations,
listed in Table 2. The stackloss (¥) has to be explained by the rate of operation (xi), the
cooling water inlet temperature (x;) and the acid concentration (x3). Applying LS regression
yields the equation

P=0-716x; +1:295x, - 0-152x3 — 39-9

with corresponding scale estimate ¢ = 3-24.

We cannot plot the data because they are four-dimensional, but we can look at the
standardized residuals (27). The sixth column of Table 2 lists the standardized residuals
obtained from LS. From these results one would conclude that the data set does not contain
any outliers, because all the standardized residuals are below 2-5. However, let us now
consider the LMS fit

7=0-714x; +0-357x2 + 0-000x3 — 34-5

The equation itself is quite different, especially the coefficients of x, and x3;. The LMS scale
estimate becomes 1-26, which is much smaller than the LS scale. As to the search for outliers,
we now look at the standardized residuals based on the LMS, which are given in the last
column of the table. They indicate that the observations 1, 3, 4 and 21 are outlying, because
their |7;/&| is much larger than 2-5. Observation 2 is a borderline case. These conclusions
correspond to the findings cited in the literature. Our robust regression technique has analysed
these data in a single blow, which should be contrasted to some of the earlier analyses of the
same data set, which were long and laborious.
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This example illustrates the danger of merely looking at the LS residuals. We have seen that
it is better to use a robust technique to identify the outliers, which may then be thoroughly
investigated and perhaps corrected (if one has access to the original measurements) or deleted.
Another possibility is to change the model, e.g. by adding squared regressors and/or
transforming the response variable.

The LMS regression is more stable than the LS fit. Indeed, if we carry out LS on the
‘cleaned’ data set without the observations 1, 2, 3, 4 and 21, then we find an equation and a
scale estimate that are close to the LMS. Such a ‘reweighted’ analysis (where each point has
a weight of zero or one, depending on whether or not LMS has classified it as an outlier) is
useful because it is still robust and at the same time yields all the customary output, such as
t-values, confidence intervals and a coefficient of determination. For this reason the program
PROGRESS described by Rousseeuw and Leroy'® computes the LS fit, the LMS fit and the
reweighted analysis. In the same book many examples are treated.

It should be stressed that the LMS does not ‘throw away’ 50% of the data. Rather, it finds
a fit to the majority of the points, which can then be used to identify the actual outliers (of
which there may be many, a few, or none at all). Also, note that we did not need any symmetry
assumption anywhere.

3.3. Alternative approaches

‘Many other robust regression estimators have been proposed. Huber?? introduced M-
estimators for regression. They replace the r? in (21) by another function of the residuals,
yielding
n
minimize > o)

Boy .o i=1
where p is an even function (i.e. p(—?)=p(?) for all r) with a unique minimum at zero.
M-estimators can be computed by means of iteratively reweighted LS or with
Newton—Raphson-type algorithms. Unfortunately, their breakdown point is again 1 [ n because
of the effect of outlying (xi1, ..., Xip). Because of this vulnerability to leverage points,
generalized M-estimators (GM-estimators) were introduced, with the basic purpose of
bounding the influence of outlying (xi1, ..., Xip) by means of some weight function. For this
reason they are often called bounded influence estimators. Particular types of GM-estimators
were studied by Mallows?* and Schweppe (see Reference 25); for a recent survey see Chap. 6
of Reference 2. It turns out, however, that the breakdown point of all GM-estimators
decreases when the dimension increases. This is unsatisfactory, because it means that the
breakdown point diminishes when there are more regressors and hence more opportunities for
outliers to occur.

Various other estimators have been proposed, such as that of Brown and Mood, *® the
median of pairwise slopes,?’ R-estimators,?®** L-estimators®®*' and the technique of
Andrews.>? Unfortunately, even in simple regression none of these methods achieves a
breakdown point of 30%.

The first robust regression method with a 50% breakdown point was the repeated median
proposed by Siegel.?® For any p + 1 observations with indices (i1, ..., ip+1}, he computes the
coefficients Bo(i1, ..., ip+1), --+» Bp(i1, ..., ip+1) such that the corresponding surface fits these
p + 1 points exactly. The jth coefficient of the repeated median regression is then defined as

8; = median <median < <median Bii1y ey ipr )) ))

I i ip+1
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where the outermost median is over all choices of i1, the next is over all choices of i, # i1, and
so on. This estimator can be computed explicitly but requires consideration of all subsets of
p + 1 points, which may cost a lot of time. It has been successfully applied to problems with
small p. However, unlike other regression estimators, the repeated median is not equivariant
for linear transformations of the (xi, ..., Xp), which is due to its co-ordinatewise construction.

The LMS method combines equivariance with a 50% breakdown point but has a low
asymptotic efficiency (which does not, however, detract from its ability to identify outliers).
The LTS estimator of Rousseeuw?! has a better asymptotic efficiency and is also equivariant,
but needs somewhat more computation time than the LMS. The LTS objective (24) is similar
to LS, the only difference being that the largest residuals are not used in the sum, which allows
the fit to stay away from the outliers. The best robustness properties are achieved when 4 is
approximately n/2, and then the breakdown point attains 50%. Another variant is the class
of S-estimators introduced by Rousseeuw and Yohai,!® which are also equivariant and have
50% breakdown point, while sharing some of the nice mathematical properties of Huber’s
M-estimators.

Another approach to the identification of aberrant points is the construction of outlier
diagnostics. These are quantities computed from the data with the purpose of pinpointing
influential points, after which these outliers are to be removed or corrected, followed by an
LS analysis on the remaining cases. The idea behind these diagnostics is to look at the effect
of deleting one point at a time. However, it is much more difficult to diagnose outliers when
there are several of them, owing to the so-called ‘masking effect’ which says that one outlier
may mask another. The naive extensions of classical diagnostics to such multiple outliers often
give rise to extensive computations (e.g. the consideration of afl subsets of points is an
impossible task). Recent work by Rousseeuw and van Zomeren 34 indicates that one needs to
use robust methods in one way or another to safely identify multiple outliers. This is because
one needs to know with respect to which pattern the points are outlying.

Sometimes robust methods are confused with non-parametric methods. Basically, there is no
relation between them. The confusion stems from the coincidence that for one-dimensional
data certain non-parametric methods (e.g. the Wilcoxon rank test) also happen to be relatively
robust. In regression, however, they are quite different, because non-parametric regression
does not assume a linear model of the type (20). Therefore it does not yield an explicit equation
to describe the fit. Its main purpose is to compute interpolated j-values corresponding to
unobserved values of the regressors xi, ..., X, which is achieved by local smoothing of the
data. Until now, little has been done to construct non-parametric regression methods that are
also insensitive to outliers.

3.4. Robust methods for other situations

Robust methods are not only useful for estimation in one-dimensional samples or when fitting
a linear regression model. The books by Hampel e al. 2 and Rousseeuw and Leroy'® also cover
robust tests, robust multivariate location and covariance matrices, the problem of unsuspected
serial correlations in supposedly independent data, robustness in time series and robust
estimation for circular data. Other topics are being studied intensively by several researchers,
such as robust analysis of variance, robust non-linear regression and robust cluster analysis,
to name a few. Whereas some techniques have reached the stage where they can readily be
applied, research still goes on in other directions.
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