
Measuring robustness



1 Introduction

While in the classical approach to statistics one aims at estimates which have
desirable properties at an exactly speci�ed model, the aim of robust methods
is loosely speaking to develop estimates which have a �good� behavior in a
�neighborhood�of a model.

This notion will now be made precise.

To gain some insight, we use an arti�cial dataset x by generating n = 20

random N(0,1) numbers.

To measure the e¤ect of di¤erent locations of an outlier, we add an extra data
point x0 which is allowed to range on the whole line.



The sensitivity curve of the estimate b� for the sample x1; :::; xn is the di¤erence
b�(x1; :; xn; x0)� b�(x1; :; xn)

as a function of the location x0 of the outlier.



The next Figure plots the sensitivity curves of:

� the median,

� the 25% trimmed mean x0:25;

� the Huber M estimates with k =1.37 using both the SD and the MADN
as previously-computed dispersion estimates, and

� the bisquare M-estimate with k =4.68 using the MADN as dispersion.
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Sensitivity curves of location estimates

We see that all curves are bounded, except the one corresponding to the Huber
estimate with the SD as dispersion, which grows without bound with x0.



This shows the importance of a robust previous dispersion.

All curves are nondecreasing for positive x0, except the one for the bisquare
estimate.

Loosely speaking, we say that the bisquare M-estimate rejects extreme values,
while the others don�t.

The curve for the trimmed mean shows that it does not reject large observations,
but just limits their in�uence.

The curve for the median is very steep at the origin.

The next Figure shows the sensitivity curves of the SD along with the normalized
MD,MAD and IQR.



The SD and MD have unbounded sensitivity curves while those of the normal-
ized MAD and IQR are bounded.
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Sensitivity curves of dispersion estimates



Imagine now that instead of adding a single point at a variable location, we
replace m points by a �xed value x0 = 1000:

The next Table shows the resulting �biases�

b�(x0; x0; ::; x0; xm+1; :; xn)� b�(x1; :; xn)
as a function of m for following location estimates:

� the median,

� the Huber estimate with k =1.37 and previously estimated MAD (denoted
by H-MADp),

� the Huber estimate with k =1.37 and simultaneous MAD (�H-MADs�),



� the Huber estimate with k =1.37 and previous SD (�H-SD�),

� the trimmed mean with � = 0:085; and

� the bisquare estimate.

Besides we provide the biases for the normalized MAD and IQR dispersion
estimates.

The choice of k and � was made in order that both the Huber estimates and the
trimmed mean have the same asymptotic variance at the normal distribution.



m mean Med H-MADp H-MADs H-SD x� M-Bisq MAD IQR
1 50 0.00 0.03 0.04 16.06 0.04 -0.02 0.12 0.08
2 100 0.01 0.10 0.11 46.78 55.59 0.04 0.22 0.14
4 200 0.21 0.36 0.37 140.5 166.7 0.10 0.46 0.41
5 250 0.34 0.62 0.95 202.9 222.3 0.15 0.56 370.3
7 350 0.48 1.43 42.66 350.0 333.4 0.21 1.29 740.3
9 450 0.76 3.23 450.0 450.0 444.5 0.40 2.16 740.2
10 500 500.5 500.0 500.0 500.0 500.0 500.0 739.3 740.2

Table 1: The e¤ect of increasing contamination on a sample of size 20

The mean deteriorates immediately when m = 1 as expected, and since
[�n] = [:085� 20] = 1 the trimmed mean x� deteriorates when m = 2, as
could be expected.

The H(MADs) deteriorates rapidly starting at m = 8 while H(SD) is already
quite bad at m = 1.



By contrast

� the median, H(MADp) and M-Bisq deteriorate only when m = n=2,

� M-Bisq has smaller bias than H(MADp)

� the median (Med) has small biases comparable to those of the M-Bisq
(only slightly higher bias than M-Bisq at m = 4; 5; 7; 9):

To formalize these notions, it will be easier to study the behavior of estimates
when the sample size tends to in�nity (�asymptotic behavior�).



Consider an estimate b�n = b�n(x) depending on a sample x = fx1; :::; xng of
size n of i.i.d. variables with distribution F:

In all cases of practical interest, there is a value depending on F; b�1 = b�1(F );
such that b�n !p

b�1(F ):b�1(F ) is the asymptotic value of the estimate at F .
If b�n = x (the sample mean) then b�1(F ) = EFx (the distribution mean).
If b�n(x) = Med(x) (the sample median) then b�1(F ) = F�1(0:5) (the
distribution median).



If b�n is a location M-estimator with  monotonic, it was stated that b�1(F )
is the solution of

EF (x� �) = 0:

The same reasoning shows that if b�n is a scale M-estimate, then b�1(F ) is the
solution of

EF�
�
x

�

�
= �:

It can also be shown that if b�n is a location M-estimator, then b�1(F ) is the
solution of

EF� (x� �) = min :



Asymptotic values exist also for the trimmed mean.

The typical distribution of data depends on one or more unknown parameters.

Thus in the location model the data have distribution function

F�(x) = F0(x� �);

and in the location-dispersion model the distribution is

F�(x) = F0

�
x� �

�

�
with � = (�; �):

These are called parametric models.

In the location model we have seen that if the data are symmetric about � andb� is an M-estimate, then b�!p � and so b�1(F�) = �:



An estimator b� of the parameter(s) of a parametric family F� will be called
consistent if b�1(F�) = �:

Since we assume F to be only approximately known, we are interested in the
behavior of b�1(F ) when F ranges over a �neighborhood�of a distribution F0:
There are several ways to characterize neighborhoods.

The easiest to deal with are contamination neighborhoods:

F(F; ") = f(1� ")F + "G : G 2 Gg
where G is a suitable set of distributions, often the set of all distributions.

But in some cases G is the set of point mass distributions, where the �point
mass� �x0 is the distribution such that P(x = x0) = 1.



2 The in�uence function

The in�uence function (IF) of an estimator (Hampel, 1974) is an asymptotic
version of its sensitivity curve.

It is an approximation to the behavior of b�1 when the sample contains a small
fraction " of identical outliers. It is de�ned as

IFb�(x0; F ) = lim
"#0

b�1 ((1� ")F + "�x0)� b�1(F )
"

=
@

@"
b�1 [(1� ")F + "�0]

���
"#0 ;

where �x0 is the point-mass at x0 and �#00 stands for �limit from the right�.

If there are p unknown parameters, then b�1 is a p-dimensional vector and so
is its IF.



The argument of b�1(F ) will be dropped if there is no ambiguity.
The quantity b�1 ((1� ")F + "�x0) is the asymptotic value of the estimate
when the underlying distribution is F and a fraction " of outliers are equal to
x0:

Thus if " is small this value can be approximated by

b�1 ((1� ")F + "�x0) � b�1(F ) + "IFb�(x0; F )
and the bias b�1 ((1� ")F + "�x0)� b�1(F )
is approximated by "IFb�(x0; F ):
The IF may be considered as a �limit version� of the sensitivity curve, in the
following sense.



When we add the new observation x0 to the sample x1; :::; xn the fraction of
contamination is 1=(n+1); and so we de�ne the standardized sensitivity curve
as

SCn(x0) =
b�n+1(x1; :::; xn; x0)� b�n(x1; :::; xn)

1=(n+ 1)
;

= (n+ 1)
�b�n+1(x1; :::; xn; x0)� b�n(x1; :::; xn)�

which is similar to the IF with " = 1=(n+ 1):

One would expect that if the xi�s are i.i.d. with distribution F; then SCn(x0) �
IF(x0; F ) for large n:



Actually we have for each x0

SCn(x0)!a:s: IFb�(x0; F );
where �a.s.� denotes convergence with probability one (�almost sure conver-
gence�).

For a location M-estimate b� we have
IFb�(x0; F ) =  (x0 � b�1)

E 0(x� b�1):
The similarity between the IF and the SC of a given estimator can be seen
comparing the former Figures.

We see above that the IF of an M-estimate is proportional to its  -function (or
an o¤-set �-function in the case of the scale estimate), and this behavior holds
in general for M-estimates (details omitted).



Consider now an M-estimate b� of location with known dispersion �, where the
asymptotic value b�1 satis�es

EF 
�
x� b�1

�

�
= 0:

Then the in�uence function of b� is
IFb�(x0; F ) = �

 ((x0 � b�1) =�)
EF 

0 ((x0 � b�1) =�):
Now consider location estimation with a previously-computed dispersion esti-
mate b�.
In this case the in�uence function is much more complicated than the one
above, and depends on the in�uence function of b�:



But it can be proved that if F is symmetric, the in�uence function simpli�es
to:

IFb�(x0; F ) = b�1  ((x0 � b�1) =b�1)
EF 

0 ((x0 � b�1) =b�1):
It can be shown that the IF of an ��trimmed mean b� at a symmetric F is
proportional to Huber�s  function:

IFb�(x0; F ) =  k(x� b�1)
1� 2�

with k = F�1(1� �):

Hence the trimmed mean and the Huber estimate in the example at the begin-
ning of the chapter have not only the same asymptotic variances, but also the
same in�uence function.



However the last Table showed that they have very di¤erent degrees of robust-
ness.

We can verify that the asymptotic variance v of location M-estimates satis�es

v = EF
�
IF(x; F )2

�
and this property holds for a wide family (but not for all!) of �smooth� esti-
mates.



3 The breakdown point

We have seen the e¤ects of replacing several data values by outliers.

Roughly speaking, the breakdown point (BP) of an estimate b� of the parameter
� is the largest amount of contamination (proportion of atypical points) that
the data may contain
such that b� still gives some information about �; i.e., about the distribution of
the �typical�points.

More precisely, let � range over a set �:

For example, � = R for a location parameter, � = [0;1) for a scale or
dispersion parameter, and � = [�1; 1] for a correlation coe¢ cient.



In order for b� to give some information about � it must at least stay away from
the boundary of �:

This means being bounded away from �1 in the �rst case, from 0 and 1 in
the second, and from �1 in the third.

DEFINITION

The asymptotic contamination BP of the estimate b� at F; denoted by "�(b�; F )
is the largest "� 2 (0; 1) such that for " < "�; we have that

b�1 [(1� ")F + "G]

remains bounded away from the boundary of � for all G:



The de�nition means that there exists a set K � � such that K \ @� = ;;
(where @� denotes the boundary of �) such thatb�1 ((1� ")F + "G) 2 K 8 " < "� and 8 G:

When the estimate is not uniquely de�ned, e.g. when it is the solution of an
equation that may have multiple roots, the boundedness of the estimate means
that all solutions remain in a bounded set.

Note that it is easy to �nd estimates with high BP. For instance, the �estimate�
identically equal to 0 has "� = 1!

However, for �reasonable� (e.g., equivariant) estimates it is intuitively clear
that there must be more �typical� than �atypical�points and so "� � 1=2:

Actually, it can be proved that all shift equivariant location estimates have
"� � 1=2:



3.1 Location and scale M-estimates, and dispersion esti-

mates

For an M-estimate with known scale and odd  ; we have

"� = 0:5

3.1.1 Scale estimates

Note that while a high proportion of atypical points with large values (outliers)
may cause the estimate b� to overestimate the true scale, while a high proportion
of data near zero (�inliers�) may result in under estimation of the true scale.



Thus it is desirable that the estimate remains bounded away from zero (�im-
plosion�) as well as away from in�nity (�explosion�).

This is equivalent to keeping the logarithm of b� bounded.
For a scale M-estimate

nX
i=1

�

�
xi
�

�
= �

we have

"� = min(�; 1� �):



3.1.2 Dispersion estimates

It is easy to show that the breakdown points of the SD, the MAD and the IQR
are 0, 1/2 and 1/4, respectively

In general, the BP of an equivariant dispersion estimate is � 0:5:



3.2 Location with previously-computed dispersion estimate

In the Table above we have seen the bad consequences of using an M-estimateb� with the SD as previously-computed dispersion estimate b�.
The reason is that the outliers in�ate this dispersion estimate, and hence outliers
do not appear as such in the "standardized" residuals (xi � b�)=b�.
Hence the robustness of b� is essential for that of b�:
For monotone M-estimates with a bounded and odd  ; it can be shown that
"�(b�) = "�(b�).
Thus if b� is the MAD then "�(b�) =0.5, but if b� is the SD then "�(b�) = 0.



Our former results imply that the location estimates using the SD and the MAD
as previous dispersion have the same IF, but quite di¤erent BP�s.

By the way, this is an example of an estimate with a bounded IF but a zero
BP.

For redescending M-estimates with a bounded � the situation is more complex,
but roughly speaking we can say that for the bisquare � with MAD scale, the
BP is 0.5 for all practical purposes.



3.3 Simultaneous estimation

The BP for simultaneous estimates of location and dispersion is much more
complicated.

In general, the BP of b� is less than 0.5.
In particular, using Huber�s  k with b�=MAD yields that with k = 1:37 we
have "� = 0:33:

This is clearly lower than the BP=0.5 which corresponds to using a previously
computed dispersion estimate treated above.



3.4 Finite-sample breakdown point

Although the asymptotic BP is an important theoretical concept, it may be
more useful to de�ne the notion of BP for a �nite sample.

Let b�n = b�n(x) be an estimate de�ned for samples x = fx1; :::; xng :
The replacement �nite sample breakdown point (FBP) of b�n at x is the largest
proportion "�n(b�n;x) of data points that can be arbitrarily replaced by outliers
without b�n leaving a set bounded away from the boundary of � (Huber and
Donoho, 1983).

More formally, call Xm the set of all datasets y of size n having n�m elements
in common with x:

Xm = fy : #(y) = n; #(x \ y) = n�mg :



Then

"�n(b�n;x) = m�

n
;

where

m� = max
n
m � 0 : b�n(y) bounded away from @� 8y 2 Xm

o
:

In most cases of interest, "�n does not depend on x; and tends to the asymptotic
BP when n!1:

For equivariant location estimates we have

"�n �
1

n

�
n� 1
2

�
and that this bound is attained by M-estimates with an odd and bounded  :



For the trimmed mean, it is easy to verify that m� = [n�] ; so that for large
n we have

"�n � �:

4 Maximum asymptotic bias

The IF and the BP consider extreme situations in the study of contamination.

The �rst deals with �in�nitesimal�values of "; while the second deals with the
largest " an estimate can tolerate.



Note that an estimate having a high BP means that b�1(F ) will remain in a
bounded set when F ranges in an "-neighborhood with " � "�, but this set
may be very large.

What we want to do now is, roughly speaking, to measure the worst behavior
of the estimate for each given " < "�:

We again consider F ranging in the "-neighborhood

F";� = f(1� ")F� + "G : G 2 Gg

of the an assumed parametric distribution F� with G is a family of distribution
functions.

Unless otherwise speci�ed, G will be the family of all distribution functions,
but in some cases we will choose a the family of point-mass distributions.



The asymptotic bias of b� at any F 2 F";� is

bb�(F; �) = b�1(F )� b�1(F�)
and the maximum bias is

MBb�("; �) = max n���bb�(F; �)��� : F 2 F";�
o
:

In the case that the parameter space is the whole set of real numbers, the
relationship between maximum bias and BP is

"�(b�; F�) = max n" � 0 : MBb�("; �) <1
o
:

Note that two estimates may have the same BP but di¤erent maximum biases.



The contamination sensitivity of b� at � is de�ned as

c(
b�; �) = �

d

d"
MBb�("; �)

�
"=0

:

Since MBb�(0; �) = bb�(0; �) = 0; c gives an approximation to the maximum
bias for small " :

MBb�("; �) � "c(
b�; �):

Note however that MBb�("�; �) = 1; while the right-hand side above always
yields a �nite result.



Therefore this approximation will be quite unreliable for su¢ ciently large values
of ":

The next Figure shows the maximum bias MBb�("; �) at F� = N(�; 1) and its
approximation for the Huber location estimate with k = 1:37
(note that the bias does not depend on � due to the estimate�s shift equivari-
ance).
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The gross-error sensitivity (GES) of b� at � is
�(b�; �) = max

x0

���IFb�(x0; F�)��� :



Since (1� ")F� + "�x0 2 F";�; we have for all x0���b�1 ((1� ")F� + "�x0)� b�1(F�)��� � MBb�("; �):
So dividing by " and taking the limit we get

� � c:

Equality above holds for M-estimates with bounded  -functions, but not in
general.

For instance we have seen that the IF of the Huber estimate with the SD as
previous dispersion is bounded, but since "� = 0 we have

MBb�("; �) =1 8 " > 0

and so c is in�nite.



For location M-estimates b� with odd  and assuming a location model F�(x) =
F0(x� �), we have

�(b�; �) =  (1)
EF� 

0(x� b�1) =
 (1)
EF0 

0(x)

so that �(b�; �) does not depend on �:
In general for equivariant estimates MBb�("; �) does not depend on �:
It is shown that the median minimizes the MB for M-estimates at symmetric
models.



5 Balancing robustness and e¢ ciency

In this section we consider a parametric model F� and an estimate b� which is
consistent for � and such that the distribution of

p
n(b�n � �) under F� tends

to a normal distribution with mean 0 and variance v = v(b�; �):
Under the preceding assumptions b� has no asymptotic bias and we care only
about its variability.

Let vmin = vmin(�) be the smallest possible asymptotic variance within a
�reasonable� class of estimates (e.g. equivariant).

Under reasonable regularity conditions vmin is the asymptotic variance of the
MLE for the model.



Then the asymptotic e¢ ciency of b� at � is de�ned as
ae� =

vmin(�)

v(b�; �) :
If instead F does not belong to the family F� but is in a neighborhood of F�;
the squared bias will dominate the variance component of mean-squared error
for all su¢ ciently large n:

To see this let b = b�1(F )� � and note that in general under F we have

D
�p

n(b�n � b�1)� � N (0; v) :
Then

D
�b�n � �

�
� N

�
b;
v

n

�
;



so that the variance tends to zero while the bias does not.

Thus we must balance the e¢ ciency of b� at the model F� with the bias in a
neighborhood of it.

We have seen that location M-estimates with a bounded  and previously
computed dispersion estimate with BP = 1/2 attain the maximum breakdown
point of 1/2.

To choose among them we must compare their biases for a given e¢ ciency.



We consider the Huber and bisquare estimates with previously-computed MAD
dispersion and e¢ ciency 0.95.

Their maximum biases for the model

F";� = f(1� ")F� + "G : G 2 Gg with F� = N(0; 1)

and a few values of " are:

" 0.05 0.10 0.20
Huber 0.087 0.184 0.419
Bisq. 0.093 0.197 0.450

The next Figure shows the respective biases for point contamination at K with
" = 0:1, as a function of the outlier location K:
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It is seen that although the maximum bias of the bisquare is higher, the dif-
ference is very small and its bias remains below that of the Huber estimate for
the majority of the values.

This shows that, although the maximum bias contains much more information
than the BP, it is not informative enough to discriminate among estimates and
that one should look at the whole bias behavior when possible.

Now, to study the behavior of the estimates under symmetric heavy-tailed
distributions, we computed the asymptotic variances of the Huber and bisquare
estimates,
and of the location/dispersion MLE for the Cauchy distribution (�CMLE�),
at both the Normal and Cauchy distributions,
the latter of which can be considered an extreme case of heavy-tailed behavior.



The e¢ ciencies are given below.

Huber Bisq. CMLE
Normal 0.95 0.95 0.60
Cauchy 0.57 0.72 1.00

It is seen that the bisquare estimate yields the best trade-o¤ between the e¢ -
ciencies at the two distributions.

For all the above reasons we recommend for estimating location the bisquare
M-estimate with previously computed MAD.



6 �Optimal� robustness

In this section we consider di¤erent way in which an �optimal� estimate may
be de�ned.

6.1 Bias- and variance-optimality of location estimates

6.1.1 Minimax bias

If we pay attention only to bias, the quest for an �optimal� location estimate
is simple: Huber (1964) has shown that the median has the smallest maximum
bias (�minimax bias�) among all shift equivariant estimates if the underlying
distribution is symmetric and unimodal.



6.1.2 Minimax variance

Huber (1964) studied location M-estimates in neighborhoods of a symmetric
F with symmetric contamination, so that there is no bias problem.

The dispersion is assumed known.

Call v(b�;H) the asymptotic variance of the estimate b� at the distribution H;
and

v"(b�) = sup
H2F(F;")

v(b�;H);
where F(F; ") is a contamination neighborhood with G ranging over all sym-
metric distributions.



Assume that F has a density f and that  0 = �f 0=f is nondecreasing.

Then the M-estimate minimizing v"(b�) has
 (x) =

(
 0(x) if j 0(x)j � k
k sgn(x) else

where k depends on F and ": For normal F; this is the Huber  k:

Since  0 corresponds to the MLE for f; the result may be described as a
truncated MLE.



6.2 The Hampel approach

Hampel (1974) stated the balance problem between bias and e¢ ciency for
general estimates as minimizing the asymptotic variance under a bound on the
gross-error sensitivity.

For a symmetric location model, his result coincides with Huber�s.

It is remarkable that both approaches coincide at the location problem, and
furthermore the result has a high breakdown point.

The case of multidimensional parameters is treated likewise but the details are
more complex.


