,{“’ B is arbitrary , the vector B 4 is also arbitrary so that B’
qo1
o
"
g e Aii = 0
r fq) D)
r .f}wl q
Apd A i
] = fpi IQJAU

! 5 _ suffix set Aij is atensor of rank 2 .

q # 0 and the above relation is

A Jidamde P igiy jp s atensor of order m, where B is an

AT (g ie=iy
soroforder n,thenprove that Aj i ...; j1ig+j, isatensor of order m+n.

(e
(MMETRIC AND ANTI - SYMMETRIC TENSORS

yrensor A i ...ri, 18 said to be symmetric in a pair of indice® i, and i, (say)if

Anliz.’..inzAizil""in (1)
.mssddwbeami-symmetric in the indices i, and i, if
gy iguni =M gl iy (2)

g i s2id 10 be symmetric ( anti — symmetric ) if it is symmetric ( anti — symmetric ) in all possible
of indices . Symmetric and anti — symmetric tensors occur frequently in mathematics and physics .
wnple , the interia tensor , the stress tensor , the strain tensor and the rate of strain tensor are all
i, while the spin tensor is an example of an anti — symmetric tensor .

f0REM (7.13): Prove that the Kronecker tensor 8 ;; is a second order symmetric tensor and

the alternating tensor € ji is a third order anti - symmetric tensor .

A A A A
A00F: We have 51j=ei.cj'=c]'.ei=5j1

%sows that §;; is a symmetric tensor .
|
N s
' Bijk=-€jik = —€jkj = — €kji
%owsthat € is an anti — symmetsic tensor .
i . : ix i
4 Asymmetic second order tensor A ij can be written as a matrix in the form
; A 1 A 12 A 13
[ A ij ] = A 12 A 22 A 3
Ay Axpn An
‘n.m -3 : .
Ymmetric second order tensor has a matrix of the form

0 A, An
A
\. [Aij]-'-["b“2 ) 023

‘h’t\l’i -Aj3 -An _ 3 X
1y "y ¢ second order tensor has only 6 independent components , while an anti — symmetric

\pqh *r has only 3 independent components . Also in an anti — symmetric tensor the

s ing di 1 m =0
hleidmgdllgonalareallzcro. [ Ajp == Al o 2Ai=0 or Aii ]
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: Pap) PijR ™M
= tgifectintfpifom Tﬁ‘—lfj

: kB
= qufﬁ'rk'lnslmA‘Jk -

= qu,rkthijkBi"
i roduct of A;;x and
: : sl called the inner p j B ; J
Wil Abreg RS FILS - e d m in the product AijkBmn., we Lmn “a"h'm.g l
. ' -d : | ¢
By contracting w.rt j and n Of T n'"““arly tury
l)\w“'
%

inner product is a tensor of rank 3.

COROLLARY: The innef product AiBi of two vectors A and B (a2 i E) |
I3y,
this reason AiBi is called the scalar or dot product of y . o 1

rank zero i.c. a scalar . For

GENERALIZATION

, G - nsors of rank m .
If Ai i, ip and Bj j, - ip are two te and n Tespectivey by
- ) u”

their inner products is a tensor ofrank m+n-2.

721 QUOTIENT THEOREM
With the help of this theorem we can decide whether a quantity representable by mul - g

set is a tensor or not .
THEOREM (7.12): If an inner product of a quantity X with an arbitrary tensor is itself ; g

then X is also a tensor .

To illustrate this theorem we consider the following example :
EXAMPLE (19): If Ajj B is a vector where B j is an arbitrary vector , then prow tidb
2 - suffix set Ajj is also a tensor of rank 2.

SOLUTION: Let C; = AjjBj, Cp = ApqBq where Ajj,Bj,Cjand Kpy Bt
the components of the 2 — suffix set and the two vectors in the systems K and K’ respectively-
Now since C; is a vector , therefore

or  ApqBgq=¢piAijB; 0

Also B being an arbitrary , we have B'q = £qjBj

@

or Bj= £4j B’q
From equations (1) and (2) , we get

ApaByg=fhitqjAi;B

o (Apq-fpifqjAij)By=0
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=23 INVARIANCE OF SYMMETRIC AND ANTI-SYMMETRIC PR Ovmz._.e
TENSOR O,
TEEOREM (7.15: If a temsor is symmetric ( anti - Egvtnrngﬂe—gﬁ
ceordinate system , .rﬂ..._—.mz.omb:-o_:.e_xn@sgu

system. ssl
PFROOF: We prove this theorem for the tensor A jk
F A, ssymmewicin i and ), then
Ajjx = Ajix 1

Al Apnp = fnilajlpxAijx

= foifaifonAjix [ using equation (1) ]

= €ajlmilpkAjik = Aump
Ths Azs; = Asmy showing that the tensor is symmetric w.r.t. the same pair of indices i te
comdmar Fvsiem as well |
Semilacty . m case e temsor A,y is anti - symmetric in i and j we can show Asiap = -honp

724 FUNDAMENTAL PROPERTY OF TENSOR EQUATIONS

THEOREM (7.16): A temsor equation which holds in one coordinate system bolds is 1%
cvordinate system ie. the form of a tensor equation remains the same it
rectangular coordinate system .

PROOF: We prove thus property for the simple tensor equation .

la  A,;Bi;=Cj, m

wit®
U @ teusor eguation where A, B ijk.Cjy g?éﬁ:ﬂ&%&%i&

Boem K !nagggx:gﬁ:&igsgg&isaﬁaa

\I.,\i!),. wol\lu\-rnsr (2
whese | |k ae dvenpsies

Let A, beasecond? order tensor, then We can write I.L«?
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a“
f o U e the companents ol the same tensors w | | the system K | then
gomt : '
Alm'f"\'k (H
at .
‘”A] - \\\QAQNH\
r"‘ - '.‘\"‘Q"\]"l‘l (‘)
4) . equation () becones
oy and (4) .8y :
“""lr‘a‘\‘nlik = Cig
fal
ki ';"A‘ and Brm!\ - 'N'ml'u\“‘“
YLIT e &)

o (e same form as equation (1) .
e
JARY: From equation (1) and (3) writig D IvEA RO N D= /\‘p llil\ m i (-"m "

{ - - Al N )
gD ® 0w Doy = 0 o mom = 10200 which shows that if the components of a tensor

g unlinate systen are all gero | then the companents in every coardinate system are also gero

IXRO TENSOR

Lol whose components relatively 1o one coordinate system and
P cnndioate systemn are all gero 1x Known as a gero tensor

. therefore | also relatively 1o

3 BOTROPIC TENSORS

Llensr ix said o be isotropie (F ite components rematn the same in all rectangular Cartesian
st under arthogonal rotation of axes

Womars of ander sero ( (e, sealars ) are all (sotropie . Shnee there are no sotrople tensors of

| herefore , we will discuss the otropie tensors of xecond and thitd ordens | which are of particula
W lensor analysis |

(AT Prave that the Kronecker tenwor 81 In an isotrople teswor of order 2,

We know that the equation of tranxformation for the second order tensar A ) s
* *"‘*"m"”A.j (n
40 84 i oquation (1), then
). LT TR MY

"'"“‘“Mh 81 tranaform into themselves undler the tensor totation law . Thux 8§,

w, o of order 2 This tenwor (8 the most important of all the xotople tensars . Note that
w0k of arder 2 I sealar multiple of LIy
Ty, Pruve thiat the altern (g tensor € )\ is an Wwotrople tenwor of order 3,

The equation of trmnalonmation for e thind orler tensar v

A
Ty w (h
' .Ni'.'."AH.

W I ——
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 F \SOR CALCULUS
» TIATION OF TENSORS

19):
ra

If Ai i, 1, Isatensor of order n, then its partial derivative w.r.t. x P
oa. »

W .5.;‘_; Ai i, 1, Isalso a tensor of order n+1.

‘ The law of transformation for the given tensor is

: L PR P PR PR, VY

L el iar 0
{ .||thc9)""b°ls have the usual meanings . Differentiating both sides of equation (1) w.r.t. x'k we get
A dy ] 1§ St L Dk Ja! A iy e > Where p isd :
) 12 n ““axp 1is nnan p is dummy
w“knowthal"k=fkpxp or xp=fkpx’k
a—‘-z-fk
BT P
- Xk
3 RIS - s 0
W;;;Ajlj2”m"“—"'ll' ----- f-’nln ’kp aXp Ai|i2 ----in (2)
ich shows that é‘i— Aii, i is a tensor of order n+ 1.
p

WIE: (i) If the partial derivative of Ai|i2 i WL Xp is denoted by A; i, i p then

sution (2) can be written in the form

. : A R e : - 3
AJI.“"JD,k-’Jlll“."’Jn|ntkpAll.“ln’p ()

Memntiating both sides of equation (3) W.r.t. X m We can show

?

Ty i oy (jlil s B3

ininfkpfmaAiyig pg

2 :
‘hu\i % _a__ A; "3 ) which shows that Aila2 “ Ty oy is a tensor of
)=l igooeig ,
BP9 dxqdxp !

Winy)
v $ is a scalar , then 5i or ¢ i is atensor of order 1 i.e. a vector .
X
INTEGRATION OF TENSORS

Integra i inate direction yields a tensor of one order higher
%, > ouon of a tensor with respect to the coordin

100 is combined with a contraction . For example ,

e I X d thus (IA"ka)
o T : Ajjdxy) an ij

;‘ ""I(lmi‘ninj)kadxk=’mi,“llpk( i)

: ‘\ jdxk)andis

5 ‘ | =
\ Mma'ﬂowe“r(,[-‘\ijdxj)1sncontmcuonof(_[ i
I n of a tensor w.r.t. a scalar, fo

r example volume or

%:::he‘ ie. one less than A . Integratio
shown to vield a tensor of the same order .
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DOT PRODUCT *
Let K and § be two vectors with components A L,A; A, and B iy

1.27

2 B i) l’e.h
then ;.§=A|B|+Asz+AJBS=AiBi' oy,
THEOREM (7.20): Prove that if A and B are the components of o, fng

Ordey

A and B respectively, then ABj is a zeroth order tensor

PROOF: Since A; and B are the components of first order tengor, thereg
’ ; Ore

transformation law from the system K to K, we have ““d%

A'm =lmiAj (1)

B'n = fpj Bj (2)
Multiplying equations (1) and (2) , we get

A,mB’n=fmifninBj (3)
Setting m = n in equation (3) , we have

AlmB,m=fmi€minBj=81inBj=AiBi )

which shows that A ; B; is a scalar or zeroth order tensor .
NOTE: (i) Equation (4) can be written as
A’| B'|+A’2B,2+A’3B’3 = A|B|+A2B2+A3B3

showing that the scalar product of two vectors is invariant under the orthogonal rotation of axes .
(ii) We have already proved that A ; B; are the components of a second order tensor , whereasin
above theorem we have seen that A B ; is a zeroth order tensor . So the difference between AiB; #§

A i B must be carefully observed .
CROSS PRODUCT
5 e g respwﬂ"‘h
Let A and B be two vectors with components A;,A;,A; and B,,B2, B
then C = AXB = (A;B3-A;B,,A3B,-AB3;,A,B,-A,B,).
We now show that the components of C A X B are given by
CizeijkAjBk for. . i=.1.2.3

C:=€jkAjBy €21A3B,+€,;A B, = A;B,-A,B; = (AX

Cy=€3jkAjBx = €A Bytey A,B, = A, B,—A,B; = (A¥

Thus (Xx—B-)j=€ijkAjBk
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‘1#‘ A A
N ‘qu‘d{m“;,wehave Ciei=€jkA;B ¢,
#. gijsAiBr e,
C z E1J :
- E _€ijkAj Bké€i where now the summation is over all the indices
A :
k
J ] ‘11”: Prove that
.ﬂl 0 the components of AXB jie. C| = ¢ i)k Aj By transform as the
W components of a vector under a rotation of the coordinate axes .

X X i Is invariant under the rotation of coordinate axes

() Let €ijx,Aj, Bk be the components of a third order , and two first order

|’ ’ ’ ’
Linthe system Ox;x2%x3 and €Empp, Ay, B p be their corresponding components in the system
4 (. Then the laws of transformation are

'

tmnpzlmi’njfpkeijk (1)
An=fjAj = farAs )
Bp=fpkBk = €psBs 3)
g equations (1) , (2) , and (3) , we get
f’mnpA'nBlp = Imifojfpk€ijk fnrArfpsBg

= fmi(fnjfnr)(£pkfps)€ijkArBy

= £nidjrdks€ijkArB;

= fmi€ijk(8jrAr)(8ksBs)

= fmi€ijkAjBk
Ca = tniC )

Cl = E'mnp A,n B,p

5 (4) shows that the components of A x B transform as the components of a vector .

AXR = €ijkAjBg¢;
mapAy B’ ®)
: (6)

'

el
-

nBp=fmi€ijxAjBy

n

A
t A A
. l'"ci=£mr°r

,I ') and (6) , we get
£ LRy >
.IPA‘BPG'" i lmieijkAjkamrer
A
i ‘milmrfijkAjBkcf
Sir€ijkAjBker
iijkAjBk(Eir'e\r) = EijkAj

A X B is invariant under the rotation of coordinate axes .

A
Bkei
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SCALAR TRIPLE PRODUCT LR
Considering A .B x C as the scalar productof A and B x C » We get
N.mnm = >_awxﬂf

= >_n_hwm._0rln:r>_w._n.r 1)

THEOREM (7.22): Prove that

0} A.BxC=B.CxA=C.AXB
(i) A.BxC=AxB.C
PROOF: (i) Since €;jx = €jkj = €kij» therefore ,

€ijkAiBjCk = €jx{BjCxA; = €xijCkABj
Using equation (1) above , we get
A.BxC=B.CxA=C.AxXB
@ A.BxC = €,xA;B;Cy
(€ijxAiBj)Cy = wam:or

AxB.C

]
*

VECTOR TRIPLE PRODUCT
THEOREM (7.23): Provethat Ax(BxC)=(A.C)B-(A.8)¢C

PROOF: We have
HNXAWXMVH_ = m:r>_.A|w.xmvw

= m_;?‘mfaw.naum:.xm,,afo:w.na
= Am:m_.:.lm_am.?v\:w\ﬂa
= m:m..::)‘ww.Oalm::m__‘}.:waﬂa
= AjBiCj-AjBjC; = (AjCj)B;-(A;B;)C;
= A>.va_.lA|>...w»vOm

which gives the three components of the required formula for | = | S Bt

Hence MxAMxmvuAMmVWIAMva

THE DEL - OPERATOR
In Cartesian tensors , the de] - operator denoted by V is defined as
d A _0d d

V=2¢ +eyz o B a1,
'ox, " “29x, numxuon_ 3




d
Le. a‘x‘) transform as the components

of a vector under a rotation of the coordinate axes

|
| the components of the del-operator ¥ (

the vector del-operator V is invariant under the rotation of the coordinate axes.

1 (W
| {) Let " .~y -2 be the
_ M: (1) Ix; 3 X] components of the de] - operator V in the system
o ox) X1 x'y respectively . Let x; and x’ j be the coordmates of a point in these systems ,
¥ H
f‘w 7 ‘ '
lsf:l‘l+’2|x2+’”x3

,,-[l‘x|+lnx2+’32x]
’
!1=;],;,+12,x2+’:313

gqie chain rule , we have

-d a a a dxz a ax]
’ = +
2, ax,ah 3xzax, r”‘H)x.

" inSe +I., g + 1l 9
dx dx, d X3
8
g & 1% (n
1
m [ i J Bx, dJ axl J ()XJ
K1Y 3"'3;, 9%X29x, 9Xsax,
J J 9
= ’2]ax'+’nax2+’z3axj
9
» (26'3_; (2)
i :
o, d Ix; axl d 0x3
o =
9%, axnah %29, 3x;3,‘3
J )
" g tiny ot ingg
3
1 i ‘n:.’a__ 3
1
| 1).12), and (3), we get
1 ;'L'- 'u.‘a‘ (4)
N Y 9%y
D™ nts of the del operator V- transform

toder 4 rotation of the coordinate axes , the compone
& vecuor . It is often culled & vector Operator .
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s of the vector el — operator V in the
¢ " and ,9_, be the componen A
(i) ax, axJ 8
hat
F a8 i hen we know ¢t
and Ox 1 X2%3 resPecuvcly. T
vy A (1)
ale"’ JlBX1
| : Lk Q)
Also  €) = tjici = fikek
From equations (1) and (2) , we gt
A9 A ) ’L_Q-
B " (#;xex )| filgx,
dxj
Tk
= £jktjick 5y,
A _Q._g_@._
= dki€k Fiig 3x1
3 A _9d
' 0 v 0 A’__Q_ A __a__ x +c
i ;7 +€ - €] +€; §
or € axrl"‘ez % 3ax3 a a ax3
or v =

which shows that the vector del — operator V is invariant under the rotation of the coordinate axes .

GRADIENT
Let $(x,,x2,X3) bea scalar point function , then we know that

3¢A3¢A3¢

Vo =855 t6 5, Bny o
In tensor notation , equation (1) becomes

vo:%ig%
The components of V ¢ are given by

(VO).-:"] i=1,2,3.

NOTE: (i) From equation (1) it is clear that the operator V is given by
V = 21 9 +3 9 ¢ d
ax,” “23x,7 33%,
b RS
” V)

() For any arbi A

(3)

1



