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CURVILINEAR COORDINATES

o fur we have restricted ourselves completely to a rectangular Cartesian coordinate system
S0 . A A A ;
e advantage that all the three unit vectors i, j,k are constant unjt vectors . In applications
ha )

e sseful to USe other coordinate systems , for example , when a problem involves cylinderical or
’*“Ms qmetry . In this chapter , we shall discuss the general orthogonal curvilinear coordinate system
| bov {mw the gradient , divergence , curl , and Laplacian can be transformed into this system .
4 cular |, WE shall discuss the two most important coordinate Systems for space , i.e. the cylinderical
;Tnnf system and the spherical coofdinate system . We shall see that the cylinderical coordinates
iy e equations of cylinders , while spherical coordinates simplify the equations of spheres and
o We shall also derive the formulas for the gradient , divergence , curl , and Laplacian in cylinderical

épherical coordinate systems .

! TRANSFORMATION OF COORDINATES

Let the rectangular coordinates ( x , y , z ) of any point be expressed as functions of u 1»U,, Uy,
it

x=x(“1)“z,“3)
Y=y(u,,u;,u,) (1)
z:z(u],uz,u3)J

o from elementary calculus shows that if the functions in equations (1) are single-valued and have

iy Partial derivatives , then equations (1) can be solved uniquely for u,,u,, u; in terms of
find 1 7 Y

|I|=U'(x'y’z)
u1=u2(x,y,z) (2)

sy
' 1(x Y,
:‘IM . b o : .
m‘ With fectangular coordinates ( x , y,z), we can from equations (2) associate a unique set
N%ﬂed(.“ 1*%2.9,) called the curvilinear coordinates of the point P . Hence any point P can
Y, g " space poy only by rectangular coordinates (x,Y,Zz) but also by curvilinear coordinates

gy €quations (1) and (2) define the transformations of coordinates .

.




6.3 COORDINATE SURFACES AND LU
surfaces (Of level surfaces)

btained bY setting the
constant . Thus if

then the surfaces
= [y W% called

The coordinate
are families of surfaces ©
coordinate equations equal to 3
. Caskes are constants ,
u; =C., W3 = £y Wy
coordinate surfaces . The coordinate surfaces are
generally curved and each pair of these surfaces
intersect in curves called coordinate curves in space. o]
Thus u , - coordinate curve is that along which only
are constants . Similarly ,

e only u, varies whileu, 5
— coordinate

are constants as shown in figure (6.1) .

u, varies while u, and u,
along u ,- coordinate curv
and u, are constants , and along u,

curve only u, varies while u, and u,

64  UNIT VECTORS IN CURVILINEAR COORDINATE SYSTEM

Since the three coordinate curves are generally not straight lines , as in the rectangy|
system , such a coordinate system is called the curvilinear coordinate system . ey,

—

r 5 A A 2 i
t r = xi+yj+zk be the position vector of a point P. Then the set of equations

x =x(u,,u,,uy)
y =y(u;,uy,uy) E
z=12z(u,,u,,u;) : W
e |
can be writte = 5
B r (u,,u,,uy) :
: i
!
The or .
vector —au, is tangent to the u ;— coordinate :
'
e - A - - '
curve at P. Then if e, is the unit tangent vector at o
Jr A o
P in this direction we can write g — aul i Y
1= o= 4 us=Csy M,
gl’ (- 21 .
u
1
% U, curve 3
s0 that d 5 A i Figurt(é
au'-hlcx.Where h, = 2 d
1 du,
Similarly if e,
thed

A
and e .
3 are unit tan
gent vectors to the y and i
2 u, —curves at P respecﬂ"ely'

P =
a“z—h“"“dL_h“ oh o
du, 3€3, where h, = ar L

du, |" and hy = | gu,




-
i} b, and . h, are called , the scale factors . The unit vectors e | .:2 ‘ 23 are in the
§ ,u respectively . In general, h, ,h, h, are : i
W"mcrc&"“gu" 293 R 120y, hy functions of u,,u,,uy;
M 8 0.hy 2 0. Hence €, €2, €3 are also functions of v, u,,u,.
0,
L' ecorat P pormal to the surface u, = C,, a unit vector in this direction is given by
(o i°
0
:#{c w
(= I
i = |VU:
S R S
=t an =
unit veetors E: =y b A4

ormal t0 the surfaces U, = C, and u, = C; respectively.
unl

j point p of a curvilinear coordinate system there exist , in general , two sets of unit vectors
b angent 10 the coordinate curves and E1 3 B E3 normal to the coordinate surfaces . These
t' b

Jf unit vectors generally vary in direction from point to point because the coordinate curves are
‘5 However , the two sets become identical if and only if the curvilinear coordinate system is

ORTHOGONAL CURVILINEAR COORDINATE SYSTEM

If the coordinate curves intersect at right angles , A ea ucurve
aiiear coordinate system is called orthogonal .
k1,.0,,and u, coordinate curves of an orthogonal

finear system are similar to the x ,y , and z coordinate

B of 2 rectangular Cartesian system . For this system ,
_ A A A L ERE. T

W sets of unit vectors e,,e,,€3 and E,,E2,E;

¥ e, [see theorem (6.1) below] . In an orthogonal

L A A A

F 4 coordinate system |, the unit vectors €,€z2, €3

Mwlly orthogonal at every point , 8y, E, Figure (6.3)

,l

A A
baty = A
. c2‘°3=03.c|=0_
A
A
ATTA A A

1+8) =
=€ty =e3.5 =1

e lg A A A
"‘C1Xe,=¢3

th A
Mg, = A A
CJXC'n‘—"el
A
P
LR A

‘clx53 =e,

i . .
rige orthogonal curvilinear coordinate system can be expressed in terms of unit vectors

(13 X A
= A A
A'e'+AICz+A303

} are the components of K i
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324 s uy AP orthogonal curvilinear coordi"ﬂle;‘u\ \1‘{ i
pRpa Gy Provethatll 3070 @ &=E &
. . j = 4 &
A |Vul= h-; i1 L2,
o & 804 fi =
()] g, isavector normal to the surface u, = C theregey
] @ Since | g,
SOLUTION: ay,
o L A
toe;. . scalar factor of pf0port|ondllty between e, and y ;
A . Vu, where hy 152 I
Thus € = U1 ! A | 1 % -
: led _ L (sincele,l=1) ;
5 ol andso|Vl11|= hy h,

or Vul—hl

-1
or |IVu,l=hy-

%
Similarly | Vual = h, and |Vu,l =h3.

it
i il = h i 0 - 1 ’ 2 ’ 3 -
Combining the three equation |V u; | i d

s , we can write

(i) By definition ,

ﬁj = I—g—“J—l =h;Vu; = Qj, o 1,248 and the result is proved .
i

EXPRESSIONS FOR ARC LENGTH , AREA , AND VOLUME ELEMENT

6.6
ORTHOGONAL CURVILINEAR COORDINATES

ARC LENGTH ELEMENT

From r = _;(upuz-u:g)
= dr ar 3T
dr: au1dul+au2duZ+au3dU3

A A A
h,du,e,+h,du,e,+h;du,e;

Then the differential of arc length d s is determined from

. T
(@ =dr.dr (D)
For an orthogonal curvilinear coordinate system , weé have
A A A A A A
€1:€, =€2.€; = €j.€3 =1
A A A A A A

€. =¢€j.¢e; €3.e; =0

Thus equation (1) gives

T

(ds)=dt.47 = hy(du,P+h2(du
and the element of arc length ds js obtained by taking
Along U,-curve,u, and y

ds, along u, at P js h,d
are ds, = h,du, and ds,

2 +h3(du, ) @

the square root of equation (2) -

3 are constants so that d ¢

e ontial Of %
u,. = h,du, &, . Thenthe differen® urvf"‘F

1 - Similarly | the diff . ; uy¢
- Kl tlerential of arc lengths along U, and %3

respectively .
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7R AND TENSOR ANALYSIS

AREA ELEMENT
From the figure (6.4) , the area elements are given By

A A
i = ‘(Mdu,e;)x(h\du\m\.l
A A \ \ \ 4
= hyhyleyxesldu,du, = By h,du,du, Luime Te\s -
A A o
A= ‘(Mdu,e.\x(_l\‘dn,mn = A, hydh, dh,
LFY A \
"l(h.du,e.)x(l\,d\|.r~” = h, h.dn dw
oLy
: ME BLEMENY
¢ kn \ U BRVEN N N i~
. O% that the absolite valie of the xcalar Byple Prnims o
5
‘\ I
® A \ \
(h‘d“ﬂ't\.('\uh\:.v“\\‘h,d\\x"‘-”
=1 e \ \
|'\3h|d||“‘“,l‘\\‘IP'._"A\'-" A
\ \ \" \

‘ gy ' !

lxphp\‘lQ-A Lk AL L4 “‘ 1‘ ‘\a \‘
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AND LAPLACIAN N
NT , DIVERGENCE » g ORTy

68  GRADIENT, DINATES M
CURVILINEAR COOR )

EXPRESSION FOR GRADIENT

A o =
= f|t’a|+f1'e2+f363

(1

Let Vv ‘
where fq,f2,andf3 areto be determined .
¥ T dr
p: Jr Q_I'_ P —dus
Since dr = -a—‘:du,+auzdu_+au3 A
A
= hldulg|+h3du262+h3dU3°3
we have
d\V=V\|I.d—I'_ =h|f|du|+h2f2du2+h3f3du3 )
d
T S dus ()

Bu dy= ﬂ".d“"'é_u_zd“z*é—u_a

From equations (2) and (3) equating the coefficients of du,,dua, and d uj, we get

Lk G A
f'=h|8u.’ z—hzaUZ’ 3—h3 au3
Then from equation (1) , we have

Gl hooe UEL K WA
V‘ll % h] aulc'+h2 auzez+h3 3u3e3

4)
This indicates the operator equivalence

A A A
e d e O &5 0
V"hlau|+h2 au2+h3 all3 (5)

which is the expression for the del operator in orthogonal curvilinear coordinates .

ALTERNATIVE FORM
Note that by taking y = u,; in equation (4) , we get

iy o= Lg : A i
1= 1.6 &, = |
hl 1 1 h]VUl i

{

|

Similarly , by taking ¥ = u, and V = uj3 we get

A A
e2=h2Vu2 and C3=h3VU3
Thus equation (4) takes an alternative form

Y —1 L4
aul ul+a“zvu2+a_u_3vu3 ©6)
EXPRESSION FORD
IVE
We have RGENCE

V.A = A
V.(A|e|+A2:;+A323)

- v'(A]lek])".
V. -
(A:ez)+V.(A333) (7




;:CI 7. (Alh2h3VU0XVU3)
= V(A hzhl) VL|2XVU3+A|h h V. (VUzXVUJ) (8)

(KXB)= B.(VXA)—A.(VXB) and VxV¢ = _6, we get
v.

| Jas »
ulof“‘“ - Vuy . (VxVuy)-Vu,. (VxVuy) =0
TRAMTY
gV
k_.;.ll”‘m 8 pecomes g gl
)2 T(AD2s) 1 Xp, * O
M A
€
- V(Arhahs) 1o -
j. ! ==
:[hlaa,(A hahs)er+5-5 0 (Arh: hy)es+p; a Ju, Arh: h’)e’] whizhs
s i 0
=h|h2h aul(A yhahy)
e
n.(Ase;) = b hoh; du Z(A 2h3hi)
: A ] d
T.(Ases) = h, h h3—(A shihz)
mequation (7) , we get
e [ 5 (Arhaha) 432 (Ans b +55 S| o
h|h2h3 ( 3)-g. 2 3h, 3 2
HPRESSION FOR CURL
w —
e Vya = Vx(A.3,+A232+A323)
A
iy = Vx(A13.)+Vx(Azgz)+Vx(A3e3) S
WAe ) o
ll)"VX(All'“VUI) (Sinccgl'—_hlvul)
% V(A.h,)xVu,+A,h1VxVu|
A
TVABOXELT  (sinee VxVu, = 0)
1 A
TE® ! i g
[hlaul(Alhl)el“‘hl Sap hl)"'~""h du, A h')h]xﬁ

el

hlhlm(A‘hl)gl_hlh au (A hI)CS



J4&0

1 et a N\

A )
o 5 h, T (Azh,
Similarly Vx(A?ez)'hlh;aul(Az )c‘ h, h du, )el

- ) = o RS &
and VX(A363 = hyhs au2

o i s
(A]h])cl h, h du, (Alhl)cz

Thus equation (10) becomes

A
. 2 d
SERERE I
Lh e _hzha[auz(Ashs) au3( R ,\hshl auJ(Alhl)-\u:(A;ha’]
_5.1_[_3_ P
+hlh2 aul(AZhZ)—m(Alhl)]

This can be written as

A A
h]C] h2C2 h_‘qe}
1 d d d
hyhyh;, aul aUZ au3 (]})
Ayh; Azh; Ashg

VxK:

EXPRESSION FOR LAPLACIAN
We know that

M kB S C e AT B
w_hlau, & ) du, haaue
— 1 d dJ 0
V.A = h h h3 [aul (A h h3)+ (A h h|)+ ( ghlhz)]
2k 1 o d d
If A=V\|!,thenA1=h—5—w“ A, hla_“i A, hlé'l and thus
uj
V.A = V.Vy = Vy !
3 1 [ d (h2h3 a‘l’) d (hsh, 9V d (Lu_hzﬂ” !
hihohy [ du,\ hy 9u, /¥ 9u,\ h; du,/Fau,\ by 90/ Ji
(12)
EXAMPLE (1):  Consider the curvilinear coordinate system defined for 220 b/ i
X=U;-u,, y=u+u,, z=u§ b
(i) Find i\the unit vectors 2 1 32 ; 3 ; and show that the SYStemiso
right-handed . Also find the scale factors h;, hz, h3-
(ii) Find the expressions for (ds)? and d V. : &
(i) Find V y in this system for y (u,,u,,u;) = u;¥2*"?’
(iv) Find V. A and Vx A for the vector field
A = u < s ”
3¢, +uyu,e,+u,u,e,.

®  Fima Vi ity =udeulsl.
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‘i

*"  GULAR CARTESIAN COORDINATES
BECTAN . z) beany point whose projection on the Fed
Y PN':" y) . Then the rectangular Cartesian i
g T)O{Parcdcﬁnt:dasx=OR,y=RQ.
! r.Y lqﬁoW" in figure (6.5) . In rectangular Cartesian :1
Py AT |

, 0 (he unit vectors are denoted by i, j .andl’z o : WA
p e Aty : X B y
= A can be represented in terms of these unit AR -‘,r !
| A A

R=Ai+AI]+ASK Yy a
B X

- § s - /.\ I-\ ]

cor 1 in this system is given by r =xi+yj+ b Figure (6.5)
10
ol factors are given bY

L || A | T g e
hl = X e i 2 2 a y iyl J gl ) 3 = a z — >
¢ ectngular Cartesian coordinate system is a particular case of an orthogonal curvilinear
ksytemwhere u; =X, W, =y, uy=z and h, =1, h;=1, hy=1.
COORDINATE SURFA CES

Inrectangular Cartesian coordinate system , the coordinate surfaces are :
If x is held constant while y and z vary, then the equation x = C, represents a plane parallel

wthe yz-plane as shown in figure [6.6 (a)] .

Iy isheld constant while x and z vary , then the equation y = C, represents a plane parallel
the 2x-plane as shown in figure [6.6 (b)] .

2 is held constant while x and y vary, then the equation z = C; represents a plane parallel
"¢ xy-plane as shown in figure [6.6 (c)] -

t . . .
“rdinate surfaces are mutually orthogonal in the sense that any two of them intersect at right

Fitbermre »€ach point in this system is the intersection of the three coordinate surfaces

».y=Cl'and Z=C3_
]

z
AZ z

Cy

2=C
y=C; : /

(b) (c)
Figure (6.6)
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EXPRESSION FOR CURL
We know that in orthogonal curvilinear coordinates , we have
A A A
h,e hie; hses
V x X i 1 d d _a._

hyh,hsy | 3u, du, du,
h|A| h2A2 h3A3

In rectangular Cartesian coordinates , this becomes

mt W) 1 ted
- 1 d ) IR e N R
2. 2

VXA S IO | ax. Y. .02 TN P
A, (MHA; (DA ATk
(32 NN INE LAY
Xy 0z dz d x d x 9y (7
EXPRESSION FOR LAPLACIAN

We know that in orthogonal curvilinear coordinates , we have
V2 3 1 d h2h3a\|’ & 0 (h:hla‘V)+i h!hz_al i
V= hih;h, du,\ h; du,/  du,\ hz du, du,\ h; du,
In rectangular Cartesian coordinates , this becomes

1 [i(gl)glza_\g) i(gl)gl)ﬂ) i(gl)ma_w)T

MMM Lax\ @ ax)*ayl M 23y/%a:z _
'y 'y A’y

= ax2 Yoy tazL? ®)

V2W=

6.13 CYLINDERICAL POLAR COORDINATES

Let P(x,y,z) be any point whose
projection on the xy—plane is Q (x,y ). Then the
cylinderical coordinates of P are (r,0,z)in
which r = 0Q,0 = ZXOQ and z = QP. From
the figure (6.9), the transformation equations
expressing the rectangular Cartesian coordinates in
terms of cylinderical polar coordinates are:

X =rcos® (1)

y = rsin® )

Z=12 3)
where r 20, 0SS0 <2m,and — < z < oo,

COORDINATE SURFACES

In cylinderical coordinate system , the coordinate surfaces are:
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A
1'10‘
is held constan
r »

t while 8 and z vary, then the equation r = C, represents a right circular

y of radius C, and axis along z-axis ( or z-axis if C|=0) as shown in figure [ 6.10 (2) ].
¢

cvlin ; :
' ¢ held constant while r and z vary, then the equation 8 = C, represents a half plane

g o le © with th '
1 the 2-2XI8 making an angle 6 with the xz — plane as shown in figure [ 6.10 (b) ] .

ihro®

1 18 he
pendicular 10 27

d constant , while r and  vary, then the equation z = C; represents a plane
axis as shown in figure [ 6.10 (c) ] .

“Z aZ

(0.0,Cy)

8=C
2 2% Cy /

Figure (6.10) i

COORDINATE CURVES

The coordinate curves for cylinderical polar coordinate system are :

If 0 and z are fixed while r varies , then the intersection of 8 = C, and z = Cj is a straight
line called the r—coordinate curve or simply the r—urve .

| Ifrand z are fixed while © varies , then the intersection of r = C, and z = C, is a circle

(or point) called the B—coordinate curve or simply the 6—curve . 5
4

i Ifrand O are fixed while z varies , then the 6-curve
[

intersection of r = C, and 8 = C, isa C o
siraight line called the z—coordinate curve or >

. r-curve
simply the z—curve |

™ 3 ; G
..:" f=curves are straight lines radiating from and
0 the 2-axis , the B—curves are circles centered on Yy

L
% d parallel 10 the xy-plane ; and the z—curves

l”""“'thl lin
es e . .
Eltm,u)_ parallel to the z-axis as shown in s TR

Figure (6.11)

W
| ‘éYLINDEmCAL COORDINATES IN TERMS OF CARTESIAN
OORDINATES

We kn
) ow . ; :
Yade, ; that the equations expressing the rectangular Cartesian coordinates in terms of
Polar coordinates are
' rens (1)
e @)

k )
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Squaring €quations (1) and (2) and adding , we get
eyl r’(cos?@+sin?0) = r?

or tm x4y (aimpe rls positive )

(4)
Dividing equation (2) by equation (1) , we get
Y rsin@
X " rcosg - an®
or 0 = tan~! % (5)
Hence , the equations expressing the cylinderical polar coordinates in terms of Cartesian °°°fdinatem

r=\Y+y!, ¢= tan"%, zZe2

NOTE: For points on the z-axis
points of the transformation .

©6)

(x=0,y=0), 0 is indeterminate . Such points are callcdsin1
i

EXAMPLE (2); If r,0,z are cylinderical polar coordinates , describe each of the f0“0Wing|w
and write the equation of each locus in rectangular coordinates ;
0) r=4q @ e=1% i)  z=3
(iv) 0=73, 221 M r=4,z2=0 () r=2, 9.l
SOLUTION:

In cylinderical coordinates, x = rcos @ :

1Y
r=\/x§+y:, 0 = tan ';, Z=7z

() r=4

y=rsin0, z=4,

or x2+y? = 16

1.e. the given equation represents a cylinder with axis as the z-axis ang radius 4
T

(i) 0= P

¢ N
Y tan &
= = oo
or n2
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ANALYSIS
| W
ib
*1*
E z:l
e 1 Wcanwritce;-!,s
fixed while only T varies . We 3
!
E: x
: v & or -)-(--_- un:;:-\/_‘-"
w'y ) ”
| \Fx o ' where 20
" cquauonsrcprcscmastrajghtlinc y =\/§x, in the plane z = 1 x20, y2
'ﬂq\tﬂ
’:4. z:o
mﬁxedwhile only 6 varies. Wecanwrite r = 4 as
#p
;ﬁ:-‘» oo x4y =16, =0
\,,., wquaions epresent a circle with centre at the origin and radius 4 in the xy-planc
iy
n
§ g=1, 0= 6
,_mdemﬁxedwhileonly z varies. Wecanwrite r = 2 as
yurey =2 or )(3+y2 =

Y

X i B
':6“[!“ x—6 or

& pren equations represent a straight line parallel to the z—axis and passing through the pont of
. ) 1
ofthe circle x*+y? = 4 and the straight line y = —=x..

WITVECTORS IN CYLINDERICAL COORDINATE SYSTEM

9 T position vector of any point P in
Upolar coordinates is z

~_ A A
R"“+yj+z|'2 ‘

A
M=rcos9i+rsin9?+z£ ’ d
\‘c s N .
'orS in the directions of r,0,and z

4% given by

o

i4sing )

R ], e

Figure (8 12)

+8.and 2 are given by
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R ANALYSIS
N Y A go b gl e
' ?Le[s—sin91+cose_] =€o, 3, =0
i)l(" d £
- A a
fi‘ ' a,%ﬂ:—cOSQ?-SinQ_?:-;\“ a_cza=0
Wab: 3
, - ae
4 é-c—‘= " _"'1=O
| Ws0. 98 0. 3z
i' i o Prove that in cylinderical polar coordinates
j#‘l&“ d A oA d A ¢ A d % ¥
rer=ee°’ aeo:—oer, Eel= 0

t
where dots denote differentiation w.r.t. time t.

A R e
We knowthat er = cos@i+sinbj, ee=-sin9?+cos0?. 3,-£

d}r:

84 d8a e AvdO
. i:r=-sin9 %?l+0089 HJ = (—sm91+cose_|)-a= Bep
g1

6 . ,dea Ao AxdB . A
dlee=-coseﬁ 1-8"19"'!'] = -—(c080|+sm91):ﬁ'- -0e,
d A ih_—‘
‘ECz:"dzk-o

ORTHOGONALITY OF CYLINDERICAL COORDINATE SYSTEM
We know that the unit vectors in cylinderical polar coordinates are
A A A A A A A
t,=cos0i+sin@j, ep= -sin@i+cos@j, and o, = k
a :r-:u (coneli\-nine_?).(-lin9?+c019?)
= -cosOsin@+sinBcos® = 0
°.'¢z'(-lin9T+C0l9?).(ﬁ) = 0
f vty (cow?uinej‘).(ﬁ) =0

s;_ - A
r *4,u0d ¢, are mutually perpendicular and the coordinate system s orthogonal

in
e VATIONSHIPS AMONG UNIT VECTORS IN CYLINDERICAL SYSTEM

{
64):  Prove that for cylinderical coordinate system .

: A A A A A
retrmgg.egm e .01

:.“ A A A A by
X0y wagnogmw o, Xe,» 0
L]
A, A A A
¢’ A A A A
% rkegwe,, eghe,me;, 0 gXe ™09

w A A A A A A A
Cknow that &, = con @] +ain@ ), €a = ain01soonl}, .._ﬁ

;”‘ 4 A )
“osl | *!lan),(m.gl, ||||“') - ‘il!l'." I"l" = |
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URV“‘INEARC
A A A A
€e.€p = (—sine’i\+c0593\).(—sin6i+cosej)=sinze...cosze\ )
A A A A ol |
Cznez=k.k=]
A B p
o e 1 J k A A PR A
erXer=|cos® sind 0| =0i+0j+0k=20
cos® sin8 O
A o
AR ) J k A A A
€egXep = | _sin® cos® Of =0i+0j+0k =0
-sin® cos® O
A A A A i
erez=ka= 0
A AA
AN 1 J k A A 5 o g e
erXeg=| cos® sin®@ O] =0i+0j+(cos”O+sin 6)k=k=ez
-sin® cos® O
A AA
N 1 J k SR A A :
eoXez; = | _sin® cos® O =cosBi+sin®j+0k =cosBi+singj=e
0 0 1
A h id
A A 1 J k Nk A A ST % a
ezXer = 0 0 1| =-sin@i+cosOj+0k = -sin@i+coshj = ey
cosO sin® O
6.18 CARTESIAN UNIT VECTORS IN TERMS OF CYLINDERICAL UNIT VECTOK
We know that
A A ; A
er=cos0i+sin0j (1)
A p N A
eg = —sinBi+cos0j @2
ek )

Multiplying equation (1) by cos 6 and equation (2) by sin © and then subtracting , W get

A ¥ A 2 . 2 [_\
cosOe,—sinBeg = (cos"O+sin"0) 1

A A TN
or i =cosBer—sinbBeg

4

Multiplying equation (1) by sin 8 and equation (2) by cos 8 and then adding , W¢ get s

: A A ;. 2 /.\
sinBe;+cosBeg = (sin“O+cos”0)j
A g’ A (&),
or j =sinBer+cosbOeg
i (6) A\
Also k=e;
In matrix notation , equations (4) , (5) , and (6) can be written as
A : A
1 cos® -sin® O er Rl
’j\ =| sin6@ cos® O 29
k 0 0 1 4
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—‘ ,
] dA, I A vu\n, +hqm>qlnwm>q~umo+h%A_.>¢T¢/>m,
- hmm -5, (rAe))er z r min; _
A A A
Cr ree ¢z
Egt 0 80 LRGN g
" r |or 96 0z (15
>—. —.>® >N i
EXPRESSION FOR LAPLACIAN
We know that
m€> 10V A WM\.>
ﬂeu.ﬂf MM.mno¢+mNnN (16)
L TR L TR T
& _.wn:>qv+a 0 t oz (17
From equations (16) and (17) , we have
2
: 12 (dv) 1y 'y
by ESE R B or mawnvfm 20217322
2 (T
g 0 = vl E oyl b s Py R e (18)

is the Laplacian operator .

6.26 SPHERICAL POLAR COORDINATES

Let P (x,y,z) be any point whose
projection on the xy — plane is Q (x,y ). Then the
spherical polar coordinates of P are (r, 0, ¢ ) in which
r=0P, 0 =2/ZZ0P and ¢ = £XOQ.
From the figure (6.13) , we have
OQ =rcos(90-0) =rsinB ( since ZQOP =90-9)

Therefore x = OQcos ¢ = rsin 0 cos ¢
OQsin¢ = rsin O sin ¢
OPsin (90-6) = rcos ©

y

z

Hence , the transformation equations expressing the
rectangular  Cartesian coordinates in terms of
spherical polar coordinates are :
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EXAMPLE (3): Express each of the following loci in u_..-..alan_ polar 32.&.5.8 : ,i /
1,92422=9 (ii) the cone 2 _
0] the sphere x“ +y +2 . IU;N._. :
(iif) the paraboloid z = X*+Y : (v)  theplane , ., 'V
v) the plane y = X.
SOLUTION: We know that in spherical coordinates f
X = rsinfcos¢, y=rsinBsing, Z= rcos
()] x~+<p+u~no
or r?sin?@cos?+rlsin2@sin®¢+ricos’® =9 |
r?sin?@(cos?¢+sin?¢)+ricos’ =9 |
r’sin?@+r’cos’8 =9 or r’(sin’8+cos’8) =9
or =9 or r=3 (since r isalways positive)

Since r is fixed while © and ¢ vary, therefore the given equation represents a sphere With cengy
origin and radius 3 . b [
(ii) z? = 3(x¥+y?)

r?cos?0 = 3(r2sin?@cos?¢+r2sin’@sin’¢)

r?cos?0 = 3 r’sin®0(cos®¢+sin¢)

cos?8 = 3sin’0 or cos® = \3sin6. This is possible only if 6 = m
Since @ is fixed while r and ¢ vary, therefore the given equation represents a cone with vertex atte
origin and making an angle of 7/6 with the z — axis .

(i) z=x’+y?
rcos® = r’sin’0cos’ ¢ +r2sin?Osin’¢ = r’sin?@ (cos?¢ +sin’¢) = r’sin’0
or cos® = rsin?@

(iv) z=0 or rcos®=0

A

Since r # 0,therefore cos® =0 or 0 =

i.e. is the given equation represents the Xy - plane .

(v) y=x or rsin@sing =rsinOcos¢ or sin¢ = cos ¢
This is possible only if ¢ = m mala . Since ¢ is fixed while r and @ vary , therefore the pi% ’ s
is made up of two half planes through the z - axis ¢ = m and ¢ = mala :
0

627 EQUATIONS EXPRESSING SPHERICAL COORDINATES IN TR
CARTESIAN COORDINATES ﬁs&

; ; of
We know that the equation expressing the rectangular Cartesian coordination it terms
polar coordinates are :
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ORANALYSlS
P
J (D
# r\|ﬂ0c0$¢ (2)
: r:mleW 5
';“-osﬁ sations (1) (2) , and (3) , we get
H,,-m’,d.dlf‘gz X 2 6in? 0 cos” ¢+r sin®0sin*¢+r?cos?@
;i“ ‘:”‘H‘ _ tsin’@(cos 2 +sin” 20)+r12cos?®
| rzsmle”zmsze=fz(sin29+c0326)= 2
o @)
+
dthns cquanons (1) and (2) , we get

) - rPsin 29 cos ¢+r sin® @ sin? ()
‘.+y -

_ (tsin?0(cos” ¢ +sin 2¢) = rsin’@

=T 2

oquation (5) bY equation (3) , we get

1snf AE;T— xt+y*

Zz
rtosﬂ z

5t

=’ T (6)
i dviding equation (2) by equation (1) , we get

rsinfsin ¢ y
rinfcos¢ ~ X

or tanq):;

u=mn"¥ ¥

I be equations expressing the spherical polar coordinates in terms of Cartesian coordinates are:

t= dll'l'y tz°, B = tan-l X ¥ ¢ = lan-ly' (8)

X

|| N
NITVECTORS IN SPHERICAL COORDINATES SYSTEM

T& vis : 3 e
Position vector of any point P (x,y,z) in spherical coordinates is given by

-

$5h 0 R
Yltyj+zk :
rs
mmecos¢n+rsm9sm¢_|+rcos6k b 8
m*‘fsmlhe directions of r, 0, and ¢ b rﬁ
" Bven by ) :
; o
_____ - \
Ve 4 \
¢l+sm0sm¢3+cos9k bheil
Qr 2 I 3
QRICNGCNQ A A L ! ﬁy
i i i
- *rcos@sing j-rsin0k : 3 :
| ¥
B

"MBsing ], . A
r'8in 8 cos ¢ | X Figure (6.16)
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; d ¢ arc
The unit vectors in the direcuons of r,0,and @

_-——-‘. A A
o1 P i i + cos O k
A ar sinBcosQ1+smesmg'| cos B
Lt RS K \/sin'ecos'¢+smsesmi¢
la r
ar i .
= sin9cos¢’i\+sinesm¢_|+cos9k
ar ¢ A
A 00 rcos © cos ¢ i +rcos6sin -rsin9k
s — | = Jricos*@cos” ¢ +r"cos @sin“d+r°sin“0
ar
00

A ' A
cos9cos¢?+cosesin¢j—sm9k

A . A
A d —rsin@singi+rsinBcosd |

rsin’@sin‘¢+r sin"Ocos” P

S iy A
—sin¢gi+cosd)

In matrix notation , equations (1), (2) , and (3) can be written as

3 sin@cos¢ sinBsing cosH y
:o =| cosBOcosd cosOsind —-sinB 3‘
:. - sin ¢ cos ¢ 0 ﬂ
SCALE FACTORS
The scale factors for the spherical coordinate system are given by
h h ﬁ g 1 1
1@ hrm [ST] - Vsin” 0 cos” ¢ + sin O sin” ¢ + cos” O
" VSi“29(¢°S2¢+Sin2¢ )+cos’
= \sin“0+cos’0 = |

h - d g p !
1= hg = \r'cos’ 0 cos ¢+r’cos‘esin’¢+r’sin’_ﬁ

" g
\]: cos 9(cos’¢+sin]¢)+rzsin16

:
\Il‘ C()IIB‘Pl'z!iI'F—O Uy

hy=hy = \Ir’uin’OsinW+rznin’t)cosTa

- \jr’am’e(uin’qﬁw*cml‘q))

- m [ r.ine

Hence the scale factors are :

by = h, =, h‘-hﬂ'r

M

hyw he = raing

(1)

)

3)

4)

8)]

(0)




