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i simple closed curve is a closed curve which does not
% ere . For example , the curve in figure [5.21 (a)]

scelf anyWh .
ot itse while the curve in figure [5.21 (b)] is not .

- ample closed curY = :
a8 R s said 10 be simply connected if any simple closed curve

| ANE'O"R ca;n be continuously shrunk to a point . For example , the O@ (b)
g i1  rectangle as shown in figure [5.21 (c)] is an example of a

sor of .
fﬂPiy Conncctcd region .
R which is not simply connected is called multiply (c)

<

5 region ; . LR

ected . FOT example , the region R exterior to C, and interior to

¢Connis not simply connected because a circle drawn within R and
I

uclosing C 2 cannot be shrunk to a point without crossing C ; as

gown in figure (5.21 (d)] . In other words , the regions which have (d)

holes are called multiply connected .

Figure (5.21)
510 GREEN’S THEOREM IN THE PLANE

We will consider vector functions of just x and y and derive a relationship between a line
inegral around a closed curve and a double integral over the part of the plane enclosed by the curve .

{ THOREM (5.6): If R is a simply—connected region of the xy—plane bounded by a closed curve C
andif M and N are continuous functions of x and y having continuous

derivatives in R, then

@de+ Ndy =_[_|. (%—T—%)dxdy
C R

where C is described in the positive (counterclockwise) direction .

PROOF: .
hOOF. We prove the theorem for a closed curve C which has the property that any straight
Parallel to the coordinate axes cuts C in at most two points as shown in figure (5.22) .

171 .
o | l:;l:llanons of the curves AEB and AFB be y = f,(x) and y = f,(x) respectively . If R is the
i_ ndedby C, we have

:
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b i3 aMdy dX—J.lM(X,y)liz_(")
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E : Jdx
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b
i JM(X fl)dx—jM(X,fZ)dx—-§de
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Then § Mdx --II 3y dxdy
C R 5 o
Similarly let the equations of the curves EAF and EBF be x = g (y) and x = g, respy
Then
f g,(y) f 3
N g,y
ja—N dxdy = _[ I %;dx dy=j|N(x,y)|g(y,dy
R y=e L x=g,(y) e
f
= I[N(EQ,Y)—N(gI,y)]dy
€
e f
= IN(gl'y)dY+JN(gz,Y)dy
f e
= §Ndy
C
dN

Adding equations (1) and (2) , we get
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P lso holds for a multiply—connected region R such as shown in figure (5.23) (b) .

peor®” N
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Figure (5.23)
pJPLE (14): Verify Green’s theorem in the plane for M = xy +y 2 and N = x? where C
is the closed curve of the region boundedby y = x and y = x?.

ILTION The plane curves y = X and y = x? intersect at (0,0) and (1,1). Let C,
hcumy - x2 and C, the curve y = x and let the closed curve C be formed from C; and C,.

4
;wc must show that (1,1)

 funner - [] (- 5o

,psmve direction in traversing C is shown in figure (5.24) .

§de+Ndy=§ (xy+y?)dx+x’dy (1
: C
oeane C: y - x*, dy = 2xdx, while x varies from 0 to 1. The line integral (1) equals

Figure (5.24)

[ 1
c s L j(x3+x4) dx+2x>dx
!
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§(3x3+x ) dx = |Zx4+—5‘ ,=3%5=20 @
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Then from equations (2) and (3) , we have f (xy 20 \56
M aN _
Since Q}‘:x-ﬁZy' and T = 2 x, then
! X
II(%‘N‘—%M)dxdy-_“.(x-2y)dxdy- J‘ J‘ (x‘zy)dyd
R - / R x=0 yaxz X
1 1
= .|Xy—y2|:2 d)’(=J‘(x4—x3)dx
0 0
i 1 P e Wty
F Nemorg g S % T30

so that the theorem is verified .

511 GREEN’S THEOREM IN THE PLANE IN VECTOR NOTATION
FIRST VECTOR FORM (OR TANGENTIAL FORM) OF GREEN’S THEOREM
N OJoM
We have ﬁ de+Ndy=II (ﬂ—w)dxdy (1)
C R
Now de+Ndy=(Mli\+N3'\).(dx,i\+dy3\)=X.d?
= A A - A A - S
where A =Mi+Nj and dr =dxi+dyj. Also, if A = Mi+Nj then
A A A
i J k
5 0 0 J ONA 9Ma ON oM\ »
ox dy dz B ZJ+( i % y)k
M N 0
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' S Hf Space having C a5 boundary leads qui¢ e oS
OT¢M is sometimes called Stokes’ theorem in the PI#™
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4 COND VECTOR FORM (OR NORMAL FORM) OF GREEN'S THEOREM
s . s A
300V Mdx+Ndy = .dr = A.T ds
ﬁ_ -‘f' - Unit tangent vector to C [see the figure (5.25)]_
e ds
A A A
b e outward drawn unit normal to C,then T = kXn so that
“l e A A — A
ydx+Ndy = A.Tds=A.(kxn)ds=(Axk).nds
Y+Nj, theref y
_ 3=Mi+Nj, erefore
§ - A A A % :‘
5= Axk= (M1+N])xk=N1—M_|
C
__aN M
R V-PEax 3y
— A i
 equation (1) becomes § B.nds:IjV B dR
C R S
x [o) X
st Figure (5.25)

1 STOKES’ THEOREM
HEOREM (5.7): It states that if S is an open, two—sided surface bounded by a simple closed

curve C, then if A has continuous first partial derivatives

§ A.dT =II(VXK).ﬁdS
C S

where C is traversed in the positive direction .

|

the line integral of the tangential component of a vector function A taken around a simple closed

CS is equal to the surface integral of the normal component of the curl of A taken over any
-1 > having C a5 its boundary .

Let A = A, T+A 2 _'; +A; K  then Stokes’ theorem can be written as

] .

[VX(AI 1 +A2_’]}+A3§)].ads = § A.dx+Azdy+A3dZ

‘!M i C

Nie m:rcm for a surface S which has the property that its projections on the xy,, y z, and z x
bounded by simple closed curves as shown in figure (5.26) . Assume S to have

: 1 i
\*hn.,:h:l y)orx=g(y,z)ory=h(z,x), where f, g, h are continuous and

e R TSR
b
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e LINE, SURFACE, AND ﬂ

I[Vx(A il ndS

Consider first j

A d
Smcc,VX(All)' 3x 0y 9z 4
a8 E

A
therefore , [VX(AI?)]'“dS i ( 0z

If z = f(x,y) istakenas the equation of S, then the

position vector to any point of S is

T =x?+yj+zk x1+yj+f(x Y)k
ar _» 9zp 2 af
so that ay=" ayk J+ay
37
But —a—; is a vector tangent to S and thus perpendicular
A
to n, so that
X
Adr A A dZA A AoA  DER A
n.3 =n.]+ayn.k 0 or n.) = - yn.k
Substituting in equation (1) we get
A A i _aA _alf\ A JdJA, A A
[vx(A,i)].ndS = ( —laz ayn.k———Lay n.k |dS
S dA; dA; dz\ A A
55 (ay + az ay n.de
Nowon S,A,;(x,y,z) = A (x,y,f(x, y)) = F(x,y)

_L gl i
hence 3 y a Z a y =5 y and equation (2) becomes

d

5]

[VX(Alli\)].adS = -

>
>

IF
y Lok A8 & s dxdy

.[SI [vx(A,i)].nds =IRI —g—gdxdy

where R is the projection of S on the Xy—plane

equals § Fdx where I
is the boundary of R . From equation (3) , since at cach PO oint (¥’

r
‘the value of F

. By Green’s theorem in the

(1)
2 A
4 gy
n
Y
c
—
!
v
Figure (3.9
2
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the fast IM
plane
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is the sam
¢ 48 the value of A, at each point (x, y.z) of C, and since 97
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p curves - we must have
jor D!

§Fdx= é Aldx
r C

.; ”[Vx(A.’i\)].ﬁdS=§A.dx (4)
| Jarly . bY projections on the other coordinate planes , we have
L Similary
| St
”[w(A:j)]-nthﬁAzdy (5)
l h c

J‘I[Vx(Agﬁ)].;\ldS=§A3dz (6)

S C

Addition of equations (4) , (5) , and (6) completes the proof of the theorem .

RECTANGULAR FORM OF STOKES’ THEOREM

_ A A A A A A A
Llet A=A;i+A,;j+A3zk and n=n,i+n,j+n,k be the outward drawn unit normal

the suface S. If o, P, and y are the angles which the unit normal ﬁ makes with the positive
J directions of x ,y, and z axes respectively , then

A A
D,=n.i =cosa

Aoa
n,=n.j =cosf

A A
- ad  n,=n.k=cosy

- . . 3 A
. The quantities cos o, cos B, and cos y are the directions cosines of n. Then

b A A A
n=cosai+cosfj+cosyk

b A A A
i J k
; dx dy 0dz
A, A, A,
10 (BA,_BAZ)?_'_(QA! _8A:)A+(3AZ_BA, A
dy ~ az 3z _ ox J1T ox T oy
Vea) A _(3A; 3A JdA JA JdA dA
( XA).n-(ay —TZJ‘ cos o + —a';—ﬁ cosB+('a—x2‘——a—yL)cosy

S A A
A.dr = (A,l+A”+A3Q).(dxli\+dy]\+dzﬁ) = AldX+A2dy+A3dZ




$
and Stokes’ theorem become

§ A|dx+Azdy+A’dz
C
dA
3Ay_9A2)cosa+ ("a'zJ G
= J‘J. [( p) T oz
y
= (2x-—y) i-y2?j-y *2K, Where
g’ theorem fOI' 1 andl €3y
EXAMPLE (19) vmryhs:l‘;‘::xrface of the sphere X lpyte z’ C isits bound. by
upper g
S and its pro]cction R on the xy plane is shown in figure (5.27)'
SOLUTION: The surface T s 1 and cenre at the orign.

ary C of S isa circle in the xy-plan

The bound <o<2m bethe parametric equations of C.
Lc(x=cosﬂ.y-5"'9vz_00 ;
liz
2
Then § A.dT = §(2x—y)dx-yz2dy‘y L4
C C
2r
= j (2cos@-sin@)(-sin®)do
0=0
T 2 ] \‘Kzﬂf"'=1,z=0
— I (-2sinBcosO+sin“0)do
x .
0 Figure (5.27)
2r
= [—sm29 (___l—c;)sZB)]de
0
% cos 20 g sin2@|2n 1 1
7 2" 37 W | P tE-gmk
A A A
: ) k
A.Iso VXK_—_ i i _a_ A
9 x dy dz =k
2x-y -yz? ~y2g
e ”(V"K)-ﬁds= A A
k. ndS = J‘d d )
§ S ey (Slnce n. de dxdy
R
N S
dydx =
D JEx 4_“ l-x*dx
0
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n/2
H(VxK).ﬁds = 4j. cos26d9=4(
§ 0

sin2 0
2|B+ 2

%oy’ teoremn is verified .

2
o
0

:snf, dx=cos0dO, 0<0 <n/2. Then

2
(

%) J. 1+cos20)do
0
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A
A = —z+2)i+(yz+4)%
Stokes’ theorem for A = (¥ et "xli,

PROBLEM (25):  Verify fthecube x=0, y=0, z=9

where S is thelsurfaceo ; "*2,,,.2
above the xy — plan¢. | ’ io "
SOLUTION: The surface S of the cube IS shown in figure (
- =y Ays
By Stokes’ theorem é A.dr =jJ(VXA)~"d
C S
Now § A.dr = § (y—z+2)dx+(yz+4)dy-xzdz "
C OABCO
For OA,y = 0, z = 0, therefore dy=dz=0,and integral (1) becomes
2
I A.dr = I 2dx=Ide=4
OA OA 0

For AB, x=2, z=0, therefore dx=dz = 0 and integral (1) becomes

I
o0

2
I A.dr = I 4dy=j4dy
AB AB 0

For BC, y =2,z = 0, therefore dy = dz = 0 and integral (1)

0
becomes _[ A.dr = I 4dx=I4dx -8
BC 2

BC
For CO, x = 0, z = O therefore dx = dz

0 and integral (1)

0

becomes .[ A.dr = I 4dy = I 4dy = -8
18(0) CO 2

Thus from equation (1) , we get

4o

(2)

Now ”(VxK).Rds—” ? Tl
S s [-yi+-1+2)f-£]. 045
WhCRSSS|+SI+S3+S4+Ss.
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f‘ : a8 | and the integral (1) becomes
| " & &
ﬂ”

22 2
A “,,.‘,asa‘”‘-‘"S"II“"”"“‘2,[“*-4
310 S 00 0

: 0 - _ |, and the integral (3) becomes
R=w
goct ' 22 2

!J
'- \‘I;);‘ds‘ -II)‘(’S) -IIYdel = del = 4
{

) S, 00 0

.L;M;‘.‘ oy 2 = -;_mdmelmcml(lhbecoms

= 22 )

”(NA\ ndS.- IIH—!)dS\ -II(I—z)dxdl = II(I-z)d 1 =0
Sy 00 0

Es‘

) (BBCF), y=2, n-) mdthtmlepﬂ(B)becomu

%!I\?a:).;ds. -Ij(—l+x)d$. = jI(-l+z)dxdz
E $| s.

2
= 2](-1+z)dz-0
: 0
MFC). 222, n =k, mdtheimr:nlu)becoms

] 2
] ”(V'A) lds tII—ldS, -Ij—ldldY"ZIdy - ~h
i Sy 00
j "'l(l).wgu
' ‘.v‘ﬁ A
Tt L II()ds|+II()dsa+II()dsi*II‘"s‘*jj"‘s’
s‘ S s’ S‘ sS
= -44+44+040-4=-4 “@
“‘“)'emusm theorem is verified.

m U"M’.—."m,”‘(le).:d&
S

.‘ "H#:jq.z.ﬂ and S is the surface of the hemisphere

Yaik. s i



II(Vx;)-adszf; C

S 3 2 :qthe X
? = A in = Coy
phon, C T Bn BO% 4’t)x’aUOnsofthlscnrclezn'tt""acose fRruny, Z--O“'heemtr
mm‘mw‘_m;u;c;q dy-acosede dz = D. chccequatxon(l)become 0“
Then dx = -asid :
2n
B : _asin0d0B)+acos@
[[(vx).nes = [ 4asino(-asin8d0) (2cosde),
s =6
2n
i I(_4azsin29+azcos29)d9
0
2x
e a’I [—4sin29+(l—sin29)]d9
0
2n 2n
= aZI (1-55in’0)d6 = aZI [l—g(l-cosﬂ)]de
0 0
2n
B 35
= e 3 2K
: I( 2*2““29)d9= g —50+%sin29|
0 0
. ( 3
=2 )(2m) = _3,24 .
Immm’: K X=2yz?_(x+3y 2)
j"'(x +Z)k then using Stokes’
""-'e”(v
XA).n
: s 45 over the surface of intersection of ¢
X +y ._.._'2 2
SoLL XA = 2t gy
ey % Byre il is included in the first octant -
II‘V::K .
)-ads . e
s s- 3. :
C

y-plane (ie. 2 = 0) describeq ip g
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| 40: e d z = 0 and integral (1) over this part of the curve becomes
o the

3y-2)d7 —I (Val-y?+3y-2)dy

15
W

AB 0. dy=acosﬂd9. 0£6<n/2, then
’,.sm 2
(x+3y'2)dy = I -(acos®+3asin6-2)acos06do
I :
M w2

a
I [7(1+c0329)+3azsinecose-Zacose]dO
0

2 !
a sin2 0 3 : /2
= 7(9+—2—)+5a2sm20—2asin9 .

2 2
o wyL 3 a‘m 3
—[?('2')+§a2—2a] = -7 - 5a2+2a

. ), 1=0, y=a therefore dx=dy = 0 and integral (1) over this part of the curve becomes

a

2
a
szz=jzdz=7 42
BC 0
Dja (e
D, x=0, z=a therefore dx=dz = 0
i gral (1) over this part of the curve becomes x2+22 = a2
R 0
é’ 3
[-(Jy-Z)d =j— 3y-2)dy = Sa’-2a. a
y (3y )dy ) o) - ‘by
a
a
ay 0 therefore dy = 0 and the integral (1) over A C x’+y? = g
ofthe curve becomes
3 0 . Figure (5.53)
I(x +z)dZ= (a2_zz+z)dz
DA g
a
= 2 -]- k] .!. 2 > .2. K] g-z
a“z-312 +52 a.—.-3a -2
Wation (1) e get
J[(Vx‘ A 2 2 2
A a‘m 3 3 p! a
) ).nds = —T—5a2+2a+%+§az—2a-3‘a’-7

2
12 (3n+8a)




