od Stokes theorem is verified.

felds .

GAUSS' DIVERGENCE THEOREM

Gauss' divergence theorem has wide applications in mathematics, physics and engineering and is derive equations governing the flow of fluids, heat conduction, wave propagation, and electrical

MEOREM (5.8): It states that if R is the region bounded by a closed surface S and A is a vector point function with continuous first partial derivatives, then

$$\iint_{S} \vec{A} \cdot \hat{n} dS = \iiint_{R} \nabla \cdot \vec{A} dV$$

where n is the outward drawn unit normal to S.

words the surface integral of the normal component of a vector function \overrightarrow{A} taken over a closed what S is equal to the integral of the divergence of \overrightarrow{A} taken over the region R enclosed by the surface.

MOOF: If \vec{A} is expressed in terms of components as $\vec{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$, then the targence theorem can be written as

$$\iint_{S} (A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}) \cdot \hat{n} dS = \iiint_{R} \left(\frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z} \right) dV$$

establish this, we prove that the respective

prove this for a closed surface S, which has the openy that any line parallel to the coordinate axes S in atmost two points. Under this assumption, follows that S is a double valued surface over its section on each of the coordinate planes. Let R projection of S on the x y - plane.

into the surface S into lower and upper parts and S₁ and assume the equations of S₁ and S₂ $f_1(x, y)$ and $z = f_2(x, y)$

Consider

$$\iiint_{R} \frac{\partial A_{3}}{\partial z} dV = \iiint_{R} \frac{\partial A_{1}}{\partial z} dz dy dx$$

$$= \iiint_{R'} \int_{z=f_{1}(x,y)}^{f_{2}(x,y)} \frac{\partial A_{3}}{\partial z} dz dy dz$$

$$= \iiint_{R'} |A_{3}(x,y,z)|^{f_{2}(x,y)} dy dz$$

$$= \iiint_{R'} |A_{3}(x,y,z)|^{f_{1}(x,y)} dy dx$$

$$= \iiint_{R'} |A_{3}(x,y,f_{2}(x,y))| - A_{3}[x,y,f_{1}(x,y)] dy dx (1)$$

For the upper part S_2 , $dy dx = \cos \gamma_2 dS_2 = \hat{k} \cdot \hat{n}_2 dS_2$, since the normal \hat{n}_2 to S_2 makes an acute angle with \hat{k} . For the lower part S_1 , $dy dx = \cos \gamma_1 dS_1 = -\hat{k} \cdot \hat{n}_1 dS_1$, since the normal \hat{n}_1 with $-\hat{k}$.

Then
$$\iint_{R'} A_3[x, y, f_2(x, y)] dy dx = \iint_{S_2} A_3 \hat{k} \cdot \hat{n}_2 dS_2$$

and
$$\iint_{R'} A_3[x,y,f_1(x,y)] dy dx = -\iint_{S_1} A_3 \hat{k} \cdot \hat{n}_1 dS_1$$

and therefore equation (1) becomes

$$\iiint_{\mathbf{R}} \frac{\partial A_3}{\partial z} dV = \iint_{\mathbf{S}_2} A_3 \hat{\mathbf{k}} \cdot \hat{\mathbf{n}}_2 dS_2 + \iint_{\mathbf{S}_1} A_3 \hat{\mathbf{k}} \cdot \hat{\mathbf{n}}_1 dS_1$$

$$= \iint_{\mathbf{S}} A_3 \hat{\mathbf{k}} \cdot \hat{\mathbf{n}} dS \tag{2}$$

Similarly, by projecting S on the y z and z x coordinate planes, we obtain respectively.

$$\iiint\limits_{R} \frac{\partial A_{1}}{\partial x} dV = \iint\limits_{S} A_{1} \hat{i} \cdot \hat{n} dS$$
(3)

and
$$\iiint_{\mathbf{R}} \frac{\partial A_2}{\partial y} dV = \iint_{\mathbf{S}} A_2 \hat{\mathbf{j}} \cdot \hat{\mathbf{n}} dS$$
 (4)

MORAND TENSOR ANALISIS

Gauss' divergence theorem is a generalization Gauss' divergence theorem is a generalization of Green's theorem in the plane where the green R and its boundary (curve) C are replaced by a (space) region R and its boundary (curve) theorem is a generalization of Green's theorem in the plane where the green R and its boundary (curve) are replaced by a (space) region R and its boundary (curve). Gauss of Gau For this reason the divergence theorem is often called Green's theorem in space.

RECTANGULAR FORM OF GAUSS'S DIVERGENCE THEOREM

RECTANGULAR POLICIA
Let
$$\vec{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$$
, and $\hat{n} = n_1 \hat{i} + n_2 \hat{j} + n_3 \hat{k}$
 $\vec{\nabla} \cdot \vec{A} = \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}$

$$\hat{A} \cdot \hat{n} = (A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}) \cdot (\cos \alpha \hat{i} + \cos \beta \hat{j} + \cos \gamma \hat{k})$$

$$= A_1 \cos \alpha + A_2 \cos \beta + A_3 \cos \gamma$$

ath Gauss' divergence theorem can be written as

$$\iiint\limits_{R} \left(\frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z} \right) dx dy dz = \iint\limits_{S} \left(A_1 \cos \alpha + A_2 \cos \beta + A_3 \cos \gamma \right) dS$$

Verify the divergence theorem for $\vec{A} = 4 \times z \hat{i} - y^2 \hat{j} + y z \hat{k}$ where S is the EXAMPLE (16) surface of the cube bounded by

$$x = 0$$
, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.

The given cube is shown in figure (5.29). By the divergence theorem, we have **SOLUTION:**

$$\iint_{S} \vec{A} \cdot \hat{n} dS = \iiint_{R} \nabla \cdot \vec{A} dV$$

$$\iiint_{R} \nabla \cdot \vec{A} \, dV = \iiint_{R} \left[\frac{\partial}{\partial x} (4xz) + \frac{\partial}{\partial y} (-y^{2}) + \frac{\partial}{\partial z} (yz) \right] dV$$

$$= \iiint_{R} (4z-y) \, dV = \iint_{0} \iint_{0} (4z-y) \, dz \, dy \, dx$$

$$= \iint_{0} \left[2z^{2} - yz \right]_{0}^{1} \, dy \, dx = \iint_{0} (2-y) \, dy \, dx$$

$$= \iint_{0} \left[2y - \frac{y^{2}}{2} \right]_{0}^{1} \, dx = \frac{3}{2} \int_{0}^{1} dx = \frac{3}{2}$$

$$\iint_{S} \vec{A} \cdot \hat{n} dS = \iint_{S_1} \vec{A} \cdot \hat{n} dS_1 + \iint_{S_2} \vec{A} \cdot \hat{n} dS_2$$

$$+\iint_{S_3} \vec{A} \cdot \hat{n} dS_3 + \iint_{S_4} \vec{A} \cdot \hat{n} dS_4$$

$$+\iint_{S_5} \vec{A} \cdot \hat{n} dS_5 + \iint_{S_6} \vec{A} \cdot \hat{n} dS_6$$

For S_1 (DEFG), $\hat{n} = \hat{i}$, x = 1. Then

$$\iint_{\text{DEFG}} \vec{A} \cdot \hat{n} \, dS = \iint_{\text{DEFG}} \vec{A} \cdot \hat{n} \frac{dy \, dz}{|\hat{n} \cdot \hat{i}|}$$

$$= \iint_{\text{DEFG}} (4z \, \hat{i} - y^2 \, \hat{j} + yz \, \hat{k}) \cdot \hat{i} \, dy \, dz = \iint_{\text{DEFG}} 4z \, dy \, dz = 2. \quad (1)$$

For S_2 (ABCO), $\hat{n} = -\hat{i}$, x = 0. Then

$$\iint_{ABCO} \vec{A} \cdot \hat{n} dS = \iint_{0}^{1} (-y^2 \hat{j} + yz \hat{k}) \cdot (-\hat{i}) dy dz = 0$$
(2)

Figure (5.29)

For S_3 (ABEF), $\hat{n} = \hat{j}$, y = 1. Then

$$\iint_{ABEF} \vec{A} \cdot \hat{n} dS = \iint_{ABEF} \vec{A} \cdot \hat{n} \frac{dx dz}{|\hat{n} \cdot \hat{j}|}$$

$$= \iint_{0} (4xz\hat{i} - \hat{j} + z\hat{k}) \cdot \hat{j} dx dz = \iint_{0} -dx dz = -1 \tag{3}$$

For S₄ (OGDC), $\hat{n} = -\hat{j}$, y = 0. Then

$$\iint_{OGDC} \vec{A} \cdot \hat{n} dS = \iint_{O} (4xz\hat{i}) \cdot (-\hat{j}) dx dz = 0$$

For S_5 (BCDE), $\hat{n} = \hat{k}$, z = 1. Then

$$\iint_{\text{BCDE}} \vec{A} \cdot \hat{n} \, dS = \iint_{\text{BCDE}} \vec{A} \cdot \hat{n} \frac{dx \, dy}{|\hat{n} \cdot \hat{k}|}$$

$$= \iint_{0} (4x \, \hat{i} - y^2 \, \hat{j} + y \, \hat{k}) \cdot \hat{k} \, dx \, dy = \iint_{0} y \, dx \, dy = \frac{1}{2}$$

$$\iint_{APGO} \vec{A} \cdot \hat{n} \, dS = \iint_{O} (-y^2 \hat{j}) \cdot (-\hat{k}) \, dx \, dy = 0$$
(6)

Adding , equations (1) - (6) , we get

$$\iint_{S} \vec{A} \cdot \hat{n} dS = 2 + 0 + (-1) + 0 + \frac{1}{2} + 0 = \frac{3}{2}$$

and the theorem is verified .

THE GRADIENT THEOREM

THEOREM (5.9): If ϕ is a continuous scalar function in a region R bounded by a closed surface S, then prove that $\iiint \nabla \phi \ d \ V = \iint \phi \hat{n} \ d \ S$

PROOF:

In the divergence theorem, let $\overline{A} = \phi \overline{C}$ where \overline{C} is a constant vector.

Then
$$\iiint_{R} \nabla \cdot (\phi \vec{c}) dV = \iint_{S} \phi \vec{c} \cdot \hat{n} dS$$
 (1)

Since
$$\nabla \cdot (\phi \vec{C}) = \nabla \phi \cdot \vec{C} + \phi \nabla \cdot \vec{C} = \nabla \phi \cdot \vec{C} = \vec{C} \cdot \nabla \phi$$
 (since $\nabla \cdot \vec{C} = 0$)

and $\phi \vec{C} \cdot \hat{n} = \vec{C} \cdot (\phi \hat{n})$, equation (1) becomes

$$\iiint_{\mathbf{R}} \vec{\mathbf{c}} \cdot \nabla \phi \, dV = \iint_{\mathbf{S}} \vec{\mathbf{c}} \cdot (\phi \hat{\mathbf{n}}) \, dS$$

Taking
$$\vec{C}$$
 outside the integrals, we get \vec{C} . $\iiint_{\vec{R}} \nabla \phi \, dV = \vec{C}$. $\iint_{\vec{S}} \phi \, \hat{n} \, dS$

and since
$$\vec{C}$$
 is an arbitrary constant vector, we have
$$\iiint_{R} \nabla \phi \ dV = \iint_{S} \phi \hat{n} \ dS$$

THE CURL THEOREM

THEOREM (5.10): If \vec{B} is a continuous vector function in a region R bounded by a closed surface S, then prove that $\iiint \nabla \times \vec{B} \ dV = \iint \hat{n} \times \vec{B} \ dS$.

In the divergence theorem, let A - 1

PROOF:

PROOF:

Then
$$\iiint_{R} \nabla \cdot (\vec{B} \times \vec{C}) \, dV = \iiint_{S} (\vec{B} \times \vec{C}) \cdot \hat{n} \, dS$$
Then
$$\iiint_{R} \nabla \cdot (\vec{B} \times \vec{C}) = \vec{C} \cdot (\nabla \times \vec{B}) - \vec{B} \cdot (\nabla \times \vec{C}) = \vec{C} \cdot (\nabla \times \vec{B})$$
Since
$$\nabla \cdot (\vec{B} \times \vec{C}) = \vec{C} \cdot (\nabla \times \vec{B}) - \vec{B} \cdot (\nabla \times \vec{C}) = \vec{C} \cdot (\nabla \times \vec{B})$$
and
$$(\vec{B} \times \vec{C}) \cdot \hat{n} = \vec{B} \cdot (\vec{C} \times \hat{n}) = (\vec{C} \times \hat{n}) \cdot \vec{B} = \vec{C} \cdot (\hat{n} \times \vec{B})$$

$$\iiint_{R} \vec{C} \cdot (\nabla \times \vec{B}) \, dV = \iint_{S} \vec{C} \cdot (\hat{n} \times \vec{B}) \, dS$$

Taking C outside the integrals, we get

$$\vec{C} \cdot \iiint_{R} (\nabla \times \vec{B}) dV = \vec{C} \cdot \iint_{S} \hat{n} \times \vec{B} dS$$

and since \overline{C} is an arbitrary constant vector, we have

$$\iiint\limits_{R} (\nabla x \overrightarrow{B}) dV = \iint\limits_{S} \mathring{n} x \overrightarrow{B} dS$$

ONE CONDENSED NOTATIONAL FORM

The divergence theorem, the gradient theorem, and the curl theorem can be stated in our condensed notational form:

$$\iiint\limits_{\mathbf{R}} \nabla * \alpha \, d \, V = \iint\limits_{\mathbf{S}} d \, \overrightarrow{\mathbf{S}} * \alpha$$

where α is any scalar or vector quantity, and the asterisk (*) represents any acceptable formal multiplication i.e. the dot, cross, or simple product.

GREEN'S IDENTITIES 5.16

We now prove the Green's identities which are also called the Green's theorems.

GREEN'S FIRST IDENTITY

THEOREM (5.11): If φ and ψ are scalar point functions with continuous second order derived in a region R hounded by in a region R bounded by a closed surface S, then

$$\iiint\limits_{\mathbf{R}} \left[\phi \nabla^2 \psi + (\nabla \phi) \cdot (\nabla \psi) \right] d\mathbf{V} = \iint\limits_{\mathbf{S}} (\phi \nabla \psi) \cdot d\tilde{\mathbf{S}}$$

Let $\vec{A} = \phi \nabla \psi$ in the divergence theorem

$$\iiint_{R} \nabla \cdot (\phi \nabla \psi) dV = \iint_{S} (\phi \nabla \psi) \cdot \hat{\mathbf{n}} dS = \iint_{S} (\phi \nabla \psi) \cdot d\overline{S}$$

$$\nabla \cdot (\phi \nabla \psi) = (\nabla \phi) \cdot (\nabla \psi) + \phi (\nabla \cdot \nabla \psi) = \phi \nabla^{2} \psi + (\nabla \phi) \cdot (\nabla \psi)$$
(1)

Thus equation (1) becomes

$$\iiint_{\mathbf{R}} \left[\phi \nabla^2 \psi + (\nabla \phi) \cdot (\nabla \psi) \right] dV = \iint_{\mathbf{S}} (\phi \nabla \psi) \cdot d\overline{\mathbf{S}}$$

GREEN'S SECOND IDENTITY

THEOREM (5.12): If ϕ and ψ are scalar point functions with continuous second order derivatives in a region R bounded by a closed surface S, then

$$\iiint\limits_{\mathbf{R}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, dV = \iint\limits_{\mathbf{S}} (\phi \nabla \psi - \psi \nabla \phi) \, . \, d\vec{\mathbf{S}}$$

PROOF:

We have from Green's first identity

$$\iiint\limits_{\mathbf{R}} \left[\phi \nabla^2 \psi + (\nabla \phi) \cdot (\nabla \psi) \right] dV = \iint\limits_{\mathbf{S}} (\phi \nabla \psi) \cdot d\overline{\mathbf{S}}$$
 (1)

Interchanging ϕ and ψ in equation (1), we get

$$\iiint\limits_{\mathbf{R}} \left[\psi \nabla^2 \phi + (\nabla \psi) \cdot (\nabla \phi) \right] dV = \iint\limits_{\mathbf{S}} (\psi \nabla \phi) \cdot d\overline{\mathbf{S}}$$
 (2)

Subtracting equation (2) from equation (1), we have

$$\iiint\limits_{\mathbf{R}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) dV = \iint\limits_{\mathbf{S}} (\phi \nabla \psi - \psi \nabla \phi) . d\overline{\mathbf{S}}$$

which is called Green's second identity or symmetrical theorem .

ALTERNATIVE FORMS OF GREEN'S IDENTITIES

We know that
$$\nabla \psi \cdot \hat{\mathbf{n}} = \frac{\partial \psi}{\partial \mathbf{n}}$$
 and $\nabla \phi \cdot \hat{\mathbf{n}} = \frac{\partial \phi}{\partial \mathbf{n}}$.

Thus
$$\nabla \psi \cdot d\vec{S} = \nabla \psi \cdot \hat{n} dS = \frac{\partial \psi}{\partial n} dS$$

$$\nabla \phi \cdot d \overline{S} = \nabla \phi \cdot \hat{n} dS = \frac{\partial \phi}{\partial n} dS$$

Hence Green's first and second identities can be written respectively, as

Green's first and second identities easily
$$\iiint_{R} \left[\phi \nabla^{2} \psi - (\nabla \phi) \cdot (\nabla \psi) \right] dV = \iint_{S} \phi \frac{\partial \psi}{\partial n} dS$$
(1)

 $\iiint\limits_{\mathbf{R}} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) dV = \iint\limits_{\mathbf{C}} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) dS$ (2)and

GREEN'S THIRD IDENTITY OR GREEN'S FORMULA GREEN'S THIRD IDENTIFY THEOREM (5.13): Let ϕ be a scalar point function with continuous second order derivatives in the continuous second order derivati region R bounded by a closed surface S. Let r be the position vector of an point P(x,y,z) on S relative to an origin O. Prove that

$$\iint_{S} \left[\frac{1}{r} \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \right] dS - \iiint_{R} \frac{1}{r} \nabla^{2} \phi dV$$

$$= \begin{cases} 0 & \text{if origin O lies outside R} \\ 4 \pi \phi_{0} & \text{if origin O lies inside R} \end{cases}$$

where ϕ_0 is the value of ϕ at O.

We know that Green's second identity is: PROOF:

$$\iint_{S} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) dS = \iiint_{R} \left(\phi \nabla^{2} \psi - \psi \nabla^{2} \phi \right) dV$$
 (1)

If in equation (1) we take for ψ the harmonic function $\frac{1}{r}$, where r is the distance from a fixed point 0 to a variable point P within R. Then

$$\iint_{S} \left[\phi \frac{\partial}{\partial n} \left(\frac{1}{r} \right) - \frac{1}{r} \frac{\partial \phi}{\partial n} \right] dS = \iiint_{R} \left[\phi \nabla^{2} \left(\frac{1}{r} \right) - \frac{1}{r} \nabla^{2} \phi \right] dV$$
 (2)

CASE (1): When O lies outside the region R

If the origin O lies outside the region R bounded by S as shown in figure (5.30), then $r \neq 0$. Hence, the function $\frac{1}{r}$ and its derivative are finite at all points of the region.

Furthermore, since $\frac{1}{r}$ is harmonic, therefore $\nabla^2 \left(\frac{1}{r}\right) = 0$. Thus equation (2) reduces to

$$\iint_{S} \left[\frac{1}{r} \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \right] dS - \iiint_{R} \frac{1}{r} \nabla^{2} \phi dV = 0$$
(3)

MON