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/ USs’ DIVERGENCE THEOREM

_5]3 GA . givergence theorem has wide applications in mathematics | physics and engineering and is
Gau.sscquaﬁons governing the flow of fluids , heat conduction , wave propagation , and electrical

derive

7L

r

REM (5 g): It states that if R is the region bounded by a closed surface S and A is a
nﬂ;o o

vector point function with continuous first partial derivatives , then
— A —
IIA.n ds =IIIV.AdV
S R

A
where n is the outward drawn unit normalto S .

;mds the surface integral of the normal component of a vector function A taken over a closed

dn § is equal to the integral of the divergence of A taken over the region R enclosed by the surface .

— - O g
| ﬂOOF: If A is expressed in terms of components as A = A, i+ A, J + Ak, then the
?mmtheorem can be written as

”(A.?+A23\+A3ﬁ).ﬁds = j“(“' aA2+aA’) dv
R

g ax+8y dz

i “lish this , we prove that the respective 3%
L neach side are equal .

" tis for 4 closed surface S, which has the
{ si’:h:lm: { line Pﬁrallel to the coordinate axes
' tWo points . Under this assumption,
S isa double valued surface over its

| m‘ ¥
| Mﬁmh of the coordinate planes . Let R

mrfa(‘,e 8 i
' 0 aggyme 't lower and upper parts

Pag o heequations of S, and S,
W, T ¥)ad 2w f,(x,y)

Ll e R N ap—

2q
5
[

-

. Figure (5.28)




NTEGRALS AND RELATED INTEGy,

258 LINE. SURFACE, AND VOLUME I n.‘\
Consider
-i‘i\"l dydx
jjj%dV: _[I o dzdy
R R
T fa(x,Y)
I.[ I Q“A'ldz dydz
o dz
R Lz=fi(x.y)

fg(X‘Y)
” 1A (x.y.2)lf (xy) dYdX

’

R

J‘j {A;[X.y.fz(X.Y)]—AJ[X‘Y-fl(X'Y)]}dyd; 0
RI

A A 3 A
For the upper part S,.dydx:cosyzdSZ=k.n;d81,smccthenonnal Ny to S, makesan iy
A A N
angle with k. For the lower part S,, dydx = cosy,dS; = -k.n;dS,, since the normal 5

A
S, makes an angle y, with —-k.

|
A
Sy,
>
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>
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(=%
W
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Then .” As[x.y.fa(x,y)]dydx =
R S,

I
|
%
ey
>
>
=
(=9
(7]

and Hm[x,y,fl(x‘y)]dydx
R' S,
and therefore equation (1) becomes

JA I A A
Liri
”I 5, 4V = )] Ak nzdsz+” Ask.n,ds,
R S! S|
. A A
= .IA;k.ndS )
S

Similarly , b iecti
arly , by projecting S on the Yz and z x coordinate planes , we obtain respectively ;

[ 9A “
—l
it dv = A|’i\.ads ')
S

4)
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i #«‘ Py A3). and (4) completes the proof of the theorem .

ﬂu.u i 1 " ’
™ vergence theorem is a generalization of Green's theorem in the plane where the

" G'uss,nd its boundary (curve) C are re!alaced by a (space) region R and its closed bound
o e the divergence theorem is often called Green's theorem in space -
| Wr ;

s

F 8
# \NGULAR FORM OF GAUSS’S DIVERGENCE THEOREM
KEcr A A A d A 8 A A A
;,A,i+A21+A3k' and n =n;i+n,j+nk
Let

y+az

|\

_ A, OA2 9A;
p g.A=3x o

A g A A
Ka 3 (A,/‘:+Azj+A3k).(cosa1+cos|3]+cosyl'€)
g . A,cosa+AzcosB+A3cosy

e GaUSs' divergence theorem can be written as
#

0A; dA ”
I “j(%r—é—ylr—a—z‘l)dxd)’dz: (A,cosa+A2cosB+A3cosy)dS
T :

[UMPLE (16) Verify the divergence theorem for K =4xz ? - y2 3 +yz ﬁ where S is the
surface of the cube bounded by

x=0, x=1, y=0, y=1, z=0, z=1.
YLUTION: The given cube is shown in figure (5.29) . By the divergence theorem , we have

lsh-ﬁds=[£jv.]& v
.’" I“V.K dv

R

d d
”I[% (4xz)+§-y'(—y2)+-a—z(y2)]dv
R
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S5 I_[Izz’-yzlf,dydx =II(2—y)dydx
00 00
1 1
J’ y2 | 3 ¥
= 2y_-5- odx:'z' dx—2
0 0
'
”K :lds_ - — A
§ -j‘ A-ndS|+I A.ndSz
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B s A
+ K.ﬁds,+”A.nds. s
D
, P -‘A \
+ Z.GdS5+IIA.ndSG E
Ss S6 0
A A e hen i | A
FWSI(DEFG).n:i,x-l.Tc 71K"
1
ftal laate ey
A.ndS = | | x
DEFG DEFG 1 .
: 11 !
=Ij(4z1— J+y2k)'ldydz—_[j42dydz_2 :
00

A A
For S; (ABCO), n = -1,

- A
J‘I A.ndS

ABCO
A A
For S; (ABEF), n = j,y = 1. Then
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IA A
ABEF ABEF nEl
A
= jj(4xz’i\—?+zﬁ).?dxdz=Ij—dxdz=-1 0
00 , 00
A A
For S4 (OGDC), n=-j,y = 0. Then
OGDC 00

>

For S5 (BCDE), n = k, z = 1. Then

” A.nds ” T ad"dy

A A
BCDE BCDE In.kl

i

A A A
(4xi-y?feyk).Rdaxay = ijdxdy

o'——.p—




A A 4
A (AFOO) . D * k, 2z = 0 Then
b
: |

” A.Rds-II( v 1).( - k)dndy =0 “,

pquations (1) (6), we get

Addin

- 3
“‘ A.;ds w2404 (- |}40$';'&() =5
§
1 the theorem 18 verified .

o THE GRADIENT THEOREM
THEOREM (5.9): If ¢ is a continuous scalar function in a region R bounded by a cesed

surface S, then prove that III VedV = IIQ; ds

R L}
E F: In the divergence theorem , let A = QE where C is 3 constant veclor .
”Iv.(u’:)dv-”.&'.ﬁds (1)
R S
v.(¢C)=Vo.C+oV.C =V9.C=C.V9 (since V.C =0)

9C.n= C.(6n), equation (1) becomes

I”E-N dh”é.(.ﬁ)ds

R S

Tiking c outside the integrals , we get EIIIVQ dVv = E-IIO; ds
R S

C i$ an arbitrary constant vector , we have III VedV = II 0; ds
R S
THE CURL THEOREM
(5.10: If B is a continuous vector function in 2 region R bounded by a closed

surface S, then prove that I!Iv:i dV-IsI;xi ds .



Taking C outside the integrals , we get
ov-Jfixs as
E.I“(VxB)dv =C.]]nxB
R S
and since C isan arbitrary constant vector , we have

M licvengavs [Faes s
R S

ONE CONDENSED NOTATIONAL FORM

The divergence theorem , the gradient theorem , and the curl theorem can be stated in
condensed notational form :

J{IV*adV:Ide§*a

wher.e 'a - is 'any scalar or vector quantity , and the asterisk ( x ) represents any acceptable fom &
multiplication i.e. the dot , cross , or simple product

516 GREEN’S IDENTITIES

We now Ky iti i
prove the Green’s identities which are also called the Green’s theorems .

GREEN’S FIRST IDENTITY

THEOREM (5.11); 1f £
. ® and y are scalar Point functiong with continuous second order deri®

by a closed surface S, then

I{I [WZW(V’)‘(V"’)]"V=II(¢Vw).d§
)



v \p TENSOR ANALYSIS i
Let A = ¢V inthe divergence theorem
Wl
Y , j A j[ e
'”‘\._‘,v,m\-} (¢Vw).ndS =)] (eVy).dS (1)
.;{' S S
L (Vo) (V) +a(V.Vy) =0V v+(Ve).(V¥)

- i

wﬂw“‘"ll\[x‘&ﬂn\fﬁ
”j [eVIy+ (Vo). (V)] dV = ” (¢Vy).dS
2 S
GREEN'S SECOND IDENTITY

If ¢ and y are scalar point functions with continuous second order derivatives

THEOREM (8121
in a region R bounded by a closed surface S, then

i Ijj(Qvlv—vV’Q)dV=II(¢Vv—vVQ).d§

R )

- PROOF: We have from Green's first identity

’ ”I[OV’V+(V¢).(V\;:)]<W=”(¢Vw).d"§ (1)
R S

lserchanging ¢ and V in equation (1), we get

g
I”[W’M(Vw-(w)ldV=HwV¢)-d§ ()
R S

Subtracting equation (2) from equation (1) , we have

j{[ (6Viy-yVi¢)dV = ” (oVy-yVe).dS
S

ich is called Green's second identity or symmetrical theorem .

| ALTERNATIVE FORMS OF GREEN’S IDENTITIES
¢ know that Vw.n:n and Vé.n =73

5
Ty < 3
V¥.dS = Vy.nds = ﬁds

Y b A d
$.dS = V¢.ndS 'S%ds

-
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pe written respectivel

j ¢—-"dS
S

R _a_g)ds ;
f“wv*w yvie)dv = ”(“’a"_wa" - 1

es can
nd identiti
Hence Green's first and seco

.[“[sz—(w) (v ]V =

and

: GREEN’S FORMULA

THIRD IDENTITY OR

GREEN’S .
pomt

THEOREM (5.13): Let ¢ bea scalar

lose
region R bounded by a ¢
gm P(x,y,z) on S relative to an origin O . Prove that
po. ’ ’

2520 (eI wee

0 if origin O lies outside R
{4n¢0 if origin O lies inside R

function with continuous second ordey derivyg
vy

d surface S. Let r be the positiop Vecty, :
Py

where ¢, is the value of ¢ at 0.
PROOF: We know that Green’s second identity is :

”(‘Pan -V, )ds-f”(w v-yVi¢)dv (1)

1 : .
If in equation (1) we take for y the harmonic function T where r is the distance from a fixed poin 0

to a variable point P within R. Then

j![@)ﬁ(%)-%%]ds =I£I[¢V’(%)-}v2¢]dv )

CASE (1): When O lies outside the region R

=22

If the origin O lies outside the region R bounded by
as shown in figure (5.30) ,then r # 0 . Hence , the function

S
1
r

IR ;
e

and its derivative are finite at a points of the region

s

. Lo g ;
urthermore , since ¢ 18 harmonic , therefore Y 2 (l)
Thus equation (2) reduces to l'

jlsj.[ig: ¢aa( )]ds ”J 1 F Viedv =g &)

=0.

r



