Chapter S

LINE , SURFACE , AND VOLUME INTEGRALS
AND RELATED INTEGRAL THEOREMS

[NTRODUCTION
So far . we have dealt with derivative operations on vector fields . In this chapter , we shall define
e integrals - surface integrals , and volume integrals and consider some important applications of these
pcgrals We shall see that a line integral is a natural generalization of the definite integral , the surface
: ‘;ﬂ‘ is a generalization of a double integral , and volume integral is a generalization of a triple integral
Line integrals can be transformed into double integrals with the help of Green’s theorem in the
plase . With the help of Stokes’ theorem , line integrals can be transformed into surface integrals , and
xaversely . Surface integrals can be transformed into triple integrals and conversely with the help of
. Gasss divergence theorem . These transformations are of great practical importance . The corresponding
 deorems of Green’s , Stokes’ , and Gauss serve as powerful tools in many practical as well as theoretical
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532 TANGENTIAL LINE INTEGRAL

. LetA(x.y.z) = A,;i+Asj+Ask bea vector
. pomt function which is defined and continuous along the arc
AB of the space curve C . Subdivide the arc AB into n
"'Mbymnsofthcpoints P,,P,,....,P,_, chosen
| wbirarily and write A = P, and B = P, as shown in
‘:_.;_;"‘3"”5-1)- Consider one such segment P, P, and let
| % arc length of this segment be Asy, k = 1,2,...,n.

zLﬂ lexk,yk,zk)bcanypointond:cscgment Py Py
hiog

f =

B - 5 : ‘
%“ A(xkiyk1zk)=Ak. Let Tk be unit .
®gem vector 1o C at Q:. C Figure (5.1)

, We mgls; e

| f Multiply the tangential component of A at Q| with the arc length A s of the corresponding

? PLI"; and form the sum E Ak-!l\'k Asy .
* k=1
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Now take the limit of this sum as n — e in such a way that the arc length of each .

This limit , if it exists , is called the tangential line integral of A alon

— A i A
by JA.Tds or J-A.Tds
A C
Lt - A r
i — — A
it n— o kE Ag.Ty Asy = j A.Tds
=1 A
: < L2 i i .
Since T = P where r is the position vector of any point on C, it is usual to put Tds = P
B B :
— A =2 — — i
thus the line integral I A.Tds = I A.dr =I A.dr =IA|dx+A2dy+A;dl
A A C C

= A A A
where dr = dxi+dyj+dzk is called the differential displacement vector .

The line integral J. A.dr is sometimes called a scalar line integral of a vector field A.
C

If C is a closed curve which we shall suppose a simple closed curve ( i.e. a curve which does not intersect
itself anywhere ) , the line integral around C is often denoted by

@ A.dr = Sﬁ A,dx+A>dy+A,dz
C C

If X is the force E on a particle moving along C, this line integral represents the work done by a force

In fluid mechanics , this integral is called the circulation of A around C , where A represents e
velocity of a fluid . In general , any integral which is to be evaluated along a curve is called a line integral

OTHER FORMS OF LINE INTEGRALS

Sl A =
The other forms of line integrals are I(pdr =i I¢dx+3 I¢dy+kj¢dl
C C C C

45 st A A A A
and IAxdr - I(A.?+A,f+A,k)x(dx:+dyj+dzk)
C c

A > ,dx]
? J. (A,dz-A,dy)+? _.. (Asdx-A,dz)+k j (A, dy Az
C C C

Thus integrals that involve differential displacement vector d r are called line integrals .

‘A
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GENERAL PROPERTIES OF LINE INTEGRALS

owing are the properties of line integrals that are useful in computation and applications:

foll
- B
.[KK'd—; =K_|‘_A-.d_r. ( K any real constant )
1] C
s C,
C(ReB)at = [ R o [ By
C C

C c,

| T _[ A d r + _[ A d : -

L (i) .[ dr J A Figure (5.2)

C, 58

where the pa(h C is subdivided into two arcs C,; and C, that have the same orientation as C as shown
~ nfigure (5.2). If the sense of orientation along C is reversed, the value of the integral is multiplied by — 1.

L I C is piecewise smooth, consisting of smooth curves C,,C,, ....., C, as shown in

figure (5.3), the line integral of A over C is defined as the sum of the line integrals of A over each of
the smooth curves making up C:

et b Pl = - A

C C s c,

| In this sum , the orientation along C must be maintained
- overthe curves C,,C,, ....., C . Thatis, the initial

Ca

point of C ; is the terminal point of C; _, . This o) Cs
 kquirement is indicated by the arrows as shown in C,
figure (5.3) . Figure (5.3)

X

BXAMPLE(1): 1If A = 3xyli\-yz.'i\,evaluate I A.dr where C is the curve in the

C
A xy—plane,y=2x2,from(0,0)to(l,2).
-:(:LUTION: The curve C definedby y = 2x? in 4y
XY - plane is shown in figure (5.4) . Since the integration
""foﬂned inthe x y - plane (z = 0), we can take 24 (1.2)
5 A A A
i P e yj.therefore dr =dxi+dyj. c
St e A
A.dr = (3xyi-—y2?).(dx’i\+dyj)
C g
. il g g
- 3xydx—y2dy Figure (5.4)

&
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Let y = 2x?, then dy=4xdx. Also x varies from 0 to 1. :

[&.a7

C

1
j 3x(2x3)dx-4x*(4x)dx
=0

3
gl

X
1
I(6x3—l6x5)dx=
0

—

A A o =
EXAMPLE(2: K A = (2x+y)i+(3y-x)j, evaluatej A .dr where C is the
C
in the xy—plane consisting of the line segment C, from (0,0) to (3 ok

Ql,]wQ

then the line segment C, from (2,0) to (3 g2 Vs
SOLUTION: The path C consisting of line segments C, and C, is shown in figure (5.5)

p—y

A A i
Since integration is performed in the xy—plane , therefore r = xi+yj andso dr =dx i +d y}

Then J‘_A..d_r‘ = | [2x+n) i +0By-0]].[axi+dy]]
C C 4
= ] (2x+y)dx+(3y-x)dy (D) 24 (3.2
C y=2x-4
For a path consisting of the line segments C, and C,, we have C;
_[X.d? = I X.d}'+_[ A.dr @) 00| ¢ (20 3
C C, C, Figure (5.5)

On the line segment C from(0,0)t0(2,0),y = 0 and so dy = 0, while x varies from 0 to 2
The integral (1) over this part of the path is

2
J‘ K.d?: I 2xdx=|x2|§=4
C, x=0

For the line segment C from (2,0) to (3, 2) , the equationis y = 2x -4 andso dy = 2¢

while x varies from 2 to 3. The integral (1) over this part of the path is

[2x+(2x-4)]dx+[3(2x-4)-x]2dx

|

J A.dr
C,

(14x-28)dx = |7x2=28x|3 = (63-84)—(28-56) ="

n
N G, W

e
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v 1 (2) We BE
| mea“’"o"
o
o 2 =1l
I A.dT " g
C
A e R
* If A= (x—3y)?+(y—2!t)j , evaluate @ A .dr where C isan ellipse
2 2
.’59-.,,%- = 1 in the xy-plane traversed in the positive (counterclockwise)
: direction .
L : , y
QUUTION: The curve C Wth.h is an .elhpse wnfh T 2 y_2
. pajor axis as 3 and semi—minor axis as 2 is shown in 2 — 4 =1
; (5.6) . Since the integration is performed in the }/—\
- A A

w .47 = § (x-3ndry-20dy O
Figure (5.6)
O C
mpmmetﬁcequationsofthisellipseare X =3cost, y=2sint, 0<t<2m
fegfore, dx = -3sintdt, dy = 2costdt. Hence from equation (1) , we get
‘ 2m
§_A..d_r.= J- (3cost—6sint)(—3sintdt)+(2sint—6¢cost)(2costdt)
14 c t=0
2r
= I (—53intcost+183in2t—12cos2t)dt
0
2n
-
= I [—55m2t+9(1—cos2t)—6(1+0082l)]dt
0
b) sin2 t sin2t) | 2™
'c052t+9(t-——)- (t+ )
] 5 3 e

2n

3 15
4c0s2t+3t—75in2t

0
3
G (Z°°s47‘+61t)-(%c030)

2 3
4*6R-T =6n
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53 LINE INTEGRAL DEPENDENT ON PATH ( SAME END POINTS )

We now show that the value of a line integral I
C

of the path C but also on the geometric shape of the path C; i.e. if we i“ttxm”
rl’m

A .dr in general , depends noy "o o
Ny

points P, and P:

P, to P, along different paths , we in general , obtain different values of the integral

EXAMPLE (4): f A= (l+x2y)’i\+2xyfi\, evaluate I A .dr from (0 v 0) to T A
C )
along the following paths C :
(i) the straight line from (0,0) to (1,1).
(ii) the line segment C, from (0,0) to (1,0) and then the line segpey C,
from (1,0) to (1,1).
(iii) the line segment C, from (0,0) to (0, 1) and then the line segmey C,
from (0,1) to (1,1).
SOLUTION: Since integration is performed in the xy—plane, therefore dr =dx ’1\ +dy ?
?V
and so IK.d?:I(1+x2y)dx+2xydy (1)
C C (0.1) (1,1)
where the path C in each case is shown in figure (5.7) . G T‘ ¢,
() Along the straight line from (0,0)to(1,1),
y =x, dy = dx while x varies from 0 to 1. e
The line integral (1) becomes (0,0) c, (10 (N
1 ! Figure (5.1
j A.dr = ] [1+x>x) ]dx+2x(x)dx = j (1+2x%+x%)dx
C 0 0
2 1! 2 123
= [ x+FxT+x S 1+§+z = 12
(i) In this case we have
kntr o i) @
C Ci C,

where C is the curve consisting of the line segments C, and C, as shown in figure (5.7) - l
Along the line segment C, from (0,0) to (1,0),y =0, dy = 0, while x variesfrom 0"

1
The integral (1) over this part of the path is I A.dr = _[ dx = 1
C] X=
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segment Cyfrom(l.0)w(l,1),x =

].;ix = 0. while y varies from 0w 1.

ol ) over this part of the path is J. A gl j»
{

: 2)‘dy=}
1”"‘ Ca y=0
! m\nl“ we gel I Addr =1+1=2
: m’“‘m C
: ‘thmscgmcm Ci from(0,0) 10 (0,1), x=0 dx=0, while y varies from 0 to ]
. 1

‘r‘m)overlhiSPaﬂO“hePau'lis IX.d?: j 0dy=0

jnfe
r C, x=0

| \Wlhﬂli“‘“gmcm Ca from (0,1) w (1,1), y=1,dy =0, while x varies from 0 o0 1.

1
: i mm“gnm)ovcrthismeflhepathis J. A Jdr = J (1+x?*) dx =
: Cz x=0

+x’
X+
3 0

4
3

u|:-
wl.n

from equation (2) , we get J A.dr =0+
| C

'NO'I'E: In example (4) , we have seen that the value of a line integral I A.dr in general , depends

C
_‘[.me path C joining the points P, and P, . We now show that for certain types of vector functions the

?nlueofdlc line integral will depend only on P, and P; but will not depend on the path C from P, to
_}, We first state the following definition .

4 LINEINTEGRAL INDEPENDENT OF PATH (OR CONSERVATIVE FIELD)

The line integral J. A.dr issaidtobe independent
C

P,
"gon R , if the value of the line integral J. A.dr is

e P, R
o all paths ¢ joining any two given points P and

' Figure (5.8)
R. Thys as shown in figure (5.8) , the line integral is - g
: “M‘M

of the path C if the integrals along C;, Cz2,Cs
" same value .
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n‘%
EXAMPLE (5): It A = 2xy*T+2(x’y+y) ], evaluute,[ A.dr from (g
C ] “ ) ‘“ (1
along the following paths C: Al
()] the straight line y = 2x
(i) the parabola y = x*
(i) the line segment C, from (0,0) to (2, 0) and then the tine g
from(2,0) to (2,4).
SOLUTION: Since integration is performed in the xy—plane , therefore dr = dx ? & dy"\
]
Y
Then J.A.dr =I2xy2dx+2(x:y+y)dy (1) 4 24)

C C

where the path C in each case is shown in figure (5.9) .

(i) Along the straight line y =2 x, we have
dy = 2dx while x varies from0Oto2.

The line integral (1) becomes

2 00| c, oy
IK.d? = j 2x(2x) dx+2[x?(2x)+2x]2dx Figure (59)
x=0
2
= I(]6x +8x)dx = lax*+4x?|5 = 64416 = 80.
0

(ii) Along the parabola y = x?, wehave dy = 2xdx while x varies from 0 to 2.
The line integral (1) becomes
_[Zd—l" 2x(x2)2dx+2[xz(x2)+x2]2xdx
C 0

Il

X
2
j(6x5+4x3)dx = |x8+x%ly = 64+16 = 80.
0

ey PR e B 2)
(i) In this case we have _‘.A.dr = J‘ A.dr+j A.dr

i C, C;

where C is the curve consisting of the line segments C; and C,.
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segment Cy,,y =0, therefore dy = 0, while x varies from 0 to 2 Thus
in¢

gment C;, x = 2, therefore d x = 0 while y varies from 0t 4.
4 4

j 2= I 2(4y+y)dy = I 10ydy = 5ly?l; = 5(16) = 80
Ca y=b )

g the 1in€ €

_mm,quauon(il).wcgct j A.dT = 0+80 = 80
c

¢ THEOREMS ON LINE INTEGRALS INDEPENDENT OF PATH
P,
HEOREM (5.1): Prove that a necessary and sufficient condition for I A.dr to be
P
independent of the path joining any two points P, and P, (i.e. A to be

conservative ) in a given region is that § A " d_l" = 0 for all closed paths C

C
in the region .

PROOF: Let C be any simple closed curve , and let P; and P, be any two points on C as
fhown in figure (5.10) . Then since by hypothesis, the integral is independent of the path

tic.xisconservatjve), we have I A.dr = I A.dr
P]APZ P]BPZ

sing the direction of integration in the integral on the right , we have

I A.dr = - A.dr
1AP, P,BP,
I K.d?+ A d? —
PiAp, P,BP,
N g A
i Adr = ¢

C Figure (5.10)
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o

Conversely , if % M.aﬂ = (0, then ._. A.dr + ._. A.dr =0
P\AP; P,BP,

or ‘— M.Qﬂl .>.ﬁ_—. =0

or A aﬂ = A.dr
P,AP, P,BP,

which shows that the line integral is independent of the path joining P, and P, as required ,

SCALAR POTENTIAL FUNCTION
s a single-valued function for which there exists 4 Oningg

=Vo.

A scalar potential function ¢
vector field A in a simply connected region R that satisfies the relation A

THEOREM (5.2): Prove that a necessary and sufficient condition for _. A.dr to be independey
C

of the path C joining any two points Py = (x1,¥1,%1) and Pys(x,,y,4

(ie. A to be conservative ) is that there exists a scalar function ¢ such th

A = V ¢, where ¢ is single valued and has continuous partial derivatives.

PROOF: Let A = V¢, then
P, P,
[R.av = [ Roav = [ veuar
C P, P
P (ny 2
P rodk 24 B¢ A >£%L
u._. .mlm_+ﬂh+mw .(dxi+dyj+dzk) S\\\Q Q\.?
P, %n\‘ wﬁ\x
P, :
a0 ¢ 96
= ._‘mxau: a<+mN
P
P,
5 _,aeuﬁ_ile:u;uf:.E.NNTﬁr.S_N;
P T_
i
% _am:m ﬁ—,—ﬂa I

Thus the line integral depends only on points P, and P, and not on the path joi

conservative .




o fun€
(xlylz) (K-Y.Z) e
o P - dr
o(x.y:2) = .[ % e A I sidyoroon
(XhYI-zll (X1,y121) 4 fﬁ d’f dfv
: 88 = B et
B\-diﬁﬂﬂ“illion. 'a-; = A. ds @ ‘Tw"j d%‘/"#"c 24 Sl} of

- d¢ - "dr
d d
g2"'_—9=V¢)'-(1—E‘_ _—@ ) ﬁgé/fﬁl)‘(al“;‘”ds )

Bt s ds ot 2 d7 (ﬁ
g N dY, 2B 4%
_ Fromcquau'on.s'(l)ﬂnd (2) , we have (V¢—A )Ts_ = 0 = ggjff t Z¢ fﬂds

. .4 a/}

 Since g_r_ is a unit tangent vector and # O therefore equation (3) implies rﬁat

anh

V¢—K =0 or A = V¢. Hence the theorem .

! THEOREM (5.3): Prove that a necessary and sufficient condition that a vector field K be

conservative isthat VX A = 0 (i.e. A is irrotational ) "

‘ PROOF: If X is a conservative field then by theorem (5.2) , we have K =Vé¢o.
2‘4 L i I
'Thus VXA =VxVp=0 (x.y.2)

EC""""-"el)'.if VxA = 0 , then (X1, Y1. 24)

= V ¢ follows as a consequence of this . Figure (5.11)

W ]
TR 9 - /
P T ] o 0 and thus o >
it X dy dz y
R Ay A
iai-l:_a_A_l aA| _aAJ aAz_aA_]_ . r-
iﬁ"' Vo 88" @z, 9%’ @x " :dy (x. ¥4, Z4) (x.y. zy)
i ¢
i

b
>
a
-
n

,[A1(X.y.z)dx+A2(x.y,z)dy+A3(x,y.Z)dZ
C

de
Path joining (x,,y,,2,)and (x,y,2).
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the straight line segments from(x,,y,,2,) 4 (x

e of the integral along thjs p‘“icuh!,y ha, ‘
Payy . *
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Let us choose as a particular path , .
(x,y,z,) to (x,y,z)and call ®(x,y,z)thevalu

omitting the integrand we have e \
(X,y1,21) (X,,Z1) j_’ :
TR ) P ] (1
(x1,y1,21) (x,y1,21) (x,y,21)
(i Along the straight line from (x;,y;,z1) to (X, Y1, 21 ), y=constant=y 'hcon,um_
J

sothat dy = 0,dz = 0, while x varies from x, to X.

(1) Along the straight line from (x,y;,2:) to (X,Y,21), X = constant zag
sothat dx = 0,dz = 0 while y varies from y, to y.

()  Along the straight line from (x ,y,z,) to (X,y,2), X = oM, ¥ w'y
sothat dx = 0,dy = O while z varies from z, to z. Thus we can write equation (])

X y .
0(x,y,z) = IA.(x,yI,ZI)dHIAz(x’y'z')dy"'jA’“”’”‘”
X Yi ol
29
It ; Uows that 32 = As(x,y,2)
¥4
d ¢ JdA
'é—y= Az(x,y,z,)+j a_y‘l(x,y,z) dz
Z
zl ’2_”—'3— %’—
= A2(X:Y:ZI)+I fo(x,y.Z)dz i
z,
= Ax(xy.a+ Ay )1} = as(x,y . 2)
26 y 2z
0A, oV
P A.(x,yu.z|)+_[ B x (x,y.zl)dy+j éﬁl (x,y,z)dz ',a/ﬂ*,’f;,
yi z, pos
y 4 z [ ﬁ
A
= A.(x.y.,Z.)+I a_y‘ (x,y,z)) dy+j aai;l (x,y,z)dz
Yi Z,
= A.(x.y..z.)+|A,(x,y,z.)|§l+|A,(x,y,z)lz' }
¥ 1
e A'("’y''z')’“"“l("'y’zl)—An(x.yl.Z.)+A;(x.y,z)‘/’”“"y
= Al(x’yvz)
- A A X P d d
Then A=A.1+AgJ+A;k='a—rli\+£?+a_iﬁ=V¢

and 80 A isa conservative field .



A A a‘s
Ghow that the vector field A = (siny+z)i+(xcosy—-z)j+(x-Y)

onservative . Hence find the scalar potential function ¢ for which A =Ve¢.
c

we know that a necessary and sufficient condition for a vector field A to be
¢

i
A A A
i j k
i rl 9 9
yxA = 3 x oy J

siny+z Xxcosy-Z X-=Y
A A -
- (_1+1)?+(1-1)?+(cosy—cosy)l’2= 0’i‘+0j+0k =0

(he vector field A is a conservative .

0pa 0
*w A= V¢-g:?+atj+a¢ﬁ-(smy+z)1+(xcosy Z)_]+(X y)k

Then -g—:l=siny+l (])
?:xcosy—-z (2)
| :
b_‘?: oy 7ol S,

| Inegrating equations (1) , (2) , and (3) , we get 2F(y,2) s

F ¢ o1+ 5S4 -
¢=xsiny+xz+f(y,z) = g; ropgd :3 = Zf £ ,’tj

_ ’.2;7/@/'*56'/ %;{Y/l)’ z

0=xsiny-yz+g(x,z) L2 1Aly 9 2)7
9=xz-yz+h(x,y) 2T 2

“Magreeif‘"”h"ose f(y,z)=-yz, g(x,z)=xz, h(x,y) = xsiny
b g = xsiny+xz-yz+C

M‘ C is any constant .

- THeg
] REM (5.4): Show that a necessary and sufficient condition that A, dx+A,dy+ A sdz

] be an exact differential is that V x X = 6 where K = A, Il\ +A, 3 +A, ﬂ "
""OF 3 3 36

Let A,dx+A 2dy+As;dz=do = —q-’dx+a—$dy+a_dz
" exacy g
ferential of 4 scalar function ¢ (x,y,z). Then on comparing coefficients , we have
Ao 28 X )
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Then VxA=VxVe=10
= V¢ and so

b 3) A
Conversely. if VxA = 0 .thcnbythem:ortm(i )

A.dr =Ve.dr =do . |
ie A dx+A;dy+A,dz =4d9, me.xuctdjfferenualofascalarfuncnon 0.
3
‘cosx-4x'2)dx+2127Y alnlluly...u,:','ln

scalar function ¢ and find ¢. Xay!

EXAMPLE (7):  Show that (y'3
Is an exact differential of a

£ A R 2.2,
A = (y'zlcosx-4x’z)i+22 ysinxj+(3y lzs'ﬂx-x‘)i

4

SOLUTION: Here
A A ﬁ
i J
. 5 2 3 el
s kit dx ay dz
ylz'cosx-4x’z 2z’ysinx 3ylzlsinx-x*

so by the above theorem (5.4) , we have
(yzz’cosx—4x’z)dx+Zz’ysinxdy+(3yzzzsinx—x4)dz

do
or (ylz cosxdx+2z ysinxdy+3y’z?sinxdz)-(4x’zdx+x'dz) = d¢

d(y’z’sinx)-d(x‘z)=d¢

or ¢ = y2z’sinx-x*z+ constant .

EXAMPLE@8): If A = xi+2yj+zk, show that the value of the line integral _[ A.dri
C

2 for any path joining (0,0,0)to(1,1,1).

Cri - WOl T - A A A
SOLUTION: Since r = xi+yj+zk, therefore dr =dxi+dyj+dzk
and so _"K.d_;:jxdx+2ydy+zdz (1)
C C

Note that xdx +2ydy+zdz can be expressed as a total ( or exact ) differential

x? z?
Le. xdx+2ydy+zdz=d(7+y2+?).
Thus equation (1) can be written as
(1,1,1)
D 2 2 ]
s X . 21, 1
IA.df = I d(?{-yz-q-%): |-x—+y2+£_ : l)=l+1+-2-=2
2 2 | 000 2 :
C (0,0,0) ]

Mmmuntuultdependsonlyonmecndpoims(g,o'o)md(1’1,1)andisjnch‘
the path of integration .



f i
e evaluatej- ¢ dr along the following paths ( -
o ! b
I
ghest"aight line Y=X from(0,0) and (1,1)and
i ﬂ,,parabo'“ y = x* from(0,0) to (1,1),
" ey TR
i The paths C joining (0, 0) and (1,1) by the straight line and the parabola are
. & A A
‘“o.N- i Since T = dxi+dy), therefore
e (514
v’ngurt “y
A n
J d» . j'xy(d)(i"'dYJ)
R
‘ C
A A
_ 4] xydx+j ) xydy 0y
C C
AmgmeSu-ajghtlint‘. y=x,dy =dx,
- wiesfrom 0 10 1. Thus line integral (1) becomes

1 1
o il A Figure (5.12)
]er= i I x(x)dx+) I x(x)dx
¢ x=0 x=0
1 1
A A > el x|t da-1a
. 1jx2dx+JIx’dx=1 Tlo.l-" 3|, =31%3]
0 0

g be parabola y=x?, dy = 2xdx, while x varies from 0 to 1. Thus integral (1)

i1 | |
» A
C‘dr'_" I X(xz)dx+_|l'\ I x(x%)2xdx
x=0 x=0
I 1
et S R R LA R B T S
’IXJd)H?IZx"dx:? 14- 0+j -5-x5 0=Zl+5]
& 0

e
. A R octd
A Yi+x 3 , evaluate j A xdr along the curve C in the xy-plane ,

C

ye X
3 from (0,0)t0(3,9).

) |
Biven curve i the xy — plane is shown in figure (5.13)



—~aga

242 LINE, SURFACE, AND VOLUME INTEGRALS AND RELATED INTEGRAL -

T]-[z%\ |

A A A
i B - T,Y
— —_ A
Axdr = | vy £ D] = (ydy-xdx)k (3.9)
dx dy O
AU o g C
Therefore | Axdr =k | ydy-xdx (1 y=£
C C :
Along the curve C, we have y=%‘, dy=x2dx
while x varies from 0 to 3. Thus line integral (1) becomes (0,0) e
3 3 Figure (5.
N §L A x3 ) % 1 .
Axdr =k T(x')dx—xdx:k FX-X dx
C x=0 0
6 213
A x X Al 8 9 A
%k [E 2] -k
SUMMARY

The results on the line integrals can be summarized as follows:

o A A A
If the vector field A = A, i+A;,j+Aj;k isconservative , then all of the following statement e
i.e. any one of them implies each of the others:

P,
(i) I A.dT is independent of the path joining any two points P; and P,.
P, "
(i) @ A.dr = 0 around all closed paths C passing through P, and P b
C

(iii) A = V ¢, where ¢ is a scalar point function .

XA =0 identically . In

<

(iv)

(v) A.dr = A;dx+A,dy+ A;dz is an exact differential . ' ~0



