ove analysis 18 ap.ph.cable to any rigid body which is rotating about
of the tl.n'ee principal axes (with distinct moments of inertia) at
fixed in it. Therefore we conclude that the rotation around the

;u‘l)’

. ".poclipﬂl oxiS corresponding to either the largest or the smallest M.I.
Pnnlé ot that around the principal axis with intermediate M.I. is unstable.

18
| b
> of the M.I. say,l 1 andI  are equal, then from (9.6.5) we find that

E 0 and thereforep=p  o,a constant. The equation (9.6.4) forAnow
| ¥
* becom@ dA

-5 = Hiko (9.6.12)
erefh 1= (Is —=I'1)/I1. The solution of (9.6.12) isA=p 1 uot+p 3.
g

- his shows that the perturbation will increase linear.ly wi?h .time and the

tion around theOX- axis is unstable. We can obtain a similar result for
| rOmt'o'n about theOY-axis. It can be further shown that the motion will be
r:i;l; only when the rigid body is rotating about theOZ-axis irrespective
| :,f whether! 3 is greater than or less thanl 1 =I 2.

07 Euler’s Angles and Rigid Body Motion

: three de-
'~ Arigid body constrained to rotate about tt;x ixeedpzzzt:: :: lZpecif}' the
| _ Therefore we require coordinates
gi?mﬁaizid?fnsuch a body. Euler’s angle are three =P

. ig dy.
; : tamon) of a ngld bo
: : figuration (orien
which are used to specify the con

hat there is no

0, ¢) w' Note t. s

The Euler angles are usually de;llote;: &);re agreed convention about their
ther

wiversally agreed notation, nei
- Signs, : define the
| ‘ o be O. To
: : dy is rotating f reference)
| y Whlch the bo frame O re
?t the fixed point a.b.(;u: a coordinate sy.stem i :;'nOX y Zfixed in the
Ouler angles we conside " another coordlf‘ate systtem is usually referred
XoYyZ, fixed in space, t‘-n The first coordinate sy:n
Ydy and rotating with it dinate SYStO™ % i poordinate

coor
‘0 as Space or ﬁ:r.ed or mertml dyormomﬂg

“Vstem, We suppose that the tWO

i e the Euler!
'~ 0) coincident and define tfhthe rotating

'he orientation of the axes ©

% < angle between the axesOZ 0
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Figure 9.5: Steps in the determination of the Euler angles. !

T
R J

¢ = angle between the fixed axisOX ¢ and the lineON,  The lineON

is the line of intersection of the planesOX oY, andOX Y, and is called the

line of nodes. The angle¢can also be regarded as the angle between the
PlanesOZ oZ andOX oZy. It varies from 0 to 25 a
W
¥ = angle between the body axis OXand the line of nodes ON. It varies b
from 0'to 2. t!

As the body rotates the Euler anglesf

, » @, Yvary with time and their
derivatives 6, ¢, Yrepresent angul

ar speeds about certain axes.

Y'Z' andOX "y zn rform the
following sequence of rotations: o d
‘ C
(1) OXoY0Z, — OX'Y'Z’, (2) OX'Y'z! ,0x "y"7" 1 f
- ) ox"yrgr OXYz \
. The first rotation which we ‘ “ e

: perform, throygh angleg, is in the coun ]

terclockwige direction, in thex 0Yo-plan Sy 2ngleg, js in ¢

: € (ie. XY plane fixe -
dinate system), about the axis)z 0. This rotationpc:zet?: f'éﬁmﬂ o
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22" Space D
m

COBg ainqb 01‘

Itr/» ' 'h'in(ﬁ COS¢ 0

0 0

1 (9.7.1)

. & is calle Ce88
e whl° ¢ “: :t«l;:nl Z"Ux,s.gwn angle. After applyi
fhe new cOOTAInAte system is denggeq byO)I() ngg, this transforms,
» and the relatiop

: n - . .
| Uov',ccﬂ ¢he coordinates is given by

%)

| wherex o denotes the column vector of coordinates i.e

n vectorX " has a similar definition_ [zo, o, 2|*. The

’ (;ohlm
d rotation takes pl ; '
9, The secon place in theY 'Z’-plane, in th
ek P ’ e counterclock-
e direction about theOX ’-axis through an angle§. Th . :
‘ s case is given by g e rotation matrix

1 0 0
Rg=|0 cosf sind (9.7.3)
0 —sinf@ cosf

' The angle @ is called nutation angle. The new coordinate system is now
' moted byOX "Y”Z", and the coordinates are related by

x”~ — Roxl (9‘7'4)
}. The third rotation takes place in theOX " Y"-plane in the counterclzf:k-
vise direction through an angleyabout theOZ "-axis. Thlstt'rmxf;rt?i: ;Zn
rings us to the body coordinate systemOXY Z. The rotation

lis case is given by

i

A e

cosy simz g (9.7.5)
* = -—Sin'l,b cos
are related by
ate vectors (9.7.6)

| "the corresponding coordin

: on
| et
’ The angle Y is called the body anglet;ody (:OOL‘dim“;e B}; Ré» which when
'dinate system 0XoYoZo t° e atrix B = B
R R the rotatio” - 0
; "ﬁtten: ) is given by cosP sing
In full becomes ‘ 0 ’08} {-—aind’ ooog 1
gip
.| cosp siny O 0 cosf %4 g
~siny) cosy _ginf cosf




: anics
An Intermediate Course in Theoretical Mech

: 0 cos@p sing ‘0
- -Zflﬁ zgﬁ 0 —cosfsing C.OSHCOS¢ s
= : i sinfsing  —sinfcos¢  cosf
The elements of the product matrixR= (r ij) are given by
cos@ .
Y [ cosy) sint,b 0 ] —COS&SinQS = COS¢COS¢“COSHSIH¢Sinw
: sinfsing
sing :
ri2 = [ cosy siny 0] [ —cosfcosp | = COS¢SIH¢+SIH¢COSOCOS¢
—sinfcos¢@ .
0
ri3=[ cosy siny 0 ] sinf = sinysind.
cosd
[ cos¢p |
ro1=[ —siny cosy 0 ] | —cosbsing =—sin¢cos¢—cos¢cosﬁsin¢,

sinfsing |

[ sing ]

ra=[ —sing cosyp 0 ] cosfcosp | =—sinysing+ cosycosfcosg.
| —sinfsing |
. o Gl
r3=[ —sing cosy 0] sind = cosy sind.
cosd
: CoS¢h
mel08 ] ] —cosfsing = sinfsing.
sinfsing
sing
Y39 =
22=[ 0 0 1 ] [ c'osacosqs =-sinfcos¢
: —sinfcosg




g
' li) ¢

; (ill

g
_ {he Bn_gul.

b0 an be regarded as consisting of three g

' Now since dy = (0, O, O — :
' ud the vectors in space and body coordin

er

along the axisOZ 0.

. s along the line of nodeg

. ] ) Which i ;
() es()OX 0Y0 andOXY. '8 the line of intersection of the

'
'

I -
f jis slong the axisOZ.

ar velocity components (wy, Wy
X b
y. For this purpose we consider thege

: com
s. Remembering that the genera] infi ponents along the three

nitesimal rotation associated

uccessive infinitesimal rota-

wlth wc % 1413 ~ - -
jos with angular velocities &y, dg and @y with their magnitudes equal

b 0
dy 8X€

6, 0 and 1 respectively. Therefore the vector @ can be expressed as

enote thatd ¢ is along theOZ ¢-axis,i ¢ alongOX '-axis (or alongON, the

' e of nodes) andd y alongOZ-axis. We will now use the orthogonal trans-

omation given in (9.7.2), (9.7.4), and (9.7.6) to obtain the components of

' zlong the set of axes we desire.

' The body system of axes is the most useful for discussing the equations of
" mtion. Therefore we will obtain components ofdin this system.

0, 0 ¢]t in 0XoYoZo coordinate system,
[ ) )
ate systems are connected by

os¢p sing 0 0
__:inqS cos¢ 0} [0.]

%b)=R y Ry Ry il =R y Rg 4 L
| g
0 2% S 0
RyBy | 0| = Ry |0 cos  sinf ' }

|
3
E
|

é 0 —gind cost
éssinﬂsimb
cosyp sinyy O o = J’si?ocosd)

~

: hsind 5 hoost
~siny) cosyp O ‘?61
tem
by in the body §YS

ost
0 0 L) . angulr velod
Mheregs 8(b) denotes the €O i
* o rotation through B

e fotation through a,ngle. tz yectore’
t‘reﬁponding angular velod!

Motion of a Rigid Body iy, Space —
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a 7 t ; i
vector &g therefore is represented by the eolumnb v:l:ctor [‘Z’O,O] in th, |
coordinate systemOX 'Y'Z'. Its transform in the body coordinate SYster,

iswd g(b) and is related by

1 0 0 )

Wg(b) = RyRe@g=Ry | 0 cosf sinf 0

0 —sinf cosf 0

cosyy siny O 9 0'.cos1/)

= | —sinyp cosy O 0| =| —6siny
0 o 1 0 0

The rotation aboutOZ ” axis through angleyis the same as rotation about
OZthrough the same angle. Henced= ¢k’ = ¢k. Now

& = dg(b) +@ ¢(b) + (D)

écosw 0
—0siny) ] + [0}

or

wy (}:Ssinﬂsimp
g | = ': ¢sinfcosy +
¢cosf

w3 0 ’,b
which gives :
w = r{'&einﬂsin¢+ q'Scosw ‘ (9.7.70.)
wp = gsinfeosy— fsiny (9.7.7b.)
wy = ¢cosf+ 1 -

Note on Notation

‘The notation used b S |
' Y the Brit ;
here. We have adopt’ed then: ls‘h &uthors 18 diﬁerem &om the one ‘#

i ' tation useq : |
10 particular). Ourgands by American authors (GM
| YW tation. Some other mmeqmz andrn /2—¢in the m



