B ey i gie JastE = &0 U
1e. For such a

: s - S3.1,= COIlStan : : s
monon’t 123 walI;ngL (or in other words, the projection ofj;
mponent 0O )

‘o constant. The tip of the angular velocity vector & descril
lledinvar'ial;le plane. As the rigid body rotates, an observer fix,

t. Since

O

- Invariable
- plane

Invariable line \i
Q

gure 9.1: A symmetrical top in which t
out any point is zero.

he torque or net moment




choose theZ-axis along the ax

ifl 1, I2) I3 are the principal moments of inert;
Inertia at the orig; ‘
gin (the c.m.)

then by definiti
o the tOP» on of a symmetri b
et from] 1. rical topl 5 =I 1, and[ 3 will be

{nder these assumptions Euler’s d :
ynamical equatio 4
e q ns (8.2.1-8.2.3) be-

PPt ————— T P

Lwy + (U3 —I2)wawz = 0 (9.4.1)
| Lws + (I1 —I3)wiwz = 0 (9.4.2)
1 : Lz = 0 (9.4.3)

. To make our treatment more general, we assume that the angular ve-
- Jocitywof the top is not aligned along any of the principal axes.

From equation (9.4.3), sincel 3 # 0, ws =0 which gives

w3z = constant (9.4.4)
Now equations (9.4.1) and (9.4.2) may be rewritten as
w + _I_:;__-i-__f__l_m wg = 0 (9.4.5)
1
- ad
% wa + I =11y =0 (9.4.6)
s g
| 1 4.7
; & M. i w3 a constant w3 © | )
i 0 = e .
| : itten

Then (9.4.5) and (9:4.6) ©2° P e 0 (9.4.8)

e Lo 049)

i)
: g 48 . differential €d4u®
i t order lineal This
"’ upled firs 4 to(9-4:9):
' Euation (9.4.8) and (969) 20 Pa.49) by v = v

tl.o bs, To solve them, W° multipty

Blveg d
—0 or 3;(“’1 s

(dh o P PR, TR L ) (wg —w 1)
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5 —df(un fuwg) 1w 1+wa) = 0 (945,
Letn=w | 4w 3, then R {9‘4'“
and (9.4.10) reduces to dn o 4
BT )0 1:4.4‘1_2"
whose general solution is given by
n = ne™ (941
Using (9.4.11), we obtain from (9.4.13) L
w; = mnocos U, wy = mosin (9.4‘14}:
wheren ¢ is assumed to be an arbitraryrealconstant.

On squaring and adding the last two equations, we obtain
2
wi+wi = ng

which shows that the sum of squares ofw 1 andw 4 is constant ( see equation
(9.4.4)). Alsow 3 is constant. Therefore :

witw?+w? = constant

or

] =w= \/""12 twitw? = V% +w 2 = constant

Equations (9.4.14) are parametric equations of a circle and ghow that the
terminal end of the angular velocity vector ¢ traces a circle with time !
in the OX Y-plane. This implies that the vector @& precesses in a cone
about theOZ-axis, (the symmetry axis of the top) with constant angular

frequency (= angular velocity) O, (see figure 9.2), whilew 3 remains constant |
around the symmetry axis, MObiey
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| efOre
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by
kn
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g‘llar
tu:,e locity vectorarotate®
on the angula.r momen
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ant if
that & W& that it8
¢, From figure 9




- . ’ b
the angled 1 betweenwandLis given DY

| is the semi-vertical angle the

Angle¢ [ r emaiﬂli C;I;S;:la:}:ei)r::czassion ofwabout the constaps ane :
ot This cone resu Sd from the space coordinate systfm. On the ot
momentumL, a5 \élefwem the body coordinate system, Precesgeg aroy
hand when. viewe ; ;t(;)ry axis). This situation is sh9wn in figure g 4
the Obf_z:ifsscr(ii}ggras one cone rolling on another, i.e. the body Co
may

d)‘L 2Trot =
o [0 M s

wl

constant

ng |

the line of COntaot |

i ippi the space cone and Dt

i thout slipping around . |

rf’“‘“f_ :lof the angular velocity &, which precesses around the Ozom ‘
dllrlec lvoiewed from the space coordinate system. The x.a,ng.ulaf frequency ¢

:)Vrei:ssion ofdabout theOZ (-axis (i.e. symmetry axis) is glvgn by

Space cone =¥

Similarly the an

given by

- Depending on the valueg off
b Or inside the 8pace, ag g

P W3 = YWs
I

) =

Z

Space cone

Body cone

(a) (b)

Figure 9.4:
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- dv + fixv 4
/?‘; ":

iy

wherev=v |itv gj+v gkis the velocity of the mass centre (j, e,
coordinate system). Substituting fora J =8¢ lrom (9.5 3) liitg, (H:T\'

k

had

obtain
dv — .
g nadd {lxv ) = §
M ( =
which is equivalent to _
M( vy + g vy ~3v) = B :‘
M(vz + Qa v; =2 1 T):j) = f'g (9“} .
M(il3+ﬂ1 () --ng‘) — /’},}

From (9.5.2), on using

dt ),

and the relation L=J 1wiiy +1 gwg j+T 5 wy l:,'wa obtain the latioy |
hai + Lagj+r swik + (044 ~{1 3 Ly)i '

+ (L -0,Ly)) + (N Lly-0yL)k = g

From this vector equation we obtain the following three scalar equaion |
a8 ' ala - BL; = @

lay + O3, - Wiy = @,

and
Iywy + Ly - WL = Gy

where we have used the results

Ll 211; L2 2]2012, Ls ‘-=13¢d3
we have

L +w 0y, w3l Iy =@, (0.66)

I3 twa I, W1 I =@ 3
which are the same as for a rigiq body With a fixed point, In these equstio

h, I, Iy denote Principal momengg of inertia at the centroid of the b

-

The sets of equationg (9.5.4)! ang, (9.5.5) constitute six equations 107 W
Components of velocity of the Mass centre and (he components of L
: * buke ¥

1165)1 +w30313 —~w20312 ='=G] }




9. Motion of a Rigid Bod

e ﬁ-ﬁﬁﬁﬁﬁ“ﬁ“~‘“§““~;‘
1 H > B 267
S .

| i
o~ body will be d © of its principa]
y ee p
" rigid bO.“Y s, med to be stab]e if under g
| e pody Wili T€LUIN 1O 1ts former stqte of motion small perturbation

! ;cillﬂtions about the fixed point (or axis) or will perform small

| I3 denote the princi

L o] 1) I, 13 pPrincipal momentg .

| e ! ality we suppose that] , < of the body and without logs
{ of gen A 1 < f3 <I3. We choose the bod '

: o along the principal axes and take the body axisO.X Yy coordinate
| T co i

| o the principal moment Iy, as the axis of rotation. Thlen :;ispondllng
 Jocitydof the body can be represented as s

& Sl (9.6.1)

q When a small perturbation is applied, the axis of rotation is slightly dis-
 placed and the angular velocity then takes the form

& = Iji+Aj+uk (9.6.2)

4 were), pare very very small parameters. The Euler dynamical equations
ure

{

Iy —(Ig —Ig)waws = 0
Iowe —(I3 —I)waw
Iyis —(I1 —12)w1w

i
o

i
|
| ' =) w3 =pand there-
' Forthe problem under discussion, from (9.6.2)w 2 ="

% the Euler equations become

= 0 ) (9.6.3)

: g
Lk 4 (hda@er. _
R + (e . (0.63) e
all, the l.xrst of equatlon; (d .eéuations
' i thir
g;ﬂce the produce pis negh%:;l:, i m’ the second and the
Ceg 800y == Oorwi = cons : 1
(9.6.3) we obtain !3/_.{1 wl) »
i ( Iz ' (9.6.5)
I -4 2w1) A |
/ .
j = (13 A
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o w9 I8 constant, D"”‘ff‘mtja;;n | _
where ench term in the parentheses | § ” q; |

(nating 1 Wi ¢ he
equations w.r.t, ¢ and eliminating ) or g with the help of the Ahey

' t 3 e-t"( 18
obtain the second order differential equatior

Sp AZUNAZTD) 20w g .
I714 o4
and
o (N =I2)() =13) w]z'# o 945

Ht I13
Mathematically equation (9.6.7) is exactly the same as (9.6.6) with Jn

placed by,
The solution of (9.6.7) is given by

At) = Ae'ht 1B —dhut (953
where et Iy -1 )
g 7% B F

0 : LT, W12 (968

and

If follows that if the Iotation axis, th
v : takes place around the OXor is, the
perttfrba.tlon Producesg Oscillatory mgtibn andu::;;j mtaom' ‘ oiabl& If ehe
rotation takes place around the OY-axis beca,:e of 0, b;-’,,g imagins™

the exponential factc, M 1 Solution for A(f) and wu(f) beco®®



; h"“. - . - el ‘,ll‘: Yt
o W (s “n:ﬂ;llhl( ' l “"‘“HL&L; O

t i v
ﬂ*'& 3

¥ qalysis 18 applicable (o an
™

@ B
A three principal ayxeg (w

Wi
¥ \‘t (hv s g "
o ed I 1t I'herefore we

*"

.: %
A

: \mil e corresponding to either (e
e " K . A
Fa | that around the p Incipal axig wig

b e A

-‘??““ A WL
ES A"

| jthe M.L say,l | andl 4 are equal, they f

~a efore: ' VISI Trom (9.6.5) we |
i therelOref==pt  o,a constant. The « VT W i
m N\\i b, The €quat i 8L 4 "
" : Juation (J-b.éi,s forion
‘:\g\\;m (iA

dt Ml 4

1= (Is =I'1)/Ih. The solution of (9.6.12) ish=p ; poi4y

.« shows that the perturbation will increase linearly with tisge aud s
ution around the OX- axis is unstable. We can obtain & similer sesut G
f;uu‘o‘n about theOY-axis. It can be further shown that the motion wil i
::' .&k‘ only when the rigid body is rotating about theOZ axis wrespeiin
whether] 3 is greater than or less thanl ; =1 ;.

i
;
a

1 Euler’s Angles and Rigid Body Motion

rigid body constrained to rotate about & fix s
5’;? of fregdom. Therefore we require three Pmm. A
\Siguration of such a body. Euler’s an.gle areithtr:mﬂns) “L“d \ gl bl
ith are used to specify the configuration (O“:: Note that there i 1
| Buler angles are usually denoted by ¢, ;’_eed convention abauf Gher
| &Wy agreed notation, neither is there 8

| M2 fixed in space, and ano A
1  ang rotating with it. Tl‘wl l:;
“uy,, Pace or figed or nert®t " movind e "

mlnate system is referred O s borl aate YRR L i e

| 5g). We suppose that theil: the Buler® iate

= M 0) Binata. . . a2 2 B T




