_' N[ot(;lfe)n of a Rigid Body in
{sp2

1 7y plane I.HOUOD Of. a rigid body discussed in chapter 8 is quite simple.
1 fere the axis of rotation is fixed and therefore its direction does not change.
4 |n the case of general motion of a rigid body the direction of the axis of
4 qation is not fixed. Consequently the situation is much more complicated;
4 sen in the case of a body on which no forces are acting, the problem is
ot simple.

1 [ this chepter we will discuss the motion of a rigid body in space. First
wwill discuss the motion of such & body when it is fixed about a point.
Later we discuss the general motion in which both translation and rotation

1 e involved.

4 Vewill also discuss the stability of motion and other related problems.
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Since the axes OX, OY, U4 are PUntips Aies {uy = & =

therefore we can write
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where (I, I, I3)=(I 4, I,, I,) are principal moments.

Now the rate of change of any vector function F in fixed and rotatiy
coordinate systems is related by |
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ReplacingFbyLin the last equation we have
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where the symbols on the R.H.S. refer to the r;)tating coordinate system

ButdL/dt=@, the tota] external torque (in the fixed or inertial coordinate
system). Therefore on substitution
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This vector equation is equivalent to the following three scalar equation®
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Yow for the kinetic of a rigid body we have the relationT(1/2)@-Lwhich

wen referred to the principal axes reduces to T = (1/2) (I w? 4+1 w2 +
ho?. In view of this formula we find that in this case T = constant.
2. the kinetic energy in the absence of external forces is a constant of
" mtion. This is so because no work is being done by the external forces, and

werefore the potential energy is a constant. | .(9.1..1)
Another integral of the force-free equations can be obtained by multiplying
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