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PROBLEMS
24. Show that if E; and E, are measurable, then

m(EiUE;)+m(EiNEy) =m(E;) +m(E).

25. Show that the assumption that m( By ) < oo is necessary in part (ii) of the theorem regarding
continuity of measure.

26. Let {E;}72, be a countable disjoint collection of measurable sets. Prove that for any set 4,

m*(AﬂCj Ek) = io:m*(AnEk).

k=1 k=1

27. Let M’ be any o-algebra of subsets of R and m’ a set function on M’ which takes values in
[0, oc], is countably additive, and such that m’(@) = 0.

(i) Show that m' is finitely additive, monotone, countably monotone, and possesses the
excision property.
(ii) Show that m’ possesses the same continuity properties as Lebesgue measure.

28. Show that continuity of measure together with finite additivity of measure implies countable
additivity of measure.

2.6 NONMEASURABLE SETS

We have defined what it means for a set to be measurable and studied properties of the
collection of measurable sets. It is only natural to ask if, in fact, there are any sets that fail to
be measurable. The answer is not at all obvious.

We know that if a set E has outer measure zero, then it is measurable, and since any
subset of E also has outer measure zero, every subset of E is measurable. This is the best that
can be said regarding the inheritance of measurability through the relation of set inclusion:
we now show that if E is any set of real numbers with positive outer measure, then there are
subsets of E that fail to be measurable.

Lemma 16 Let E be a bounded measurable set of real numbers. Suppose there is a bounded,
countably infinite set of real numbers A for which the collection of translates of E, {A+ E}) ¢ a,
is disjoint. Then m(E) = 0.

Proof The translate of a measurable set is measurable. Thus, by the countable additivity of
measure over countable disjoint unions of measurable sets,

= > m(A+E). (15)
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Since both E and A are bounded sets, the set|UJ, ¢ A (A+ E) also is bounded and therefore has
finite measure. Thus the left-hand side of (15) is finite. However, since measure is translation
invariant, m(A + E) = m(E) > 0 for each A € A. Thus, since the set A is countably infinite
and the right-hand sum in (15) is finite, we must have m(E) = 0. d
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For any nonempty set E of real numbers, we define two points in E to be rationally
equivalent provided their difference belongs to Q, the set of rational numbers. It is easy to see
that this is an equivalence relation, that is, it is reflexive, symmetric, and transitive. We call it
the rational equivalence relation on E. For this relation, there is the disjoint decomposition
of E into the collection of equivalence classes. By a choice set for the rational equivalence
relation on E we mean a set Cr consisting of exactly one member of each equivalence class.
We infer from the Axiom of Choice!” that there are such choice sets. A choice set C is
characterized by the following two properties:

(i) the difference of two points in Cg is not rational;
(ii) for each point x in E, there is a point ¢ in g for which x = ¢ + ¢, with g rational.

This first characteristic property of Cr may be conveniently reformulated as follows:
For anyset AC Q, {A 4+ Cg}) e is disjoint. (16)

Theorem 17 (Vitali) Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof By the countable subadditivity of outer measure, we may suppose E is bounded. Let
Ck be any choice set for the rational equivalence relation on E. We claim that Cg is not
measurable. To verify this claim, we assume it is measurable and derive a contradiction.

Let Ag be any bounded, countably infinite set of rational numbers. Since Cg is
measurable, and, by (16), the collection of translates of Cz by members of Ay is disjoint, it
follows from Lemma 16 that m(Cg) = 0. Hence, again using the translation invariance and
the countable additivity of measure over countable disjoint unions of measurable sets,

m|JA+Ce)| = D m(A+Cg)=0.
Aely Aely

To obtain a contradiction we make a special choice of Ag. Because E is bounded it is
contained in some interval [—b, b]. We choose

Ao =[~2b, 25]N Q.

Then Ay is bounded, and is countably infinite since the rationals are countable and dense.!!
We claim that
EC U (+cp). 17)
Ae[~2b,26]NQ

Indeed, by the second characteristic property of Cg, if x belongs to E, there is a number ¢ in
the choice set Cg for which x = ¢ + ¢ with g rational. But x and ¢ belong to [-b, b], so that g
belongs to [—2b, 2b]. Thus the inclusion (17) holds. This is a contradiction because E, a set
of positive outer measure, is not a subset of a set of measure zero. The assumption that Cg
is measurable has led to a contradiction and thus it must fail to be measurable. (il

10gee page 5.
1gee pages 12 and 14.



Section 2.7  The Cantor Set and the Cantor-Lebesgue Function 49

Theorem 18 There are disjoint sets of real numbers A and B for which
m*(A UB) < m*(A) +m*(B).

Proof We prove this by contradiction. Assume m*(A U B) = m*(A) + m*(B) for every
disjoint pair of sets A and B. Then, by the very definition of measurable set, every set must
be measurable. This contradicts the preceding theorem. O

PROBLEMS
29. (i) Show that rational equivalence defines an equivalence relation on any set.
(ii) Explicitly find a choice set for the rational equivalence relation on Q.

(iii) Define two numbers to be irrationally equivalent provided their difference is irrational.
Is this an equivalence relation on R? Is this an equivalence relation on Q?

30. Show that any choice set for the rational equivalence relation on a set of positive outer
measure must be uncountably infinite.

31. Justify the assertion in the proof of Vitali’s Theorem that it suffices to consider the case that
E is bounded.

32. Does Lemma 16 remain true if A is allowed to be finite or to be uncountably infinite? Does it
remain true if A is allowed to be unbounded?

33. Let E be a nonmeasurable set of finite outer measure. Show that there is a G5 set G that
contains E for which
m*(E) = m*(G), while m*(G~ E) > 0.

2.7 THE CANTOR SET AND THE CANTOR-LEBESGUE FUNCTION

We have shown that a countable set has measure zero and a Borel set is Lebesgue measurable.
These two assertions prompt the following two questions.

Question 1 If a set has measure zero, is it also countable?

Question 2 If a set is measurable, is it also Borel?

The answer to each of these questions is negative. In this section we construct a set
called the Cantor set and a function called the Cantor-Lebesgue function. By studying these
we answer the above two questions and later provide answers to other questions regarding
finer properties of functions.

Consider the closed, bounded interval I = [0, 1]. The first step in the construction of
the Cantor set is to subdivide I into three intervals of equal length 1/3 and remove the
interior of the middle interval, that is, we remove the interval (1/3, 2/3) from the interval
[0, 1] to obtain the closed set Cy, which is the union of two disjoint closed intervals, each of
length 1/3 ' '

C1 =10, 1/3JU[2/3, 1].

We now repeat this “open middle one-third removal” on each of the two intervals in C; to
obtain a closed set Cy, which is the union of 22 closed intervals, each of length 1/ 32

C, =0, 1/9]U[2/9, 1/3]U [2/3, 7/9] U[8/9, 1].



