T, we obtain
A

I = —gI
mil
which is the equation of simple harmonic motion. If the initial conditions
are assumed asz(0) =z o, #(0) = 0, then solution can be found as

T = IpCO8 (W) t

1.9.4 Potential energy of a linear spring

In addition to gravitational P.E., we come across another form of P.E. which
is due to elastic deformation. As an example of such a P.E. we consider the
P.E. of a spring. A linear spring consists of a massmattached to an elastic
bar. The elongation z of the spring is measured from its un-stretched
position. The force in the spring when the particle has been airetched
is proportional to the elongation and is given by F = —kx, where the
constantk(k >0) is calledspring constant(orstiffness constant). Writing

F = —(dv/dz), where Vz) is the P.E. of the spring and solving the

differential equation .
dVv
= ko

dz
we obtain V = (1/2)kz % where we have chosen the zero-level of P.E. at
z= 0

It is to be noted that F denotes the force exerted by the spring on the
particle, and not the force of opposite sign which will be the force on the

spring due to the particle.

1.10 Applications of the Principle of Conserva-
tion of Energy

~ In this section we will discuss some problems of mechanics, where principle

of energy conservation is utilized to simplify calculational work or achieve
_hetter understanding of the problem. In order to solve a mechanical prob-
. lem we usually begin with the equation(s) of motion which reduce to one
O more second order differential equations. Then we solve this equation
- Yaking into account the initial or boundary conditions. This procedure may
not always be simple or direct. When the system is known to be conserva-
e, it is convenient start with the theorem (principle) of conservation of
ergy. We know that the K.E. is given bymv /9 withv'? = 9* + §* + 22,

R 4
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1.10.1 ~ The problem of simple harmonic oscillator

Usually the problem of simplé harmonic motion is solved by solving f}
differential equation -

f=—(k/m)z or E+w =0 where w?=k/m.

/  We assume that( simple or linear harmonic oscillator is a conservative s

e ——— s —

tem} There the total energy can be written as e

FE=T+V = %m'a:z + -;—ka:z
This relation gives
T = %‘f— — \/—— - '-—xz
= i\/w3A2 —wo:z:2
= FwoVA2-z? (1.10.1)

where we have put 2E/m = W Az, (A > 0) and used the relatlon wg 4

(k/m). ’

From (1.10.1) on integration

t | T
to zo VAZ —g 2 (

wheret o corresponds tox g, the equilibrium position of the harmonic 956
lator. To perform the integration in (1.-10.2), we putz = Asind. Ther

A %o
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uo(t—-t o) = awooagin"'li - B

A
or I
sin~" . - wo (t—=t o) +0 o
z = Asin(wo(t-t o) +0 o) (1103)

where 0y = gin~! (zo/A).

Equation (1.10.3) gives the solution of the problem of simple harmonic
motion. It shows that the motion is periodic with periodr= 27 Jw o

b.. N /&
(y‘v'ﬁ("" (‘,f,f End~ ’

ol 4 @V V)
(a vé5 ? |

1.10.2 Escape velocity

V' The force of gravitation due to the earth pulls the bodies towards the centre
of the earth. That is the reason why bodies fall to the ground. If a body is
projected away from the earth with sufficiently high speed, it may overcome
the gravitational pull and escape into the outer space. The critical velocity
at which this happens is called escape velocity. VTo calculate escape velocity
we will make use of energy conservation. At the surface of the earth, the

Yo
le

W * F,,,»/
- C’/"
= '
‘Va’
. o '/1
Figure 1.7 E_,,,.).Q‘
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From (1.10.4) and (1.10.5):
1 2 GMT”
%mvgo +0 = 5™ + | - ’
p: . 2GM
'Ugo = Yy - .
€
Sincev o, # 0, it follows that
M
%2 23 (1.10)
e

minimum escape velocityy

2GM
e i (1.10.7)
Te
Nm.v the weightm 9of a particle js equal to the gravitational force exerted
on it by the earth. Therefore

\
GMm

e ———

7'3 =mg which gives G’Al..—_gre2

Substituting in (1.10.*), We obtain

s) are Periodic functions of

: (wt+6 2) where W = 9% /1 ig

1T 5 o
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The akfove equation of motion describes the motion of a pendulum when
the e ing of the pendulum is small. When there is no restriction on the
amplitude of the pendulum, the corresponding equation of motion will be

6+ gsiné? =0

¢
Or ..
§ & o gin@ = 9 (1.10.8)
where w@ = (g/f). To derive this equation we regard the oscillator as

a particle with its weight m g as the only force acting on it. Then the
equation of motion will be
d?s

m-ﬁfto = —mg(sin@)t 0

, -

wheresis the arc element of the path of motion, to the unit tangent vector,
andfthe angle of inclination of the string with the vertical at timet. Then
the equation of motion will be
d2
m-at—z to = —mgsinft o

Using the results=i6in the last equation we obtain (1.1.8). If we regard
the oscillator as a sphere of finite radius, then we use rotational equa-
tion of motion G = L, (see chapter 8) and obtain the same equation.
Equation (1.10.9) is a non-linear ordinary differential equation of order 2.

mg

Figure 1.8:
One method to obtain its first integral is to multiply both sides by 20anc
integrate w.r.t. t. This will give

/ g—i(é’)dt-}-%g / sin@df=c %, constant



