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PROBLEMS

Complete the proof of Theorem 11 by showing that measurability is equivalent to (iii) and
also equivalent to (iv).

Show that a set E is measurable if and only if for each € > 0, there is a closed set F and open
set O for which FCEC O and m*(O~ F) <e.

Let E have finite outer measure. Show that there is an F,, set F and a G set G such that

FCECGandm*(F)=m*(E) = m*(G).

Let E have finite outer measure. Show that if E is not measurable, then there is an open set
O containing E that has finite outer measure and for which

m*(O~E)>m*(O) —m*(E).

(Lebesgue) Let E have finite outer measure. Show that E is measurable if and only if for each
open, bounded interval (a, b),

b—a=m*((a, b))NE)+m*((a, b)~E).

Use property (ii) of Theorem 11 as the primitive definition of a measurable set and prove
that the union of two measurable sets is measurable. Then do the same for property (iv).

For any set A, define m**(A) €[0, oo] by
m**(A) =inf {m*(0) | O 2 A, O open.}

How is this set function m** related to outer measure m*?
For any set A, define m***(A) €[0, oo] by

m**(A)=sup {m*(F) | FCA,F closed.}

How is this set function m*** related to outer measure m*?

2.5 COUNTABLE ADDITIVITY, CONTINUITY, AND THE BOREL-CANTELLI LEMMA

Definition The restriction of the set function outer measure to the class of measurable sets
is called Lebesgue measure. It is denoted by m, so that if E is a measurable set, its Lebesgue
measure, m( E), is defined by

m(E) =m*(E).

The following proposition is of fundamental importance.

Proposition 13 Lebesgue measure is countably additive, that is, if {E;};2, is a countable
disjoint collection of measurable sets, then its union \J;2 | E also is measurable and

m(Cj Ek) = i m( Ey).
k=1 k=1
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Proof Proposition 7 tells us that (J{°; E is measurable. According to Proposition 3, outer
measure is countably subadditive. Thus

(U Ek) < gl (E). , 9)

It remains to prove this inequality in the opposite directon. According to Proposition 6, for
each natural number =,

()= Eeee

Since 7?2 Ex contains %=1 Ex, by the monotonicity of outer measure and the preceding
equality,

(U Ek> > E (Ey) for each n.

k=1
The left-hand side of this inequality is independent of n. Therefore

(U Ek) > E (Ex)- (10)
k=1 k=1

From the inequalities (9) and (10) it follows that these are equalities. H

According to Proposition 1, the outer measure of an interval is its length while
according to Proposition 2, outer measure is translation invariant. Therefore the preceding
proposition completes the proof of the following theorem, which has been the principal goal
of this chapter.

Theorem 14 The set function Lebesgue measure, defined on the o-algebra of Lebesgue
measurable sets, assigns length to any interval, is translation invariant, and is countable
additive.

A countable collection of sets {Ex}ze is said to be ascending provided for each k,
Ey C E;1, and said to be descending provided for each k, E; C E;.

Theorem 15 (the Continuity of Measure) Lebesgue measure possesses the following conti-
nuity properties:

(1) If{A}2, is an ascending collection of measurable sets, then

m(@ Ak) = lim m(Ay). (11)
k=1 k— oo

(ii) If {Bk}p2, is a descending collection of measurable sets and m( B, ) < oo, then

m(ﬁ Bk) = klim m(By). (12)
i1 - 00
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Proof We first prove (i). If there is an index ko for which m(Ay,) = oo, then, by the
monotonicity of measure, m (S, Ax) = oo and m(Ay) = oo for all k > k. Therefore (11)
holds since each side equals co. It remains to consider the case that m(Ax) < oo for all k.
Define Ay = @ and then define Cy = Ay~ Ay_1 for each k > 1. By construction, since the
sequence {Ax}72 is ascending,

o0 [o.¢]
{Ci}f2, is disjoint and |_J Ax = | Ci.
k=1 k=1
By the countable additivity of m,
[o,0] o0 x
m{|J A |=m{{JCi| =D m(Ar~Arq). (13)
k=1 k=1 k=1

Since {Ax}{2, is ascending, we infer from the excision property of measure that

S m(Ag~Apr) = k%:I[m(Ak) — m(At)]

k=1
= lim, 5 é1[m(Ak) —m(Ag-1)]
= lim, -, co[m(An) — m(Ao)].

(14)

Since m(Ag) = m(8) = 0, (11) follows from (13) and (14).

To prove (ii) we define Dy = B;~ By for each k. Since the sequence {Bi}p2, is
descending, the sequence {Dy};2, is ascending. By part (i),

00
m(kLle Dk) = kli)moom(Dk).

According to De Morgan’s Identities,

00 o0 )
U Dy =U[Bl~Bk] = By~ n By.
k=1 k=1 k=1

On the other hand, by the excision property of measure, for each k, since m(By) < oo,
m(Dy) = m(By) — m(By). Therefore

8
m(31 ~N Bk> = lim [m(B;) — m(B,)]
k=1 n— oo
Once more using excision we obtain the equality (12). O

For a measurable set E, we say that a property holds almost everywhere on E, or it

holds for almost all x € E, provided there is a subset Ey of E for which m(Eq) = 0 and the
property holds for all x € E ~ E.
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The Borel-Cantelli Lemma Let {Ex}g2; be a countable collection of measurable sets for
which 372 m(Ey) < 0o. Then almost all x € R belong to at most finitely many of the E;’s.
Proof For each n, by the countable subadditivity of m,
o0 o0
m UEk szm(Ek)<oo.
k=n k=n

Hence, by the continuity of measure,

sl y >
m Ex| | = Iim m(| J Ey) < lim m(Ex) =0.
n=1 | k=n n—=>00 kLan g

Therefore almost all x € R fail to belong to Mooy [U,‘:‘;n Ek] and therefore belong to at most
finitely many Ejy’s. O

The set function Lebesgue measure inherits the properties possessed by Lebesgue
outer measure. For future reference we name some of these properties.

(Finite Additivity) For any finite disjoint collection {E k)4 of measurable sets,

n n

m||JE|= > m(Ey).
k=1 k=1

(Monotonicity) If A and B are measurable sets and A C B, then

m(A) <m(B).
(Excision) If, moreover, A C B and m(A) < oo, then

m(B~A)=m(B)—-m(A),

sothatifm(A) = 0, then
m(B~A) =m(B).

(Countable Monotonicity) For any countable collection {Ex}p2, of measurable sets
that covers a measurable set E,

m(E) < S m(Ey).
k=1

Countable monotonicity is an amalgamation of the monotonicity and countable sub-
additivity properties of measure that is often invoked.

Remark In our forthcoming study of Lebesgue integration it will be apparent that it is the
countable additivity of Lebesgue measure that provides the Lebesgue integral with its decisive
advantage over the Riemann integral.



