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We devote this chapter to the study of measurable functions in order to lay the foundation
for the study of the Lebesgue integral, which we begin in the next chapter. All continuous
functions on a measurable domain are measurable, as are all monotone and step functions
on a closed, bounded interval. Linear combinations of measurable functions are measurable.
The pointwise limit of a sequence of measurable functions is measurable. We establish
results regarding the approximation of measurable functions by simple functions and by
continuous functions.

3.1 SUMS, PRODUCTS, AND COMPOSITIONS

All the functions considered in this chapter take values in the extended real numbers, that
is, the set R U {£oc}. Recall that a property is said to hold almost everywhere (abbreviated
a.e.) on a measurable set E provided it holds on E ~ Ey, where Ej is a subset of E for which
m(Ey) =0.

Given two functions  and g defined on E, for notational brevity we often write “h < g
on E” to mean that h(x) < g(x) for all x € E. We say that a sequence of functions {f,} on E
is increasing provided f, < f,.1 on E for each index n.

Proposition 1 Let the function f have a measurable domain E. Then the following statements
are equivalent:
(i) For each real number c, the set {x € E | f(x) > c} is measurable.
(ii) For each real number c, the set {x € E| f(x) > c} is measurable.
(iii) For each real number c, the set {x € E | f(x) < c} is measurable.
(iv) For each real number c, the set (x € E| f(x) < c} is measurable.

Each of these properties implies that for each extended real number c,

the set {xe E | f(x)=c} is measurable.

Proof Since the sets in (i) and (iv) are complementary in E, as are the sets in (ii) and (iii), and
the complement in E of a measurable subset of E is measurable, (i) and (iv) are equivalent,
as are (ii) and (iii).
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Now (i) implies (ii), since

{xEE| f(x)zc}zfj{er| f(x)>c—1/k},

and the intersection of a countable collection of measurable sets is measurable. Similarly,
(ii) implies (i), since

{xeE| f(X)>C}=;Q{XEE| f(x) = c+1/k},

and the union of a countable collection of measurable sets is measurable.

Thus statements (i)—(iv) are equivalent. Now assume one, and hence all, of them hold.
If ¢ is a real number, {(x e E| f(x) = ¢} = {(xe E| f(x)) = c} N {x € E| f(x) < ¢}, 50 f71(c)
is measurable since it is the intersection of two measurable sets. On the other hand, if c is
infinite, say ¢ = 0o,

{xEE| f(x):oo}:é{erl f(x) >k}

so f~1(o0) is measurable since it is the intersection of a countable collection of measurable
sets. ]

Definition An extended real-valued function f defined on E is said to be Lebesgue measur-
able, or simply measurable, provided its domain E is measurable and it satisfies one of the
four statements of Proposition 1.

Proposition 2 Let the function f be defined on a measurable set E. Then f is measurable if
and only if for each open set O, the inverse image of O under f, f~1(0) = {(xe E| f(x) € O},
is measurable.

Proof If the inverse image of each open set is measurable, then since each interval (c, o)
is open, the function f is measurable. Conversely, suppose f is measurable. Let O be open.
Then! we can express O as the union of a countable collection of open, bounded intervals
{I};2; where each I} may be expressed as B, N Ay, where B, = (—00, b ) and Ay = (ay, 00).
Since f is a measurable function, each f~!(B;) and f~!(A;) are measurable sets. On the
other hand, the measurable sets are a o-algebra and therefore f~1(©) is measurable since

0

o) =f1

BknAk}=ij_1(Bk)nf_l(Ak)- 0
k=1 k=1

The following proposition tells us that the most familiar functions from elementary
analysis, the continuous functions, are measurable.

Proposition 3 A real-valued function that is continuous on its measurable domain is
measurable.

Isee page 17.
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Proof Let the function f be continuous on the measurable set E. Let O be open. Since f
is continuous, f~1(0) = E N U, where U is open.? Thus f~1(©), being the intersection
of two measurable sets, is measurable. It follows from the preceding proposition that f is
measurable. O

A real-valued function that is either increasing or decreasing is said to be monotone.
We leave the proof of the next proposition as an exercise (see Problem 24).

Proposition 4 A monotone function that is defined on an interval is measurable.

Proposition 5 Let f be an extended real-valued function on E.

(i) If f is measurable on E and f = g a.e. on E, then g is measurable on E.

(ii) For a measurable subset D of E, f is measurable on E if and only if the restrictions of
f to D and E ~ D are measurable.

Proof First assume f is measurable. Define A = {x € E | f(x) # g(x)}. Observe that
{x e E I gx)>ch={xeA| g(x) >c}U[{er I f(x) >c}ﬂ[E~A]]

Since f = g a.e. on E, m(A) = 0. Thus {x € A| g(x) > ¢} is measurable since it is a subset
of a set of measure zero. The set {x€ E| f(x) > ¢} is measurable since f is measurable
on E. Since both E and A are measurable and the measurable sets are an algebra, the set
{x€ E|g(x) > c} is measurable. To verify (ii), just observe that for any c,

{xeE| f(x)>c}={xeD| f(x)>c}u{xeE~D| f(x)>c}

and once more use the fact that the measurable sets are an algebra. O]

The sum f + g of two measurable extended real-valued functions f and g is not
properly defined at points at which f and g take infinite values of opposite sign. Assume f
and g are finite a.e. on E. Define Ej to be the set of points in E at which both f and g are
finite. If the restriction of f + g to Ey is measurable, then, by the preceding proposition, any
extension of f + g, as an extended real-valued function, to all of E also is measurable. This
is the sense in which we consider it unambiguous to state that the sum of two measurable
functions that are finite a.e. is measurable. Similar remarks apply to products. The following
proposition tells us that standard algebraic operations performed on measurable functions
that are finite a.e. again lead to measurable functions

Theorem 6 Let f and g be measurable functions on E that are finite a.e. on E.

(Linearity) For any a and B,

af + Bg is measurable on E.

(Products)
f g is measurable on E.

2See page 25.
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Proof By the above remarks, we may assume f and g are finite on all of E. If a = 0, then
the function a f also is measurable. If a # 0, observe that for a number c,

{xeE| af(x)>c}={xeE| f(x)>c/a}ifa>0
and

{xeE| af(x)>c}={xeE| f(x)<c/a} ifa<O.
Thus the measurability of f implies the measurability of « f. Therefore to establish linearity
it suffices to consider the case thata = 8 =1.

ForxeE, if f(x)+ g(x) <c,then f(x) <c— g(x) and so, by the density of the set of
rational numbers Q in R, there is a rational number g for which

f(x)<q<c—g(x)

Hence

{erI f(x)+g(x)<c}=L%{er| g(x)<c—q}ﬂ{er| f(x)<q}.
g€

The rational numbers are countable. Thus {x € E | f(x) + g(x) < ¢} is measurable, since it is
the union of a countable collection of measurable sets. Hence f + g is measurable.

To prove that the product of measurable functions is measurable, first observe that

N 1
fe=3U7+8) - -4
Thus, since we have established linearity, to show that the product of two measurable
functions is measurable it suffices to show that the square of a measurable function is
measurable. For ¢ > 0,

(x€E| fA(x)>cl={xeE| f(x)>Je}UxeE| f(x) <=/}

while for ¢ <0,
(xeE| fA(x)>c}=E.

Thus 72 is measurable. O

Many of the properties of functions considered in elementary analysis, including con-
tinuity and differentiability, are preserved under the operation of composition of functions.
However, the composition of measurable functions may not be measurable.

Example There are two measurable real-valued functions, each defined on all of R, whose
composition fails to be measurable. By Lemma 21 of Chapter 2, there is a continuous, strictly
increasing function  defined on [0, 1] and a measurable subset A of [0, 1] for which /(A )
is nonmeasurable. Extend  to a continuous, strictly increasing function that maps R onto
R. The function 4//‘1 is continuous and therefore is measurable. On the other hand, A is a
measurable set and so its characteristic function y 4 is a measurable function. We claim that
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the composition f = x4 o ¢! is not measurable. Indeed, if I is any open interval containing
1 but not 0, then its inverse image under f is the nonmeasurable set y/(A).

Despite the setback imposed by this example, there is the following useful proposition
regarding the preservation of measurability under composition (also see Problem 11).

Proposition 7 Let g be a measurable real-valued function defined on E and f a continuous
real-valued function defined on all of R. Then the composition f o g is a measurable function
on E.

Proof According to Proposition 2, a function is measurable if and only if the inverse image
of each open set is measurable. Let O be open. Then

(fog)™'(0)=¢7'(f7(0)).

Since f is continuous and defined on an open set, the set I/ = f~!(0) is open.® We infer
from the measurability of the function g that g~!(1/) is measurable. Thus the inverse image
(f o g)~!(O) is measurable and so the composite function f o g is measurable. Ll

An immediate important consequence of the above composition result is that if f is
measurable with domain E, then | f| is measurable, and indeed

| £|? is measurable with the same domain E for each p > 0.
For a finite family { f;};_, of functions with common domain E, the function

maX{fl, LR fn}
is defined on E by

max{fi, ..., fo}(x) = max{fi(x),..., f.(x)} for xe E.
The function min(fi, ..., f,}is defined the same way.

Proposition 8 For a finite family { fi};_, of measurable functions with common domain E,
the functions max{fi, ..., f,}and min{fy,..., f,}also are measurable.

Proof For any c, we have
{xeE| max(fi,..., fil(x)>c}=J{x€E| fi(x)>¢}
k=1

so this set is measurable since it is the finite union of measurable sets. Thus the function
max({fi,..., fu}is measurable. A similar argument shows that the function min{fi, ..., f,}
also is measurable. Ol

3See page 25.
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For a function f defined on E, we have the associated functions | f|, f*, and f~ defined

on E by

|£1(x) = max{f(x), - f(x)}, f¥(x)=max{f(x),0}, f~(x)=max{~f(x),0}.

If f is measurable on E, then, by the preceding proposition, so are the functions |f|, f,
and f~. This will be important when we study integration since the expression of f as the
difference of two nonnegative functions,

f=f"—f onk,

plays an important part in defining the Lebesgue integral.

10.

11.

PROBLEMS

. Suppose f and g are continuous functions on [a, b]. Show that if f = g a.e. on [a, b], then, in

fact, f = g on [a, b]. Is a similar assertion true if [a, b] is replaced by a general measurable
set E?

Let D and E be measurable sets and f a function with domain D U E. We proved that f is
measurable on D U E if and only if its restrictions to D and E are measurable. Is the same
true if “measurable” is replaced by “continuous”?

. Suppose a function f has a measurable domain and is continuous except at a finite number

of points. Is f necessarily measurable?

Suppose f is a real-valued function on R such that f~1(¢) is measurable for each number c.
Is f necessarily measurable?

. Suppose the function f is defined on a measurable set E and has the property that

{xe€ E| f(x) > c} is measurable for each rational number c. Is f necessarily measurable?

Let f be a function with measurable domain D. Show that f is measurable if and only if the
function g defined on R by g(x) = f(x) for xe D and g(x) = O for x ¢ D is measurable.

Let the function f be defined on a measurable set E. Show that f is measurable if and only
if for each Borel set A, f~1(A) is measurable. (Hint: The collection of sets A that have the
property that f~1( A) is measurable is a o-algebra.)

(Borel measurability) A function f is said to be Borel measurable provided its domain E is a
Borel set and for each ¢, the set {x € E| f(x) > c} is a Borel set. Verify that Proposition 1 and
Theorem 6 remain valid if we replace ““(Lebesgue) measurable set” by ““‘Borel set.” Show
that: (i) every Borel measurable function is Lebesgue measurable; (ii) if f is Borel measurable
and B is a Borel set, then f~1(B) is a Borel set; (iii) if f and g are Borel measurable, so is
f o g; and (iv) if f is Borel measurable and g is Lebesgue measurable, then f o g is Lebesgue
measurable.

Let { f,} be a sequence of measurable functions defined on a measurable set E. Define E to
be the set of points x in E at which {f,(x)} converges. Is the set Ey measurable?

Suppose f and g are real-valued functions defined on all of R, f is measurable, and g is
continuous. Is the composition f o g necessarily measurable?

Let f be a measurable function and g be a one-to-one function from R onto R which has a
Lipschitz inverse. Show that the composition f o g is measurable. (Hint: Examine Problem
38 in Chapter 2.)
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3.2 SEQUENTIAL POINTWISE LIMITS AND SIMPLE APPROXIMATION

For a sequence {f,} of functions with common domain E and a function f on E, there are
several distinct ways in which it is necessary to consider what it means to state that

“the sequence { f,} converges to f.”

In this chapter we consider the concepts of pointwise convergence and uniform convergence,
which are familiar from elementary analysis. In later chapters we consider many other modes
of convergence for a sequence of functions.

Definition For a sequence { f,} of functions with common domain E, a function f on E and
a subset A of E, we say that

(i) The sequence { f,} converges to f pointwise on A provided -
lim f,(x)= f(x) forallx€A.

n— oo
(ii) The sequence {f,} converges to f pointwise a.e. on A provided it converges to f
pointwise on A~ B, where m( B) = 0.
(iii) The sequence {f,} converges to f uniformly on A provided for each € > 0, there is an
index N for which

|f = ful <€on Aforalln > N.

When considering sequences of functions {f,} and their convergence to a function
f, we often implicitly assume that all of the functions have a common domain. We write
“{fa}— f pointwise on A” to indicate the sequence { f,} converges to f pointwise on A and
use similar notation for uniform convergence.

The pointwise limit of continuous functions may not be continuous. The pointwise
limit of Riemann integrable functions may not be Riemann integrable. The following
proposition is the first indication that the measureable functions have much better stability
properties.

Proposition9 Let { f,} be a sequence of measurable functions on E that converges pointwise
a.e.on E to the function f. Then f is measurable.

Proof Let Ey be a subset of E for which m(E() = 0 and {f,} converges to f pointwise on
E ~ Ey. Since m( Eg) = 0, it follows from Proposition 5 that f is measurable if and only if its
restriction to E ~ E is measurable. Therefore, by possibly replacing E by E ~ Ej, we may
assume the sequence converges pointwise on all of E.

Fix a number ¢. We must show that {x € E | f(x) < c} is measurable. Observe that for
a point x € E, since lim, -,  f,(x) = f(x),

flx)<e
if and only if

there are natural numbers n and & for which fj(x) <c—1/nforall j > k.
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But for any natural numbers n and j, since the function f; is measurable, the set
{x € E| fj(x) <c—1/n}is measurable. Therefore, for any k, the intersection of the countably
collection of measureable sets

ﬁ{er| fi(x) <c—1/n}

j=k

also is measurable. Consequently, since the union of a countable collection of measurable
sets is measurable,

{xeE| f(x)<c}= U [ﬁ{er| fi(x) <c—1/n}

1<k,n<o0 | j=k

iS measurable. |

If A is any set, the characteristic function of A, y 4, is the function on R defined by

(x) 1 ifxeA
X)) =
Xa 0 ifx¢A

It is clear that the function x4 is measurable if and only if the set A is measurable. Thus
the existence of a nonmeasurable set implies the existence of a nonmeasurable function.
Linear combinations of characteristic functions of measurable sets play a role in Lebesgue
integration similar to that played by step functions in Riemann integration, and so we name
these functions.

Definition A real-valued function ¢ defined on a measurable set E is called simple provided
it is measurable and takes only a finite number of values.

We emphasize that a simple function only takes real values. Linear combinations and
products of simple functions are simple since each of them takes on only a finite number of
values. If ¢ is simple, has domain E and takes the distinct values cy, ..., c,, then

@= D ck xg onE, where Ex = {x€E | ¢(x)=c}.

n
k=1

This particular expression of ¢ as a linear combination of characteristic functions is called
the canonical representation of the simple function ¢.

The Simple Approximation Lemma Let f be a measurable real-valued function on E.
Assume f is bounded on E, that is, there is an M > 0 for which |f| < M on E. Then for
each € > 0, there are simple functions ¢, and . defined on E which have the following
approximation properties:

0 < f<Yeand0<yYe— . <e€onkE.
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Proof Let (¢, d) be an open, bounded interval that contains the image of E, f(E), and
C=0<nN<...<Yp-1<y=d

be a partition of the closed, bounded interval [c, d] such that y, — y,_; <efor1 <k < n.
Defne

I = [yx-1, yx) and Ex = f ' (Iy) for 1 <k <n.

Since each I is an interval and the function f is measurable, each set Ey is measurable.
Define the simple functions ¢, and ¢, on E by

n n
Pe = D, Yk-1- XE, and e = D, y - XE,-
k=1 k=1

Let x belong to E. Since f(E) C (c, d), there is a unique k,1 < k < n, for which
Yi-1 < f(x) < yx and therefore

Pe(x) = ye—1 = f(x) <y = e (x).

But y; — yx—1 <e, and therefore ¢. and ¢, have the required approximation properties. []

To the several characterizations of measurable functions that we already established,
we add the following one.

The Simple Approximation Theorem An extended real-valued function f on a measurable
set E is measurable if and only if there is a sequence {¢,} of simple functions on E which
converges pointwise on E to f and has the property that

|¢n| < |f|on E for all n.

If f is nonnegative, we may choose {¢,} to be increasing.

Proof Since each simple function is measurable, Proposition 9 tells us that a function is
measurable if it is the pointwise limit of a sequence of simple functions. It remains to prove
the converse.

Assume f is measurable. We also assume f > 0 on E. The general case follows
by expressing f as the difference of nonnegative measurable functions (see Problem 23).
Let n be a natural number. Define E, = {xe E| f(x) < n.} Then E, is a measurable
set and the restriction of f to E, is a nonnegative bounded measurable function. By the
Simple Approximation Lemma, applied to the restriction of f to E, and with the choice of
€ = 1/n, we may select simple functions ¢, and ¢, defined on E, which have the following
approximation properties:

0<eon<f<¢ponE,and0 <y, — ¢, <1/nonkE,.

Observe that
0O<en<fand0< f—¢, <¢p— @, <1/nonkE,. (1
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Extend ¢, to all of E by setting ¢, (x) = n if f(x) > n. The function ¢, is a simple function
defined on E and 0 < ¢, < f on E. We claim that the sequence {{,,} converges to f pointwise
on E. Let x belong to E.

Case 1: Assume f(x) is finite. Choose a natural number N for which f(x) < N. Then
0< f(x)—¢n(x)<1l/nforn>N,

and therefore lim, _, o Y¥n(x) = f(x).
Case 2: Assume f(x) = 00. Then ¢,(x) = n for all n, so that lim,, _, o0 @ (x) = f(x).
By replacing each ¢, with max{e, ..., ¢,} we have {¢,} increasing. 1

PROBLEMS

12. Let f be a bounded measurable function on E. Show that there are sequences of simple
functions on E, {¢,} and {i,}, such that {¢,} is increasing and {¢,} is decreasing and each of
these sequences converges to f uniformly on E.

13. A real-valued measurable function is said to be semisimple provided it takes only a countable
number of values. Let f be any measurable function on E. Show that there is a sequence of
semisimple functions { f,} on E that converges to f uniformly on E.

14. Let f be a measurable function on E that is finite a.e.on E and m( E) < oo. For each € > 0,
show that there is a measurable set F contained in E such that f is bounded on F and
m(E~F)<e.

15. Let f be a measurable function on E that is finite a.e. on E and m( E) <oo. Show that for each
€ > 0, there is a measurable set F contained in E and a sequence {¢,} of simple functions on
E such that {¢,} — f uniformly on F and m(E ~ F) < e. (Hint: See the preceding problem.)

16. Let I be a closed, bounded interval and E a measurable subset of I. Let € > 0. Show that
there is a step function & on I and a measurable subset F of I for which

h=yxgon Fandm(I~F) <e.

(Hint: Use Theorem 12 of Chapter 2.)
17. Let I be a closed, bounded interval and ¢ a simple function defined on 1. Let € > 0. Show that
there is a step function # on I and a measurable subset F of I for which
h=yonFandm(I~F)<e.
(Hint: Use the fact that a simple function is a linear combination of characteristic functions
and the preceding problem.)
18. Let I be a closed, bounded interval and f a bounded measurable function defined on /. Let

€ > 0. Show that there is a step function h on I and a measurable subset F of I for which

|h— fl<eonFandm(I~F) <e.

19. Show that the sum and product of two simple functions are simple as are the max and
the min.



