CHAPTER 4
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We now turn to our main object of interest in Part I, the Lebesgue integral. We define this
integral in four stages. We first define the integral for simple functions over a set of finite
measure. Then for bounded measurable functions f over a set of finite measure, in terms of
integrals of upper and lower approximations of f by simple functions. We define the integral
of a general nonnegative measurable function f over E to be the supremum of the integrals
of lower approximations of f by bounded measurable functions that vanish outside a set of
finite measure; the integral of such a function is nonnegative, but may be infinite. Finally,
a general measurable function is said to be integrable over E provided f glfl <oo. We
prove that linear combinations of integrable functions are integrable and that, on the class
of integrable functions, the Lebesgue integral is a monotone, linear functional. A principal
virtue of the Lebesgue integral, beyond the extent of the class of integrable functions, is
the availability of quite general criteria which guarantee that if a sequence of integrable
functions { f,} converge pointwise almost everywhere on E to f, then

tim [ o= [ Lim 1= [ .

We refer to that as passage of the limit under the integral sign. Based on Egoroff’s
Theorem, a consequence of the countable additivity of Lebesgue measure, we prove
four theorems that provide criteria for justification of this passage: the Bounded Convergence
Theorem, the Monotone Convergence Theorem, the Lebesgue Dominated Convergence
Theorem, and the Vitali Convergence Theorem.

4.1 THE RIEMANN INTEGRAL

We recall a few definitions pertaining to the Riemann integral. Let f be a bounded real-
valued function defined on the closed, bounded interval [a, b]. Let P = {xg, x1, ..., x,} be a
partition of [a, b], that is,

a=x0<x1<...<x,=hb.
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Define the lower and upper Darboux sums for f with respect to P, respectively, by
L(f, P) =2 m;-(xi—xi-1)
i=1
and
| U(f, P)= X Mi- (% —xiz1),
=1

where,! for1 <i <n,

m; =1inf {f(x) | x-1 <x<x} and M; = sup {f(x) | X1 <x<xi}.

We then define the lower and upper Riemann integrals of f over [a, b], respectively, by
b
(R)f f=sup {L(f, P)| Papartition of [4, b]}
va

and
b
(R)f f=inf {U(f, P)| Papartition of [a, b]}.

Since f is assumed to be bounded and the interval [a, b] has finite length, the lower and
upper Riemann integrals are finite. The upper integral is always at least as large as the lower
integral, and if the two are equal we say that f is Riemann integrable over [a, b]? and call
this common value the Riemann integral of f over [a, b]. We denote it by

(R)fabf

to temporarily distinguish it from the Lebesgue integral, which we consider in the next
section. ’ ‘

A real-valued function ¢ defined on [a, b] is called a step function provided there is a
partition P = {xq, X1, ..., x,} of [a, b] and numbers ¢y, ..., ¢, such that for1 <i <n,

U(x)=cifxi—1 <x<ux;.

Observe that

n

L(¢, P) = ci(xi —xi—1) = U(y, P).

i=1

11f we define
mi =inf {f(x) | %1 <x <%} and M; =sup {f(x) | xi_1 Sx<x},

so the infima and suprema are taken over closed subintervals, we arrive at the same value of the upper and lower
Riemann integral.

ZAn elegant theorem of Henri Lebesgue, Theorem 8 of Chapter 5, tells us that a necessary and sufficient
condition for a bounded function f to be Riemann integrable over [a, b] is that the set of points in [a, b] at which
f fails to be continuous has Lebesgue measure zero.
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From this and the definition of the upper and lower Riemann integrals, we infer that a step
function ¢ is Riemann integrable and

b n
® [ v=3aln-50),

Therefore, we may reformulate the definition of the lower and upper Riemann integrals as

follows:
b b
[ f=sup{(R>/ ’

(R)f—abf=inf{(R)fabw

Example (Dirichlet’s Function) Define f on [0, 1] by setting f(x) = 1 if x is rational and
0 if x is irrational. Let P be any partition of [0, 1]. By the density of the rationals and the
irrationals 3

¢ a step function and ¢ < f on [a, b]},

and

i a step function and ¢ > £ on [a, b]}.

L(f, P)=0and U(f, P)=1.
Thus

(R)L1f=0<1=(R)/_Olf,

50 f is not Riemann integrable. The set of rational numbers in [0,1] is countable.* Let {a ),
be an enumeration of the rational numbers in [0, 1]. For a natural number n, define f, on
[0, 1] by setting f,(x) = 1, if x = g; for some g with 1 < k < n, and f(x) = 0 otherwise.
Then each f, is a step function, so it is Riemann integrable. Thus, {f,} is an increasing
sequence of Riemann integrable functions on [0, 1],

|fxl <1on[0, 1] for alln
and ,
{fa}— f pointwise on [0, 1].

However, the limit function f fails to be Riemann integrable on [0, 1].

PROBLEMS
1. Show that, in the above Dirichlet function example, { f, } fails to converge to f uniformly on
[0, 1].

2. A partition P’ of [a, b] is called a refinement of a partition P provided each partition point
of P is also a partition point of P'. For a bounded function f on [a, b], show that under
refinement lower Darboux sums increase and upper Darboux sums decrease.

3See page 12.
4See page 14.
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3. Use the preceding problem to show that for a bounded function on a closed, bounded interval,
each lower Darboux sum is no greater than each upper Darboux sum. From this conclude
that the lower Riemann integral is no greater than the upper Riemann integral.

4. Suppose the bounded function f on [a, b] is Riemann integrable over [a, b]. Show that there
is a sequence {P,} of partitions of [a, b] for which lim,, _, o [U (f, P.) —=L(f, Py )] =0.

5. Let f be a bounded function on [a, b]. Suppose there is a sequence {P,} of partitions of
[a, b] for which lim, _, o [U( f, P,) = L(f, P,)] = 0. Show that f is Riemann integrable
over [a, b].

6. Use the preceding problem to show that since a continuous function f on a closed, bounded
interval [a, b] is uniformly continuous on [a, b], it is Riemann integrable over [a, b].

7. Let f be an increasing real-valued function on [0, 1]. For a natural number n, define P, to

be the partition of [0, 1] into n subintervals of length 1/n. Show that U( f, P,) — L(f, P,) <
1/n[f(1) — £(0)]. Use Problem 5 to show that f is Riemann integrable over [0, 1].

8. Let {f»} be a sequence of bounded functions that converges uniformly to f on the closed,
bounded interval [a, b]. If each f, is Riemann integrable over [a, b], show that f also is
Riemann integrable over [a, b]. Is it true that

lim bfn=/bf?

n—>oo a

4.2 THE LEBESGUE INTEGRAL OF A BOUNDED MEASURABLE FUNCTION
OVER A SET OF FINITE MEASURE

The Dirichlet function, which was examined in the preceding section, exhibits one of the
principal shortcomings of the Riemann integral: a uniformly bounded sequence of Riemann
integrable functions on a closed, bounded interval can converge pointwise to a function that
1s not Riemann integrable. We will see that the Lebesgue integral does not suffer from this
shortcoming.

Henceforth we only consider the Lebesgue integral, unless explicitly mentioned oth-
erwise, and so we use the pure integral symbol to denote the Lebesgue integral. The
forthcoming Theorem 3 tells us that any bounded function that is Riemann integrable over
[a, b]is also Lebesgue integrable over [a, b] and the two integrals are equal.

Recall that a measurable real-valued function ¢ defined on a set E is said to be simple
provided it takes only a finite number of real values. If § takes the distinct values a1, ..., a,
on E, then, by the measurability of y, its level sets 1 (a;) are measurable and we have the
canonical representation of ¢ on E as

Y= iai - XE; on E, where each E; = ¢ (g;) = {xeE| y(x)=ai}. (1)
i=1

The canonical representation is characterized by the E;’s being disjoint and the a;’s being
distinct.

Definition For a simple function y defined on a set of finite measure E, we define the integral
of Y over E by

fEllf=i:§n:1ai -m(E;),
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where  has the canonical representation given by (1).

Lemma 1 Let {E;}!_; be a finite disjoint collection of measurable subsets of a set of finite
measure E. For 1 <i < n, let a; be a real number.

n n
If(p:Eai-XEionE, thenf¢p=2a,—-m(E,)
E i=1

i=1

Proof The collection {E;}?_, is disjoint but the above may not be the canonical representation
since the a;’s may not be distinct. We must account for possible repetitions. Let {Aq, ..., Ay}
be the distinct values taken by ¢. For 1 < j <m, set A; = {x€ E|¢(x) = Aj}. By deﬁnition
of the integral in terms of canonical representations,

m
¢ = 2 Aj-m(A;)
=

For 1 < j < m, let I; be the set of indices i in {1,...,n} for which a; = A;. Then
{1,...,n} = 11, and the union is disjoint. Moreover, by finite additivity of measure,

m(Aj)= D m(E;)foralll <j<m.
iE[j
Therefore

gai-m(E,-)=i[Eai-m

j=1|iel;

E)|= i Aj[ > m(E;)

=1 |iel

=j2=1M-m(Aj)=/E¢- o

One of our goals is to establish linearity and monotonicity properties for the general
Lebesgue integral. The following is the first result in this direction.

Proposition 2 (Linearity and Monotonicity of Integration) Let ¢ and ¢ be simple functions
defined on a set of finite measure E. Then for any a and B,

/E(““’*B"’):“/E“BL‘”‘

ifp<yonE, thenfcpgfdz.
E E

Moreover,

Proof Since both ¢ and ¢ take only a finite number of values on E, we may choose a finite
disjoint collection {E;}?_; of measurable subsets of E, the union of which is E, such that ¢
and ¢ are constant on each E;. For each i, 1 < i < n, let g; and b;, respectively, be the values
taken by ¢ and ¢ on E;. By the preceding lemma,

Ea, ) and t// Eb m(
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However, the simple function ap + B¢ takes the constant value aq; + 8b; on E;. Thus, again
by the preceding lemma,

n

fE(a¢+B¢) =S (aai + Bb) - m(E))

i=1
=a a;i-m(E)+BD bi-m(E) =01/ <P+Bf .
i=1 i=1 E E

To prove monotonicity, assume ¢ < ¢ on E. Define n = ¢y — ¢ on E. By linearity,

fE!I/—fE<P=/E(¢—<P)=fEn20,

since the nonnegative simple function 7 has a nonnegative integral. U

The linearity of integration over sets of finite measure of simple functions shows
that the restriction in the statement of Lemma 1 that the collection {E;}?_; be disjoint is
unnecessary.

A step function takes only a finite number of values and each interval is measurable.
Thus a step function is simple. Since the measure of a singleton set is zero and the measure
of an interval is its length, we infer from the linearity of Lebesgue integration for simple
functions defined on sets of finite measure that the Riemann integral over a closed, bounded
interval of a step function agrees with the Lebesgue integral.

Let f be a bounded real-valued function defined on a set of finite measure E. By
analogy with the Riemann integral, we define the lower and upper Lebesgue integral,
respectively, of f over E to be

]
inf{[Etp

Since f is assumed to be bounded, by the monotonicity property of the integral for simple
functions, the lower and upper integrals are finite and the upper integral is always at least as
large as the lower integral.

¢ simple and ¢ < f on E,}

and

¢ simple and f <y on E}

Definition A bounded function f on a domain E of finite measure is said to be Lebesgue
integrable over E provided its upper and lower Lebesgue integrals over E are equal. The
common value of the upper and lower integrals is called the Lebesgue integral, or simply the
integral, of f over E and is denoted by [ f.

Theorem 3 Let f be a bounded function defined on the closed, bounded interval [a, b]. If f is
Riemann integrable over [a, b), then it is Lebesgue integrable over [a, b] and the two integrals
are equal.
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Proof The assertion that f is Riemann integrable means that, setting I = [a, b),

sup {(R)flcp‘ ¢ a step function, ¢ < f}: inf {(R)/Itp

To prove that f is Lebesgue integrable we must show that

sup{/cp’ cpsimple,cpsf}zinf{/wl lﬁsimple,fszp}.
1 I

However, each step function is a simple function and, as we have already observed, for
a step function, the Riemann integral and the Lebesgue integral are the same. Therefore
the first equality implies the second and also the equality of the Riemann and Lebesgue
integrals. ]

¥ a step function, f < l[l}

We are now fully justified in using the symbol [, f, without any preliminary (R), to
denote the integral of a bounded function that is Lebesgue integrable over a set of finite

measure. In the case of an interval E = [a, b], we sometimes use the familiar notation f: f
to denote f[a nf and sometimes it is useful to use the classic Leibniz notation f: f(x)dx.

Example The set E of rational numbers in [0, 1] is a measurable set of measure zero. The
Dirichlet function f is the restriction to [0, 1] of the characteristic function of E, yg. Thus
f is integrable over [0, 1] and

f fzf 1-xe=1-m(E)=0.
[0.1] [0.1]

We have shown that f is not Riemann integrable over [0, 1].

Theorem 4 Let f be a bounded measurable function on a set of finite measure E. Then f is
integrable over E.

Proof Let n be a natural number. By the Simple Approximation Lemma, with € = 1/n,
there are two simple functions ¢, and i, defined on E for which

on < f<¢Y,onkE,

and
OS!//n—QDn Sl/nOIlE.

By the monotonicity and linearity of the integral for simple functions,

OSwan—quon=fE[¢n—<pn151/n-m<E>.
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However,

05inf{/z/x| '¢simp1e,¢zf}—sup{f¢
E E

S/Etﬂn—/Ecpnsl/n'm(E)-

This inequality holds for every natural number n and m(E) is finite. Therefore the upper
and lower Lebesgue integrals are equal and thus the function f is integrable over E. ]

¢ simple, ¢ < f}

It turns out that the converse of the preceding theorem is true; a bounded function on
a set of finite measure is Lebesgue integrable if and only if it is measurable: we prove this
later (see the forthcoming Theorem 7 of Chapter 5). This shows, in particular, that not every
bounded function defined on a set of finite measure is Lebesgue integrable. In fact, for any
measurable set E of finite positive measure, the restriction to E of the characteristic function
of each nonmeasurable subset of E fails to be Lebesgue integrable over E.

Theorem 5 (Linearity and Monotonicity of Integration) Let f and g be bounded measurable
functions on a set of finite measure E. Then for any a and B,

(af+Bg)=a| f+B [ & 2)
J Jr+e),

Moreover,

iff<gonkE, then/Efstg. 3)

Proof A linear combination of measurable bounded functions is measurable and bounded.
Thus, by Theorem 4, a f + Bg is integrable over E. We first prove linearity for 8 = 0. If  is
a simple function so is ay, and conversely (if a # 0). We established linearity of integration
for simple functions. Let a > 0. Since the Lebesgue integral is equal to the upper Lebesgue

integral,
/Eaf l/flzaf Elp * [«p/lorzl]zf/zs[w/a] afzsf

For a < 0, since the Lebesgue integral is equal both to the upper Lebesgue integral and the
lower Lebesgue integral,

faf: inf | o=a sup [qo/a]:a/ f.
E E

#zaf JE [o/a]<f’E

It remains to establish linearity in the case that @ = 8 = 1. Let ¢ and ¢, be simple functions
for which f < ¢y and g < ¢, on E. Then ¢; + ¢, is a simple function and f + g < ¢; + ¢ on
E. Hence, since | £(f + g) is equal to the upper Lebesgue integral of f + g over E, by the
linearity of integration for simple functions,

fE(f-i-g)SfE(lﬁ1+t//2)=fEl!f1+fEdfz-
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The greatest lower bound for the sums of integrals on the right-hand side, as y; and ¢, vary
among simple functions for which f < ; and g < ¢, equals [ [t f £ & These inequalities
tell us that [ £(f + g) is alower bound for these same sums. Therefore,

fE(f+g)s/Ef+ng.

It remains to prove this inequality in the opposite direction. Let ¢ and ¢; be simple functions
for which ¢; < fand ¢; < gon E. Then ¢1 +¢2 < f + g on E and ¢j + ¢ is simple. Hence,
since [ f + g) is equal to the lower Lebesgue integral of f + g over E, by the linearity of
integration for simple functions,

/E(f+g)2L(¢1+m)=L¢1+L¢z-

The least upper bound bound for the sums of integrals on the right-hand side, as ¢; and
¢2 vary among simple functions for which ¢; < f and ¢, < g, equals [, f + [ g. These
inequalities tell us that [, ( f + ¢) is an upper bound for these same sums. Therefore,

/E(f+g)2/Ef+/Eg-

This completes the proof of linearity of integration.
To prove monotonicity, assume f < g on E. Define h = g — f on E. By linearity,

Lg‘fEf=fE(g—f)=/;h.

The function 4 is nonnegative and therefore ¢ < h on E, where ¢=0 on E. Since the integral
of h equals its lower integral, [, h > [, ¢ = 0. Therefore, [, f < [, ¢ O

Corollary 6 Let f be a bounded measurable function on a set of finite measure E. Suppose A
and B are disjoint measurable subsets of E. Then

/AUBf=fAf+fo- @)

Proof Both f - x4 and f - x5 are bounded measurable functions on E. Since A and B are
disjoint,

f-xavB=f Xxa+f-xs
Furthermore, for any measurable subset E; of E (see Problem 10),

[E1f=/l;f'XE1-

Therefore, by the linearity of integration,

L[ frefrss
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Corollary 7 Let f be a bounded measurable function on a set of finite measure E. Then

< fE 71 (5)

Proof The function | f| is measurable and bounded. Now

—Ifl< f<|flonE.

By the linearity and monotonicity of integration,

—fE|f|s/Efst|f|,

that is, (5) holds. O

Proposition 8 Let {f,} be a sequence of bounded measurable functions on a set of finite
measure E.

If {fa} = f uniformly on E, then lim_ f,, = / f.

Proof Since the convergence is uniform and each f, is bounded, the limit function f is
bounded. The function f is measurable since it is the pointwise limit of a sequence of
measurable functions. Let € > 0. Choose an index N for which

|f — fal <€/m(E)on Eforalln > N. (6)

By the linearity and monotonicity of integration and the preceding corollary, foreachn > N,

—fEf,, /E[f—fn]

Therefore lim, -, oo [¢ fo = [; f- O

stIf—ntS[G/m(E)]°m(E)=

This proposition is rather weak since frequently a sequence will be presented that
converges pointwise but not uniformly. It is important to understand when it is possible to
infer from

{fa} = f pointwise a.e. on E

n—»oo[/ f"}‘f [,,‘Lmoof]=fEf.

We refer to this equality as passage of the limit under the integral sign.’ Before proving our
first important result regarding this passage, we present an instructive example.

that

3This phrase is taken from I. P. Natanson’s Theory of Functions of a Real Variable [Nat55).
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Example For each natural number n, define f, on [0, 1] to have the value 0if x > 2/n, have
(1/ n) =n, f(0) = 0 and to be linear on the intervals [0, 1/n] and [1/n, 2/n]. Observe that

Ji fn = 1for each n. Define f=0 on [0, 1]. Then

1 1
{fa}— f pointwise on [0, 1], but limo0 f fo# / f.
n— 0 0

Thus, pointwise convergence alone is not sufficient to justify passage of the limit under the
integral sign.

The Bounded Convergence Theorem Let {f,} be a sequence of measurable functions on a
set of finite measure E. Suppose { f,} is uniformly pointwise bounded on E, that is, there is a
number M > 0 for which

| ful < M on E for all n.

If {fa}— f pointwise on E, then lim f,, _/ f.

n— 00

Proof The proof of this theorem furnishes a nice illustration of Littlewood’s Third Principle.
If the convergence is uniform, we have the easy proof of the preceding proposition. However,
Egoroff’s Theorem tells us, roughly, that pointwise convergence is ‘“‘nearly’’ uniform.

The pointwise limit of a sequence of measurable functions is measurable. Therefore f
is measurable. Clearly | f| < M on E. Let A be any measurable subset of E and » a natural
number. By the linearity and additivity over domains of the integral,

fEfn—Lf=fE[fn—f]=L[fn—f]+ E~Af"+/E~A(—f)'

Therefore, by Corollary 7 and the monotonicity of integration,

[ -] 1

Toprove convergence of the integrals, let 0. Since m( E) <oo and f isreal-valued, Egoroff’s
Theorem tells us that there is a measurable subset A of E for which { f,} — f uniformly on A
and m(E ~ A) < ¢/4M. By uniform convergence, there is an index N for which

|fo = fI<

S/Alfn—fl+2M-m(E~A). (7

on A foralln > N.

€
2-m(E)
Therefore, for n > N, we infer from (7) and the monotonicity of integration that

Ln—ﬁf<

€
~2-m(E

m(A)+2M -m(E~A)<e

Hence the sequence of integrals { [, f,} converges to | S O]

Remark Prior to the proof of the Bounded Convergence Theorem, no use was made of the
countable additivity of Lebesgue measure on the real line. Only finite additivity was used, and
it was used just once, in the proof of Lemma 1. But for the proof of the Bounded Convergence
Theorem we used Egoroff’s Theorem. The proof of Egoroff’s Theorem needed the continuity
of Lebesgue measure, a consequence of countable additivity of Lebesgue measure.
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PROBLEMS

9. Let E have measure zero. Show that if f is a bounded function on E, then f is measurable
and [, f=0.

10. Let f be a bounded measurable function on a set of finite measure E. For a measurable
subset A of E, show that [, f = [, f- xa.

11. Does the Bounded Convergence Theorem hold for the Riemann integral?

12. Let f be a bounded measurable function on a set of finite measure E. Assume g is bounded
and f = ga.e. on E. Show that [ f = [ g.

13. Does the Bounded Convergence Theorem hold if m(E) < oo but we drop the assumption
that the sequence {| f,|} is uniformly bounded on E?

14. Show that Proposition 8 is a special case of the Bounded Convergence Theorem.
15. Verify the assertions in the last Remark of this section.

16. Let f be a nonnegative bounded measurable function on a set of finite measure E. Assume
Jz f=0.Show that f =0 a.e. on E.

4.3 THE LEBESGUE INTEGRAL OF A MEASURABLE
NONNEGATIVE FUNCTION

A measurable function f on E is said to vanish outside a set of finite measure provided there
is a subset Eq of E for which m( Eg) < oo and f =0 on E ~ E. It is convenient to say that a
function that vanishes outside a set of finite measure has finite support and define its support
to be {xe E| f(x)#0}.5 In the preceding section, we defined the integral of a bounded
measurable function f over a set of finite measure E. However, even if m(E) = oo, if f is
bounded and measurable on E but has finite support, we can define its integral over E by

[-] s

where Ej has finite measure and f =0 on E ~ Ej. This integral is properly defined, that is, it
is independent of the choice of set of finite measure Ej outside of which f vanishes. This is a
consequence of the additivity over domains property of integration for bounded measurable
functions over a set of finite measure.

Definition For f a nonnegative measurable function on E, we define the integral of f over

E by’ \

freoel

6But care is needed here. In the study of continuous real-valued functions on a topological space, the support of
a function is defined to be the closure of the set of points at which the function is nonzero.

TThis is a definition of the integral of a nonnegative extended real-valued measurable function; it is not a
definition of what it means for such a function to be integrable. The integral is defined regardless of whether the
function is bounded or the domain has finite measure. Of course, the integral is nonnegative since it is defined to
be the supremum of a set of nonnegative numbers. But the integral may be equal to oo, as it is, for instance, for
a nonnegative measurable function that takes a positive constant value of a subset of E of infinite measure or the
value oo on a subset of E of positive measure.

h bounded, measurable, of finite support and 0 < h < f on E} (8)
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Chebychev’s Inequality Let f be a nonnegative measurable function on E. Then for any
A>0,
1
m{xeE | f(x)zA}sX-/f- %)
E

Proof Define E) = (x€ E| f(x) > A}. First suppose m(E, ) = 0o. Let n be a natural number.
Define E) , = ExN[—n, n] and ¢, = A - XE,, ,-~Then ¢, is a bounded measurable function
of finite support,

)l-m(EA,,,)zftp,, and 0 < ¢, < f on E for all n.
E

We infer from the continuity of measure that

oo=A-m(Ey)=A- lim m(E) )= lim 1/ S/f
n—oo Jp E

n— o0

Thus inequality (9) holds since both sides equal co. Now consider the case m(E)) < oo.
Define h = A- xg,. Then h is a bounded measurable function of finite supportand0 < < f
on E. By the definition of the integral of f over E,

A-m(E“:/EhS/;:f.

Divide both sides of this inequality by A to obtain Chebychev’s Inequality. ]

Proposition 9 Let f be a nonnegative measurable function on E. Then
/ f=0ifandonlyif f =0a.eonkE. (10)
E

Proof First assume [ f = 0. Then, by Chebychev’s Inequality, for each natural num-
ber n, m{xeX| f(x) > 1/n} = 0. By the countable additivity of Lebesgue measure,
m{xe€ X| f(x) > 0} = 0. Conversely, suppose f = 0 a.e.on E. Let ¢ be a simple function
and h a bounded measurable function of finite support for which 0 < ¢ < < f on E. Then
¢ =0 a.e. on E and hence [ ¢ = 0. Since this holds for all such ¢, we infer that [ eh=0.
Since this holds for all such &, we infer that [, f = 0. O

Theorem 10 (Linearity and Monotonicity of Integration) Let f and g be nonnegative
measurable functions on E. Then for any a > 0 and g > 0,

fE(af+Bg)=a/;f+B/Eg- (11)

Moreover,

if f<goneE, then/Efstg. (12)
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Proof Fora>0,0<h < fon Eifand onlyif 0 < ah < af on E. Therefore, by the linearity
of the integral of bounded functions of finite support, [, af = a [, f. Thus, to prove linearity
we need only consider the case & = 8 = 1. Let h and g be bounded measurable functions of
finite support for which0 <h < fand0 <k <gon E. Wehave 0 <h+k < f+gonE,
and & + k also is a bounded measurable function of finite support. Thus, by the linearity of
integration for bounded measurable functions of finite support,

fEh+fEk=fE(h+k)st(f+g)-

The least upper bound for the sums of integrals on the left-hand side, as # and k vary
among bounded measurable functions of finite support for which # < f and k < g, equals
Jg f + [ & These inequalities tell us that [,( f + g) is an upper bound for these same sums.

Therefore,
ff+/35/(f+g)-
E E E

It remains to prove this inequality in the opposite direction, that is,

fE(f+g)5fEf+ng-

By the definition of [;(f + g) as the supremum of [, £ as £ ranges over all bounded
measurable functions of finite support for which 0 < £ < f + g on E, to verify this inequality
it is necessary and sufficient to show that for any such function ¢,

fEestHng. (13)

For such a function ¢, define the functions 4 and k on E by
h=min{f, £}andk =¢—honE.

Let x belong to E. If £(x) < f(x), then k(x) = 0 < g(x); if £(x) > f(x), then h(x) =
£(x)— f(x) < g(x). Therefore, h < g on E. Both h and k are bounded measurable functions
of finite support. We have

O0<h<f,0<k<gandf{=h+konkE.

Hence, again using the linearity of integration for bounded measurable functions of finite
support and the definitions of [, f and [, g, we have

[i=[n+[r<[r+[e

Thus (13) holds and the proof of linearity is complete.

In view of the definition of [, f as a supremum, to prove the monotonicity inequality
(12) it is necessary and sufficient to show that if & is a bounded measurable function of finite
support for which0 < 4 < f on E, then

/Eh_<_/Eg. (14)
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Let h be such a function. Then h < g on E. Therefore, by the definition of [ pgasa
supremum, [, h < f, g. This completes the proof of monotonicity. O

Theorem 11 (Additivity Over Domains of Integration) Let f be a nonnegative measurable
function on E. If A and B are disjoint measurable subsets of E, then

ISR

In particular, if Eq is a subset of E of measure zero, then

[o=f ¢ )

Proof Additivity over domains of integration follows from linearity as it did for bounded
functions on sets of finite measure. The excision formula (15) follows from additivity over
domains and the observation that, by Proposition 9, the integral of a nonnegative function
over a set of measure zero is zero. [l

The following lemma will enable us to establish several criteria to justify passage of the
limit under the integral sign.

Fatow’s Lemma Let {f,} be a sequence of nonnegative measurable functions on E.

If {f”}—> f pointwise a.e. on E, then / f=< liminff fn- (16)
E E

Proof In view of (15), by possibly excising from E a set of measure zero, we assume the
pointwise convergence is on all of E. The function f is nonnegative and measurable since
it is the pointwise limit of a sequence of such functions. To verify the inequality in (16) it
is necessary and sufficient to show that if 4 is any bounded measurable function of finite
support for which 0 < % < f on E, then

/E h < liminf /E fa. (17)

Let h be such a function. Choose M > 0for which |k| < M on E. Define Ey = {x € E | h(x)#0}.
Then m(Ep) < oo. Let n be a natural number. Define a function 4, on E by

h, = min{h, f,}on E.
Observe that the function 4, is measurable, that
0<h,<MonEyand h,=00n E~ E|.

Furthermore, for each x in E, since h(x) < f(x) and {f,(x)} = f(x), {ha(x)} = h(x). We
infer from the Bounded Convergence Theorem applied to the uniformly bounded sequence
of restrictions of ,, to the set of finite measure Ey, and the vanishing of each h,, on E ~ Ej, that

lim | h, = lim h,,:f hth.
n—> oo E n— 00 E() E() E
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However, for each n, h, < f, on E and therefore, by the definition of the integral of f, over
E, [ hy < [& fa- Thus,

E n— o0

h = lim fh,, sliminf/ fn- O
E E
The inequality in Fatou’s Lemma may be strict.

Example Let E = (0, 1] and for a natural number n, define f, = n - X(0.1/n)- Then {fy}
converges pointwise on E to f =0 on E. However,

/f=0<1= lim | f,.
E E

n— 00

As another example of strict inequality in Fatou’s Lemma, let E = R and for a natural
number n, define g, = x(, n+1). Then {g,} converges pointwise on E to g=0 on E. However,

/g=0<1= lim fg,,.
E n— o0 E

However, the inequality in Fatou’s Lemma is an equality if the sequence {f,} is
increasing.

The Monotone Convergence Theorem Let {f,} be an increasing sequence of nonnegative
measurable functions on E.

n— 00

If {fu} = f pointwise a.e. on E, then lim f fn =/ f.
E E

Proof According to Fatou’s Lemma,

/Efsliminf/Ef,,.

However, for each index n, f, < f a.e. on E, and so, by the monotonicity of integration for
nonnegative measurable functions and (15), [, f» < [ f. Therefore

limsup/Ef,, 5/Ef.
[ =t [ 0

Corollary 12 Let {u,} be a sequence of nonnegative measurable functions on E.

Hence

o0 o0
If f = uy pointwise a.e.on E, then / F=>1 un
E —1JE

n=1

Proof Apply the Monotone Convergence Theorem with f, = ¥} _, u, for each index n,
and then use the linearity of integration for nonnegative measurable functions. L]
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Definition A nonnegative measurable function f on a measurable set E is said to be integrable

over E provided
f f < o0.
E

Proposition 13 Let the nonnegative function f be integrable over E. Then f is finite a.e.on E.

Proof Let n be a natural number. Chebychev’s Inequality and the monotonicity of measure
tell us that

m{x€E| f(x)=oo}§m{x€E| f(x)Zn}s%/f.
E
But [, f is finite and therefore m{x € E| f(x) = oo} = 0. O

Beppo Levi’'s Lemma Let {f,} be anincreasing sequence of nonnegative measurable functions
on E. If the sequence of integrals { [ g fn} is bounded, then { f,} converges pointwise on E to a
measurable function f that is finite a.e.on E and

lim f,,=[f<oo.
n—>oo g E

Proof Every monotone sequence of extended real numbers converges to an extended real
number.® Since {fa} 1s an increasing sequence of extended real-valued functions on E, we
may define the extended real-valued nonnegative function f pointwise on E by

f(x)= li)moo fa(x)forallxeE.

According to the Monotone Convergence Theorem, {f; f.} > [ f. Therefore, since the
sequence of real numbers { & f} is bounded, its limit is finite and so f g f < o0o. We infer
from the preceding proposition that f is finite a.e.on E. (|

PROBLEMS
17. Let E be a set of measure zero and define f =00 on E. Show that | g f=0.
18. Show that the integral of a bounded measurable function of finite support is properly defined.

19. For a number a, define f(x) = x*for 0 <x <1, and f(0) = 0. Compute fol f

20. Let { £} be a sequence of nonnegative measurable functions that converges to f pointwise on
E.Let M > O be such that [, f, < M for all n. Show that | g f < M. Verify that this property
is equivalent to the statement of Fatou’s Lemma.

21. Let the function f be nonnegative and integrable over E and € > 0. Show there is a simple
function 7 on E that has finite support, 0 <5 < f on E and [, | f — 5| <e. If E is a closed,

bounded interval, show there is a step function 4 on E that has finite support and f g lf—hl<e

22. Let {f,} be a sequence of nonnegative measurable functions on R that converges pointwise
on R to f and f be integrable over R. Show that

if / f= lim / fn, then / f= lim f fn for any measurable set E.
R n— oo R E n— oo E

8See page 23.
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23. Let {a,} be a sequence of nonnegative real numbers. Define the function f on E =[1, oo) by
setting f(x) =apifn <x<n+1.Showthat [, f =32, a,.

24. Let f be a nonnegative measurable function on E.

(i) Show there is an increasing sequence {¢,} of nonnegative simple functions on E, each of
finite support, which converges pointwise on E to f.

(ii) Show that [, f = sup (. ¢|¢ simple, of finite support and 0 < ¢ <, f on E}.

25. Let {f,} be a sequence of nonnegative measurable functions on E that converges pointwise
on E to f. Suppose f, < f on E for each n. Show that

nlgnw/Efn:[Ef.

26. Show that the Monotone Convergence Theorem may not hold for decreasing sequences of
functions.

27. Prove the following generalization of Fatou’s Lemma: If { f,} is a sequence of nonnegative
measurable functions on E, then

fhmmff:: Sllmulf/ f,,
E E

44 THE GENERAL LEBESGUE INTEGRAL
For an extended real-valued function f on E, we have defined the positive part f* and the
negative part f~ of f, respectively, by
f(x) = max{f(x),0} and f~(x) = max{—f(x),0} for all xe E.
Then f* and f~ are nonnegative functions on E,
f=ft-f onE

and

Ifl=f"+f onE.
Observe that f is measurable if and only if both f* and f~ are measurable.

Proposition 14 Let f be a measurable function on E. Then f*and f~ are integrable over E
if and only if | f| is integrable over E.

Proof Assume f* and f~ are integrable nonnegative functions. By the linearity of integra-
tion for nonnegative functions, |f| = f* + f~ is integrable over E. Conversely, suppose
|f] is integrable over E. Since 0 < f* < |f|and 0 < f~ < |f| on E, we infer from the
monotonicity of integration for nonnegative functions that both f* and f~ are integrable
over E. O

Definition A measurable function f on E is said to be integrable over E provided |f| is
integrable over E. When this is so we define the integral of f over E by

Jor=fr=tr
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Of course, for a nonnegative function f, since f = f+ and f~ =0 on E, this definition
of integral coincides with the one just considered. By the linearity of integration for bounded
measurable functions of finite support, the above definition of integral also agrees with the
definition of integral for this class of functions.

Proposition 15 Let f be integrable over E. Then f is finite a.e.on E and
/f:f fifECEandm(Ey) =0. (18)
E E~Ey

Proof Proposition 13, tells us that | f| is finite a.e.on E. Thus f is finite a.e.on E. Moreover,
(18) follows by applying (15) to the positive and negative parts of f. U

The following criterion for integrability is the Lebesgue integral correspondent of the
comparison test for the convergence of series of real numbers.

Proposition 16 (the Integral Comparison Test) Let f be a measurable function on E.
Suppose there is a nonnegative function g that is integrable over E and dominates f in the
sense that

|fl<gonE.

[#= [in

Proof By the monotonicity of integration for nonnegative functions, |f|, and hence f, is
integrable. By the triangle inequality for real numbers and the linearity of integration for

nonnegative functions,
ff+—[f_§ff++/f_=/|fl- .
E E E E E

K

We have arrived at our final stage of generality for the Lebesgue integral for functions
of a single real variable. Before proving the linearity property for integration, we need to
address, with respect to integration, a point already addressed with respect to measurability.
The point is that for two functions f and g which are integrable over E, the sum f + g is not
properly defined at points in E where f and g take infinite values of opposite sign. However,
by Proposition 15, if we define A to be the set of points in E at which both f and g are finite,
then m(E ~ A) = 0. Once we show that f + g is integrable over A, we define

fE(f+g)=[A(f+g>.

We infer from (18) that f,.( f +¢) is equal to the integral over E of any extension of ( f +g)|4
to an extended real-valued function on all of E.

Then f is integrable over E and
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Theorem 17 (Linearity and Monotonicity of Integration) Let the functions f and g be
integrable over E. Then for any a and B, the function a f + Bg is integrable over E and

fE(af+Bg)=afEf+Bng

iff<gonkE, then/fs/g
E E

Moreover,

Proof If a >0, then [af]t = af*t and [af]” = af~, while if @ <0, [af]" = —af"
and [af]” = —af*. Therefore [ af = a [, f, since we established this for nonnegative
functions f and a > 0. So it suffices to establish linearity in the case @« = 8 = 1. By
the linearity of integration for nonnegative functions, |f| + |g| is integrable over E. Since
|f + &l < |fI+ |gl on E, by the integral comparison test, f + g also is integrable over E.
Proposition 15 tells us that f and g are finite a.e.on E. According to the same proposition,
by possibly excising from E a set of measure zero, we may assume that f and g are finite on

E. To verify linearity is to show that
/f+ ff +fg+—fg‘} (19)
E E

[f+e" - f+g]
E

(f+8) = (f+8) =f+g=(fT-f)+(¢"—g )onE,
and therefore, since each of these six functions takes real values on E,

But

(f+e) +f +g =(f+g) +f +gtonE.

We infer from linearity of integration for nonnegative functions that

R R R A

Since f, g and f + g are integrable over E, each of these six integrals is finite. Rearrange
these integrals to obtain (19). This completes the proof of linearity.

To establish monotonicity we again argue as above that we may assume g and f are
finite on E. Define & = g — f on E. Then h is a properly defined nonnegative measurable
function on E. By linearity of integration for integrable functions and monotonicity of
integration for nonnegative functions,

[ :

Corollary 18 (Additivity Over Domains of Integration) Let f be integrable over E. Assume
A and B are disjoint measurable subsets of E. Then

/AUBf=fAf+fo- (20)
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Proof Observe that |f - y4| < |fland |f - xg| < |f| on E. By the integral comparison test,
the measurable functions f - y4 and f - yp are integrable over E. Since A and B are disjoint

f-xavB=f-xa+f-xponkE. (21)

But for any measurable subset C of E (see Problem 28),

fcf=fEf'Xc-

Thus (20) follows from (21) and the linearity of integration. O

The following generalization of the Bounded Convergence Theorem provides another
justification for passage of the limit under the integral sign.

The Lebesgue Dominated Convergence Theorem Let {f,} be a sequence of measurable
functions on E. Suppose there is a function g that is integrable over E and dominates {f,} on
E in the sense that | f,| < gon E for all n.

If {fn} > f pointwise a.e. on E, then f is integrable over E and lim fn= f f.
E

n— 00 E

Proof Since |f,| < gon E and |f| < g a.e.on E and g is integrable over E, by the integral
comparison test, f and each f, also are integrable over E. We infer from Proposition 15
that, by possibly excising from E a countable collection of sets of measure zero and using the
countable additivity of Lebesgue measure, we may assume that f and each f,, is finite on E.
The function g — f and for each n, the function g — f,, are properly defined, nonnegative
and measurable. Moreover, the sequence {g — f,,} converges pointwise a.e.on E to g — f.
Fatou’s Lemma tells us that

fE(g—f)smninffE(g—fn).

Thus, by the linearity of integration for integrable functions,

ng—fEf=fE(g—f)sliminffE(g—fn)=ng—1imsuprfm

limsupf fn < [ f.
E E
Similarly, considering the sequence {g + f,}, we obtain

fEfsliminffEfn.

The proof is complete. O

that is,
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The following generalization of the Lebesgue Dominated Convergence Theorem, the
proof of which we leave as an exercise (see Problem 32), is often useful (see Problem 33).

Theorem 19 (General Lebesgue Dominated Convergence Theorem) Let { f,,} be a sequence
of measurable functions on E that converges pointwise a.e.on E to f. Suppose there is a
sequence {g,} of nonnegative measurable functions on E that converges pointwise a.e.on E to
g and dominates { f,} on E in the sense that

| fal < gn on E for all n.

If lim g,,=/g<oo,then lim ff,,:/f.
E E E E

n— oo n— oo

Remark In Fatou’s Lemma and the Lebesgue Dominated Convergence Theorem, the
assumption of pointwise convergence a.e. on E rather than on all of E is not a decoration
pinned on to honor generality. It is necessary for future applications of these results. We
provide one illustration of this necessity. Suppose f is an increasing function on all of R. A
forthcoming theorem of Lebesgue (Lebesgue’s Theorem of Chapter 6) tells us that

i T+ Ym) = £(3)

n— oo l/n

f'(x) for almost all x. (22)

From this and Fatou’s Lemma we will show that for any closed, bounded interval [a, b],

b
/ f(x)dx < £(b) — £(a).

In general, given a nondegenerate closed, bounded interval [a, b] and a subset A of [a, b] that
has measure zero, there is an increasing function f on [a, b] for which the limit in (22) fails to
exist at each point in A (see Problem 10 of Chapter 6).

PROBLEMS
28. Let f be integrable over E and C a measurable subset of E. Show that [ f = [, f - xc.

29. For a measurable function f on [1, co) which is bounded on bounded sets, define a, = f: + f
for each natural number n. Is it true that f is integrable over [1, oo) if and only if the series
2 ne1 an converges? Is it true that f is integrable over [1, oo) if and only if the series 3%, a,
converges absolutely?

30. Let g be a nonnegative integrable function over E and suppose {f,} is a sequence of
measurable functions on E such that for each n, | f,| < g a.c.on E. Show that

/liminff,,gliminf/ f,,slimsupf f,,sflimsupf,,.
E E E E

31. Let f be a measurable function on E which can be expressed as f = g + h on E, where g is
finite and integrable over E and h is nonnegative on E. Define [, f = [ g+ [, h. Show that
this is properly defined in the sense that it is independent of the particular choice of finite
integrable function g and nonnegative function 4 whose sum is f.



