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Therefore f is integrable over E and, by (2) and (3),

/[fn—f]l <eforalln > N.
E ¥

The proof is complete. U

We leave the proof of the following corollary as an exercise.

Corollary 2 Let {h,} be a sequence of nonnegative integrable functions on E. Suppose
{hn(x)}— O for almost all x in E. Then

”limoo hy = 0 if and only if {h,} is uniformly integrable and tight over E.
> XJE

PROBLEMS
1. Prove Corollary 2.

2. Let {fi};_; be a finite family of functions, each of which is integrable over E. Show that
{fx};_ is uniformly integrable and tight over E.

3. Let the sequences of functions {k,} and {g,} be uniformly integrable and tight over E. Show
that for any a and B3, {a f, + Bgx} also is uniformly integrable and tight over E.

4. Let { f,} be a sequence of measurable functions on E. Show that { f,,} is uniformly integrable
and tight over E if and only if for each € > 0, there is a measurable subset E of E that has
finite measure and a 8 > 0 such that for each measurable subset A of E and index n,

ifm(ANEy) <8, then / | fu] <e.
A

5. Let {f,} be a sequence of integrable functions on R. Show that {f,} is uniformly integrable
and tight over R if and only if for each € > 0, there are positive numbers r and & such that for
each open subset O of R and index n,

ifm(ON(-r, 1)) <8, then/[f,,|<e.
o

5.2 CONVERGENCE IN MEASURE

We have considered sequences of functions that converge uniformly, that converge pointwise,
and that converge pointwise almost everywhere. To this list we add one more mode of
convergence that has useful relationships both to pointwise convergence almost everywhere
and to forthcoming criteria for justifying the passage of the limit under the integral sign.

Definition Let { f,} be a sequence of measurable functions on E and f a measurable function
on E for which f and each f, is finite a.e. on E. The sequence {f,} is said to converge in
measure on E to f provided for each n > 0,

lim m{xeE| |fu(x) - f(x)| >n} =0.



100 Chapter5  Lebesgue Integration: Further Topics

When we write {f,} — f in measure on E we are implicitly assuming that f and each
fa 1s measurable, and finite a.e. on E. Observe that if {f,} — f uniformly on E, and f is a
real-valued measurable function on E, then {f,} — f in measure on E since for > 0, the
set {xe E||fu(x) — f(x)| > n} is empty for n sufficiently large. However, we also have the
following much stronger result.

Proposition 3 Assume E has finite measure. Let {f,} be a sequence of measurable functions
on E that converges pointwise a.e. on E to f and f is finite a.e. on E. Then {f,} — f in
measure on E.

Proof First observe that f is measurable since it is the pointwise limit almost everywhere
of a sequence of measurable functions. Let n > 0. To prove convergence in measure we let
€ > 0 and seek an index N such that

m{xeE| |fu(x) = f(x)|>n} <eforalln > N. (4)

Egoroff’s Theorem tells us that there is a measurable subset F of E with m(E~ F) < € such
that {f,} - f uniformly on F. Thus there is an index N such that

|fo — fl<mon Fforalln > N.

Thus, forn > N, {xe E||f,(x) — f(x)|>n} C E ~ F and so (4) holds for this choice of N. ]

The above proposition is false if E has infinite measure. The following example shows
that the converse of this proposition also is false.

Example Consider the sequence of subintervals of [0, 1], {Z, }o2 1> which has initial terms
listed as

[0, 11, [0, 1/2], [1/2, 1], [0, 1/3], [1/3, 2/3], [2/3, 1],
[0, 1/4], [1/4, 1/2], [1/2, 3/4],[3/4, 1]....

For each index n, define f, to be the restriction to [0, 1] of the characteristic func-
tion of I,. Let f be the function that is identically zero on [0, 1]. We claim that
{fn} > f in measure. Indeed, observe that lim,_, o £(I,) = O since for each natural

number m,

ifn>14.4m= m—(”‘2—+L) then £(1,) < 1/m.

Thus, for 0 <7 <1, since {x € E||fn(x) — f(x)| >} C I,
0< lim m{xeE| |fu(x) = f(x)| >n} < lim ¢(L,)=0.

However, it is clear that there is no point x in [0, 1] at which {f, (x)} converges to f(x) since
for each point x in [0, 1], f,(x) = 1 for infinitely many indices n, while f(x) = 0.

Theorem 4 (Riesz) If {f,} > f in measure on E, then there is a subsequence { f,,,;} that
converges pointwise a.e.on E to f.
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Proof By the definition of convergence in measure, there is a strictly increasing sequence of
natural numbers {n;} for which

m{xeE| |fi(x) - f(x)|>1/k} <1/2*forall j > m.
For each index k, define
= {x€E| |fu = f(x)|>1/k}.

Then m(E;) < 1/2* and therefore 3°, m(Ey) < oo. The Borel-Cantelli Lemma tells
us that for almost all xe E, there is an index K(x) such that x¢ Ey if k¥ > K(x),
that is,

| fu (x) = F(x)] < 1/k for all k > K(x).

Therefore
limfo, () = £(x). -
Corollary 5 Let { f,} be a sequence of nonnegative integrable functions on E. Then
Jim | =0 ©)
if and only if
{fu} = 0 in measure on E and { f,,} is uniformly integrable and tight over E. (6)

Proof First assume (5). Corollary 2 tells us that {f,} is uniformly integrable and tight over
E. To show that { f,} - 0 in measure on E, let n > 0. By Chebychev’s Inequality, for each
index n,

m{x€eE | f,,>n}§l-ffn-
n JE
Thus,
0< hm m{xEEI f,,>'q}<— llmffn—O

'n n— oo
Hence {f,} = 0 in measure on E.

To prove the converse, we argue by contradiction. Assume (6) holds but (5) fails to
hold. Then there is some ¢y > 0 and a subsequence {f,, } for which

f fn, = €o for all k.
E

However, by Theorem 4, a subsequence of {f,,} converges to f =0 pointwise almost
everywhere on E and this subsequence is uniformly integrable and tight so that, by the Vitali
Convergence Theorem, we arrive at a contradiction to the existence of the above €. This
completes the proof. OJ
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6.

7.

11.

12.

13.

14.

PROBLEMS

Let {f,} — f in measure on E and g be a measurable function on E that is finite a.e. on E.
Show that {f,} — g in measure on E if and only if f = ga.e. on E.

Let E have finite measure, {f,} — f in measure on E and g be a measurable function on
E that is finite a.e. on E. Prove that {f, - g} = f - g in measure, and use this to show that
{ f,%} — f2 in measure. Infer from this that if {gn} — g in measure, then {f, - g,} > f-gin
measure.

. Show that Fatou’s Lemma, the Monotone Convergence Theorem, the Lebesgue Dominated

Convergence Theorem, and the Vitali Convergence Theorem remain valid if “pointwise
convergence a.e.” is replaced by “‘convergence in measure.”

. Show that Proposition 3 does not necessarily hold for sets E of infinite measure.
10.

Show that linear combinations of sequences that converge in measure on a set of finite
measure also converge in measure.

Assume E has finite measure. Let {f,} be a sequence of measurable functions on E
and f a measurable on E for which f and each f, is finite a.e. on E. Prove that
{fn} — f in measure on E if and only if every subsequence of {f,} has in turn a further
subsequence that converges to f pointwise a.e. on E.

Show that a sequence {a;} of real numbers converges to a real number if |a;11 — a;j| < 1/2/
for all j by showing that the sequence {a;} must be Cauchy.

A sequence { f,} of measurable functions on E is said to be Cauchy in measure provided given
1> 0 and € > 0 there is an index N such that for allm,n > N,

m{xEE I |fu(x) = fm(x)] = 17} <e.

Show that if { f,} is Cauchy in measure, then there is a measurable function f on E to which
the sequence {f,} converges in measure. (Hint: Choose a strictly increasing sequence of
natural numbers {n;} such that for each index j, if E; = {x€ E | | f4r () = fir; ()1 > 1/27},

then m(E;) <1/2/. Now use the Borel-Cantelli Lemma and the preceding problem.)
Assume m(E) < oo. For two measurable functions g and 4 on E, define
lg = hl
poh)= [
Pl = Thig-n
Show that {f,} = f in measure on E if and only if lim, _, o p( f,, f) =0.

5.3 CHARACTERIZATIONS OF RIEMANN AND LEBESGUE INTEGRABILITY

Lemma 6 Let {¢,} and (if,} be sequences of functions, each of which is integrable over E,
such that {¢,} is increasing while {{,} is decreasing on E. Let the function f on E have the

property that
¢on < f <Y, onE foralln.
If
Jim [ o = en] =0,
then

{¢n} — f pointwise a.e. on E, {{y,} — f pointwise a.e. on E, f is integrable over E,



