A vector A_{ii} in Minkowski's space-time continuum is defined A_i and A_i which transform A_i which transform A_i which transform A_i having four components A_i , A_i , A_i , A_i which transformation in the same way as space-time coordinates A_{ii} and A_i is A_i . For a given observer the first three components x_1 , x_2 , x_3 of x_μ behave $\lim_{k \in \mathbb{R}} x_1$ ordinary 3-vector while the fourth component behaves as a scalar in 3 dimensional space. Since under a Lorentz transformation every 4 - vector behaves the same way as x_μ , this result is true for every 4 - vector. Squaring and adding the above four equations, we get $$A_1^{\prime 2} + A_2^{\prime 2} + A_3^{\prime 2} + A_4^{\prime 2} = A_1^2 + A_2^2 + A_3^2 + A_4^2$$ This result shows that the length of a 4-vector, viz., $(A_1^2 + A_2^2 + A_3^2 + A_3^2)^{1/3}$ does not change under a Lorentz transformation, i.e., the length of a 4-vector is an invariant quantity. Since A_4^2 is always negative, the length of a 4-vector can be zero even though it may have non-zero components. A 4-vector is said to be space-like, time-like or light-like (also called null vector) according as the square of its length is positive, negative or zero vector while the subscripts 1, 2, 3, 4 to indicate the four components of a suffices x, y, z as subscripts. It should also be understood that the Gred run from 1 to 3. It is customary to write a 4-vector A_{μ} as $A_{\mu} = (A_1, A_2, A_3, A_4)^{\phi}$ that the square of its magnitude is given by $$A_{\mu} A_{\mu} = A_1^2 + A_2^2 + A_3^2 + A_4^2$$. Since, to a given observer, A_i's behave as the component of a 3-may write $$A_{\mu} = (A, A_4)$$ and $$A_{\mu} A_{\mu} = A^2 + A_4^2.$$ In particular, the position 4-vector x_{μ} is written as $$x_{\mu} = (x_1, x_2, x_3, x_4) = (x, y, z, x_4) = (r, x_4) = (r, ict)$$ and its magnitude is given by the relation $$x_{\mu} x_{\mu} = r^2 - c^2 t^2$$.