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Lecture 2

Lecturer: Muhammad Yaseen Topic: The Dual Space

Definition 2.1 Let X be a normed space. Then the set of all bounded linear

functionals on X forms a normed space with norm
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and is called the dual space of X and is denoted by X'.

Remark 2.2 Note that X' = B(X,R) or X' = B(X,C) so that by previous
theorem X' is complete because R and C are complete (whether or not X is).

So we have the result

Theorem 2.3 The dual space X' of a normed space X is a Banach space (whether

or not X 1is).

Recall that a matrix A = (a;j)mxn can be used as an operator from R® — R™
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Example 2.4 Show that every linear operator defined on a finite dimensional

vector space can be represented by means of a matrix.

Solution: Let X and Y be finite dimensional vector space over the same field

and let T': X — Y be a linear operator. Let dim X = n and dimY = r and



E = {ej,ez,-++ ,e,} and B = {by, by,--- ,b.} be basis for X and Y respectively.

Then every x € X can be uniquely expressed as
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Since representation 1 is unique, therefore T is uniquely determined if the images

y; = Te; of n basis vectors ey, --- ,e, are prescribed. Since y and y; are in Y,

they have unique representation of the form

y =) m;b;
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Now consider

y = Z”b’ba‘
— ZgiT(ei) (by (2))
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Comparing first and last sum, we obtain

m=Y &mi=Y Tii (4)
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Denoting Tgp = (Tji)rxn, (4) can be written in matrix form as

y = Tgpx
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Theorem 2.5 Let X be an n-dimensional vector space and let E = {ej, ez, ,e,}
be the basis for X. Then F = {fi1, fa,-++ , fn} satisfying
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is a basis for the algebraic dual space X* of X and dim X* = dim X.

Proof: To prove that F' is a basis, we have to prove that F is linearly independent
and spans X*.

To prove that F' is linearly independent:

Consider
Z Brfr = O, where O is zero functional
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In particular for x =e;, j=1,2,--:,n, we get from (5)
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so that F' is linearly independent.
To prove that F spans X™*:
Let f € X* and x € X. Then
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= f(x) = Zﬁkf(ek) because f is linear
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On the other hand, for 3 =1,2,:-- ,n, consider
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So (6) implies
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= f spans X*



