Lecture 2

Definition 2.1 Let X be a normed space. Then the set of all bounded linear functionals on X forms a normed space with norm

$$
\|f\|=\sup _{\substack{x \in \mathcal{D}(f) \\ x \neq 0}} \frac{|f(x)|}{\|x\|}
$$

and is called the dual space of X and is denoted by X^{\prime}.

Remark 2.2 Note that $X^{\prime}=B(X, \mathbb{R})$ or $X^{\prime}=B(X, \mathbb{C})$ so that by previous theorem X^{\prime} is complete because \mathbb{R} and \mathbb{C} are complete (whether or not X is). So we have the result

Theorem 2.3 The dual space X^{\prime} of a normed space X is a Banach space (whether or not X is).

Recall that a matrix $A=\left(a_{i j}\right)_{m \times n}$ can be used as an operator from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $A x=y$, where $x=\left[\begin{array}{c}\xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n}\end{array}\right], y=\left[\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{m}\end{array}\right]$ and $\eta_{i}=\sum_{j=1}^{n} a_{i j} \xi_{j}$.

Example 2.4 Show that every linear operator defined on a finite dimensional vector space can be represented by means of a matrix.

Solution: Let X and Y be finite dimensional vector space over the same field and let $T: X \rightarrow Y$ be a linear operator. Let $\operatorname{dim} X=n$ and $\operatorname{dim} Y=r$ and
$\boldsymbol{E}=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \cdots, b_{r}\right\}$ be basis for X and Y respectively. Then every $x \in X$ can be uniquely expressed as

$$
\begin{gather*}
x=\xi_{1} e_{1}+\xi_{2} e_{2}+\cdots \xi_{n} e_{n} \tag{1}\\
\Rightarrow T x=T\left(\xi_{1} e_{1}+\xi_{2} e_{2}+\cdots \xi_{n} e_{n}\right)=T\left(\sum_{i=1}^{n} \xi_{i} e_{i}\right) \\
=\sum_{i=1}^{n} \xi_{i} T\left(e_{i}\right) \\
\Rightarrow y=T x=\sum_{i=1}^{n} \xi_{i} T\left(e_{i}\right) \tag{2}
\end{gather*}
$$

Since representation 1 is unique, therefore T is uniquely determined if the images $y_{i}=T e_{i}$ of n basis vectors e_{1}, \cdots, e_{n} are prescribed. Since y and y_{i} are in Y, they have unique representation of the form

$$
\begin{array}{r}
y=\sum_{j=1}^{r} \eta_{j} b_{j} \\
\boldsymbol{y}_{i}=\boldsymbol{T} e_{i}=\sum_{j=1}^{r} \tau_{j i} \boldsymbol{b}_{j} \tag{3}
\end{array}
$$

Now consider

$$
\begin{align*}
\boldsymbol{y} & =\sum_{j=1}^{r} \boldsymbol{\eta}_{j} \boldsymbol{b}_{j} \\
& =\sum_{i=1}^{n} \xi_{i} T\left(e_{i}\right) \tag{2}\\
& =\sum_{i=1}^{n} \xi_{i}\left(\sum_{j=1}^{r} \tau_{j i} b_{j}\right) \tag{3}\\
& =\sum_{j=1}^{r}\left(\sum_{i=1}^{n} \xi_{i} \tau_{j i}\right) b_{j}
\end{align*}
$$

Comparing first and last sum, we obtain

$$
\begin{equation*}
\eta_{j}=\sum_{i=1}^{n} \xi_{i} \tau_{j i}=\sum_{i=1}^{n} \tau_{j i} \xi_{i} \tag{4}
\end{equation*}
$$

Denoting $T_{E B}=\left(\tau_{j i}\right)_{r \times n}$, (4) can be written in matrix form as

$$
y=T_{E B} x
$$

Theorem 2.5 Let X be an n-dimensional vector space and let $E=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be the basis for X. Then $F=\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ satisfying

$$
f_{j}\left(e_{k}\right)=\delta_{j k}= \begin{cases}0 & j \neq k \\ 1 & j=k\end{cases}
$$

is a basis for the algebraic dual space X^{*} of X and $\operatorname{dim} X^{*}=\operatorname{dim} X$.

Proof: To prove that F is a basis, we have to prove that F is linearly independent and spans \boldsymbol{X}^{*}.
To prove that F is linearly independent:
Consider

$$
\begin{align*}
\sum_{k=1}^{n} \beta_{k} f_{k} & =O, \text { where } O \text { is zero functional } \\
\Rightarrow\left(\sum_{k=1}^{n} \beta_{k} f_{k}\right)(x) & =O(x) \quad \forall x \in X \\
\Rightarrow \sum_{k=1}^{n} \beta_{k} f_{k}(x) & =0 \quad \forall x \in X \tag{5}
\end{align*}
$$

In particular for $x=e_{j}, \quad j=1,2, \cdots, n$, we get from (5)

$$
\begin{aligned}
& \sum_{k=1}^{n} \beta_{k} f_{k}\left(e_{j}\right)=0 \\
& \Rightarrow \sum_{k=1}^{n} \beta_{k} \delta_{k j}=0 \\
& \Rightarrow \quad \beta_{j}=0, \quad \forall j=1,2, \cdots, n \\
& \Rightarrow \quad \beta_{k}=0, \quad \forall k=1,2, \cdots, n
\end{aligned}
$$

so that F is linearly independent.
To prove that \boldsymbol{F} spans \boldsymbol{X}^{*} :
Let $f \in X^{*}$ and $x \in X$. Then

$$
\begin{align*}
x & =\sum_{k=1}^{n} \xi_{k} e_{k} \\
\Rightarrow f(x) & =f\left(\sum_{k=1}^{n} \xi_{k} e_{k}\right) \\
\Rightarrow f(x) & =\sum_{k=1}^{n} \xi_{k} f\left(e_{k}\right) \quad \text { because } f \text { is linear } \\
\Rightarrow f(x) & =\sum_{k=1}^{n} \xi_{k} \alpha_{k}, \quad \text { where } \alpha_{k}=f\left(e_{k}\right) \tag{6}
\end{align*}
$$

On the other hand, for $j=1,2, \cdots, n$, consider

$$
\begin{align*}
f_{j}(x) & =f_{j}\left(\sum_{k=1}^{n} \xi_{k} e_{k}\right) \\
& =\sum_{k=1}^{n} \xi_{k} f_{j}\left(e_{k}\right) \\
& =\sum_{k=1}^{n} \xi_{k} \delta_{j k} \\
& =\xi_{j} \tag{7}
\end{align*}
$$

So (6) implies

$$
\begin{align*}
f(x) & =\sum_{k=1}^{n} \alpha_{k} \xi_{k} \\
& =\sum_{k=1}^{n} \alpha_{k} f_{k}(x) \\
& =\left(\sum_{k=1}^{n} \alpha_{k} f_{k}\right)(x) \\
\Rightarrow f & =\sum_{k=1}^{n} \alpha_{k} f_{k} \tag{8}
\end{align*}
$$

$\Rightarrow f$ spans X^{*}

