Chapter 2

Introductory Concepts of Integral
Equations

As stated in the previous chapter, an iniegral equation = the squation in
which the unknown function u(z) appears inside an imtegral sign [1-5]. The
most standard type of interral equation in w{r) is of the form

ulz) = flz}+ l_’g:] Kz, thuit)dt, (2.1)

where g{r) and k{r} are the limits of integration, A s a constant paremeter,
and Kz t) is a known function, of two varisbles = and ¢, called the kernel
or the nucleus of the integral equation. The unknown function uir) that
will be detormined appears inside the integral sign. In many other cases,
the unknown function w(z) sppears inside and outside the integral sipn. The
functions f{r) and K(r,t) are given in advance It is to be noted that the
limits of integration g{z) and k) may be both variahles, constants, or mixed.

Integral equations appear in many forms. Two distinet ways that de-
pend on the limits of integration are used to characterize integral equations,
namely:

1. If the limits of integration are fixed, the integral equation is called a
Fredholm integral equation given in the form:
b
u(z) = 5@ + A [ Kz, oo, (22)

where a and b are constants.
2 If at least one limit is a variable, the equation is called 8 Volterra intagral
aquation given in the form:

wlz) = flz)+ A fn K (e, Oult)dt, (23)

Moreover, two other distinet kinds, that depend on the appearsnce of the
unkmown function w(r), are defined as follows:

1. If the unknown function wir) sppears only under the integral sign of
Fredholm or Volterre equation, the integral equation is called a@ first kind
Fredholm or Volterra integral equation respectively.
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2. If the unknown function uiz) appesrs both inside and outside the inte
gral sign of Fredholm or Volterra equation, the integral equation is called a
second kind Fredholm or Volterra equation integral equation respectively.

In all Fredholm or Volterra interral equations presented above, if f{z) is
identically zero, the resulting equation:

uz)=A ]n Kz, thult)de (2.4)

ulz) = A [ " K (2. tuit)t (25)

is called homogensous Fredholm or Rornogeneous Volterra integral equation
respectively.

It s interesting to point out that any equation that includes both integrals
and derivatives of the unknown function wi{r) is called indegro-differeniial
aquation. The Fredholm integro-differential equation is of the form:

u®lz) = flz) + A fn &Kl:z, tiuft)d, ul® = g (2.6)
However, the Volterrs integro-differential equation is of the form:
w®{z) = iz} + A L " Kz tuld, u® — g_ 2n

The integro-differential equations (6] will be defined and classified in this text.

2.1 Classification of Integral Equations

Integral equations appear in many types. The types depend mainly on the
limits of integration and the kernel of the equation. In this text we will be
concernad on the following types of integral equations.

2.1.1 Fredholm Integral Equations

For Fredholm integral equations, the limits of integration are fixed. Moreowver,
the unknown funetion uwiT) may appear only inside intogrral squation in the
form:

b
1) = [ Kl 28)
a
This is called Fredholm integral equation of the first kind. However, for Fred-
holm integral equations of the second kind, the unknown function uw(r) ap-
pears inside and outside the integral sign. The sscond kind i= represented by
the form:

ulz) = flz) + A Jﬂ " K, thu()iz. (29)



2.1 Clessification of Integral Equations 5

Examples of the two kinds are given by

SinF — ToosT

1
= fu sin(rt)u(t)dt, (2.10)
and

ulr) =z + % f 11{: _ fult)d, (2.11)

respectively.

2.1.2 Volterra Imtegral Equations

In Volterra integral equations, at least one of the limits of integration is a
variahle. For the firet kind Volterra integral equations, the unknown function
ulz) appears only inside integral sign in the form:

flz) = fu K (z, t)ult)dt. (2.12)

However, Volterra integral equations of the second kind, the unknown fune-
tion w(r) appears inside and outside the integral sign. The second kind is
represented by the form:

ulz) = flz) + A f K (. t)ult)dt. (2.13)
o
Examples of the Volterrs integral equations of the first kind are
et = _{a e Fult)de, (2.14)
]
and .
= f (5 + 3z — 3thult)dr. (2.15)
]
However, examples of the Volterra integral equations of the second kind are
uir) = l—j:u[z}da, (2.16)
and .
wir) =z 4 [ {r — thu(e)dt. (2.17)
a

2.1.3 Volterm-Fredholm Integral Equations

The Volterre-Fredholm integral equations [6,7] arise from parsbolic bound-
ary valie problems, from the mathematical modelling of the spatio-temporal
development of an epidemic, and from various physical and biological mod-
als. The Volterra-Fredholm integral equations appear in the litersture in two
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forms, namely
T &
w(z) = flr) + A f Kz, tult)edt + Az f Kalr thu(t)de,  (2.18)
and
uz.t) = flr.£)+A ;{ ' f Flr.t,6,7 ulg, 7))dedr, (z,1) € 0 x 0,77, (2.19)
o ]

where f(r,t) and F(z,t,£, 7, u(f, 7)) are analytic functions on I = Q= [0, T,
and 11 is & closed subset of B", n — 1,2,% It is interesting to note that
{2.18) contains disjoint Volterrs and Fradholm integral equations, whereas
(2.19) contains mixed Volterrs and Fredholm integral equations. Moreover,
the unknown functions w(z) and u(z, ¢] appear inside and outside the integral
signs. This is a characteristic feature of & second kind integral equation. If
the unknown functions appear only inside the integral signs, the resulting
equations are of first kind, but will not be examined in this text. Examples
of the two types are given by

T 1
= I +2— - . .
w(r) = 67 + 327 +2 fu Tult)dt fu tult)dt, (2.20)
£ 1
u{:,:)=z+s’+%?—%c—j; _!;{T—{}q.:ir_ {2.21)

2.1.4 Singular Integral Equations

Volterra integral equations of the first kind [4,7)

niz)
i) = A ] K (2, t)uft)dt (2.29)
qlzh
or of the secomnd kind
Hiz)
ule) = fln) + [ Kz oular (223)
a0z

are called singular if one of the limits of integration g{z), hiz) or both are
infinite. Moreover, the previous two equations are called sinpular if the kernel
K (r,t) becomes unhounded at one or more points in the interval of integra-
tion. In this text we will focus our concern on equations of the form:

fl:-T]:-{:ﬁul:t]d!, Do, (2.24)
ar of the second kind: .
ﬂi:r}l=fir)+fn ﬁﬂiﬂlﬁ, 0=l {2.25)

The last two standard forms are called generalized Abel's integral eguation
and weakly singular integral squations rospectively. For o = ?l,, the equation:
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fiz) = fu L (o) (26)

r—t
iz called the Abel’s singular integral equation. It is to be noted that the
kernel in each equation becomes infinity at the upper limit ¢ = . Examples of
Abel’s integral equation, generalized Abel’s integral equation, and the weakly

singular integral equation are given by
JE= ] :,hu{a}rra. (2.97)
b -
o 1
3_
I = ]I; m—ﬂ[a}d&. {223]
i
B ww) =14 v+ [ —rutea, (229)
o I:.'E - E:|
respectively.
Exercises 2.1

For emch of the follwing iotegral equations, clessify ns Fredholm, Volterm, or
Volterrs-Fredholm integral equation snd find its kind. Clessify the equastion ns sin-
gular or not.

1. =1 : i L= : 1 - o
uix) + Jj; ulf)dit : 1 J{, {1+ — tjuit)dt
m
S.u(:r]:c‘-l—:—l—)rlu[t}dt d.:+l—%=f?[:—t]u[t}dt
o o
& uix) = ;I - % - f]{:l: — ittt & uix)=x+ %1—1 - Jfrrl:: — thuit)dt
] n

= L

T. %.1:’ =j; [z — tjuft)dt E %I’ - %I + 41 =j; {x — £)uit)dt

9, u(:]=§:+%ﬂ—f[:—t]u[:}d:—ﬂm{:m
1 I 1 1

10, wfr, ) =+ 63 + oe® — e

ulr, i) =x+ +2|: 2: J{.fntr £l

x 1 T 1
1234 F= JIE — uirde 12 ufz) = 1+ 2% + JIE st

{x—t)=

2.2 Classification of Integro-Differential Equations

Integro-differential equations appesr in many scientific applications, espe-
cially when we convert initial value problems or houndary value problems
to imtepral equations. The integro-differential equations contain both integral
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and differential operators. The derivetives of the unknown functions may ap-
pear to any order. In classifying integro-differential equations, we will follow
the same category wsed before.

2.2.1 Fredholm Integro-Differential Egquations

Fredholm integro-differential equations appear when we convert differential
equations to integral equations. The Fredholm integro-differential equation
contains the unknown function wiz) and one of its derivatives o™z} n =1
imside and outside the integral sign respectively. The limits of integration
in this case are fixed &s in the Fredholm intepral equations. The equation
is labeled as integro-differential because it contains differential and integral
operators in the same equation. It is important to note that initial conditions
should be given for Fredholm integro-differential equations to obtain the par-
ticular solutions. The Fredholm integro-differential equation appears in the
form:

u™(x) = flz) + A f Kz, tha(t)dt, (2.30)

where ul™ indicates the nth derivative of uz). Other derivatives of less order
may appear with u'™ at the left side. Examples of the Fredholm intepro-
differential equations are given by

1 1
Wiz) =1 zr+ [., ruft)dt, w(0) = 0, (231)
and

u”(z) + u'{T) = r —sinr — j:r stu(thdt, w(0)=0, =(0)=1 (232)
0

2.2.2 Volterra Imtegro-Differential Equations

Volterra integro-differential equations appear when we convert initial value
problems to integral equations. The Volterra integro-differential equation con-
tains the unknown function uw(r) and one of its derivatives w™(z),n = 1
inside and outside the integral sign. At least one of the limits of integration
in this case is a varishle as in the Volterrs integral equations. The equation
is called integro-differential because differential and integral operators are in-
volved in the same equation. It is important to note that initial conditions
should be given for Volterra integro-differential equations to determine the
particular solitions. The Volterrs integro-differential equation appesrs in the
form:

w™(z) = flz)+ A fu " K(z. Oult)d, (2.33)
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where 1™ indicates the nth derivative of u(z). Other derivatives of less order
mey sppear with o™ at the left side. Examples of the Volterra integro-
differential equations are given by

u'z) = -1+ %r* — et - f. tult)dt, W) =10, {2.34)
o
and ;
u"(z)4+u'(z) = l—z{sin:r+cmz}—f tult)dt, u{0} = —1, u'{0} = 1. ({2.35)
o

2.2.3 Volterra-Fredholm Imtegro- Differential Fgquations

The Volterra-Fredholm integro-differential equations arise in the same man-
ner a5 Voltarre-Fredholm integral equations with one or more of ordinary
derivatives in addition to the imtegral operators. The Volterra-Fredholm
integro~differential squations appear in the litersture in two forms, namely

&
w™(z) = flz) + M f Kl ult)at + da | Koz oule)dt,  (236)
and

w (z. £) = flz.6) + A fu L Fz.t,€,7,ulg, 7))dedr, (z,1) € 1 x [0,T],

(2.37)
where f(e, t) and F(z, ¢ £, 7, u(f, 7)) are analytic functions on I = 0= [0, T,
and §1 is & closed subset of B, i = 1,2, 3. It is interesting to note that (2.36)
contains disjoint Volterra amd Fredholm integral equations, whereas (2.37)
contains mixed integrals. Other derivatives of less order may appear ss well.
Moreover, the unknown functions wiz) and wir, t) appear inside and outside
the integral signs. This is a characteristic feature of a second kind integral
equation. If the unknown functions appear only inside the integral signs, the
resulting equations are of first kind. Initial conditions should be given to
determine the particular solution. Examples of the two types are given by

2 1
wr) = Mr+ ot 13- f (z — thult)dt — [ tult)dt, uw(0)=0, (238)
o (1]

and
1 1

1
wirtl=1+874 Ezﬂ —5t- f f (r— £)dedr, w0.¢)=¢ (2.30)
o JJa

Exercises 2.2

For ench of the following integro-differentind equations, clessify ss Fredbholm, Violterm,
ar Volterrs-Fredholm integro-equation
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1 wiz) = 1+Jrrru{:}dt, u{l) =0
o
1
Zurj==x +JI {1+ = —t)u(t)dt, u(0) =1, u'(0)=10
a
£ 1
3 uw"(z) +ulx) = :|.'+-‘fr tut et 1—! wit)de, w{l) =0, w {0} =1
o n
T 1
du(z)+u'iz)=x +Jr tuft)dt +J{ uit)dt, w(l] =0,u"(0)=1, u"{0)=1
n ]
5 uw{r]+uir)=x+ fll:: — thult)dt, uil] =1
L]

G u[zj=1+ Jr: tuit)dt, wil) =0, w0} =1
n

2.3 Linearity and Homogeneity

Integral equations and integro-differential equations fall into two other types
of classifications sccording to lineority and homogensiiy concepts. These two
concepts play & major role in the structure of the solitions. In what follows
we highlight the definitions of these concepts.

2 3.1 Linearity Concept

If the exponent of the unknown function wfr) inside the integral sign is one,
the integral equation or the integro-differential equation is called bnear (6. If
the unknown function wir) hes exponent other then one, or if the equation
contains nonlinear functions of w(r), such as ¥ sinhwu, cosw, In(1 + o), the
integral equation or the integro-differential equation is called nondinear. To
explain this concept, we consider the equations:

wir)=1— [ “lz— thult)dt, (2.40)
[x]
wir)=1- f "z~ ult)at, (2.41)
a
u(r) =1+ f’ {1+ = — thu{e)hde, (2.43)
o

uir)=1+ f ] a0, () = 1. (2.43)
o
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The first two examples are linear Volterra amd Fredholm integral equations
respectively, wheress the last two are nonlinear Yolterra integral equation
and nonlinear Fredholm integro-differential equation respectively.

It is important to point out that linear equations, except Fredholm integral
equations of the first kind, give & unique solution if such a solution exists.
However, solution of nonlinear equation may not be unique. Nonlinear equs-
tions wsually give more than one solution and it is not wsually easy to handle.
Both linear and nonlinear integral equations of any kind will be investigatad
in this text by wsing treditional and new methods.

2 3.2 Homogeneity Concept

Integral equations and integro-differential equations of the second kind are
classifiod ss homogenesus or inkomogenesus, if the function f(z) in the second
kind of Volterra or Fredholm integral equations or integro-differential equa-
tions is identically zero, the equation is called homogeneous. Otherwise it is
called inhomogeneous. Motice that this property holds for equations of the
second kind only. To clarify this concept we consider the following equations:

u(z) = sinz + [! rtulthde, (2.44)
o
1
wirl =+ f (z — t)*ult)dt, (2.45)
a
ufz) = ] (14 2 — thut{e), (2.48)
a
aﬂd F 4
) — f rtut)d, u(0) =1, w'{0) =0 (2.47)
o

The first two equations are inhomogeneous becsuse fiz) = sinr and fiz) =
z, wheress the last two equations are homogeneous because fiz) = 0 for each
equation. We usually use specific approaches for homogeneows equations, and
other methods are used for inhomogeneons equations.

Exercises 2.3

ify the following equations ns Fredbolm, or Volterm, linesr or nonlinear, mod
1 1 ]
homogeneous or inhomogeneous

= 1
1 mix) =1 +Jr {x — ) uit)di 2. w(r) = coshx +j{ [ — &)uft)dt
o o

3. uix) = er{z + x — thuit)dt doulz) =X ,I{: t’ul:t]d't
o -1
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5"“(:]=I+I+j{:[l_ﬂrlﬁzd‘ f. “[11"=I+J{] u [ )dt

T.u{rl=1+ Jrl[:r —tiu(t)dt, u(l) =1 B u'(xr)= Jr’{z — tiu{thdt, uil) =10
o o

2.4 Origins of Integral Equations

Integral and integro-differential equations arise in many scientific and en-
pineering applications. Volterra integral equations and Volterra integro-
differential equations can be obtained from converting initial value prob-
lems with prescribed initial values. However, Fredholm integral equations
and Fredholm integro-differential equations can be derived from boundary
value problems with given boundary conditions.

It is important to point out that converting initial value problems to
Volterra integral equations, and converting Volterre integral equations to
initial value problems are commonly used in the literature. This will be ex-
plained in detail in the coming section. However, converting boundary value
problems to Fredholm integral equations, and converting Fredholm integral
equations to equivalent boundary value problems are rarely used. The conver-
sion techniques will be examined and illustrated examples will be presented.

In what follows we will examine the steps that we will use to obtain thess
integral and integro-differential equations.

2.5 Converting IVP to Volterra Integral Equation

In this section, we will study the techmique that will convert an initial
value problem ([\'Pj to an equivalent Volterrs integral equation and Volterra
integro-differential equation as well [3]. For simplicity reasons, we will apply
this process to & second order initial value problem given by

¥z} + plzhy' () + glzlpiz) = g(z) (2.48)
subject to the initial conditions:
y(0) =a, ¥(0)=4, {2.49)

where @ and  are constants. The functions p(r) and g{x) are analytic fune-
tions, and g{r) is continuous through the interval of discussion. To achiove
our goal we first set

y'(x) = ui=), {2.50)

where u{r) i a continuous function. Integrating both sides of (2.50) from O
to r yiekds

v -vio = [ " (o), (2.51)
a
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ar equivalenthy .
y(x) =8+ [u wle)de. (252)
Integrating both sides of (2.52) from 0 to T vields
oix) —(0) = pr + ) / " uft)duat, (253)
or equivalenthy
yiz) = o+ Ar + J(u "z — Oult)a, (2.54)

obtained upon wsing the formula that reduce double integral to a single inte-
gral that was discussed in the previeus chapter. Substituting (2.50), (2.53),
and (2.54) into the initial value problem {2.43) yields the Volterra integral
aquation:

u(z) + plz) [ﬁ +f 'u{z}da] +qz) [u o [ (e - cnuts}cu] ~ glx).

{2.55)
The last equation can be written in the standard Volterra integral equation
form:

atx) = 1) - [ * Kl Oult)at, (2.56)
(1]
wheare
Kiz,1) = p(x) + q(=)(z — 1), (2.57)
anc
flz) = glz) — [8p(z) + aglz) + Brlz)]. (258)

It is interesting to point out that by differentisting Volterra equation (2.56)
with respect to ®, using Leibnitz rule, we obtain an equivalent Volterra
integro-differential equation in the form:

w'(z) + K (z, 2)ulx) = F'(2) - j; B0 e, wio) = f0). (259)

The technique presented above to convert initial value problems to equive-
lent Volterra integral equations can be generalized by considering the general
initial value problem:

vz 4t (T + an(zhy = alz), (2.60)
subject to the initial conditions
(D) = 0, 97(0) = o0, 3"(0) = ez, ., 4™ 0) = ema- (2.61)

We assume that the functions a;(z), 1 = i £ n are analytic at the origin, and
the funetion giz) is continnous through the interval of discussion. Let alz)
bhe a continuous function on the interval of discussion, and we consider the
transformation:

™ (z) = ulz). (262)

Integrating both sides with respect to r gives
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t
W) = eyt [ ultar (263)
Integrating again both sides with respect to x yields
y-2(z) = en_z + en1T +_r_rw[=}dtdc
o Jo

= fn_a +&n1T + J(a (x — tjuft)dt, (2.64)
o

obtained by reducing the double integral to a single integral. Proceeding as
hefore we find

YD) = en g +enar + genar + j j j wlt)dedtedt
1] 1] 1]

1 1
—enatenart gty [ E-Pube (@6)
o
Continuing the integration process leads to

n-1 . 1 r o
y(z) = E Tt — fu (2 — &)Lt} (2.66)
Substituting (2.6%)(2.6) into (2.60) gives
u(x) = flz) - ju Kz, t)ult)e, (267)
where .
K(z,t) = E ﬁ{r — (268)
and J
1o =gte) -3 o (3 J"_';}rr"") . (269)

Motice that the Volterra integro-differential equation can be obtained by dif-
ferentiating (2.G7) as many times as we like, and by obtaining the initial
conditions of each resulting equation. The following examples will highlight
the process to convert initial value problem to an equivalent Volterrs integral
oquation.
Example 2.1
Convert the following initial value problem to an equivelent Volterrs integral
equation: .

¥iz) - 2rpizl =€, pl0)=1 (2.70]
We first set

¥'iz) = ulzr). (2.71)

Integrating both sides of (2.71), using the initisl condition y{0) = 1 gives

) v0) = | " u()dt, (272)
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or equivalenthy .
wiz) =1+ [ uinae, (273)
0
Subetituting (2.71) and (2.73) into (2.70) gives the equivalent Volterrs inte-
gral equation: .
ulr) = O 4 ¥ 4 9 f ult)dt. (2.74)
o

Example 2.2

Convert the following initial value problem to an equivelent Volterrs integral
equation:

y'(z) — ylz) —sinz, yO)=0, y(0)=0. (2.75)
Proceeding s before, we sot
y"(x) = u(z). (2.76)
Integrating both sides of (2.76), using the initial condition (0} = 0 gives
yiz) = ]ﬂ u(t)dt. (@.77)
Intagrating (2.77) again, using the initial condition y{0) = 0 yields
ylz) = j: j; i)t — fu z — tyule)dt, (278)

obtained upon wsing the rule to convert double integral to a single integral.
Inserting (2.76)-({2.78) imto (2.70) leads to the following Volterrs integral
equation:

ulr) = sinz + fu (- i, (2.79)

Example 2.3
Convert the following initial value problem to an equivelent Volterrs integral
equation:
vy -y +y=0 pi0)=1 y0)=2 "0)=21 {2.80)
We first set
vz} = uiz), (2.81)
where by integrating both sides of (2.81) and using the initial condition
#"{0) = 3 we obtain
V=34 L wlt)dt. (2.89)
Integrating sgain and using the initial condition y'(0) = 2 we find
vz =2+ :lz+f’f’u{z}dadc —aiar +F{: _fu(t)d (283)
o o o

Integrating sgain and using y(0) = 1 we obtain
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yliz) |+Qz-%:=-[:[f:ummm

a 1 [
1422+ Er! + 2[.;. (z — € ult)de. {2.84)

MNotice that in (2.83) and (2.84) the multiple integrals wers reduced to single
integrals as used before. Substituting (2.81) - (2.84) into {2.80) leads to the
Volterra integral equation:

u(r)=d+z+ 3274 fu o) %{: _Ofult)d. (285)

Remark
We can also show that if p(®)z) = ulz), then

v =y + [ utoa ,
V') =3"(0) + 20 + [ (x - thulo)at
8 2
Vi) =0+ 770) + 520 + 5 [ (- oPuioa

1 1 1 Jr
y(z) = ¥{0) + 2'(0) + 52%"(0) + Z2%"(0) + ¢ f (x — £ ult)at.
a
(2.36)
This proeess can be generalized to any derivative of a higher order.
In what follows we summarize the relation between derivetives of y{z) and

ulz):

Tabla 2.1 The relation between decivatives of yir) snd uiz)

pimz) Integral Equntions
¥iz) = uix) wiz) = plll) + Jl': witydt
iz = uir] ¥z =p (0 + _||£ (e

piz) = y{ﬂl-—:!.r'{ﬂ:-—JI: {x — thuit)dt
px) = yr.-[l:I]-I-J{:u{:!cﬂ

¥ (5) = u(z) (=) = (0 + 35 (0) + J|£ "z — tjuityde

yix) = 9(0) +=/(0) + 773" 0 + 3 [ lx - 0 wit)as




