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Many physical laws and relations can be expressed mathematically in the form of differential
equations. Thus it is natural that this book opens with the study of differential equations and
their solutions. Indeed, many engineering problems appear as differential equations.

The main objectives of Part A are twofold: the study of ordinary differential equations
and their most important methods for solving them and the study of modeling.

Ordinary differential equations (ODEs) are differential equations that depend on a single
variable. The more difficult study of partial differential equations (PDEs), that is,
differential equations that depend on several variables, is covered in Part C.

Modeling is a crucial general process in engineering, physics, computer science, biology,
medicine, environmental science, chemistry, economics, and other fields that translates a
physical situation or some other observations into a “mathematical model.” Numerous
examples from engineering (e.g., mixing problem), physics (e.g., Newton’s law of cooling),
biology (e.g., Gompertz model), chemistry (e.g., radiocarbon dating), environmental science
(e.g., population control), etc. shall be given, whereby this process is explained in detail,
that is, how to set up the problems correctly in terms of differential equations.

For those interested in solving ODEs numerically on the computer, look at Secs. 21.1–21.3
of Chapter 21 of Part F, that is, numeric methods for ODEs. These sections are kept
independent by design of the other sections on numerics. This allows for the study of
numerics for ODEs directly after Chap. 1 or 2.
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2

C H A P T E R 1

First-Order ODEs

Chapter 1 begins the study of ordinary differential equations (ODEs) by deriving them from
physical or other problems (modeling), solving them by standard mathematical methods,
and interpreting solutions and their graphs in terms of a given problem. The simplest ODEs
to be discussed are ODEs of the first order because they involve only the first derivative
of the unknown function and no higher derivatives. These unknown functions will usually
be denoted by or when the independent variable denotes time t. The chapter ends
with a study of the existence and uniqueness of solutions of ODEs in Sec. 1.7.

Understanding the basics of ODEs requires solving problems by hand (paper and pencil,
or typing on your computer, but first without the aid of a CAS). In doing so, you will
gain an important conceptual understanding and feel for the basic terms, such as ODEs,
direction field, and initial value problem. If you wish, you can use your Computer Algebra
System (CAS) for checking solutions.

COMMENT. Numerics for first-order ODEs can be studied immediately after this
chapter. See Secs. 21.1–21.2, which are independent of other sections on numerics.

Prerequisite: Integral calculus.
Sections that may be omitted in a shorter course: 1.6, 1.7.
References and Answers to Problems: App. 1 Part A, and App. 2.

1.1 Basic Concepts. Modeling
If we want to solve an engineering problem (usually of a physical nature), we first
have to formulate the problem as a mathematical expression in terms of variables,
functions, and equations. Such an expression is known as a mathematical model of the
given problem. The process of setting up a model, solving it mathematically, and
interpreting the result in physical or other terms is called mathematical modeling or,
briefly, modeling.

Modeling needs experience, which we shall gain by discussing various examples and
problems. (Your computer may often help you in solving but rarely in setting up models.)

Now many physical concepts, such as velocity and acceleration, are derivatives. Hence
a model is very often an equation containing derivatives of an unknown function. Such
a model is called a differential equation. Of course, we then want to find a solution (a
function that satisfies the equation), explore its properties, graph it, find values of it, and
interpret it in physical terms so that we can understand the behavior of the physical system
in our given problem. However, before we can turn to methods of solution, we must first
define some basic concepts needed throughout this chapter.

y1t2y1x2

Physical
System

Physical
Interpretation

Mathematical
Model

Mathematical
Solution

Fig. 1. Modeling, 
solving, interpreting

c01.qxd  7/30/10  8:14 PM  Page 2



An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call (or sometimes if the
independent variable is time t). The equation may also contain y itself, known functions
of x (or t), and constants. For example,

(1)

(2)

(3) yryt � 3
2 yr2 � 0

ys � 9y � e�2x

yr � cos x

y(t)y(x)

SEC. 1.1 Basic Concepts. Modeling 3

h

Outflowing water

(Sec. 1.3)

Water level h

h′ = –k    

Vibrating mass
on a spring

(Secs. 2.4, 2.8)

Displacement y

y

m

my″ + ky = 0    

(Sec. 1.1)

Falling stone

y″ = g = const.

y   

Beats of a vibrating
system

(Sec. 4.5)

Lotka–Volterra
predator–prey model

(Sec. 4.5)

Pendulum

Lθ″ + g sin θ = 0

L

(Sec. 1.2)

Parachutist

mv′ = mg – bv2

Velocity
v

θ
(Sec. 3.3)

Deformation of a beam

EIyiv =  f (x)

(k)

θ

(Sec. 2.9)

Current I in an
RLC circuit

LI″ + RI′ +     I = E′

h

C

L

E

R

y

t

y

1
C

y′ = ky
1
y

2 
– ly

2

y′ = ay
1 

– by
1

y
21

2

(Sec. 2.8)
y″ + w

0
2 y = cos  wt,   w

0 
≈ w      

 
ω ω ω  ω

Fig. 2. Some applications of differential equations
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are ordinary differential equations (ODEs). Here, as in calculus, denotes ,
etc. The term ordinary distinguishes them from partial differential

equations (PDEs), which involve partial derivatives of an unknown function of two
or more variables. For instance, a PDE with unknown function u of two variables x
and y is

PDEs have important engineering applications, but they are more complicated than ODEs;
they will be considered in Chap. 12.

An ODE is said to be of order n if the nth derivative of the unknown function y is the
highest derivative of y in the equation. The concept of order gives a useful classification
into ODEs of first order, second order, and so on. Thus, (1) is of first order, (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the
first derivative and may contain y and any given functions of x. Hence we can write
them as

(4)

or often in the form

This is called the explicit form, in contrast to the implicit form (4). For instance, the implicit
ODE (where ) can be written explicitly as 

Concept of Solution
A function

is called a solution of a given ODE (4) on some open interval if is
defined and differentiable throughout the interval and is such that the equation becomes
an identity if y and are replaced with h and , respectively. The curve (the graph) of
h is called a solution curve.

Here, open interval means that the endpoints a and b are not regarded as
points belonging to the interval. Also, includes infinite intervals

(the real line) as special cases.

E X A M P L E  1 Verification of Solution

Verify that (c an arbitrary constant) is a solution of the ODE for all Indeed, differentiate
to get Multiply this by x, obtaining thus, the given ODE. �xyr � �y,xyr � �c>x;yr � �c>x2.y � c>x

x � 0.xyr � �yy � c>x

a � x � �, �� � x � �
�� � x � b,a � x � b

a � x � b

hryr

h(x)a � x � b

y � h(x)

yr  �  4x3y2.x � 0x�3yr  �  4y2 � 0

yr � f (x, y).

F(x, y, yr) � 0

yr

0
2u

0x2
�

0
2u

0y2
� 0.

ys � d2y>dx2,
dy>dxyr

4 CHAP. 1 First-Order ODEs
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E X A M P L E  2 Solution by Calculus. Solution Curves

The ODE can be solved directly by integration on both sides. Indeed, using calculus,
we obtain where c is an arbitrary constant. This is a family of solutions. Each value
of c, for instance, 2.75 or 0 or gives one of these curves. Figure 3 shows some of them, for 

��1, 0, 1, 2, 3, 4.
c � �3, �2,�8,

y � �cos x dx � sin x � c,
yr � dy>dx � cos x

SEC. 1.1 Basic Concepts. Modeling 5
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Fig. 3. Solutions of the ODE yr � cos xy � sin x � c
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Fig. 4B. Solutions of 
in Example 3 (exponential decay)

yr � �0.2y

0
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y

Fig. 4A. Solutions of 
in Example 3 (exponential growth)

yr � 0.2y

E X A M P L E  3 (A) Exponential Growth. (B) Exponential Decay

From calculus we know that has the derivative

Hence y is a solution of (Fig. 4A). This ODE is of the form With positive-constant k it can
model exponential growth, for instance, of colonies of bacteria or populations of animals. It also applies to
humans for small populations in a large country (e.g., the United States in early times) and is then known as
Malthus’s law.1 We shall say more about this topic in Sec. 1.5.

(B) Similarly, (with a minus on the right) has the solution (Fig. 4B) modeling
exponential decay, as, for instance, of a radioactive substance (see Example 5). �

y � ce�0.2t,yr � �0.2

yr � ky.yr � 0.2y

yr �
dy

dt
� 0.2e0.2t � 0.2y.

y � ce0.2t

1Named after the English pioneer in classic economics, THOMAS ROBERT MALTHUS (1766–1834).
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We see that each ODE in these examples has a solution that contains an arbitrary
constant c. Such a solution containing an arbitrary constant c is called a general solution
of the ODE.

(We shall see that c is sometimes not completely arbitrary but must be restricted to some
interval to avoid complex expressions in the solution.)

We shall develop methods that will give general solutions uniquely (perhaps except for
notation). Hence we shall say the general solution of a given ODE (instead of a general
solution).

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant c. If we choose a specific c (e.g., or 0
or ) we obtain what is called a particular solution of the ODE. A particular solution
does not contain any arbitrary constants.

In most cases, general solutions exist, and every solution not containing an arbitrary
constant is obtained as a particular solution by assigning a suitable value to c. Exceptions
to these rules occur but are of minor interest in applications; see Prob. 16 in Problem
Set 1.1.

Initial Value Problem
In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition with given values

and , that is used to determine a value of the arbitrary constant c. Geometrically
this condition means that the solution curve should pass through the point 
in the xy-plane. An ODE, together with an initial condition, is called an initial value
problem. Thus, if the ODE is explicit, the initial value problem is of
the form

(5)

E X A M P L E  4 Initial Value Problem

Solve the initial value problem

Solution. The general solution is ; see Example 3. From this solution and the initial condition
we obtain Hence the initial value problem has the solution . This is a
particular solution.

More on Modeling
The general importance of modeling to the engineer and physicist was emphasized at the
beginning of this section. We shall now consider a basic physical problem that will show
the details of the typical steps of modeling. Step 1: the transition from the physical situation
(the physical system) to its mathematical formulation (its mathematical model); Step 2:
the solution by a mathematical method; and Step 3: the physical interpretation of the result.
This may be the easiest way to obtain a first idea of the nature and purpose of differential
equations and their applications. Realize at the outset that your computer (your CAS)
may perhaps give you a hand in Step 2, but Steps 1 and 3 are basically your work.

�
y(x) � 5.7e3xy(0) � ce0 � c � 5.7.

y(x) � ce3x

y(0) � 5.7.yr �
dy

dx
� 3y,

y(x0) � y0.yr � f (x, y),

yr � f (x, y),

(x0, y0)
y0x0

y(x0) � y0,

�2.01
c � 6.45

6 CHAP. 1 First-Order ODEs
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And Step 2 requires a solid knowledge and good understanding of solution methods
available to you—you have to choose the method for your work by hand or by the
computer. Keep this in mind, and always check computer results for errors (which may
arise, for instance, from false inputs).

E X A M P L E  5 Radioactivity. Exponential Decay

Given an amount of a radioactive substance, say, 0.5 g (gram), find the amount present at any later time.
Physical Information. Experiments show that at each instant a radioactive substance decomposes—and is thus

decaying in time—proportional to the amount of substance present.

Step 1. Setting up a mathematical model of the physical process. Denote by the amount of substance still
present at any time t. By the physical law, the time rate of change is proportional to . This
gives the first-order ODE

(6)

where the constant k is positive, so that, because of the minus, we do get decay (as in [B] of Example 3).
The value of k is known from experiments for various radioactive substances (e.g., 
approximately, for radium ).

Now the given initial amount is 0.5 g, and we can call the corresponding instant Then we have the
initial condition This is the instant at which our observation of the process begins. It motivates
the term initial condition (which, however, is also used when the independent variable is not time or when
we choose a t other than ). Hence the mathematical model of the physical process is the initial value
problem

(7)

Step 2. Mathematical solution. As in (B) of Example 3 we conclude that the ODE (6) models exponential decay
and has the general solution (with arbitrary constant c but definite given k)

(8)

We now determine c by using the initial condition. Since from (8), this gives Hence
the particular solution governing our process is (cf. Fig. 5)

(9)

Always check your result—it may involve human or computer errors! Verify by differentiation (chain rule!)
that your solution (9) satisfies (7) as well as 

Step 3. Interpretation of result. Formula (9) gives the amount of radioactive substance at time t. It starts from
the correct initial amount and decreases with time because k is positive. The limit of y as is zero. �t : �

dy

dt
� �0.5ke�kt � �k � 0.5e�kt � �ky,  y(0) � 0.5e0 � 0.5.

y(0) � 0.5:

(k � 0).y(t) � 0.5e�kt

y(0) � c � 0.5.y(0) � c

y(t) � ce�kt.

dy

dt
� �ky,  y(0) � 0.5.

t � 0

y(0) � 0.5.
t � 0.

226
88 

Ra
k � 1.4 � 10�11 sec�1,

dy

dt
� �ky

y(t)yr(t) � dy>dt
y(t)

SEC. 1.1 Basic Concepts. Modeling 7
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0 0.5 1.5 2 2.5 31 t

Fig. 5. Radioactivity (Exponential decay, 
with as an example)k � 1.5y � 0.5e�kt,
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8 CHAP. 1 First-Order ODEs

1–8 CALCULUS

Solve the ODE by integration or by remembering a
differentiation formula.

1.

2.

3.

4.

5.

6.

7.

8.

9–15 VERIFICATION. INITIAL VALUE 
PROBLEM (IVP)

(a) Verify that y is a solution of the ODE. (b) Determine
from y the particular solution of the IVP. (c) Graph the
solution of the IVP.

9.

10.

11.

12.

13.

14.

15. Find two constant solutions of the ODE in Prob. 13 by
inspection.

16. Singular solution. An ODE may sometimes have an
additional solution that cannot be obtained from the
general solution and is then called a singular solution.
The ODE is of this kind. Show
by differentiation and substitution that it has the
general solution and the singular solution

. Explain Fig. 6.y � x2>4
y � cx � c2

yr2 � xyr � y � 0

yr tan x � 2y � 8, y � c sin2 x � 4, y(1
2 p) � 0

yr � y � y2, y �
1

1 � ce�x
 , y(0) � 0.25

yyr � 4x, y2 � 4x2 � c (y � 0), y(1) � 4

yr � y � ex, y � (x � c)ex, y(0) � 1
2

yr � 5xy � 0, y � ce�2.5x2

, y(0) � p

yr � 4y � 1.4, y � ce�4x � 0.35, y(0) � 2

yt � e�0.2x

yr � cosh 5.13x

ys � �y

yr � 4e�x cos x

yr � �1.5y

yr � y

yr � xe�x2>2 � 0

yr � 2 sin 2px � 0

17–20 MODELING, APPLICATIONS

These problems will give you a first impression of modeling.
Many more problems on modeling follow throughout this
chapter.

17. Half-life. The half-life measures exponential decay.
It is the time in which half of the given amount of
radioactive substance will disappear. What is the half-
life of (in years) in Example 5?

18. Half-life. Radium has a half-life of about
3.6 days.

(a) Given 1 gram, how much will still be present after
1 day?

(b) After 1 year?

19. Free fall. In dropping a stone or an iron ball, air
resistance is practically negligible. Experiments
show that the acceleration of the motion is constant
(equal to called the
acceleration of gravity). Model this as an ODE for

, the distance fallen as a function of time t. If the
motion starts at time from rest (i.e., with velocity

), show that you obtain the familiar law of
free fall

20. Exponential decay. Subsonic flight. The efficiency
of the engines of subsonic airplanes depends on air
pressure and is usually maximum near ft.
Find the air pressure at this height. Physical
information. The rate of change is proportional
to the pressure. At ft it is half its value

at sea level. Hint. Remember from calculus
that if then Can you see
without calculation that the answer should be close
to ?y0>4

yr � kekx � ky.y � ekx,
y0 � y(0)

18,000
yr(x)

y(x)
35,000

y � 1
2 gt 2.

v � yr � 0
t � 0

y(t)

g � 9.80 m>sec2 � 32 ft>sec2,

224
88 Ra

226
88 

Ra

P R O B L E M  S E T  1 . 1

–4 42

y

x

2
1

3

–4
–5

–2
–3

–2–1

Fig. 6. Particular solutions and singular 
solution in Problem 16
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1.2 Geometric Meaning of 
Direction Fields, Euler’s Method

A first-order ODE

(1)

has a simple geometric interpretation. From calculus you know that the derivative of
is the slope of . Hence a solution curve of (1) that passes through a point 

must have, at that point, the slope equal to the value of f at that point; that is,

Using this fact, we can develop graphic or numeric methods for obtaining approximate
solutions of ODEs (1). This will lead to a better conceptual understanding of an ODE (1).
Moreover, such methods are of practical importance since many ODEs have complicated
solution formulas or no solution formulas at all, whereby numeric methods are needed.

Graphic Method of Direction Fields. Practical Example Illustrated in Fig. 7. We
can show directions of solution curves of a given ODE (1) by drawing short straight-line
segments (lineal elements) in the xy-plane. This gives a direction field (or slope field)
into which you can then fit (approximate) solution curves. This may reveal typical
properties of the whole family of solutions.

Figure 7 shows a direction field for the ODE

(2)

obtained by a CAS (Computer Algebra System) and some approximate solution curves
fitted in.

yr � y � x

yr(x0) � f (x0, y0).

yr(x0)
(x0, y0)y(x)y(x)
yr(x)

yr � f (x, y)

yr � f (x, y).

SEC. 1.2 Geometric Meaning of y	 � ƒ(x, y). Direction Fields, Euler’s Method 9

1

2

0.5 1–0.5–1–1.5–2

–1

–2

y

x

Fig. 7. Direction field of with three approximate solution 
curves passing through (0, 1), (0, 0), (0, ), respectively�1

yr � y � x,
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If you have no CAS, first draw a few level curves const of , then parallel
lineal elements along each such curve (which is also called an isocline, meaning a curve
of equal inclination), and finally draw approximation curves fit to the lineal elements.

We shall now illustrate how numeric methods work by applying the simplest numeric
method, that is Euler’s method, to an initial value problem involving ODE (2). First we
give a brief description of Euler’s method.

Numeric Method by Euler
Given an ODE (1) and an initial value Euler’s method yields approximate
solution values at equidistant x-values namely,

(Fig. 8)

, etc.

In general,

where the step h equals, e.g., 0.1 or 0.2 (as in Table 1.1) or a smaller value for greater
accuracy.

 yn � yn�1 � hf (xn�1, yn�1)

 y2 � y1 � hf (x1, y1)

 y1 � y0 � hf (x0, y0)

x0, x1 � x0 � h, x2 � x0 � 2h, Á
 ,

y(x0) � y0,

f (x, y)f (x, y) �

10 CHAP. 1 First-Order ODEs

y

xx
0

x
1

y
0

y
1

y(x
1
)

Solution curve

Error of y
1
 

hf (x
0
,
 
y

0
)

h

Fig. 8. First Euler step, showing a solution curve, its tangent at ( ), 
step h and increment in the formula for y1hf (x0, y0)

x0, y0

Table 1.1 shows the computation of steps with step for the ODE (2) and
initial condition corresponding to the middle curve in the direction field. We
shall solve the ODE exactly in Sec. 1.5. For the time being, verify that the initial value
problem has the solution . The solution curve and the values in Table 1.1
are shown in Fig. 9. These values are rather inaccurate. The errors are shown
in Table 1.1 as well as in Fig. 9. Decreasing h would improve the values, but would soon
require an impractical amount of computation. Much better methods of a similar nature
will be discussed in Sec. 21.1.

y(xn) � yn

y � ex � x � 1

y(0) � 0,
h � 0.2n � 5
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Table 1.1. Euler method for for
with step h � 0.2x � 0, Á , 1.0

yr � y � x, y (0) � 0

SEC. 1.2 Geometric Meaning of y	 � ƒ(x, y). Direction Fields, Euler’s Method 11

0.7

0.5

0.3

0.1

0 0.2 0.4 0.6 0.8 1 x

y

Fig. 9. Euler method: Approximate values in Table 1.1 and solution curve

n Error

0 0.0 0.000 0.000 0.000
1 0.2 0.000 0.021 0.021
2 0.4 0.04 0.092 0.052
3 0.6 0.128 0.222 0.094
4 0.8 0.274 0.426 0.152
5 1.0 0.488 0.718 0.230

y(xn)ynxn

1–8 DIRECTION FIELDS, SOLUTION CURVES

Graph a direction field (by a CAS or by hand). In the field
graph several solution curves by hand, particularly those
passing through the given points .

1.

2.

3.

4.

5.

6.

7.

8.

9–10 ACCURACY OF DIRECTION FIELDS

Direction fields are very useful because they can give you
an impression of all solutions without solving the ODE,
which may be difficult or even impossible. To get a feel for
the accuracy of the method, graph a field, sketch solution
curves in it, and compare them with the exact solutions.

9.

10. (Sol. )

11. Autonomous ODE. This means an ODE not showing
x (the independent variable) explicitly. (The ODEs in
Probs. 6 and 10 are autonomous.) What will the level
curves const (also called isoclines curves�f (x,  y) �

1y � 5
2 x � cyr � �5y1>2

yr � cos px

yr � �2xy, (0, 12),  (0, 1), (0, 2)

yr � ey>x, (2, 2), (3, 3)

yr � sin2 y, (0, �0.4), (0, 1)

yr � x � 1>y, (1, 12)

yr � 2y � y2, (0, 0), (0, 1), (0, 2), (0, 3)

yr � 1 � y2, (0, 0), (2, 12)

yyr � 4x � 0, (1, 1), (0, 2)

yr � 1 � y2, (1
4 p,  1)

(x,  y)

of equal inclination) of an autonomous ODE look like?
Give reason.

12–15 MOTIONS 

Model the motion of a body B on a straight line with
velocity as given, being the distance of B from a point

at time t. Graph a direction field of the model (the
ODE). In the field sketch the solution curve satisfying the
given initial condition.

12. Product of velocity times distance constant, equal to 2,

13.

14. Square of the distance plus square of the velocity equal
to 1, initial distance 

15. Parachutist. Two forces act on a parachutist, the
attraction by the earth mg (m mass of person plus
equipment, the acceleration of gravity)
and the air resistance, assumed to be proportional to the
square of the velocity v(t). Using Newton’s second law
of motion (mass acceleration resultant of the forces),
set up a model (an ODE for v(t)). Graph a direction field
(choosing m and the constant of proportionality equal to 1).
Assume that the parachute opens when v
Graph the corresponding solution in the field. What is the
limiting velocity? Would the parachute still be sufficient
if the air resistance were only proportional to v(t)?

� 10 m>sec.

�


g � 9.8 m>sec2
�

1>12

Distance � Velocity 
 Time, y(1) � 1

y(0) � 2.

y � 0
y(t)

P R O B L E M  S E T  1 . 2
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1.3 Separable ODEs. Modeling
Many practically useful ODEs can be reduced to the form

(1)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,
obtaining

(2)

On the left we can switch to y as the variable of integration. By calculus, , so that

(3)

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODEs is called the method of
separating variables, and (1) is called a separable equation, because in (3) the variables
are now separated: x appears only on the right and y only on the left.

E X A M P L E  1 Separable ODE

The ODE is separable because it can be written

By integration, or .

It is very important to introduce the constant of integration immediately when the integration is performed.
If we wrote then and then introduced c, we would have obtained which 
is not a solution (when ). Verify this. �c � 0

y � tan x � c,y � tan x,arctan y � x,

y � tan (x � c)arctan y � x � c
dy

1 � y2
� dx.

yr � 1 � y2

�g(y) dy � � f (x) dx � c.

yrdx � dy

�g(y) yrdx � � f (x) dx � c.

g(y) yr � f (x)

12 CHAP. 1 First-Order ODEs

16. CAS PROJECT. Direction Fields. Discuss direction
fields as follows.
(a) Graph portions of the direction field of the ODE (2)
(see Fig. 7), for instance, 
Explain what you have gained by this enlargement of
the portion of the field.
(b) Using implicit differentiation, find an ODE with
the general solution Graph its
direction field. Does the field give the impression
that the solution curves may be semi-ellipses? Can you
do similar work for circles? Hyperbolas? Parabolas?
Other curves?
(c) Make a conjecture about the solutions of 
from the direction field.
(d) Graph the direction field of and some
solutions of your choice. How do they behave? Why
do they decrease for ?y � 0

yr � �1
2 y

yr � �x>y

x2 � 9y2 � c (y � 0).

�5 � x � 2, �1 � y � 5.

17–20 EULER’S METHOD 

This is the simplest method to explain numerically solving
an ODE, more precisely, an initial value problem (IVP).
(More accurate methods based on the same principle are
explained in Sec. 21.1.) Using the method, to get a feel for
numerics as well as for the nature of IVPs, solve the IVP
numerically with a PC or a calculator, 10 steps. Graph the
computed values and the solution curve on the same
coordinate axes.

17.

18.

19.
Sol. 

20.
Sol. y � 1>(1 � x)5
yr � �5x4y2, y(0) � 1, h � 0.2

y � x � tanh x
yr � (y � x)2, y(0) � 0, h � 0.1

yr � y, y(0) � 1, h � 0.01

yr � y, y(0) � 1, h � 0.1
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E X A M P L E  2 Separable ODE

The ODE is separable; we obtain 

E X A M P L E  3 Initial Value Problem (IVP). Bell-Shaped Curve

Solve 

Solution. By separation and integration,

This is the general solution. From it and the initial condition, Hence the IVP has the
solution This is a particular solution, representing a bell-shaped curve (Fig. 10). �y � 1.8e�x2

.
y(0) � ce0 � c � 1.8.

dy

y
� �2x dx,  ln y � �x2 � c�,  y � ce�x2

.

yr � �2xy, y(0) � 1.8.

�
By integration,  �y�1 � �(x � 2)e�x � c,  y �

1

(x � 2)e�x � c
 .

y�2 dy � (x � 1)e�x dx.yr � (x � 1)e�xy2

SEC. 1.3 Separable ODEs. Modeling 13

1

10–1–2 2 x

y

Fig. 10. Solution in Example 3 (bell-shaped curve)

Modeling
The importance of modeling was emphasized in Sec. 1.1, and separable equations yield
various useful models. Let us discuss this in terms of some typical examples.

E X A M P L E  4 Radiocarbon Dating2

In September 1991 the famous Iceman (Oetzi), a mummy from the Neolithic period of the Stone Age found in
the ice of the Oetztal Alps (hence the name “Oetzi”) in Southern Tyrolia near the Austrian–Italian border, caused
a scientific sensation. When did Oetzi approximately live and die if the ratio of carbon to carbon in
this mummy is 52.5% of that of a living organism?

Physical Information. In the atmosphere and in living organisms, the ratio of radioactive carbon (made
radioactive by cosmic rays) to ordinary carbon is constant. When an organism dies, its absorption of 
by breathing and eating terminates. Hence one can estimate the age of a fossil by comparing the radioactive
carbon ratio in the fossil with that in the atmosphere. To do this, one needs to know the half-life of , which
is 5715 years (CRC Handbook of Chemistry and Physics, 83rd ed., Boca Raton: CRC Press, 2002, page 11–52,
line 9).

Solution. Modeling. Radioactive decay is governed by the ODE (see Sec. 1.1, Example 5). By
separation and integration (where t is time and is the initial ratio of to )

(y0 � ec).y � y0  
ektln ƒ y ƒ � kt � c,

dy

y
� k dt,

12
6 
C14

6 
Cy0

yr � ky

14
6 
C

14
6 
C12

6 
C

14
6 
C

12
6 
C14

6 
C

2Method by WILLARD FRANK LIBBY (1908–1980), American chemist, who was awarded for this work
the 1960 Nobel Prize in chemistry.
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Next we use the half-life to determine k. When , half of the original substance is still present. Thus,

Finally, we use the ratio 52.5% for determining the time t when Oetzi died (actually, was killed),

Answer: About 5300 years ago.

Other methods show that radiocarbon dating values are usually too small. According to recent research, this is
due to a variation in that carbon ratio because of industrial pollution and other factors, such as nuclear testing.

E X A M P L E  5 Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 11 contains 1000 gal of water in which initially 100 lb of salt is dissolved.
Brine runs in at a rate of 10 gal min, and each gallon contains 5 lb of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal min. Find the amount of salt in the tank at any time t.

Solution. Step 1. Setting up a model. Let denote the amount of salt in the tank at time t. Its time rate
of change is

Balance law.

5 lb times 10 gal gives an inflow of 50 lb of salt. Now, the outflow is 10 gal of brine. This is 
of the total brine content in the tank, hence 0.01 of the salt content , that is, 0.01 . Thus the

model is the ODE

(4)

Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and taking exponents on both
sides gives

Initially the tank contains 100 lb of salt. Hence is the initial condition that will give the unique
solution. Substituting and in the last equation gives Hence 
Hence the amount of salt in the tank at time t is

(5)

This function shows an exponential approach to the limit 5000 lb; see Fig. 11. Can you explain physically that
should increase with time? That its limit is 5000 lb? Can you see the limit directly from the ODE?

The model discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob. 35)
or drugs in organs. These types of problems are more difficult because the mixing may be imperfect and the flow
rates (in and out) may be different and known only very roughly. �

y(t)

y(t) � 5000 � 4900e�0.01t.

c � �4900.100 � 5000 � ce0 � c.t � 0y � 100
y(0) � 100

y � 5000 � ce�0.01t.ln ƒ y � 5000 ƒ � �0.01t � c*,
dy

y � 5000
� �0.01 dt,

yr � 50 � 0.01y � �0.01(y � 5000).

y(t)y(t)(� 1%)
10>1000 � 0.01

yr � Salt inflow rate � Salt outflow rate

y(t)

>
>

�

t �
ln 0.525

�0.0001 213
� 5312.ekt � e�0.0001 213t � 0.525,

k �
ln 0.5

H
� �

0.693

5715
� �0.0001 213.ekH � 0.5,y0ekH � 0.5y0,

t � HH � 5715

14 CHAP. 1 First-Order ODEs

100

2000

3000

1000

5000

4000

1000 300200 400 500

Salt content y(t)

t

TankTank

y

Fig. 11. Mixing problem in Example 5
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E X A M P L E  6 Heating an Office Building (Newton’s Law of Cooling3)

Suppose that in winter the daytime temperature in a certain office building is maintained at 70°F. The heating
is shut off at 10 P.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at 2 A.M.
was found to be 65°F. The outside temperature was 50°F at 10 P.M. and had dropped to 40°F by 6 A.M. What
was the temperature inside the building when the heat was turned on at 6 A.M.?

Physical information. Experiments show that the time rate of change of the temperature T of a body B (which
conducts heat well, for example, as a copper ball does) is proportional to the difference between T and the
temperature of the surrounding medium (Newton’s law of cooling).

Solution. Step 1. Setting up a model. Let be the temperature inside the building and TA the outside
temperature (assumed to be constant in Newton’s law). Then by Newton’s law,

(6)

Such experimental laws are derived under idealized assumptions that rarely hold exactly. However, even if a
model seems to fit the reality only poorly (as in the present case), it may still give valuable qualitative information.
To see how good a model is, the engineer will collect experimental data and compare them with calculations
from the model.

Step 2. General solution. We cannot solve (6) because we do not know TA, just that it varied between 50°F
and 40°F, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We
solve (6) with the unknown function TA replaced with the average of the two known values, or 45°F. For physical
reasons we may expect that this will give us a reasonable approximate value of T in the building at 6 A.M.

For constant (or any other constant value) the ODE (6) is separable. Separation, integration, and
taking exponents gives the general solution

Step 3. Particular solution. We choose 10 P.M. to be Then the given initial condition is and
yields a particular solution, call it . By substitution,

Step 4. Determination of k. We use where is 2 A.M. Solving algebraically for k and inserting
k into gives (Fig. 12)

Tp(t) � 45 � 25e�0.056t.k � 1
4 ln 0.8 � �0.056,e4k � 0.8,Tp(4) � 45 � 25e4k � 65,

Tp(t)
t � 4T(4) � 65,

Tp(t) � 45 � 25ekt.c � 70 � 45 � 25,T(0) � 45 � ce0 � 70,

Tp

T(0) � 70t � 0.

(c � ec*

).T(t) � 45 � cektln ƒ T � 45 ƒ � kt � c*,
dT

T � 45
� k dt,

TA � 45

dT

dt
� k(T � TA).

T(t)

SEC. 1.3 Separable ODEs. Modeling 15

62

64

68

70

60

y

2 4 6 80 t

66

61

65

Fig. 12. Particular solution (temperature) in Example 6

3Sir ISAAC NEWTON (1642–1727), great English physicist and mathematician, became a professor at
Cambridge in 1669 and Master of the Mint in 1699. He and the German mathematician and philosopher
GOTTFRIED WILHELM LEIBNIZ (1646–1716) invented (independently) the differential and integral calculus.
Newton discovered many basic physical laws and created the method of investigating physical problems by
means of calculus. His Philosophiae naturalis principia mathematica (Mathematical Principles of Natural
Philosophy, 1687) contains the development of classical mechanics. His work is of greatest importance to both
mathematics and physics.
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Step 5. Answer and interpretation. 6 A.M. is (namely, 8 hours after 10 P.M.), and

Hence the temperature in the building dropped 9°F, a result that looks reasonable.

E X A M P L E  7 Leaking Tank. Outflow of Water Through a Hole (Torricelli’s Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
cylindrical tank with a hole at the bottom (Fig. 13). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the
hole is opened is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

(7) (Torricelli’s law4),

where is the height of the water above the hole at time t, and is the
acceleration of gravity at the surface of the earth.

Solution. Step 1. Setting up the model. To get an equation, we relate the decrease in water level to the
outflow. The volume of the outflow during a short time is

(A Area of hole).

must equal the change of the volume of the water in the tank. Now

(B Cross-sectional area of tank)

where is the decrease of the height of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating and gives

We now express v according to Torricelli’s law and then let (the length of the time interval considered)
approach 0—this is a standard way of obtaining an ODE as a model. That is, we have

and by letting we obtain the ODE

,

where This is our model, a first-order ODE.

Step 2. General solution. Our ODE is separable. is constant. Separation and integration gives

and

Dividing by 2 and squaring gives . Inserting 
yields the general solution

h(t) � (c � 0.000 332t)2.

13.28A>B � 13.28 � 0.52p>1002p� 0.000 332h � (c � 13.28At>B)2

21h � c* � 26.56 
A

B
 t.

dh

1h
� �26.56 

A

B
 dt

A>B

26.56 � 0.60022 � 980.

dh

dt
� �26.56 

A

B
 1h

¢t :  0

¢h

¢t
� �

A

B
 v � �

A

B
 0.60012gh(t)

¢t

�B ¢h � Av ¢t.

¢V*¢V
h(t)¢h (� 0)

�¢V* � �B ¢h

¢V*¢V

�¢V � Av ¢t

¢t¢V
h(t)

g � 980 cm>sec2 � 32.17 ft>sec2h(t)

v(t) � 0.60022gh(t)

�

Tp(8) � 45 � 25e�0.056 �  8 � 613°F4.

t � 8

16 CHAP. 1 First-Order ODEs

4EVANGELISTA TORRICELLI (1608–1647), Italian physicist, pupil and successor of GALILEO GALILEI
(1564–1642) at Florence. The “contraction factor” 0.600 was introduced by J. C. BORDA in 1766 because the
stream has a smaller cross section than the area of the hole.
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Step 3. Particular solution. The initial height (the initial condition) is cm. Substitution of 
and gives from the general solution and thus the particular solution (Fig. 13)

Step 4. Tank empty. if [hours].
Here you see distinctly the importance of the choice of units—we have been working with the cgs system,

in which time is measured in seconds! We used 

Step 5. Checking. Check the result. �

g � 980 cm>sec2.

t � 15.00>0.000 332 � 45,181 c sec d � 12.6hp(t) � 0

hp(t) � (15.00 � 0.000 332t)2.

c2 � 225, c � 15.00h � 225
t � 0h(0) � 225

SEC. 1.3 Separable ODEs. Modeling 17

2.25 m

2.00 m

h(t)

Outflowing
water

Water level
 at time t

h

t

250

200

150

100

50

0
100000 30000 50000

Tank Water level h(t) in tank

Fig. 13. Example 7. Outflow from a cylindrical tank (“leaking tank”). 
Torricelli’s law

Extended Method: Reduction to Separable Form
Certain nonseparable ODEs can be made separable by transformations that introduce for
y a new unknown function. We discuss this technique for a class of ODEs of practical
importance, namely, for equations

(8)

Here, f is any (differentiable) function of , such as sin , , and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set ; thus,

(9) and by product differentiation

Substitution into then gives or . We see that
if , this can be separated:

(10)
du

f (u) � u
�

dx

x
.

f (u) � u � 0
urx � f (u) � uurx � u � f (u)yr � f (y>x)

yr � urx � u.y � ux

y>x � u

(y>x)4(y>x)y>x

yr � f ay

x
b .
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E X A M P L E  8 Reduction to Separable Form

Solve

Solution. To get the usual explicit form, divide the given equation by 2xy,

Now substitute y and from (9) and then simplify by subtracting u on both sides,

You see that in the last equation you can now separate the variables,

By integration,

Take exponents on both sides to get or . Multiply the last equation by to
obtain (Fig. 14)

Thus

This general solution represents a family of circles passing through the origin with centers on the x-axis. �

ax �
c

2
b2 � y2 �

c2

4
.x2 � y2 � cx.

x21 � (y>x)2 � c>x1 � u2 � c>x

ln (1 � u2) � �ln ƒ x ƒ � c* � ln ` 1
x
` � c*.

2u du

1 � u2
� �

dx

x
.

urx � �
u

2
�

1

2u
�

�u2 � 1

2u
.urx � u �

u

2
�

1

2u
,

yr

yr �
y2 � x2

2xy
�

y

2x
�

x

2y
.

2xyyr � y2 � x2.

18 CHAP. 1 First-Order ODEs

4

–4

y

x–4–8 4 8

2

–2

Fig. 14. General solution (family of circles) in Example 8

1. CAUTION! Constant of integration. Why is it
important to introduce the constant of integration
immediately when you integrate?

2–10 GENERAL SOLUTION

Find a general solution. Show the steps of derivation. Check
your answer by substitution.

2.

3.

4.

5.

6.

7.

8.

9.

10. xyr � x � y (Set y>x � u)

xyr � y2 � y (Set y>x � u)

yr � (y � 4x)2 (Set y � 4x � v)

xyr � y � 2x3 sin2 
y

x
 (Set y>x � u)

yr � e2x�1y2

yyr � 36x � 0

yr sin 2px � py cos 2px

yr � sec2 y

y3yr � x3 � 0

11–17 INITIAL VALUE PROBLEMS (IVPS)

Solve the IVP. Show the steps of derivation, beginning with
the general solution.

11.

12.

13.

14.

15.

16.
(Set )

17.

18. Particular solution. Introduce limits of integration in
(3) such that y obtained from (3) satisfies the initial
condition y(x0) � y0.

(Set y>x � u)
xyr � y � 3x4 cos2 (y>x), y(1) � 0

v � x � y � 2
yr � (x � y � 2)2, y(0) � 2

yr � �4x>y, y(2) � 3

dr>dt � �2tr, r(0) � r0

yrcosh2 x � sin2 y, y(0) � 1
2 p

yr � 1 � 4y2, y(1) � 0

xyr � y � 0, y(4) � 6

P R O B L E M  S E T  1 . 3
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19–36 MODELING, APPLICATIONS

19. Exponential growth. If the growth rate of the number
of bacteria at any time t is proportional to the number
present at t and doubles in 1 week, how many bacteria
can be expected after 2 weeks? After 4 weeks?

20. Another population model.

(a) If the birth rate and death rate of the number of
bacteria are proportional to the number of bacteria
present, what is the population as a function of time. 

(b) What is the limiting situation for increasing time?
Interpret it.

21. Radiocarbon dating. What should be the content
(in percent of ) of a fossilized tree that is claimed to
be 3000 years old? (See Example 4.)

22. Linear accelerators are used in physics for
accelerating charged particles. Suppose that an alpha
particle enters an accelerator and undergoes a constant
acceleration that increases the speed of the particle
from to sec. Find the
acceleration a and the distance traveled during that
period of sec.

23. Boyle–Mariotte’s law for ideal gases.5 Experiments
show for a gas at low pressure p (and constant
temperature) the rate of change of the volume 
equals . Solve the model.

24. Mixing problem. A tank contains 400 gal of brine
in which 100 lb of salt are dissolved. Fresh water runs
into the tank at a rate of The mixture, kept
practically uniform by stirring, runs out at the same
rate. How much salt will there be in the tank at the
end of 1 hour?

25. Newton’s law of cooling. A thermometer, reading
5°C, is brought into a room whose temperature is 22°C.
One minute later the thermometer reading is 12°C.
How long does it take until the reading is practically
22°C, say, 21.9°C?

26. Gompertz growth in tumors. The Gompertz model
is , where is the mass of
tumor cells at time t. The model agrees well with
clinical observations. The declining growth rate with
increasing corresponds to the fact that cells in
the interior of a tumor may die because of insufficient
oxygen and nutrients. Use the ODE to discuss the
growth and decline of solutions (tumors) and to find
constant solutions. Then solve the ODE.

27. Dryer. If a wet sheet in a dryer loses its moisture at
a rate proportional to its moisture content, and if it
loses half of its moisture during the first 10 min of

y � 1

y(t)yr � �Ay ln y (A � 0)

2 gal>min.

�V>p
V(p)

10�3

104 m>sec in 10�3103 m>sec

y0

14
6 
C

SEC. 1.3 Separable ODEs. Modeling 19

drying, when will it be practically dry, say, when will
it have lost 99% of its moisture? First guess, then
calculate.

28. Estimation. Could you see, practically without calcu-
lation, that the answer in Prob. 27 must lie between
60 and 70 min? Explain.

29. Alibi? Jack, arrested when leaving a bar, claims that
he has been inside for at least half an hour (which
would provide him with an alibi). The police check
the water temperature of his car (parked near the
entrance of the bar) at the instant of arrest and again
30 min later, obtaining the values 190°F and 110°F,
respectively. Do these results give Jack an alibi?
(Solve by inspection.)

30. Rocket. A rocket is shot straight up from the earth,
with a net acceleration ( acceleration by the rocket
engine minus gravitational pullback) of 
during the initial stage of flight until the engine cut out
at sec. How high will it go, air resistance
neglected?

31. Solution curves of Show that any
(nonvertical) straight line through the origin of the
xy-plane intersects all these curves of a given ODE at
the same angle.

32. Friction. If a body slides on a surface, it experiences
friction F (a force against the direction of motion).
Experiments show that (Coulomb’s6 law of
kinetic friction without lubrication), where N is the
normal force (force that holds the two surfaces together;
see Fig. 15) and the constant of proportionality is
called the coefficient of kinetic friction. In Fig. 15
assume that the body weighs 45 nt (about 10 lb; see
front cover for conversion). (corresponding
to steel on steel), the slide is 10 m long, the
initial velocity is zero, and air resistance is
negligible. Find the velocity of the body at the end
of the slide.

a � 30°,
� � 0.20

�

ƒ F ƒ � � ƒ N ƒ

yr � g1y>x2.

t � 10

7t m>sec2
�

5ROBERT BOYLE (1627–1691), English physicist and chemist, one of the founders of the Royal Society. EDME MARIOTTE (about
1620–1684), French physicist and prior of a monastry near Dijon. They found the law experimentally in 1662 and 1676, respectively.

6CHARLES AUGUSTIN DE COULOMB (1736–1806), French physicist and engineer.

v(t)

W

N

Body

α

s(t)

Fig. 15. Problem 32
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33. Rope. To tie a boat in a harbor, how many times
must a rope be wound around a bollard (a vertical
rough cylindrical post fixed on the ground) so that a
man holding one end of the rope can resist a force
exerted by the boat 1000 times greater than the man
can exert? First guess. Experiments show that the
change of the force S in a small portion of the
rope is proportional to S and to the small angle 
in Fig. 16. Take the proportionality constant 0.15.
The result should surprise you!

¢�
¢S

20 CHAP. 1 First-Order ODEs

this as the condition for the two families to be
orthogonal (i.e., to intersect at right angles)? Do your
graphs confirm this?

(e) Sketch families of curves of your own choice and
find their ODEs. Can every family of curves be given
by an ODE?

35. CAS PROJECT. Graphing Solutions. A CAS can
usually graph solutions, even if they are integrals that
cannot be evaluated by the usual analytical methods of
calculus.
(a) Show this for the five initial value problems

, , graphing all five curves
on the same axes.
(b) Graph approximate solution curves, using the first
few terms of the Maclaurin series (obtained by term-
wise integration of that of ) and compare with the
exact curves.
(c) Repeat the work in (a) for another ODE and initial
conditions of your own choice, leading to an integral
that cannot be evaluated as indicated.

36. TEAM PROJECT. Torricelli’s Law. Suppose that
the tank in Example 7 is hemispherical, of radius R,
initially full of water, and has an outlet of 5 cm2 cross-
sectional area at the bottom. (Make a sketch.) Set
up the model for outflow. Indicate what portion of
your work in Example 7 you can use (so that it can
become part of the general method independent of the
shape of the tank). Find the time t to empty the tank
(a) for any R, (b) for Plot t as function of
R. Find the time when (a) for any R, (b) for
R � 1 m.

h � R>2
R � 1 m.

yr

y(0) � 0, �1, �2yr � e�x2

S + ΔS

Δ�

S
Small
portion
of rope

Fig. 16. Problem 33

34. TEAM PROJECT. Family of Curves. A family of
curves can often be characterized as the general
solution of 

(a) Show that for the circles with center at the origin
we get 

(b) Graph some of the hyperbolas Find an
ODE for them.

(c) Find an ODE for the straight lines through the
origin.

(d) You will see that the product of the right sides of
the ODEs in (a) and (c) equals Do you recognize�1.

xy � c.

yr � �x>y.

yr � f (x,  y).

1.4 Exact ODEs. Integrating Factors
We recall from calculus that if a function has continuous partial derivatives, its
differential (also called its total differential) is

From this it follows that if then 
For example, if , then

or

yr �
dy

dx
� �

1 � 2xy3

3x2y2
,

du � (1 � 2xy3) dx � 3x2y2 dy � 0

u � x � x2y3 � c
du � 0.u(x, y) � c � const,

du �
0u

0x
 dx �

0u

0y
 dy.

u(x, y)
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an ODE that we can solve by going backward. This idea leads to a powerful solution
method as follows.

A first-order ODE written as (use as in Sec. 1.3)

(1)

is called an exact differential equation if the differential form 
is exact, that is, this form is the differential

(2) 

of some function . Then (1) can be written

By integration we immediately obtain the general solution of (1) in the form

(3)

This is called an implicit solution, in contrast to a solution as defined in Sec.
1.1, which is also called an explicit solution, for distinction. Sometimes an implicit solution
can be converted to explicit form. (Do this for ) If this is not possible, your
CAS may graph a figure of the contour lines (3) of the function and help you in
understanding the solution.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function such that

(4) (a) (b)

From this we can derive a formula for checking whether (1) is exact or not, as follows.
Let M and N be continuous and have continuous first partial derivatives in a region in

the xy-plane whose boundary is a closed curve without self-intersections. Then by partial
differentiation of (4) (see App. 3.2 for notation),

By the assumption of continuity the two second partial derivaties are equal. Thus

(5)
0M

0y
�

0N

0x
.

0N

0x
�

0
2u

0x 0y
.

0M

0y
�

0
2u

0y 0x
,

0u

0y
� N.

0u

0x
� M,

u(x, y)

u(x, y)
x2 � y2 � 1.

y � h(x)

u(x, y) � c.

du � 0.

u(x, y)

du �
0u

0x
 dx �

0u

0y
 dy

M(x, y) dx � N(x, y) dy

M(x, y) dx � N(x, y) dy � 0

dy � yrdxM(x, y) � N(x, y)yr � 0,
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This condition is not only necessary but also sufficient for (1) to be an exact differential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books, for
instance, [GenRef 12], also contain a proof.)

If (1) is exact, the function can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x

(6)

in this integration, y is to be regarded as a constant, and plays the role of a “constant”
of integration. To determine , we derive from (6), use (4b) to get , and
integrate to get k. (See Example 1, below.)

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then, instead of (6), we first have by integration with respect to y

(6*)

To determine , we derive from (6*), use (4a) to get , and integrate. We
illustrate all this by the following typical examples.

E X A M P L E  1 An Exact ODE

Solve

(7)

Solution. Step 1. Test for exactness. Our equation is of the form (1) with

Thus

From this and (5) we see that (7) is exact.

Step 2. Implicit general solution. From (6) we obtain by integration

(8)

To find , we differentiate this formula with respect to y and use formula (4b), obtaining

Hence By integration, Inserting this result into (8) and observing (3),
we obtain the answer

u(x, y) � sin (x � y) � y3 � y2 � c.

k � y3 � y2 � c*.dk>dy � 3y2 � 2y.

0u

0y
� cos (x � y) �

dk

dy
� N � 3y2 � 2y � cos (x � y).

k(y)

u � �M dx � k(y) � �cos (x � y) dx � k(y) � sin (x � y) � k(y).

0N

0x
� �sin (x � y).

0M

0y
� �sin (x � y),

N � 3y2 � 2y � cos (x � y).

M � cos (x � y),

cos (x � y) dx � (3y2 � 2y � cos (x � y)) dy � 0.

dl>dx0u>0xl(x)

u � �N dy � l(x).

dk>dy
dk>dy0u>0yk(y)

k(y)

u � �M dx � k(y);

u(x, y)
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Step 3. Checking an implicit solution. We can check by differentiating the implicit solution 
implicitly and see whether this leads to the given ODE (7):

(9)

This completes the check.

E X A M P L E  2 An Initial Value Problem

Solve the initial value problem

(10)

Solution. You may verify that the given ODE is exact. We find u. For a change, let us use (6*),

From this, Hence By integration, 
This gives the general solution From the initial condition, 

Hence the answer is cos y cosh Figure 17 shows the particular solutions for 
(thicker curve), 1, 2, 3. Check that the answer satisfies the ODE. (Proceed as in Example 1.) Also check that the
initial condition is satisfied. �

c � 0, 0.358x � x � 0.358.0.358 � c.
cos 2 cosh 1 � 1 �u(x, y) � cos y cosh x � x � c.

l(x) � x � c*.dl>dx � 1.0u>0x � cos y sinh x � dl>dx � M � cos y sinh x � 1.

u � ��sin y cosh x dy � l(x) � cos y cosh x � l(x).

y(1) � 2.(cos y sinh x � 1) dx � sin y cosh x dy � 0,

�

du �
0u

0x
 dx �

0u

0y
 dy � cos (x � y) dx � (cos (x � y) � 3y2 � 2y) dy � 0.

u(x, y) � c
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1.5

2.5

Fig. 17. Particular solutions in Example 2

E X A M P L E  3 WARNING! Breakdown in the Case of Nonexactness

The equation is not exact because and so that in (5), but
Let us show that in such a case the present method does not work. From (6),

hence

Now, should equal by (4b). However, this is impossible because can depend only on . Try
(6*); it will also fail. Solve the equation by another method that we have discussed.

Reduction to Exact Form. Integrating Factors
The ODE in Example 3 is It is not exact. However, if we multiply it
by , we get an exact equation [check exactness by (5)!],

(11)

Integration of (11) then gives the general solution y>x � c � const.

�y dx � x dy

x2
� �

y

x2
 dx �

1
x

 dy � d ay

x
b � 0.

1>x2
�y dx � x dy � 0.

�
yk(y)N � x,0u>0y

0u

0y
� �x �

dk

dy
.u � �M dx � k(y) � �xy � k(y),

0N>0x � 1.
0M>0y � �1N � x,M � �y�y dx � x dy � 0
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This example gives the idea. All we did was to multiply a given nonexact equation, say,

(12)

by a function F that, in general, will be a function of both x and y. The result was an equation

(13) 

that is exact, so we can solve it as just discussed. Such a function is then called
an integrating factor of (12).

E X A M P L E  4 Integrating Factor

The integrating factor in (11) is Hence in this case the exact equation (13) is

Solution

These are straight lines through the origin. (Note that is also a solution of )
It is remarkable that we can readily find other integrating factors for the equation namely,

and because

(14)

How to Find Integrating Factors
In simpler cases we may find integrating factors by inspection or perhaps after some trials,
keeping (14) in mind. In the general case, the idea is the following.

For the exactness condition (5) is Hence for (13),
the exactness condition is

(15)

By the product rule, with subscripts denoting partial derivatives, this gives

In the general case, this would be complicated and useless. So we follow the Golden Rule:
If you cannot solve your problem, try to solve a simpler one—the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable: fortunately, in many practical cases, there are such factors, as we shall
see. Thus, let Then and so that (15) becomes

Dividing by FQ and reshuffling terms, we have

(16) where R �
1

Q
 a 0P

0y
�

0Q

0x
b .

1

F
 
dF

dx
� R,

FPy � FrQ � FQx.

Fx � Fr � dF>dx,Fy � 0,F � F(x).

FyP � FPy � FxQ � FQx.

0

0y
 (FP) �

0

0x
 (FQ).

FP dx � FQ dy � 0,
0M>0y � 0N>0x.M dx � N dy � 0

�
�y dx � x dy

x2 � y2
� d aarctan 

y

x
b .

�y dx � x dy

xy
� �d aln 

x

y
b ,

�y dx � x dy

y2
� d ax

y
b ,

1>(x2 � y2),1>y2, 1>(xy),
�y dx � x dy � 0,

�y dx � x dy � 0.x � 0y � cx

y

x
� c.FP dx � FQ dy �

�y dx � x dy

x2
� d ay

x
b � 0.

F � 1>x2.

F(x, y)

FP dx � FQ dy � 0

P(x, y) dx � Q(x, y) dy � 0,
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This proves the following theorem.

T H E O R E M  1 Integrating Factor F (x)

If (12) is such that the right side R of (16) depends only on x, then (12) has an
integrating factor which is obtained by integrating (16) and taking
exponents on both sides.

(17)

Similarly, if then instead of (16) we get

(18) where

and we have the companion

T H E O R E M  2 Integrating Factor F* (y)

If (12) is such that the right side R* of (18) depends only on y, then (12) has an
integrating factor , which is obtained from (18) in the form

(19)

E X A M P L E  5 Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(20)

Solution. Step 1. Nonexactness. The exactness check fails:

but

Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)] depends on
both x and y.

Try Theorem 2. The right side of (18) is

Hence (19) gives the integrating factor From this result and (20) you get the exact equation

(ex � y) dx � (x � e�y) dy � 0.

F*(y) � e�y.

R* �
1

P
 a 0Q

0x
�

0P

0y
b �

1

ex�y � yey (ey � ex�y � ey � yey) � �1.

R �
1

Q
 a 0P

0y
�

0Q

0x
b �

1

xey � 1
  (ex�y � ey � yey � ey).

0Q

0x
�

0

0x
 (xey � 1) � ey.

0P

0y
�

0

0y
 (ex�y � yey) � ex�y � ey � yey

y(0) � �1(ex�y � yey) dx � (xey � 1) dy � 0,

F*(y) � exp�R*(y) dy.

F* � F*(y)

R* �
1

P
 a 0Q

0x
�

0P

0y
b1

F*
 
dF*

dy
� R*,

F* � F*(y),

F(x) � exp�R(x) dx.

F � F(x),
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Test for exactness; you will get 1 on both sides of the exactness condition. By integration, using (4a),

Differentiate this with respect to y and use (4b) to get

Hence the general solution is

Setp 3. Particular solution. The initial condition gives Hence the
answer is Figure 18 shows several particular solutions obtained as level curves
of obtained by a CAS, a convenient way in cases in which it is impossible or difficult to cast a
solution into explicit form. Note the curve that (nearly) satisfies the initial condition.

Step 4. Checking. Check by substitution that the answer satisfies the given equation as well as the initial
condition. �

u(x, y) � c,
ex � xy � e�y � 1 � e � 3.72.

u(0, �1) � 1 � 0 � e � 3.72.y(0) � �1

u(x, y) � ex � xy � e�y � c.

k � e�y � c*.
dk

dy
� �e�y,

0u

0y
� x �

dk

dy
� N � x � e�y,

u � �(ex � y) dx � ex � xy � k(y).
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y

x0–1–2–3

1

3

1 2 3

–1

–2

–3

2

Fig. 18. Particular solutions in Example 5

1–14 ODEs. INTEGRATING FACTORS 

Test for exactness. If exact, solve. If not, use an integrating
factor as given or obtained by inspection or by the theorems
in the text. Also, if an initial condition is given, find the
corresponding particular solution.

1.

2.

3.

4.

5.

6.

7. 2x tan y dx � sec2 y dy � 0

3(y � 1) dx � 2x dy, (y � 1)x�4

(x2 � y2)  dx � 2xy dy � 0

e3u(dr � 3r du) � 0

sin x cos y dx � cos x sin y dy � 0

x3dx � y3dy � 0

2xy dx � x2 dy � 0

8.

9.

10.

11. 2 cosh x cos y

12.

13.

14.

15. Exactness. Under what conditions for the constants a,
b, k, l is exact? Solve
the exact ODE.

(ax � by) dx � (kx � ly) dy � 0

F � xayb
(a � 1)y  dx � (b � 1)x dy � 0, y(1) � 1,

e�y dx � e�x(�e�y � 1) dy � 0, F � ex�y

(2xy dx � dy)ex2

� 0,  y(0) � 2

dx � sinh x sin y dy

y dx � 3y � tan (x � y)4 dy � 0, cos (x � y)

e2x(2 cos y dx � sin y dy) � 0, y(0) � 0

ex(cos y dx � sin y dy) � 0

P R O B L E M  S E T  1 . 4
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16. TEAM PROJECT. Solution by Several Methods.
Show this as indicated. Compare the amount of work.

(a) as an exact ODE
and by separation.

(b) by Theorem 2
and by separation.

(c) by Theorem 1 or 2 and
by separation with 

(d) by Theorems 1 and 2 and
by separation.

(e) Search the text and the problems for further ODEs
that can be solved by more than one of the methods
discussed so far. Make a list of these ODEs. Find
further cases of your own.

17. WRITING PROJECT. Working Backward.
Working backward from the solution to the problem
is useful in many areas. Euler, Lagrange, and other
great masters did it. To get additional insight into
the idea of integrating factors, start from a of
your choice, find destroy exactness by
division by some and see what ODE’s
solvable by integrating factors you can get. Can you
proceed systematically, beginning with the simplest
F(x,  y)?

F(x,  y),
du � 0,

u(x,  y)

3x2 y dx � 4x3 dy � 0

v � y>x.
(x2 � y2) dx � 2xy dy � 0

(1 � 2x) cos y dx � dy>cos y � 0

ey(sinh x dx � cosh x dy) � 0
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x0
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–3

1

2

3

3ππ

Particular solutions in CAS Project 18

18. CAS PROJECT. Graphing Particular Solutions.
Graph particular solutions of the following ODE,
proceeding as explained.

(21)

(a) Show that (21) is not exact. Find an integrating
factor using either Theorem 1 or 2. Solve (21).

(b) Solve (21) by separating variables. Is this simpler
than (a)?

(c) Graph the seven particular solutions satisfying the
following initial conditions 

(see figure below).

(d) Which solution of (21) do we not get in (a) or (b)?

�2
3, �1

y(p>2) � �1
2,y(0) � 1,

dy � y2 sin x dx � 0.

1.5 Linear ODEs. Bernoulli Equation. 
Population Dynamics

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be brought into the form

(1)

by algebra, and nonlinear if it cannot be brought into this form.
The defining feature of the linear ODE (1) is that it is linear in both the unknown

function y and its derivative whereas p and r may be any given functions of
x. If in an application the independent variable is time, we write t instead of x.

If the first term is (instead of ), divide the equation by to get the standard
form (1), with as the first term, which is practical.

For instance, is a linear ODE, and its standard form is

The function on the right may be a force, and the solution a displacement in
a motion or an electrical current or some other physical quantity. In engineering, is
frequently called the input, and is called the output or the response to the input (and,
if given, to the initial condition).

y(x)
r(x)

y(x)r(x)
yr � y tan x � x sec x.

yr cos x � y sin x � x
yr

f (x)yrf (x)yr

yr � dy>dx,

yr � p(x)y � r(x),
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28 CHAP. 1 First-Order ODEs

Homogeneous Linear ODE. We want to solve (1) in some interval call
it J, and we begin with the simpler special case that is zero for all x in J. (This is
sometimes written ) Then the ODE (1) becomes

(2)

and is called homogeneous. By separating variables and integrating we then obtain

thus

Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),

(3)

here we may also choose and obtain the trivial solution for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that in (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating factor
depending only on x. We can find this factor by Theorem 1 in the previous section
or we can proceed directly, as follows. We multiply (1) by obtainingF(x),

F(x)

r(x)

y(x) � 0c � 0

(c � �ec* when y  0);y(x) � ce��p(x) dx

ln ƒ y ƒ � ��p(x) dx � c*.
dy

y
� �p(x) dx,

yr � p(x)y � 0

r(x) � 0.
r(x)

a � x � b,

(1*)

The left side is the derivative of the product Fy if

By separating variables, By integration, writing 

With this F and Eq. (1*) becomes

By integration,

Dividing by we obtain the desired solution formula

(4) y(x) � e�h a �ehr dx � cb,  h � �p(x) dx.

eh,

ehy � �ehr dx � c.

ehyr � hrehy � ehyr � (eh)ry � (ehy)r � reh.

hr � p,

ln ƒ F ƒ � h � �p dx,  thus  F � eh.

h � �p dx,dF>F � p dx.

pFy � Fry,  thus  pF � Fr.

(Fy)r � Fry � Fyr

Fyr � pFy � rF.
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This reduces solving (1) to the generally simpler task of evaluating integrals. For ODEs
for which this is still difficult, you may have to use a numeric method for integrals from
Sec. 19.5 or for the ODE itself from Sec. 21.1. We mention that h has nothing to do with

in Sec. 1.1 and that the constant of integration in h does not matter; see Prob. 2.
The structure of (4) is interesting. The only quantity depending on a given initial

condition is c. Accordingly, writing (4) as a sum of two terms,

(4*)

we see the following:

(5)

E X A M P L E  1 First-Order ODE, General Solution, Initial Value Problem

Solve the initial value problem

Solution. Here and

From this we see that in (4),

and the general solution of our equation is

From this and the initial condition, thus and the solution of our initial value problem
is Here 3 cos x is the response to the initial data, and is the response to the 
input sin 2x.

E X A M P L E  2 Electric Circuit

Model the RL-circuit in Fig. 19 and solve the resulting ODE for the current A (amperes), where t is
time. Assume that the circuit contains as an EMF (electromotive force) a battery of V (volts), which
is constant, a resistor of (ohms), and an inductor of H (henrys), and that the current is initially
zero.

Physical Laws. A current I in the circuit causes a voltage drop RI across the resistor (Ohm’s law) and
a voltage drop across the conductor, and the sum of these two voltage drops equals the EMF
(Kirchhoff’s Voltage Law, KVL). 

Remark. In general, KVL states that “The voltage (the electromotive force EMF) impressed on a closed
loop is equal to the sum of the voltage drops across all the other elements of the loop.” For Kirchoff’s Current
Law (KCL) and historical information, see footnote 7 in Sec. 2.9.

Solution. According to these laws the model of the RL-circuit is in standard form

(6) Ir �
R

L
 I �

E(t)

L
.

LIr � RI � E(t),

LIr � L dI>dt

L � 0.1R � 11 �
E � 48E(t)

I(t)

�
�2 cos2 xy � 3 cos x � 2 cos2 x.

c � 31 � c # 1 � 2 # 12;

y(x) � cos x a2�sin x dx � cb � c cos x � 2 cos2x.

ehr � (sec x)(2 sin x cos x) � 2 sin x,e�h � cos x,eh � sec x,

h � �p dx � � tan x dx � ln ƒ sec x ƒ .

p � tan x, r � sin 2x � 2 sin x cos x,

y(0) � 1.yr � y tan x � sin 2x,

Total Output � Response to the Input r � Response to the Initial Data.

y(x) � e�h�ehr dx � ce�h,

h(x)
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30 CHAP. 1 First-Order ODEs

We can solve this linear ODE by (4) with obtaining the general solution

By integration,

(7)

In our case, and thus,

In modeling, one often gets better insight into the nature of a solution (and smaller roundoff errors) by inserting
given numeric data only near the end. Here, the general solution (7) shows that the current approaches the limit

faster the larger is, in our case, and the approach is very fast, from
below if or from above if If the solution is constant (48/11 A). See
Fig. 19.

The initial value gives and the particular solution

(8)
�

I �
E

R
 (1 � e�(R>L)t),  thus  I �

48

11
 (1 � e�110t).

c � �E>RI(0) � E>R � c � 0,I(0) � 0

I(0) � 48>11,I(0) � 48>11.I(0) � 48>11
R>L � 11>0.1 � 110,R>LE>R � 48>11

I � 48
11 � ce�110t.

E(t) � 48>0.1 � 480 � const;R>L � 11>0.1 � 110

I � e�(R>L)t aE

L
 
e1R>L2t

R>L
� cb �

E

R
� ce�(R>L)t.

I � e�(R>L)t a �e(R>L)t
  

E(t)

L
 dt � c b.

x � t, y � I, p � R>L, h � (R>L)t,

Fig. 19. RL-circuit

E X A M P L E  3 Hormone Level

Assume that the level of a certain hormone in the blood of a patient varies with time. Suppose that the time rate
of change is the difference between a sinusoidal input of a 24-hour period from the thyroid gland and a continuous
removal rate proportional to the level present. Set up a model for the hormone level in the blood and find its
general solution. Find the particular solution satisfying a suitable initial condition.

Solution. Step 1. Setting up a model. Let be the hormone level at time t. Then the removal rate is 
The input rate is where and A is the average input rate; here to make
the input rate nonnegative. The constants A, B, K can be determined from measurements. Hence the model is the
linear ODE

The initial condition for a particular solution is with suitably chosen, for example, 
6:00 A.M.

Step 2. General solution. In (4) we have and Hence (4) gives the
general solution (evaluate by integration by parts)�eKt cos vt dt

r � A � B cos vt.p � K � const, h � Kt,

t � 0ypart(0) � y0ypart

yr(t) � In � Out � A � B cos vt � Ky(t),  thus  yr � Ky � A � B cos vt.

A � Bv � 2p>24 � p>12A � B cos vt,
Ky(t).y(t)

L = 0.1 H
Circuit Current I (t)

I (t)

E = 48 V

R = 11 �

0.01 0.02 0.03 0.04 0.05 t

2

4

6

8

0
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Fig. 20. Particular solution in Example 3
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The last term decreases to 0 as t increases, practically after a short time and regardless of c (that is, of the initial
condition). The other part of is called the steady-state solution because it consists of constant and periodic
terms. The entire solution is called the transient-state solution because it models the transition from rest to the
steady state. These terms are used quite generally for physical and other systems whose behavior depends on time.

Step 3. Particular solution. Setting in and choosing we have

thus

Inserting this result into we obtain the particular solution

with the steady-state part as before. To plot we must specify values for the constants, say, 
and Figure 20 shows this solution. Notice that the transition period is relatively short (although
K is small), and the curve soon looks sinusoidal; this is the response to the input 

�1 � cos ( 1
12 pt).

A � B cos ( 1
12 pt) �

K � 0.05.
A � B � 1ypart

ypart(t) �
A

K
�

B

K 2 � (p>12)2
 aK cos 

pt

12
�
p

12
 sin 
pt

12
b � aA

K
�

KB

K 2 � (p>12)2
b e�K

y(t),

c � �
A

K
�

KB

K 2 � (p>12)2
.y(0) �

A

K
�

B

K 2 � (p>12)2
 
u
p

 K � c � 0,

y0 � 0,y(t)t � 0

y(t)

 �
A

K
�

B

K 2 � (p>12)2
 aK cos 

pt

12
�
p

12
 sin 
pt

12
b � ce�Kt.

 � e�KteKt c A
K

�
B

K 2 � v2
 aK cos vt � v sin vtb d � ce�Kt

 y(t) � e�Kt�eKt aA � B cos vtb dt � ce�Kt

Reduction to Linear Form. Bernoulli Equation
Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation7

(9) (a any real number).yr � p(x)y � g(x)ya

7JAKOB BERNOULLI (1654–1705), Swiss mathematician, professor at Basel, also known for his contribution
to elasticity theory and mathematical probability. The method for solving Bernoulli’s equation was discovered by
Leibniz in 1696. Jakob Bernoulli’s students included his nephew NIKLAUS BERNOULLI (1687–1759), who
contributed to probability theory and infinite series, and his youngest brother JOHANN BERNOULLI (1667–1748),
who had profound influence on the development of calculus, became Jakob’s successor at Basel, and had among
his students GABRIEL CRAMER (see Sec. 7.7) and LEONHARD EULER (see Sec. 2.5). His son DANIEL
BERNOULLI (1700–1782) is known for his basic work in fluid flow and the kinetic theory of gases.
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8PIERRE-FRANÇOIS VERHULST, Belgian statistician, who introduced Eq. (8) as a model for human
population growth in 1838.

If or Equation (9) is linear. Otherwise it is nonlinear. Then we set

We differentiate this and substitute from (9), obtaining

Simplification gives

where on the right, so that we get the linear ODE

(10)

For further ODEs reducible to linear form, see lnce’s classic [A11] listed in App. 1. See 
also Team Project 30 in Problem Set 1.5.

E X A M P L E  4 Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation8):

(11)

Solution. Write (11) in the form (9), that is,

to see that so that Differentiate this u and substitute from (11),

The last term is Hence we have obtained the linear ODE

The general solution is [by (4)]

Since this gives the general solution of (11),

(12) (Fig. 21)

Directly from (11) we see that is also a solution. �y � 0 (y(t) � 0 for all t)

y �
1

u
�

1

ce�At � B>A

u � 1>y,

u � ce�At � B>A.

ur � Au � B.

�Ay�1 � �Au.

� B � Ay�1.�y�2(Ay � By2)ur � �y�2yr �

yru � y1�a � y�1.a � 2,

yr � Ay � �By2

yr � Ay � By2

ur � (1 � a)pu � (1 � a)g.

y1�a � u

ur � (1 � a)(g � py1�a),

ur � (1 � a)y�ayr � (1 � a)y�a(gya � py).

yr

u(x) � 3y(x)41�a.

a � 1,a � 0
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Fig. 21. Logistic population model. Curves (9) in Example 4 with A>B � 4
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Population Dynamics
The logistic equation (11) plays an important role in population dynamics, a field
that models the evolution of populations of plants, animals, or humans over time t.
If then (11) is In this case its solution (12) is 
and gives exponential growth, as for a small population in a large country (the
United States in early times!). This is called Malthus’s law. (See also Example 3 in
Sec. 1.1.)

The term in (11) is a “braking term” that prevents the population from growing
without bound. Indeed, if we write we see that if then

so that an initially small population keeps growing as long as But if
then and the population is decreasing as long as The limit

is the same in both cases, namely, See Fig. 21.
We see that in the logistic equation (11) the independent variable t does not occur

explicitly. An ODE in which t does not occur explicitly is of the form

(13)

and is called an autonomous ODE. Thus the logistic equation (11) is autonomous.
Equation (13) has constant solutions, called equilibrium solutions or equilibrium

points. These are determined by the zeros of because gives by
(13); hence These zeros are known as critical points of (13). An
equilibrium solution is called stable if solutions close to it for some t remain close
to it for all further t. It is called unstable if solutions initially close to it do not remain
close to it as t increases. For instance, in Fig. 21 is an unstable equilibrium
solution, and is a stable one. Note that (11) has the critical points and

E X A M P L E  5 Stable and Unstable Equilibrium Solutions. “Phase Line Plot”

The ODE has the stable equilibrium solution and the unstable as the direction
field in Fig. 22 suggests. The values and are the zeros of the parabola in the figure.
Now, since the ODE is autonomous, we can “condense” the direction field to a “phase line plot” giving and

and the direction (upward or downward) of the arrows in the field, and thus giving information about the
stability or instability of the equilibrium solutions. �
y2,

y1

f (y) � (y � 1)(y � 2)y2y1

y2 � 2,y1 � 1yr � (y � 1)(y � 2)

y � A>B.
y � 0y � 4

y � 0

y � const.
yr � 0f (y) � 0f (y),

yr � f (y)

yr � f (t, y)

A>B.
y � A>B.yr � 0y � A>B,

y � A>B.yr � 0,
y � A>B,yr � Ay 31 � (B>A)y4,

�By 
2

y � (1>c)eAtyr � dy>dt � Ay.B � 0,
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y(x)
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Fig. 22. Example 5. (A) Direction field. (B) “Phase line”. (C) Parabola f (y)

A few further population models will be discussed in the problem set. For some more
details of population dynamics, see C. W. Clark. Mathematical Bioeconomics: The
Mathematics of Conservation 3rd ed. Hoboken, NJ, Wiley, 2010.

Further applications of linear ODEs follow in the next section.

1. CAUTION! Show that and

2. Integration constant. Give a reason why in (4) you may
choose the constant of integration in to be zero.

3–13 GENERAL SOLUTION. INITIAL VALUE
PROBLEMS

Find the general solution. If an initial condition is given,
find also the corresponding particular solution and graph or
sketch it. (Show the details of your work.)

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13. yr � 6(y � 2.5) tanh 1.5x

xyr � 4y � 8x4, y(1) � 2

yr � (y � 2) cot x

yr cos x � (3y � 1)  sec x � 0, y(1
4p) � 4>3

yr � y sin x � ecos x, y(0) � �2.5

yr � y tan x � e�0.01x cos x, y(0) � 0

xyr � 2y � x3ex

yr � 2y � 4 cos 2x, y(1
4p) � 3

yr � ky � e�kx

yr � 2y � 4x

yr � y � 5.2

�p dx

e�ln(sec x) � cos x.
e�ln x � 1>x (not �x) 14. CAS EXPERIMENT. (a) Solve the ODE 

Find an initial condition for which the
arbitrary constant becomes zero. Graph the resulting
particular solution, experimenting to obtain a good
figure near 

(b) Generalizing (a) from to arbitrary n, solve the
ODE Find an initial
condition as in (a) and experiment with the graph.

15–20 GENERAL PROPERTIES OF LINEAR ODEs

These properties are of practical and theoretical importance
because they enable us to obtain new solutions from given
ones. Thus in modeling, whenever possible, we prefer linear
ODEs over nonlinear ones, which have no similar properties.

Show that nonhomogeneous linear ODEs (1) and homo-
geneous linear ODEs (2) have the following properties.
Illustrate each property by a calculation for two or three
equations of your choice. Give proofs.

15. The sum of two solutions and of the
homogeneous equation (2) is a solution of (2), and so is
a scalar multiple for any constant a. These properties
are not true for (1)!

ay1

y2y1y1 � y2

yr � ny>x � �xn�2 cos (1>x).
n � 1

x � 0.

�x�1 cos (1>x).
yr � y>x �

P R O B L E M  S E T  1 . 5
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16. (that is, for all x, also written )
is a solution of (2) [not of (1) if !], called the
trivial solution.

17. The sum of a solution of (1) and a solution of (2) is a
solution of (1).

18. The difference of two solutions of (1) is a solution of (2).

19. If is a solution of (1), what can you say about 

20. If and are solutions of and
respectively (with the same p!), what

can you say about the sum 

21. Variation of parameter. Another method of obtaining
(4) results from the following idea. Write (3) as 
where is the exponential function, which is a solution
of the homogeneous linear ODE 
Replace the arbitrary constant c in (3) with a function
u to be determined so that the resulting function 
is a solution of the nonhomogeneous linear ODE

22–28 NONLINEAR ODEs

Using a method of this section or separating variables, find
the general solution. If an initial condition is given, find
also the particular solution and sketch or graph it.

22.

23.

24.

25.

26.

27.

28.

29. REPORT PROJECT. Transformation of ODEs.
We have transformed ODEs to separable form, to exact
form, and to linear form. The purpose of such
transformations is an extension of solution methods to
larger classes of ODEs. Describe the key idea of each
of these transformations and give three typical exam-
ples of your choice for each transformation. Show each
step (not just the transformed ODE).

30. TEAM PROJECT. Riccati Equation. Clairaut
Equation. Singular Solution.
A Riccati equation is of the form

(14)

A Clairaut equation is of the form

(15)

(a) Apply the transformation to the
Riccati equation (14), where Y is a solution of (14), and
obtain for u the linear ODE 
Explain the effect of the transformation by writing it
as y � Y � v, v � 1>u.

ur � (2Yg � p)u � �g.

y � Y � 1>u

y � xyr � g(yr).

yr � p(x)y � g(x)y2 � h(x).

2xyyr � (x � 1)y2 � x2ex (Set y2 � z)

yr � 1>(6ey � 2x)

 y(0) � 1
2 pyr � (tan y)>(x � 1),

yr � 3.2y � 10y2

yr � y � �x>y

yr � xy � xy�1, y(0) � 3

yr � y � y2, y(0) � �1
3

yr � py � r.

y � uy*

y* r � py* � 0.
y*

cy*,

y1 � y2?
y2r � py2 � r2,

y1r � py1 � r1y2y1

cy1?y1

r(x) � 0
y(x) � 0y(x) � 0y � 0 (b) Show that is a solution of the ODE

and solve this
Riccati equation, showing the details.

(c) Solve the Clairaut equation as
follows. Differentiate it with respect to x, obtaining

Then solve (A) and (B)
separately and substitute the two solutions

(a) and (b) of (A) and (B) into the given ODE. Thus
obtain (a) a general solution (straight lines) and (b) a
parabola for which those lines (a) are tangents (Fig. 6
in Prob. Set 1.1); so (b) is the envelope of (a). Such a
solution (b) that cannot be obtained from a general
solution is called a singular solution.

(d) Show that the Clairaut equation (15) has as
solutions a family of straight lines and
a singular solution determined by where

that forms the envelope of that family.

31–40 MODELING. FURTHER APPLICATIONS

31. Newton’s law of cooling. If the temperature of a cake
is when it leaves the oven and is ten
minutes later, when will it be practically equal to the
room temperature of say, when will it be 

32. Heating and cooling of a building. Heating and
cooling of a building can be modeled by the ODE

where is the temperature in the building at
time t, the outside temperature, the temperature
wanted in the building, and P the rate of increase of T
due to machines and people in the building, and and

are (negative) constants. Solve this ODE, assuming
and varying sinusoidally

over 24 hours, say, Discuss
the effect of each term of the equation on the solution.

33. Drug injection. Find and solve the model for drug
injection into the bloodstream if, beginning at a
constant amount A g min is injected and the drug is
simultaneously removed at a rate proportional to the
amount of the drug present at time t.

34. Epidemics. A model for the spread of contagious
diseases is obtained by assuming that the rate of spread
is proportional to the number of contacts between
infected and noninfected persons, who are assumed to
move freely among each other. Set up the model. Find
the equilibrium solutions and indicate their stability or
instability. Solve the ODE. Find the limit of the
proportion of infected persons as and explain
what it means.

35. Lake Erie. Lake Erie has a water volume of about
and a flow rate (in and out) of about 175 km2450 km3

t : �

>
t � 0,

Ta � A � C cos(2p>24)t.
TaP � const, Tw � const,

k2

k1

TwTa

T � T(t)

Tr � k1(T � Ta) � k2(T � Tv) � P,

61°F?60°F,

200°F300°F

s � yr,
gr(s) � �x,
y � cx � g(c)

2yr � x � 0
ys � 0ys(2yr � x) � 0.

yr2 � xyr � y � 0

y � �x2y2 � x4 � x � 1(2x3 � 1)yr �
y � Y � x
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36 CHAP. 1 First-Order ODEs

per year. If at some instant the lake has pollution
concentration how long, approximately,
will it take to decrease it to p 2, assuming that the
inflow is much cleaner, say, it has pollution
concentration p 4, and the mixture is uniform (an
assumption that is only imperfectly true)? First guess.

36. Harvesting renewable resources. Fishing. Suppose
that the population of a certain kind of fish is given
by the logistic equation (11), and fish are caught at a
rate Hy proportional to y. Solve this so-called Schaefer
model. Find the equilibrium solutions and 
when The expression is called
the equilibrium harvest or sustainable yield corre-
sponding to H. Why?

37. Harvesting. In Prob. 36 find and graph the solution
satisfying when (for simplicity) 
and What is the limit? What does it mean?
What if there were no fishing?

38. Intermittent harvesting. In Prob. 36 assume that you
fish for 3 years, then fishing is banned for the next 
3 years. Thereafter you start again. And so on. This is
called intermittent harvesting. Describe qualitatively
how the population will develop if intermitting is
continued periodically. Find and graph the solution for
the first 9 years, assuming that 
and y(0) � 2.

A � B � 1, H � 0.2,

H � 0.2.
A � B � 1y(0) � 2

Y � Hy2H � A.
y2 (� 0)y1

y(t)

>

>
p � 0.04%,

39. Extinction vs. unlimited growth. If in a population
the death rate is proportional to the population, and

the birth rate is proportional to the chance encounters
of meeting mates for reproduction, what will the model
be? Without solving, find out what will eventually
happen to a small initial population. To a large one.
Then solve the model.

40. Air circulation. In a room containing of air,
of fresh air flows in per minute, and the mixture

(made practically uniform by circulating fans) is
exhausted at a rate of 600 cubic feet per minute (cfm).
What is the amount of fresh air at any time if

After what time will 90% of the air be fresh?y(0) � 0?
y(t)

600 ft3
20,000 ft3

y(t)

Fig. 23. Fish population in Problem 38
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1.6 Orthogonal Trajectories. Optional
An important type of problem in physics or geometry is to find a family of curves that
intersects a given family of curves at right angles. The new curves are called orthogonal
trajectories of the given curves (and conversely). Examples are curves of equal
temperature (isotherms) and curves of heat flow, curves of equal altitude (contour lines)
on a map and curves of steepest descent on that map, curves of equal potential
(equipotential curves, curves of equal voltage—the ellipses in Fig. 24) and curves of
electric force (the parabolas in Fig. 24).

Here the angle of intersection between two curves is defined to be the angle between
the tangents of the curves at the intersection point. Orthogonal is another word for
perpendicular.

In many cases orthogonal trajectories can be found using ODEs. In general, if we
consider to be a given family of curves in the xy-plane, then each value of
c gives a particular curve. Since c is one parameter, such a family is called a one-
parameter family of curves.

In detail, let us explain this method by a family of ellipses

(1) (c � 0)1
2 x2 � y2 � c

G(x, y, c) � 0
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Step 2. Find an ODE for the orthogonal trajectories This ODE is

(3)

with the same f as in (2). Why? Well, a given curve passing through a point has
slope at that point, by (2). The trajectory through has slope 
by (3). The product of these slopes is , as we see. From calculus it is known that this
is the condition for orthogonality (perpendicularity) of two straight lines (the tangents at

), hence of the curve and its orthogonal trajectory at .

Step 3. Solve (3) by separating variables, integrating, and taking exponents:

This is the family of orthogonal trajectories, the quadratic parabolas along which electrons
or other charged particles (of very small mass) would move in the electric field between
the black ellipses (elliptic cylinders).

y� � c*x2.ln ƒ y� ƒ � 2 ln x � c,
d y�

y�
� 2 

dx

x
,

(x0, y0)(x0, y0)

�1
�1>f (x0, y0)(x0, y0)f (x0, y0)

(x0, y0)

y�r � � 

1

f (x, y�)
� �

2y�

x

y� � y�(x).
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Fig. 24. Electrostatic field between two ellipses (elliptic cylinders in space): 
Elliptic equipotential curves (equipotential surfaces) and orthogonal 

trajectories (parabolas)

and illustrated in Fig. 24. We assume that this family of ellipses represents electric
equipotential curves between the two black ellipses (equipotential surfaces between two
elliptic cylinders in space, of which Fig. 24 shows a cross-section). We seek the
orthogonal trajectories, the curves of electric force. Equation (1) is a one-parameter family
with parameter c. Each value of c corresponds to one of these ellipses.

Step 1. Find an ODE for which the given family is a general solution. Of course, this
ODE must no longer contain the parameter c. Differentiating (1), we have 
Hence the ODE of the given curves is

(2) yr � f (x, y) � � 

x

2y
.

x � 2yyr � 0.

(� 0)
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38 CHAP. 1 First-Order ODEs

1–3 FAMILIES OF CURVES

Represent the given family of curves in the form
and sketch some of the curves.

1. All ellipses with foci and 3 on the x-axis.

2. All circles with centers on the cubic parabola 
and passing through the origin 

3. The catenaries obtained by translating the catenary
in the direction of the straight line .

4–10 ORTHOGONAL TRAJECTORIES (OTs)

Sketch or graph some of the given curves. Guess what their
OTs may look like. Find these OTs.

4. 5.

6. 7.

8. 9.

10.

11–16 APPLICATIONS, EXTENSIONS

11. Electric field. Let the electric equipotential lines
(curves of constant potential) between two concentric
cylinders with the z-axis in space be given by

(these are circular cylinders in
the xyz-space). Using the method in the text, find their
orthogonal trajectories (the curves of electric force).

12. Electric field. The lines of electric force of two opposite
charges of the same strength at and are
the circles through and . Show that these
circles are given by . Show
that the equipotential lines (which are orthogonal
trajectories of those circles) are the circles given by

(dashed in Fig. 25).(x � c*)2 � y�2 � c*2 � 1

x2 � (y � c)2 � 1 � c2
(1, 0)(�1, 0)

(1, 0)(�1, 0)

u(x,  y) � x2 � y2 � c

x2 � (y � c)2 � c2

y � ce�x2

y � 2x � c

y � c>x2xy � c

y � cxy � x2 � c

y � xy � cosh x

(0, 0).
y � x3

�3

G(x,  y; c) � 0

P R O B L E M  S E T  1 . 6

Fig. 25. Electric field in Problem 12

13. Temperature field. Let the isotherms (curves of
constant temperature) in a body in the upper half-plane

be given by . Find the ortho-
gonal trajectories (the curves along which heat will
flow in regions filled with heat-conducting material and
free of heat sources or heat sinks).

14. Conic sections. Find the conditions under which 
the orthogonal trajectories of families of ellipses

are again conic sections. Illustrate
your result graphically by sketches or by using your
CAS. What happens if If 

15. Cauchy–Riemann equations. Show that for a family
const the orthogonal trajectories 

const can be obtained from the following
Cauchy–Riemann equations (which are basic in
complex analysis in Chap. 13) and use them to find the
orthogonal trajectories of const. (Here, sub-
scripts denote partial derivatives.)

16. Congruent OTs. If with f independent of y,
show that the curves of the corresponding family are
congruent, and so are their OTs.

yr � f (x)

uy � �vxux � vy,

ex sin y �

c* �
v(x,  y) �u(x,  y) � c �

b : 0?a : 0?

x2>a2 � y2>b2 � c

4x2 � 9y2 � cy � 0

1.7 Existence and Uniqueness of Solutions 
for Initial Value Problems

The initial value problem

has no solution because (that is, for all x) is the only solution of the ODE.
The initial value problem

y(0) � 1yr � 2x,

y(x) � 0y � 0

y(0) � 1ƒ yr ƒ � ƒ y ƒ � 0,
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Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.

Of course, for our simple examples, we need no theorems because we can solve these
examples by inspection; however, for complicated ODEs such theorems may be of
considerable practical importance. Even when you are sure that your physical or other
system behaves uniquely, occasionally your model may be oversimplified and may not
give a faithful picture of reality.

T H E O R E M  1 Existence Theorem

Let the right side of the ODE in the initial value problem

(1)

be continuous at all points in some rectangle

(Fig. 26)

and bounded in R; that is, there is a number K such that

(2) for all in R.

Then the initial value problem (1) has at least one solution . This solution exists
at least for all x in the subinterval of the interval 
here, is the smaller of the two numbers a and b K.>a

ƒ x � x0 ƒ � a;ƒ x � x0 ƒ � a
y(x)

(x, y)ƒ f (x, y) ƒ � K

ƒ y � y0 ƒ � bR: ƒ x � x0 ƒ � a,

(x, y)

y(x0) � y0yr � f (x, y),

f (x, y)

has precisely one solution, namely, The initial value problem

has infinitely many solutions, namely, where c is an arbitrary constant because
for all c.

From these examples we see that an initial value problem

(1)

may have no solution, precisely one solution, or more than one solution. This fact leads
to the following two fundamental questions.

Problem of Existence

Under what conditions does an initial value problem of the form (1) have at least
one solution (hence one or several solutions)?

Problem of Uniqueness

Under what conditions does that problem have at most one solution (hence excluding
the case that is has more than one solution)?

y(x0) � y0yr � f (x, y),

y(0) � 1
y � 1 � cx,

y(0) � 1xyr � y � 1,

y � x2 � 1.
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y

x

y
0
 + b

x
0
 + ax

0
 – a x

0

y
0

y
0
 – b

R

Fig. 26. Rectangle R in the existence and uniqueness theorems

(Example of Boundedness. The function is bounded (with ) in the
square . The function is not bounded for

. Explain!)

T H E O R E M  2 Uniqueness Theorem

Let f and its partial derivative be continuous for all in the rectangle
R (Fig. 26) and bounded, say,

(3) (a) (b) for all in R.

Then the initial value problem (1) has at most one solution . Thus, by Theorem 1,
the problem has precisely one solution. This solution exists at least for all x in that
subinterval ƒ x � x0 ƒ � a.

y(x)

(x, y)ƒ  fy(x, y) ƒ � Mƒ  f (x, y) ƒ � K,

(x, y)fy � 0f>0y

ƒ x � y ƒ � p>2
f (x, y) � tan (x � y)ƒ x ƒ � 1, ƒ y ƒ � 1

K � 2f (x, y) � x2 � y2

Understanding These Theorems
These two theorems take care of almost all practical cases. Theorem 1 says that if 
is continuous in some region in the xy-plane containing the point , then the initial
value problem (1) has at least one solution.

Theorem 2 says that if, moreover, the partial derivative of f with respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely one solution.

Read again what you have just read—these are entirely new ideas in our discussion.
Proofs of these theorems are beyond the level of this book (see Ref. [A11] in App. 1);

however, the following remarks and examples may help you to a good understanding of
the theorems.

Since , the condition (2) implies that that is, the slope of any
solution curve in R is at least and at most K. Hence a solution curve that passes
through the point must lie in the colored region in Fig. 27 bounded by the lines

and whose slopes are and K, respectively. Depending on the form of R, two
different cases may arise. In the first case, shown in Fig. 27a, we have and
therefore in the existence theorem, which then asserts that the solution exists for all
x between and . In the second case, shown in Fig. 27b, we have .
Therefore, and all we can conclude from the theorems is that the solutiona � b>K � a,

b>K � ax0 � ax0 � a
a � a

b>K � a
�Kl2l1

(x0, y0)
�Ky(x)

ƒ yr ƒ � K;yr � f (x, y)

0f>0y

(x0, y0)
f (x, y)
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and take the rectangle Then , and

Indeed, the solution of the problem is (see Sec. 1.3, Example 1). This solution is discontinuous at 
, and there is no continuous solution valid in the entire interval from which we started.

The conditions in the two theorems are sufficient conditions rather than necessary ones,
and can be lessened. In particular, by the mean value theorem of differential calculus we
have

where and are assumed to be in R, and is a suitable value between 
and . From this and (3b) it follows that

(4) ƒ  f (x, y2) � f (x, y1) ƒ � M ƒ y2 � y1 ƒ .

y2

y1y�(x, y2)(x, y1)

f (x, y2) � f (x, y1) � (y2 � y1) 
0f

0y
`
y�y�

�ƒ x ƒ � 5�p>2
y � tan x

a �
b

K
� 0.3 � a.

` 0f

0y
` � 2 ƒ y ƒ � M � 6,

ƒ  f (x, y) ƒ � ƒ 1 � y2
ƒ � K � 10,

a � 5, b � 3R; ƒ x ƒ � 5, ƒ y ƒ � 3.
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y y

x

y
0
 + b

l
1

l
2

x
0

(a)

y
0

y
0
 – b

R

x

y
0
 + b

l
1

l
2

x
0

(b)

y
0

y
0
 – b

R

a a = a  = aα α

α α

Let us illustrate our discussion with a simple example. We shall see that our choice of
a rectangle R with a large base (a long x-interval) will lead to the case in Fig. 27b.

E X A M P L E  1 Choice of a Rectangle

Consider the initial value problem

y(0) � 0yr � 1 � y2,

exists for all x between and . For larger or smaller x’s the solution
curve may leave the rectangle R, and since nothing is assumed about f outside R, nothing
can be concluded about the solution for those larger or amaller x’s; that is, for such x’s
the solution may or may not exist—we don’t know.

x0 � b>Kx0 � b>K

Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case
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42 CHAP. 1 First-Order ODEs

9RUDOLF LIPSCHITZ (1832–1903), German mathematician. Lipschitz and similar conditions are important
in modern theories, for instance, in partial differential equations.

10EMILE PICARD (1856–1941). French mathematician, also known for his important contributions to
complex analysis (see Sec. 16.2 for his famous theorem). Picard used his method to prove Theorems 1 and 2
as well as the convergence of the sequence (7) to the solution of (1). In precomputer times, the iteration was of
little practical value because of the integrations.

It can be shown that (3b) may be replaced by the weaker condition (4), which is known
as a Lipschitz condition.9 However, continuity of is not enough to guarantee the
uniqueness of the solution. This may be illustrated by the following example.

E X A M P L E  2 Nonuniqueness

The initial value problem

has the two solutions

and

although is continuous for all y. The Lipschitz condition (4) is violated in any region that includes
the line , because for and positive we have

(5)

and this can be made as large as we please by choosing sufficiently small, whereas (4) requires that the 
quotient on the left side of (5) should not exceed a fixed constant M. �

y2

(2y2 � 0)
ƒ  f (x, y2) � f (x, y1) ƒ

ƒ y2 � y1 ƒ

�
2y2

y2
�

1

2y2

 ,

y2y1 � 0y � 0
f (x, y) � 2 ƒ y ƒ

y* � e x2>4 if x � 0

�x2>4 if x � 0
y � 0

y(0) � 0yr � 2 ƒ y ƒ .

f (x, y)

1. Linear ODE. If p and r in are
continuous for all x in an interval show
that in this ODE satisfies the conditions of our
present theorems, so that a corresponding initial value
problem has a unique solution. Do you actually need
these theorems for this ODE?

2. Existence? Does the initial value problem
have a solution? Does your

result contradict our present theorems?

3. Vertical strip. If the assumptions of Theorems 1 and
2 are satisfied not merely in a rectangle but in a vertical
infinite strip in what interval will the
solution of (1) exist?

4. Change of initial condition. What happens in Prob.
2 if you replace with 

5. Length of x-interval. In most cases the solution of an
initial value problem (1) exists in an x-interval larger than
that guaranteed by the present theorems. Show this fact
for by finding the best possible ayr � 2y2,  y(1) � 1

y(2) � k?y(2) � 1

ƒ x � x0 ƒ � a,

(x � 2)yr � y,  y(2) � 1

f (x,  y)
ƒ x � x0 ƒ � a,

yr � p(x)y � r(x) (choosing b optimally) and comparing the result with the
actual solution.

6. CAS PROJECT. Picard Iteration. (a) Show that by
integrating the ODE in (1) and observing the initial
condition you obtain

(6)

This form (6) of (1) suggests Picard’s Iteration Method10

which is defined by

(7)

It gives approximations of the unknown
solution y of (1). Indeed, you obtain by substituting

on the right and integrating—this is the first
step—then by substituting on the right and
integrating—this is the second step—and so on. Write

y � y1y2

y � y0

y1

y1,  y2,  y3,  .  .  .

yn(x) � y0 � �
x

x0

f (t, yn�1(t) dt, n � 1, 2, Á .

y(x) � y0 � �
x

x0

f (t,  y(t)) dt.

P R O B L E M  S E T  1 . 7
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Chapter 1 Review Questions and Problems 43

a program of the iteration that gives a printout of the
first approximations as well as their
graphs on common axes. Try your program on two
initial value problems of your own choice.

(b) Apply the iteration to Also
solve the problem exactly.

(c) Apply the iteration to Also
solve the problem exactly.

(d) Find all solutions of Which
of them does Picard’s iteration approximate?

(e) Experiment with the conjecture that Picard’s
iteration converges to the solution of the problem for
any initial choice of y in the integrand in (7) (leaving

outside the integral as it is). Begin with a simple ODE
and see what happens. When you are reasonably sure,
take a slightly more complicated ODE and give it a try.

y0

yr � 21y,  y(1) � 0.

yr � 2y2,  y(0) � 1.

yr � x � y,  y(0) � 0.

y0,  y1,  .  .  .  ,  yN

7. Maximum . What is the largest possible in
Example 1 in the text?

8. Lipschitz condition. Show that for a linear ODE
with continuous p and r in

a Lipschitz condition holds. This is
remarkable because it means that for a linear ODE the
continuity of guarantees not only the existence
but also the uniqueness of the solution of an initial
value problem. (Of course, this also follows directly
from (4) in Sec. 1.5.)

9. Common points. Can two solution curves of the same
ODE have a common point in a rectangle in which the
assumptions of the present theorems are satisfied?

10. Three possible cases. Find all initial conditions such
that has no solution, precisely
one solution, and more than one solution.

(x2 � x)yr � (2x � 1)y

f (x,  y)

ƒ x � x0 ƒ � a
yr � p(x)y � r(x)

aA

14.

15.

16. Solve by Euler’s method 
(10 steps, ). Solve exactly and compute the error.

17–21 GENERAL SOLUTION

Find the general solution. Indicate which method in this
chapter you are using. Show the details of your work.

17.

18.

19.

20.

21.

22–26 INITIAL VALUE PROBLEM (IVP)

Solve the IVP. Indicate the method used. Show the details
of your work.

22.

23.

24.

25.

26.

27–30 MODELING, APPLICATIONS

27. Exponential growth. If the growth rate of a culture
of bacteria is proportional to the number of bacteria
present and after 1 day is 1.25 times the original
number, within what interval of time will the number
of bacteria (a) double, (b) triple?

x sinh y dy � cosh y dx, y(3) � 0

3 sec y dx � 1
3 sec x dy � 0, y(0) � 0

yr � 1
2 y � y3, y(0) � 1

3

yr � 21 � y2, y(0) � 1>12

yr � 4xy � e�2x2

, y(0) � �4.3

(3xey � 2y) dx � (x2ey � x) dy � 0

yr � ay � by2 (a � 0)

25yyr � 4x � 0

yr � 0.4y � 29 sin x

yr � 2.5y � 1.6x

h � 0.1
yr � y � y2,  y(0) � 0.2

yr � y � 1.01 cos 10x

xyr � y � x21. Explain the basic concepts ordinary and partial
differential equations (ODEs, PDEs), order, general
and particular solutions, initial value problems (IVPs).
Give examples.

2. What is a linear ODE? Why is it easier to solve than
a nonlinear ODE?

3. Does every first-order ODE have a solution? A solution
formula? Give examples.

4. What is a direction field? A numeric method for first-
order ODEs?

5. What is an exact ODE? Is 
always exact?

6. Explain the idea of an integrating factor. Give two
examples.

7. What other solution methods did we consider in this
chapter?

8. Can an ODE sometimes be solved by several methods?
Give three examples.

9. What does modeling mean? Can a CAS solve a model
given by a first-order ODE? Can a CAS set up a model?

10. Give problems from mechanics, heat conduction, and
population dynamics that can be modeled by first-order
ODEs.

11–16 DIRECTION FIELD: NUMERIC SOLUTION

Graph a direction field (by a CAS or by hand) and sketch
some solution curves. Solve the ODE exactly and compare.
In Prob. 16 use Euler’s method.

11.

12.

13. yr � y � 4y2

yr � 1 � y2

yr � 2y � 0

f (x) dx � g(y) dy � 0

C H A P T E R  1  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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44 CHAP. 1 First-Order ODEs

28. Mixing problem. The tank in Fig. 28 contains 80 lb
of salt dissolved in 500 gal of water. The inflow per
minute is 20 lb of salt dissolved in 20 gal of water. The
outflow is 20 gal min of the uniform mixture. Find the
time when the salt content in the tank reaches 95%
of its limiting value (as ).t : �

y(t)
>

Fig. 28. Tank in Problem 28

29. Half-life. If in a reactor, uranium loses 10% of
its weight within one day, what is its half-life? How
long would it take for 99% of the original amount to
disappear?

30. Newton’s law of cooling. A metal bar whose
temperature is is placed in boiling water. How
long does it take to heat the bar to practically 
say, to , if the temperature of the bar after 1 min
of heating is First guess, then calculate.51.5°C?

99.9°C
100°C,

20°C

237
97 U

This chapter concerns ordinary differential equations (ODEs) of first order and
their applications. These are equations of the form

(1) or in explicit form

involving the derivative of an unknown function y, given functions of
x, and, perhaps, y itself. If the independent variable x is time, we denote it by t.

In Sec. 1.1 we explained the basic concepts and the process of modeling, that is,
of expressing a physical or other problem in some mathematical form and solving
it. Then we discussed the method of direction fields (Sec. 1.2), solution methods
and models (Secs. 1.3–1.6), and, finally, ideas on existence and uniqueness of
solutions (Sec. 1.7).

A first-order ODE usually has a general solution, that is, a solution involving an
arbitrary constant, which we denote by c. In applications we usually have to find a
unique solution by determining a value of c from an initial condition .
Together with the ODE this is called an initial value problem

(2)

and its solution is a particular solution of the ODE. Geometrically, a general
solution represents a family of curves, which can be graphed by using direction
fields (Sec. 1.2). And each particular solution corresponds to one of these curves.

A separable ODE is one that we can put into the form

(3) (Sec. 1.3)

by algebraic manipulations (possibly combined with transformations, such as
) and solve by integrating on both sides.y>x � u

g(y) dy � f (x) dx

(x0, y0 given numbers)y(x0) � y0yr � f (x, y),

y(x0) � y0

yr � dy>dx

yr � f (x, y)F(x, y, yr) � 0

SUMMARY OF CHAPTER 1
First-Order ODEs
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An exact ODE is of the form

(4) (Sec. 1.4)

where is the differential

of a function so that from we immediately get the implicit general
solution This method extends to nonexact ODEs that can be made exact
by multiplying them by some function called an integrating factor (Sec. 1.4).

Linear ODEs

(5)

are very important. Their solutions are given by the integral formula (4), Sec. 1.5.
Certain nonlinear ODEs can be transformed to linear form in terms of new variables.
This holds for the Bernoulli equation

(Sec. 1.5).

Applications and modeling are discussed throughout the chapter, in particular in
Secs. 1.1, 1.3, 1.5 (population dynamics, etc.), and 1.6 (trajectories).

Picard’s existence and uniqueness theorems are explained in Sec. 1.7 (and
Picard’s iteration in Problem Set 1.7).

Numeric methods for first-order ODEs can be studied in Secs. 21.1 and 21.2
immediately after this chapter, as indicated in the chapter opening.

yr � p(x)y � g(x)ya

yr � p(x)y � r(x)

F(x, y,),
u(x, y) � c.

du � 0u(x, y),

du � ux dx � uy dy

M dx � N dy

M(x, y) dx � N(x, y) dy � 0

Summary of Chapter 1 45
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C H A P T E R 2

Second-Order Linear ODEs

Many important applications in mechanical and electrical engineering, as shown in Secs.
2.4, 2.8, and 2.9, are modeled by linear ordinary differential equations (linear ODEs) of the
second order. Their theory is representative of all linear ODEs as is seen when compared
to linear ODEs of third and higher order, respectively. However, the solution formulas for
second-order linear ODEs are simpler than those of higher order, so it is a natural progression
to study ODEs of second order first in this chapter and then of higher order in Chap. 3.

Although ordinary differential equations (ODEs) can be grouped into linear and nonlinear
ODEs, nonlinear ODEs are difficult to solve in contrast to linear ODEs for which many
beautiful standard methods exist.

Chapter 2 includes the derivation of general and particular solutions, the latter in
connection with initial value problems.

For those interested in solution methods for Legendre’s, Bessel’s, and the hypergeometric
equations consult Chap. 5 and for Sturm–Liouville problems Chap. 11.

COMMENT. Numerics for second-order ODEs can be studied immediately after this
chapter. See Sec. 21.3, which is independent of other sections in Chaps. 19–21.

Prerequisite: Chap. 1, in particular, Sec. 1.5.
Sections that may be omitted in a shorter course: 2.3, 2.9, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

2.1 Homogeneous Linear ODEs of Second Order
We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be written

(1)

and nonlinear if it cannot be written in this form.
The distinctive feature of this equation is that it is linear in y and its derivatives, whereas

the functions p, q, and r on the right may be any given functions of x. If the equation
begins with, say, then divide by to have the standard form (1) with as the
first term.

ysf (x)f (x)ys,

ys � p(x)yr � q(x)y � r(x)
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The definitions of homogeneous and nonhomogenous second-order linear ODEs are
very similar to those of first-order ODEs discussed in Sec. 1.5. Indeed, if (that
is, for all x considered; read “ is identically zero”), then (1) reduces to

(2)

and is called homogeneous. If then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.

An example of a nonhomogeneous linear ODE is

and a homogeneous linear ODE is

written in standard form .

Finally, an example of a nonlinear ODE is

.

The functions p and q in (1) and (2) are called the coefficients of the ODEs.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

is called a solution of a (linear or nonlinear) second-order ODE on some open interval I
if h is defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown y by h, the derivative by , and the
second derivative by . Examples are given below.

Homogeneous Linear ODEs: Superposition Principle
Sections 2.1–2.6 will be devoted to homogeneous linear ODEs (2) and the remaining
sections of the chapter to nonhomogeneous linear ODEs.

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the superposition principle or linearity principle, which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

E X A M P L E  1 Homogeneous Linear ODEs: Superposition of Solutions

The functions and are solutions of the homogeneous linear ODE

for all x. We verify this by differentiation and substitution. We obtain ; hence

ys � y � (cos x)s � cos x � �cos x � cos x � 0.

(cos x)s � �cos x

ys � y � 0

y � sin xy � cos x

hsys
hryr

y � h(x)

ysy � yr2 � 0

ys �
1
x  yr � y � 0xys � yr � xy � 0,

ys � 25y � e�x cos x,

r(x) [ 0,

ys � p(x)yr � q(x)y � 0

r(x)r(x) � 0
r(x) � 0

SEC. 2.1 Homogeneous Linear ODEs of Second Order 47
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Similarly for (verify!). We can go an important step further. We multiply by any constant, for
instance, 4.7, and by, say, , and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

In this example we have obtained from and a function of the form

(3) ( arbitrary constants).

This is called a linear combination of and . In terms of this concept we can now
formulate the result suggested by our example, often called the superposition principle
or linearity principle.

T H E O R E M  1 Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval I is again a solution of (2) on I. In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

P R O O F Let and be solutions of (2) on I. Then by substituting and
its derivatives into (2), and using the familiar rule , etc.,
we get

since in the last line, because and are solutions, by assumption. This shows
that y is a solution of (2) on I.

CAUTION! Don’t forget that this highly important theorem holds for homogeneous
linear ODEs only but does not hold for nonhomogeneous linear or nonlinear ODEs, as
the following two examples illustrate.

E X A M P L E  2 A Nonhomogeneous Linear ODE

Verify by substitution that the functions and are solutions of the nonhomogeneous
linear ODE

but their sum is not a solution. Neither is, for instance, or .

E X A M P L E  3 A Nonlinear ODE

Verify by substitution that the functions and are solutions of the nonlinear ODE

but their sum is not a solution. Neither is , so you cannot even multiply by ! ��1�x2

ysy � xyr � 0,

y � 1y � x2

�5(1 � sin x)2(1 � cos x)

ys � y � 1,

y � 1 � sin xy � 1 � cos x

�

y2y1(Á) � 0

 � c1( ys1 � pyr1 � qy1) � c2(ys2 � pyr2 � qy2) � 0,

 � c1ys1 � c2ys2 � p(c1yr1 � c2yr2) � q(c1y1 � c2y2)

 ys � pyr � qy � (c1y1 � c2y2)s � p(c1y1 � c2y2)r � q(c1y1 � c2y2)

(c1y1 � c2y2)r � c1yr1 � c2yr2
y � c1y1 � c2y2y2y1

y2y1

c1, c2y � c1y1 � c2y2

y2 (� sin x)y1 (� cos x)

�(4.7 cos x � 2 sin x)s � (4.7 cos x � 2 sin x) � �4.7 cos x � 2 sin x � 4.7 cos x � 2 sin x � 0.

�2sin x
cos xy � sin x
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Initial Value Problem. Basis. General Solution
Recall from Chap. 1 that for a first-order ODE, an initial value problem consists of the
ODE and one initial condition . The initial condition is used to determine the
arbitrary constant c in the general solution of the ODE. This results in a unique solution,
as we need it in most applications. That solution is called a particular solution of the
ODE. These ideas extend to second-order ODEs as follows.

For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

(4)

These conditions prescribe given values and of the solution and its first derivative
(the slope of its curve) at the same given in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants and in a
general solution

(5)

of the ODE; here, and are suitable solutions of the ODE, with “suitable” to be
explained after the next example. This results in a unique solution, passing through the
point with as the tangent direction (the slope) at that point. That solution is
called a particular solution of the ODE (2).

E X A M P L E  4 Initial Value Problem

Solve the initial value problem

Solution. Step 1. General solution. The functions and are solutions of the ODE (by Example 1),
and we take

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative . From this and the
initial values we obtain, since and ,

This gives as the solution of our initial value problem the particular solution

Figure 29 shows that at it has the value 3.0 and the slope , so that its tangent intersects
the x-axis at . (The scales on the axes differ!)

Observation. Our choice of and was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutions and 
so that . Then we can write in the form

.y � c1 cos x � c2(k cos x) � C cos x  where  C � c1 � c2k

y � c1y1 � c2y2y1/y2 � 1/k � const
y2 � k cos x,y1 � cos x

y2y1

�x � 3.0>0.5 � 6.0
�0.5x � 0

y � 3.0 cos x � 0.5 sin x.

y(0) � c1 � 3.0  and  yr(0) � c2 � �0.5.

sin 0 � 0cos 0 � 1
yr � �c1 sin x � c2 cos x

y � c1 cos x � c2 sin x.

sin xcos x

ys � y � 0,  y(0) � 3.0,  yr(0) � �0.5.

K1(x0, K0)

y2y1

y � c1y1 � c2y2

c2c1

x � x0

K1K0

y(x0) � K0,  yr(x0) � K1.

y(x0) � y0
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Fig. 29. Particular solution
and initial tangent in 

Example 4
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Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently, in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
importance in connection with initial value problems.

D E F I N I T I O N General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval I is a solution (5) in which
and are solutions of (2) on I that are not proportional, and and are arbitrary

constants. These , are called a basis (or a fundamental system) of solutions
of (2) on I.

A particular solution of (2) on I is obtained if we assign specific values to 
and in (5).

For the definition of an interval see Sec. 1.1. Furthermore, as usual, and are called
proportional on I if for all x on I,

(6) (a) or (b)

where k and l are numbers, zero or not. (Note that (a) implies (b) if and only if ).
Actually, we can reformulate our definition of a basis by using a concept of general

importance. Namely, two functions and are called linearly independent on an
interval I where they are defined if

(7) everywhere on I implies .

And and are called linearly dependent on I if (7) also holds for some constants ,
not both zero. Then, if , we can divide and see that and are

proportional,

or

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

D E F I N I T I O N Basis (Reformulated)

A basis of solutions of (2) on an open interval I is a pair of linearly independent
solutions of (2) on I.

If the coefficients p and q of (2) are continuous on some open interval I, then (2) has a
general solution. It yields the unique solution of any initial value problem (2), (4). It
includes all solutions of (2) on I; hence (2) has no singular solutions (solutions not
obtainable from of a general solution; see also Problem Set 1.1). All this will be shown
in Sec. 2.6.

y2 � �
k1

k2
 y1.y1 � �

k2

k1
 y2

y2y1k1 � 0 or k2 � 0k2

k1y2y1

k1 � 0 and k2 � 0k1y1(x) �  k2y2(x) � 0

y2y1

k � 0

y2 � ly1y1 � ky2

y2y1

c2

c1

y2y1

c2c1y2y1
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E X A M P L E  5 Basis, General Solution, Particular Solution

and in Example 4 form a basis of solutions of the ODE for all x because their
quotient is (or ). Hence is a general solution. The solution

of the initial value problem is a particular solution.

E X A M P L E  6 Basis, General Solution, Particular Solution

Verify by substitution that and are solutions of the ODE . Then solve the initial
value problem

.

Solution. and show that and are solutions. They are not
proportional, . Hence , form a basis for all x. We now write down the corresponding
general solution and its derivative and equate their values at 0 to the given initial conditions,

.

By addition and subtraction, , so that the answer is . This is the particular solution
satisfying the two initial conditions.

Find a Basis if One Solution Is Known.
Reduction of Order
It happens quite often that one solution can be found by inspection or in some other way.
Then a second linearly independent solution can be obtained by solving a first-order ODE.
This is called the method of reduction of order.1 We first show how this method works
in an example and then in general.

E X A M P L E  7 Reduction of Order if a Solution Is Known. Basis

Find a basis of solutions of the ODE

.

Solution. Inspection shows that is a solution because and , so that the first term
vanishes identically and the second and third terms cancel. The idea of the method is to substitute

into the ODE. This gives

ux and –xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,

,

This ODE is of first order in , namely, . Separation of variables and integration
gives

, .ln ƒ v ƒ � ln ƒ x � 1 ƒ � 2 ln ƒ x ƒ � ln 
ƒ x � 1 ƒ

x2

dv
v

� �
x � 2

x2 � x
 dx � a 1

x � 1
�

2

x
b dx

(x2 � x)vr � (x � 2)v � 0v � ur

(x2 � x)us � (x � 2)ur � 0.(x2 � x)(usx � 2ur) � x2ur � 0

(x2 � x)(usx � 2ur) � x(urx � u) � ux � 0.

y � uy1 � ux,  yr � urx � u,  ys � usx � 2ur

ys1 � 0yr1 � 1y1 � x

(x2 � x)ys � xyr � y � 0

�
y � 2ex � 4e�xc1 � 2, c2 � 4

y �  c1ex � c2e�x,  yr � c1ex �  c2e�x,  y(0) � c1 � c2 � 6,  yr(0) � c1 � c2 � �2

e�xexex/e�x �  e2x � const
e�xex(e�x)s �  e�x � 0(ex)s �  ex � 0

ys � y � 0,  y(0) � 6,  yr(0) � �2

ys � y � 0y2 � e�xy1 � ex

�y � 3.0 cos x � 0.5 sin x
y � c1 cos x � c2 sin xtan x � constcot x � const

ys � y � 0sin xcos x
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We need no constant of integration because we want to obtain a particular solution; similarly in the next
integration. Taking exponents and integrating again, we obtain

, , hence .

Since are linearly independent (their quotient is not constant), we have obtained
a basis of solutions, valid for all positive x.

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]

.

Note that we now take the ODE in standard form, with not —this is essential
in applying our subsequent formulas. We assume a solution of (2), on an open interval
I, to be known and want to find a basis. For this we need a second linearly independent
solution of (2) on I. To get , we substitute

, ,

into (2). This gives

(8)

Collecting terms in and u, we have

.

Now comes the main point. Since is a solution of (2), the expression in the last
parentheses is zero. Hence u is gone, and we are left with an ODE in and . We divide
this remaining ODE by and set 

, thus .

This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

and .

By taking exponents we finally obtain

(9) .

Here so that . Hence the desired second solution is

.

The quotient cannot be constant , so that and form
a basis of solutions.

y2y1(since U � 0)y2 /y1 � u � �U dx

y2 � y1u � y1�U dx

u � �U dxU � ur,

U �
1

y2
1

 e��p dx

ln ƒ U ƒ � �2 ln ƒ y1 ƒ � �p dx
dU
U

� �a2yr1
y1

� pb dx

Ur � a2y r1
y1

� pb U � 0us � ur 
2yr1 � py1

y1
� 0

ur � U, us � Ur,y1

usur
y1

usy1 � ur(2yr1 � py1) � u(y1s � py r1 � qy1) � 0

us, ur,

usy1 � 2ury1r � uys1 � p(ury1 � uyr1) � quy1 � 0.

ys � y2s � usy1 � 2uryr1 � uys1yr � y2r � ury1 � uyr1y � y2 � uy1

y2y2

y1

f (x)ysys,

ys � p(x)yr � q(x)y � 0

�
y1 � x and y2 � x ln ƒ x ƒ � 1

y2 � ux � x  ln ƒ x ƒ � 1u � �v dx � ln ƒ x ƒ �
1

x
v �

x � 1

x2 �
1

x
�

1

x2
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SEC. 2.2 Homogeneous Linear ODEs with Constant Coefficients 53

REDUCTION OF ORDER is important because it
gives a simpler ODE. A general second-order ODE

, linear or not, can be reduced to first
order if y does not occur explicitly (Prob. 1) or if x does not
occur explicitly (Prob. 2) or if the ODE is homogeneous
linear and we know a solution (see the text).

1. Reduction. Show that can be
reduced to first order in (from which y follows
by integration). Give two examples of your own.

2. Reduction. Show that can be
reduced to a first-order ODE with y as the independent
variable and , where derive this
by the chain rule. Give two examples.

3–10 REDUCTION OF ORDER
Reduce to first order and solve, showing each step in detail.

3.

4.

5.

6. ,

7.

8.

9.

10.

11–14 APPLICATIONS OF REDUCIBLE ODEs
11. Curve. Find the curve through the origin in the 

xy-plane which satisfies and whose tangent
at the origin has slope 1.

12. Hanging cable. It can be shown that the curve 
of an inextensible flexible homogeneous cable hanging
between two fixed points is obtained by solving

y(x)

ys � 2yr

ys � (1 � 1/y)yr2 � 0

x2ys � 5xyr � 9y � 0, y1 � x3

ys � 1 � yr2
ys � yr3 sin y � 0

y1 � (cos x)/xxys � 2yr � xy � 0

yys � 3yr2
2xys � 3yr
ys � yr � 0

z � yr;ys � (dz/dy)z

F (y, yr, ys) � 0

z � yr
F (x, yr, ys) � 0

F (x, y, yr, ys) � 0

, where the constant k depends on the
weight. This curve is called catenary (from Latin
catena = the chain). Find and graph , assuming that

and those fixed points are and in
a vertical xy-plane.

13. Motion. If, in the motion of a small body on a
straight line, the sum of velocity and acceleration equals
a positive constant, how will the distance depend
on the initial velocity and position?

14. Motion. In a straight-line motion, let the velocity be
the reciprocal of the acceleration. Find the distance 
for arbitrary initial position and velocity.

15–19 GENERAL SOLUTION. INITIAL VALUE
PROBLEM (IVP)

(More in the next set.) (a) Verify that the given functions
are linearly independent and form a basis of solutions of
the given ODE. (b) Solve the IVP. Graph or sketch the
solution.

15.

16.

17.

18.

19.

20. CAS PROJECT. Linear Independence. Write a
program for testing linear independence and depen-
dence. Try it out on some of the problems in this and
the next problem set and on examples of your own.

e�x sin xe�x cos x, 
ys � 2yr � 2y � 0, y(0) � 0, yr(0) � 15,

x, x ln x
x2ys � xyr � y � 0, y(1) � 4.3, yr(1) � 0.5,

x3>2, x�1>2
4x2ys � 3y � 0, y(1) � �3, yr(1) � 0,

e�0.3x, xe�0.3x
yr(0) � 0.14,ys � 0.6yr � 0.09y � 0, y(0) � 2.2,

cos 2.5x, sin 2.5x
4ys � 25y � 0, y(0) � 3.0, yr(0) � �2.5,

y(t)

y(t)

(1, 0)(�1, 0)k � 1
y(x)

ys � k21 � yr2

P R O B L E M  S E T  2 . 1

2.2 Homogeneous Linear ODEs 
with Constant Coefficients

We shall now consider second-order homogeneous linear ODEs whose coefficients a and
b are constant,

(1) .

These equations have important applications in mechanical and electrical vibrations, as
we shall see in Secs. 2.4, 2.8, and 2.9.

To solve (1), we recall from Sec. 1.5 that the solution of the first-order linear ODE with
a constant coefficient k

yr � ky � 0

ys � ayr � by � 0
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is an exponential function . This gives us the idea to try as a solution of (1) the
function

(2) .

Substituting (2) and its derivatives

and

into our equation (1), we obtain

.

Hence if is a solution of the important characteristic equation (or auxiliary equation)

(3)

then the exponential function (2) is a solution of the ODE (1). Now from algebra we recall
that the roots of this quadratic equation (3) are

(4) ,

(3) and (4) will be basic because our derivation shows that the functions

(5) and

are solutions of (1). Verify this by substituting (5) into (1).
From algebra we further know that the quadratic equation (3) may have three kinds of

roots, depending on the sign of the discriminant , namely,a2 � 4b

y2 � el2xy1 � el1x

l2 � 1
2 
A�a � 2a2 � 4b B .l1 � 1

2 
A�a � 2a2 � 4b B

l2 � al � b � 0

l

(l2 � al � b)elx � 0

ys � l2elxyr � lelx

y � elx

y � ce�kx

54 CHAP. 2 Second-Order Linear ODEs

(Case I) Two real roots if ,

(Case II) A real double root if ,

(Case III) Complex conjugate roots if .a2 � 4b � 0

a2 � 4b � 0

a2 � 4b � 0

Case I. Two Distinct Real-Roots and 
In this case, a basis of solutions of (1) on any interval is

and

because and are defined (and real) for all x and their quotient is not constant. The
corresponding general solution is

(6) .y � c1el1x � c2el2x

y2y1

y2 � el2xy1 � el1x

l2l1
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E X A M P L E  1 General Solution in the Case of Distinct Real Roots

We can now solve in Example 6 of Sec. 2.1 systematically. The characteristic equation is
Its roots are and . Hence a basis of solutions is and and gives the same

general solution as before,

.

E X A M P L E  2 Initial Value Problem in the Case of Distinct Real Roots

Solve the initial value problem

, , .

Solution. Step 1. General solution. The characteristic equation is

.

Its roots are

and

so that we obtain the general solution

.

Step 2. Particular solution. Since , we obtain from the general solution and the initial
conditions

Hence and . This gives the answer . Figure 30 shows that the curve begins at
with a negative slope but note that the axes have different scales!), in agreement with the initial

conditions. �
(�5,y � 4

y � ex � 3e�2xc2 � 3c1 � 1

 yr(0) � c1 � 2c2 � �5.

 y(0) � c1 � c2 � 4,

yr(x) � c1ex � 2c2e�2x

y � c1ex � c2e�2x

l2 � 1
2 (�1 � 19) � �2l1 � 1

2 (�1 � 19) � 1

l2 � l � 2 � 0

yr(0) � �5y(0) � 4ys � yr � 2y � 0

�y � c1ex � c2e�x

e�xexl2 � �1l1 � 1l2 � 1 � 0.
ys � y � 0
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Case II. Real Double Root 
If the discriminant is zero, we see directly from (4) that we get only one root,

, hence only one solution,

.

To obtain a second independent solution (needed for a basis), we use the method of
reduction of order discussed in the last section, setting . Substituting this and its
derivatives and into (1), we first have

.(usy1 � 2uryr1 � uys1) � a(ury1 � uyr1) � buy1 � 0

ys2yr2 � ury1 � uyr1
y2 � uy1

y2

y1 � e�(a/2)x

l � l1 � l2 � �a/2
a2 � 4b

l � �a/2

Fig. 30. Solution in Example 2
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Collecting terms in and u, as in the last section, we obtain

.

The expression in the last parentheses is zero, since is a solution of (1). The expression
in the first parentheses is zero, too, since

.

We are thus left with . Hence . By two integrations, . To
get a second independent solution , we can simply choose and
take . Then . Since these solutions are not proportional, they form a basis.
Hence in the case of a double root of (3) a basis of solutions of (1) on any interval is

.

The corresponding general solution is

(7)

WARNING! If is a simple root of (4), then with is not a solution
of (1).

E X A M P L E  3 General Solution in the Case of a Double Root

The characteristic equation of the ODE is . It has the double 
root . Hence a basis is and . The corresponding general solution is .

E X A M P L E  4 Initial Value Problem in the Case of a Double Root

Solve the initial value problem

, , .

Solution. The characteristic equation is . It has the double root 
This gives the general solution

.

We need its derivative

.

From this and the initial conditions we obtain

, ; hence .

The particular solution of the initial value problem is . See Fig. 31. �y � (3 � 2x)e�0.5x

c2 � �2yr(0) � c2 � 0.5c1 � 3.5y(0) � c1 � 3.0

yr � c2e�0.5x � 0.5(c1 � c2x)e�0.5x

y � (c1 � c2x)e�0.5x

l � �0.5.l2 � l � 0.25 � (l � 0.5) 2 � 0

yr(0) � �3.5y(0) � 3.0ys � yr � 0.25y � 0

�y � (c1 � c2x)e�3xxe�3xe�3xl � �3
l2 � 6l � 9 � (l � 3)2 � 0ys � 6yr � 9y � 0

c2 � 0(c1 � c2x)elxl

y � (c1 � c2x)e�ax/2.

e�ax/2,  xe�ax/2

y2 � xy1u � x
c1 � 1, c2 � 0y2 � uy1

u � c1x � c2us � 0usy1 � 0

2yr1 � �ae�ax/2 � �ay1

y1

usy1 � ur(2yr1 � ay1) � u(ys1 � ayr1 � by1) � 0

us, ur,
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Fig. 31. Solution in Example 4
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Case III. Complex Roots 
This case occurs if the discriminant of the characteristic equation (3) is negative.
In this case, the roots of (3) are the complex that give the complex solutions
of the ODE (1). However, we will show that we can obtain a basis of real solutions

(8)

where . It can be verified by substitution that these are solutions in the
present case. We shall derive them systematically after the two examples by using the
complex exponential function. They form a basis on any interval since their quotient

is not constant. Hence a real general solution in Case III is

(9) (A, B arbitrary).

E X A M P L E  5 Complex Roots. Initial Value Problem

Solve the initial value problem

.

Solution. Step 1. General solution. The characteristic equation is . It has the roots
Hence , and a general solution (9) is

.

Step 2. Particular solution. The first initial condition gives . The remaining expression is
. We need the derivative (chain rule!)

.

From this and the second initial condition we obtain . Hence . Our solution is

.

Figure 32 shows y and the curves of and (dashed), between which the curve of y oscillates.
Such “damped vibrations” (with being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4). �

x � t
�e�0.2xe�0.2x

y � e�0.2x sin 3x

B � 1yr(0) � 3B � 3

yr � B(�0.2e�0.2x sin 3x � 3e�0.2x cos 3x)

y � Be�0.2x sin 3x
y(0) � A � 0

y � e�0.2x (A cos 3x � B sin 3x)

v � 3�0.2 � 3i.
l2 � 0.4l � 9.04 � 0

ys � 0.4yr � 9.04y � 0,  y(0) � 0,  yr(0) � 3

y � e�ax/2 (A cos vx � B sin vx)

cot vx

v2 � b � 1
4 

a2

(v � 0)y1 � e�ax/2 cos vx,  y2 � e�ax/2 sin vx

l � � 
1
2 

a � iv
a2 � 4b

�1
2 

a � iv and �1
2 a � iv
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Fig. 32. Solution in Example 5
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E X A M P L E  6 Complex Roots

A general solution of the ODE

( constant, not zero) 

is

With this confirms Example 4 in Sec. 2.1. �v � 1

y � A cos vx � B sin vx.

vys � v2y � 0
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Summary of Cases I–III
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Case Roots of (2) Basis of (1) General Solution of (1)

I
Distinct real 

II
Real double root 

Complex conjugate
III ,

e�ax>2 sin vxl2 � �1
2 

a � iv

y � e�ax>2(A cos vx � B sin vx)e�ax>2 cos vxl1 � �1
2 

a � iv

y � (c1 � c2x)e�ax>2e�ax>2, xe�ax>2

l � �1
2 

a

y � c1el1x � c2el2xel1x, el2x

l1, l2

It is very interesting that in applications to mechanical systems or electrical circuits,
these three cases correspond to three different forms of motion or flows of current,
respectively. We shall discuss this basic relation between theory and practice in detail in
Sec. 2.4 (and again in Sec. 2.8).

Derivation in Case III. Complex Exponential Function
If verification of the solutions in (8) satisfies you, skip the systematic derivation of these
real solutions from the complex solutions by means of the complex exponential function

of a complex variable . We write , not because x and y occur
in the ODE. The definition of in terms of the real functions , , and is

(10) .

This is motivated as follows. For real , hence , , , we get
the real exponential function . It can be shown that , just as in real. (Proof
in Sec. 13.5.) Finally, if we use the Maclaurin series of with as well as

, etc., and reorder the terms as shown (this is permissible, as
can be proved), we obtain the series

(Look up these real series in your calculus book if necessary.) We see that we have obtained
the formula

(11)

called the Euler formula. Multiplication by gives (10).er

eit � cos t � i sin t,

 � cos t � i sin t.

 � 1 �
t 2

2!
�

t 4

4!
� � Á � i at �

t 3

3!
�

t 5

5!
� � Áb

  eit � 1 � it �
(it)2

2!
�

(it)3

3!
�

(it)4

4!
�

(it) 5

5!
 � Á

i2 � �1, i3 � �i, i4 � 1
z � itez

ez1�z2 � ez1ez2er
sin 0 � 0cos 0 � 1t � 0z � r

ez � er�it � ereit � er(cos t � i sin t)

sin tcos terez
x � iyr � itz � r � itez
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For later use we note that so that by
addition and subtraction of this and (11),

(12) .

After these comments on the definition (10), let us now turn to Case III.
In Case III the radicand in (4) is negative. Hence is positive and,

using , we obtain in (4)

with defined as in (8). Hence in (4),

and, similarly, .

Using (10) with and , we thus obtain

We now add these two lines and multiply the result by . This gives as in (8). Then
we subtract the second line from the first and multiply the result by . This gives 
as in (8). These results obtained by addition and multiplication by constants are again
solutions, as follows from the superposition principle in Sec. 2.1. This concludes the
derivation of these real solutions in Case III.

y21/(2i)
y1

1
2

 el2x � e�(a/2)x�ivx � e�(a/2)x(cos vx � i sin vx).

 el1x � e�(a/2)x�ivx � e�(a/2)x(cos vx � i sin vx)

t � vxr � �1
2 

ax

l2 � 1
2 

a � ivl1 � 1
2 

a � iv

v

1
22a2 � 4b � 1

22�(4b � a2) � 2�(b � 1
4 

a2) � i2b � 1
4 

a2 � iv

1�1 � i
4b � a2a2 � 4b

cos t � 1
2 (eit �  e�it),  sin t �

1
2i

 (eit � e�it)

e�it � cos (�t) � i sin (�t) � cos t � i sin t,
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1–15 GENERAL SOLUTION

Find a general solution. Check your answer by substitution.
ODEs of this kind have important applications to be
discussed in Secs. 2.4, 2.7, and 2.9.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13. 9ys � 30yr � 25y � 0

ys � 9yr � 20y � 0

4ys � 4yr � 3y � 0

100ys � 240yr � (196p2 � 144)y � 0

ys � 1.8yr � 2.08y � 0

ys � yr � 3.25y � 0

ys � 4.5yr � 0

10ys � 32yr � 25.6y � 0

ys � 2pyr � p2y � 0

ys � 4yr � (p2 � 4)y � 0

ys � 6yr � 8.96y � 0

ys � 36y � 0

4ys � 25y � 0

P R O B L E M  S E T  2 . 2

14.

15.

16–20 FIND AN ODE
for the given basis.

16. ,  17. , 

18. ,  19. , 

20. , 

21–30 INITIAL VALUES PROBLEMS
Solve the IVP. Check that your answer satisfies the ODE as
well as the initial conditions. Show the details of your work.

21. ,

22. The ODE in Prob. ,

23. ,

24. ,

25. ,

26. , yr(0) � 1ys � k2y � 0 (k � 0), y(0) � 1

 yr(0) � �2ys � y � 0, y(0) � 2

 yr(�2) � �e>24ys� 4yr � 3y � 0, y(�2) � e

 yr(0) � 0ys � yr � 6y � 0, y(0) � 10

 yr(1
2) � �24, y(1

2) � 1

 yr(0) � �1.2ys � 25y � 0, y(0) � 4.6

e�3.1x sin 2.1xe�3.1x cos 2.1x

e(�2�i)xe(�2�i)xsin 2pxcos 2px

xe�25xe�25xe�4.3xe2.6x

ys � ayr � by � 0

ys � 0.54yr � (0.0729 � p)y � 0

ys � 2k2yr � k4y � 0
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27. The ODE in Prob. 5,
,

28. ,

29. The ODE in Prob. ,

30. ,

31–36 LINEAR INDEPENDENCE is of basic impor-
tance, in this chapter, in connection with general solutions,
as explained in the text. Are the following functions linearly
independent on the given interval? Show the details of your
work.

31. any interval

32.

33.

34.

35.

36. , 0,

37. Instability. Solve for the initial conditions
, . Then change the initial conditions

to , and explain why this
small change of 0.001 at causes a large change later,t � 0

yr(0) � �0.999y(0) � 1.001
yr(0) � �1y(0) � 1

ys � y � 0

 �1 	 x 	 1e�x cos 12 
x

sin 2x, cos x sin x, x � 0 

ln x, ln (x3), x � 1 

x2, x2 ln x, x � 1

eax, e�ax, x � 0

ekx, xekx, 

 yr(0) � 10.09ys � 30yr � 25y � 0, y(0) � 3.3

 yr(0) � 115, y(0) � 0

 yr(0) � �0.3258ys � 2yr � y � 0, y(0) � �0.2

�4.5p � 1 � 13.137 yr(0) �y(0) � 4.5
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e.g., 22 at . This is instability: a small initial
difference in setting a quantity (a current, for in-
stance) becomes larger and larger with time t. This is
undesirable.

38. TEAM PROJECT. General Properties of Solutions

(a) Coefficient formulas. Show how a and b in (1)
can be expressed in terms of and . Explain how
these formulas can be used in constructing equations
for given bases.

(b) Root zero. Solve (i) by the present
method, and (ii) by reduction to first order. Can you
explain why the result must be the same in both
cases? Can you do the same for a general ODE

(c) Double root. Verify directly that with 
is a solution of (1) in the case of a double root.

Verify and explain why is a solution of
but is not.

(d) Limits. Double roots should be limiting cases of
distinct roots , as, say, . Experiment with
this idea. (Remember l’Hôpital’s rule from calculus.)
Can you arrive at ? Give it a try.xel1x

l2 : l1l2l1

xe�2xys � yr � 6y � 0
y � e�2x

�a>2
l �xelx

ys � ayr � 0?

ys � 4yr � 0

l2l1

t � 10

2.3 Differential Operators. Optional
This short section can be omitted without interrupting the flow of ideas. It will not be
used subsequently, except for the notations , etc. to stand for , etc.

Operational calculus means the technique and application of operators. Here, an
operator is a transformation that transforms a function into another function. Hence
differential calculus involves an operator, the differential operator D, which
transforms a (differentiable) function into its derivative. In operator notation we write

and

(1) .

Similarly, for the higher derivatives we write , and so on. For example,
etc.

For a homogeneous linear ODE with constant coefficients we can
now introduce the second-order differential operator

,

where I is the identity operator defined by . Then we can write that ODE as

(2) .Ly � P(D)y � (D2 � aD � bI )y � 0

Iy � y

L � P(D) � D2 � aD � bI

ys � ayr � by � 0
D sin � cos, D2 sin � �sin,

D2y � D(Dy) � ys

Dy � yr �
dy

dx

D � d
dx

yr, ysDy, D 
2 y
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P suggests “polynomial.” L is a linear operator. By definition this means that if Ly and
exist (this is the case if y and w are twice differentiable), then exists for

any constants c and k, and

.

Let us show that from (2) we reach agreement with the results in Sec. 2.2. Since
and , we obtain

(3) 

This confirms our result of Sec. 2.2 that is a solution of the ODE (2) if and only if
is a solution of the characteristic equation .

is a polynomial in the usual sense of algebra. If we replace by the operator D,
we obtain the “operator polynomial” . The point of this operational calculus is that

can be treated just like an algebraic quantity. In particular, we can factor it.

E X A M P L E  1 Factorization, Solution of an ODE

Factor and solve .

Solution. because . Now has the
solution . Similarly, the solution of is . This is a basis of on any
interval. From the factorization we obtain the ODE, as expected,

.

Verify that this agrees with the result of our method in Sec. 2.2. This is not unexpected because we factored
in the same way as the characteristic polynomial .

It was essential that L in (2) had constant coefficients. Extension of operator methods to
variable-coefficient ODEs is more difficult and will not be considered here.

If operational methods were limited to the simple situations illustrated in this section,
it would perhaps not be worth mentioning. Actually, the power of the operator approach
appears in more complicated engineering problems, as we shall see in Chap. 6.

�P(l) � l2 � 3l � 40P(D)

 � ys � 5yr � 8yr � 40y � ys � 3r � 40y � 0

 (D � 8I )(D � 5I )y � (D � 8I )(yr � 5y) � D(yr � 5y) � 8(yr � 5y)

P(D)y � 0y2 � e�5x(D � 5I )y � 0y1 � e8x
(D � 8I)y � yr � 8y � 0I 2 � ID2 � 3D � 40I � (D � 8I )(D � 5I )

P(D)y � 0P(D) � D2 � 3D � 40I

P(D)
P(D)

lP(l)
P(l) � 0

lelx

 � (l2 � al � b)elx � P(l)elx � 0.

 Lel(x) � P(D)el(x) � (D2 � aD � bI)el(x)

(D2el)(x) � l2elx(Del)(x) � lelx

L(cy � kw) � cLy � kLw

L(cy � kw)Lw
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1–5 APPLICATION OF DIFFERENTIAL
OPERATORS

Apply the given operator to the given functions. Show all
steps in detail.

1.

2.

3.

4.

5. (D � 2I )(D � 3I ); e2x, xe2x, e�3x

(D � 6I )2; 6x � sin 6x, xe�6x

(D � 2I )2; e2x, xe2x, e�2x

D � 3I; 3x2 � 3x, 3e3x, cos 4x � sin 4x

D2 � 2D; cosh 2x, e�x � e2x, cos x

P R O B L E M  S E T  2 . 3

6–12 GENERAL SOLUTION
Factor as in the text and solve.

6.

7.

8.

9.

10.

11.

12. (D2 � 3.0D � 2.5I )y � 0

(D2 � 4.00D � 3.84I )y � 0

(D2 � 4.80D � 5.76I )y � 0

(D2 � 4.20D � 4.41I )y � 0

(D2 � 3I )y � 0

(4D2 � I )y � 0

(D2 � 4.00D � 3.36I )y � 0
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13. Linear operator. Illustrate the linearity of L in (2) by
taking , and .
Prove that L is linear.

14. Double root. If has distinct roots 
and , show that a particular solution is

. Obtain from this a solution
by letting and applying l’Hôpital’s rule.� : lxelx

y � (e�x � elx)>(� � l)
l�

D2 � aD � bI

w � cos 2xc � 4, k � �6, y � e2x
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15. Definition of linearity. Show that the definition of
linearity in the text is equivalent to the following. If

and exist, then exists and 
and exist for all constants c and k, and

as well as 
and .L[kw] � kL[w]

L[cy] � cL[ y]L[ y � w] � L[ y] � L[w]
L[kw]

L[cy]L[ y � w]L[w]L[ y]

2.4 Modeling of Free Oscillations 
of a Mass–Spring System

Linear ODEs with constant coefficients have important applications in mechanics, as we
show in this section as well as in Sec. 2.8, and in electrical circuits as we show in Sec. 2.9.
In this section we model and solve a basic mechanical system consisting of a mass on an
elastic spring (a so-called “mass–spring system,” Fig. 33), which moves up and down.

Setting Up the Model
We take an ordinary coil spring that resists extension as well as compression. We suspend
it vertically from a fixed support and attach a body at its lower end, for instance, an iron
ball, as shown in Fig. 33. We let denote the position of the ball when the system
is at rest (Fig. 33b). Furthermore, we choose the downward direction as positive, thus
regarding downward forces as positive and upward forces as negative.

y � 0

2ROBERT HOOKE (1635–1703), English physicist, a forerunner of Newton with respect to the law of
gravitation.

Unstretched
spring

System at
rest

System in
motion

(a) (b) (c)

s
0

y
(y = 0)

Fig. 33. Mechanical mass–spring system

We now let the ball move, as follows. We pull it down by an amount (Fig. 33c).
This causes a spring force

(1) (Hooke’s law2)

proportional to the stretch y, with called the spring constant. The minus sign
indicates that points upward, against the displacement. It is a restoring force: It wants
to restore the system, that is, to pull it back to . Stiff springs have large k.y � 0

F1

k ( �  0)

F1 � �ky

y � 0
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Note that an additional force is present in the spring, caused by stretching it in
fastening the ball, but has no effect on the motion because it is in equilibrium with
the weight W of the ball, , where 

is the constant of gravity at the Earth’s surface (not to be confused with
the universal gravitational constant , which we
shall not need; here and are the Earth’s radius and
mass, respectively).

The motion of our mass–spring system is determined by Newton’s second law

(2)

where and “Force” is the resultant of all the forces acting on the ball. (For
systems of units, see the inside of the front cover.)

ODE of the Undamped System
Every system has damping. Otherwise it would keep moving forever. But if the damping
is small and the motion of the system is considered over a relatively short time, we
may disregard damping. Then Newton’s law with gives the model

thus

(3) .

This is a homogeneous linear ODE with constant coefficients. A general solution is
obtained as in Sec. 2.2, namely (see Example 6 in Sec. 2.2)

(4)

This motion is called a harmonic oscillation (Fig. 34). Its frequency is Hertz3

because and in (4) have the period . The frequency f is called
the natural frequency of the system. (We write to reserve for Sec. 2.8.)vv0

2p>v0sincos(� cycles>sec)
f � v0>2p

v0 �
B

k
m.y(t) � A cos v0t � B sin v0t

mys � ky � 0

mys � �F1 � �ky;
F � �F1

ys � d2y>dt 2

Mass 
 Acceleration � mys � Force

M � 5.98 # 1024 kgR � 6.37 # 106 m
G � gR2>M � 6.67 # 10�11 nt m2>kg2

32.17 ft>sec2
g � 980 cm>sec2 � 9.8 m>sec2 ��F0 � W � mg

F0

�F0
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y

t

1
2

3

1
2
3

Positive
Zero
Negative

Initial velocity

Fig. 34. Typical harmonic oscillations (4) and with the same and 
different initial velocities , positive  1 , zero  2 , negative  3yr(0) � v0B

y(0) � A(4*)

3HEINRICH HERTZ (1857–1894), German physicist, who discovered electromagnetic waves, as the basis
of wireless communication developed by GUGLIELMO MARCONI (1874–1937), Italian physicist (Nobel prize
in 1909).
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An alternative representation of (4), which shows the physical characteristics of amplitude
and phase shift of (4), is

(4*)

with and phase angle , where . This follows from the
addition formula (6) in App. 3.1.

E X A M P L E  1 Harmonic Oscillation of an Undamped Mass–Spring System

If a mass–spring system with an iron ball of weight nt (about 22 lb) can be regarded as undamped, and
the spring is such that the ball stretches it 1.09 m (about 43 in.), how many cycles per minute will the system
execute? What will its motion be if we pull the ball down from rest by 16 cm (about 6 in.) and let it start with
zero initial velocity?

Solution. Hooke’s law (1) with W as the force and 1.09 meter as the stretch gives ; thus
. The mass is . This

gives the frequency .
From (4) and the initial conditions, . Hence the motion is

(Fig. 35).

If you have a chance of experimenting with a mass–spring system, don’t miss it. You will be surprised about
the good agreement between theory and experiment, usually within a fraction of one percent if you measure
carefully. �

y(t) � 0.16 cos 3t [meter]  or  0.52 cos 3t [ft]

y(0) � A � 0.16 [meter] and yr(0) � v0B � 0
v0>(2p) � 2k>m>(2p) � 3>(2p) � 0.48 [Hz] � 29 [cycles>min]

m � W>g � 98>9.8 � 10 [kg]98>1.09 � 90 [kg>sec2] � 90 [nt>meter]k � W>1.09 �

W � 1.09k

W � 98

tan d � B>AdC � 2A2 � B2

y(t) � C cos (v0t � d)
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102 4 6 8 t
–0.1
–0.2

0
0.1

0.2
y

Fig. 35. Harmonic oscillation in Example 1

ODE of the Damped System
To our model we now add a damping force

obtaining ; thus the ODE of the damped mass–spring system is

(5) (Fig. 36)

Physically this can be done by connecting the ball to a dashpot; see Fig. 36. We assume
this damping force to be proportional to the velocity . This is generally a good
approximation for small velocities.

yr � dy>dt

mys � cyr � ky � 0.

mys � �ky � cyr

F2 � �cyr,

mys � �ky

Fig. 36.
Damped system

Dashpot

Ball

Springk

m

c

c02.qxd  10/27/10  6:06 PM  Page 64



SEC. 2.4 Modeling of Free Oscillations of a Mass–Spring System 65

Case I. . Distinct real roots . (Overdamping)

Case II. . A real double root. (Critical damping)

Case III. . Complex conjugate roots. (Underdamping)c2 � 4mk

c2 � 4mk

l1, l2c2 � 4mk

They correspond to the three Cases I, II, III in Sec. 2.2.

Discussion of the Three Cases
Case I. Overdamping
If the damping constant c is so large that , then are distinct real roots.
In this case the corresponding general solution of (5) is

(7) .

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For both exponents in (7) are negative because , and

. Hence both terms in (7) approach zero as . Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position . Figure 37 shows (7) for some typical initial conditions.(y � 0)

t : �b2 � a2 � k>m � a2
a � 0, b � 0t � 0

y(t) � c1e�(a�b)t � c2e�(a�b)t

l1 and l2c2 � 4mk

The constant c is called the damping constant. Let us show that c is positive. Indeed,
the damping force acts against the motion; hence for a downward motion we
have which for positive c makes F negative (an upward force), as it should be.
Similarly, for an upward motion we have which, for makes positive (a
downward force).

The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

.

By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,

(6) , where and .

It is now interesting that depending on the amount of damping present—whether a lot of
damping, a medium amount of damping or little damping—three types of motions occur,
respectively:

b �
1

2m
2c2 � 4mka �

c
2m

l1 � �a � b, l2 � �a � b

l2 �
c
m l �

k
m � 0

F2c � 0yr � 0
yr � 0

F2 � �cyr
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t

y

1

2

3

(a)

y

t
1

1
2
3

2

Positive
Zero
Negative

Initial velocity

3

(b)

Fig. 37. Typical motions (7) in the overdamped case
(a) Positive initial displacement
(b) Negative initial displacement

Case II. Critical Damping
Critical damping is the border case between nonoscillatory motions (Case I) and oscillations
(Case III). It occurs if the characteristic equation has a double root, that is, if ,
so that . Then the corresponding general solution of (5) is

(8) .

This solution can pass through the equilibrium position at most once because 
is never zero and can have at most one positive zero. If both are positive
(or both negative), it has no positive zero, so that y does not pass through 0 at all. Figure 38
shows typical forms of (8). Note that they look almost like those in the previous figure.

c1 and c2c1 � c2t
e�aty � 0

y(t) � (c1 � c2t)e�at

b � 0, l1 � l2 � �a
c2 � 4mk

y

t

1

2

3

1
2
3

Positive
Zero
Negative

Initial velocity

Fig. 38. Critical damping [see (8)]
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Case III. Underdamping
This is the most interesting case. It occurs if the damping constant c is so small that

. Then in (6) is no longer real but pure imaginary, say,

(9) where .

(We now write to reserve for driving and electromotive forces in Secs. 2.8 and 2.9.)
The roots of the characteristic equation are now complex conjugates,

with , as given in (6). Hence the corresponding general solution is

(10)

where , as in .
This represents damped oscillations. Their curve lies between the dashed curves

in Fig. 39, touching them when is an integer multiple
of because these are the points at which equals 1 or .

The frequency is Hz (hertz, cycles/sec). From (9) we see that the smaller
is, the larger is and the more rapid the oscillations become. If c approaches 0,

then approaches , giving the harmonic oscillation (4), whose frequency
is the natural frequency of the system.v0>(2p)

v0 � 2k>mv*
v*c ( �  0)
v*>(2p)

�1cos (v*t � d)p
v*t � dy � Ce�at and y � �Ce�at

(4*)C 2 � A2 � B2 and tan d � B>A

y(t) � e�at(A cos v*t � B sin v*t) � Ce�at cos (v*t � d)

a � c>(2m)

l1 � �a � iv*,  l2 � �a � iv*

vv*

( �  0)v* �
1

2m
 24mk � c2 �

B

k
m

�
c2

4m2b � iv*

bc2 � 4mk
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Fig. 39. Damped oscillation in Case III [see (10)]

t

y

Ce– tα

–Ce– tα

E X A M P L E  2 The Three Cases of Damped Motion

How does the motion in Example 1 change if we change the damping constant c from one to another of the
following three values, with as before?

(I) , (II) , (III) .

Solution. It is interesting to see how the behavior of the system changes due to the effect of the damping,
which takes energy from the system, so that the oscillations decrease in amplitude (Case III) or even disappear
(Cases II and I).

(I) With , as in Example 1, the model is the initial value problem

.10ys � 100yr � 90y � 0,  y(0) � 0.16 [meter],  yr(0) � 0

m � 10 and k � 90

c � 10 kg>secc � 60 kg>secc � 100 kg>sec

y(0) � 0.16 and yr(0) � 0
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The characteristic equation is . It has the roots and . This
gives the general solution

. We also need .

The initial conditions give . The solution is . Hence in
the overdamped case the solution is

.

It approaches 0 as . The approach is rapid; after a few seconds the solution is practically 0, that is, the
iron ball is at rest.

(II) The model is as before, with instead of 100. The characteristic equation now has the form
. It has the double root . Hence the corresponding general solution is

. We also need .

The initial conditions give . Hence in the critical case the
solution is

.

It is always positive and decreases to 0 in a monotone fashion.
(III) The model now is . Since is smaller than the critical c, we shall get

oscillations. The characteristic equation is . It has the complex
roots [see (4) in Sec. 2.2 with and ]

.

This gives the general solution

.

Thus . We also need the derivative

.

Hence . This gives the solution

.

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by 
about (since 2.96 is smaller than 3.00 by about ). Their amplitude goes to zero. See Fig. 40. �1%1%

y � e�0.5t(0.16 cos 2.96t � 0.027 sin 2.96t) � 0.162e�0.5t cos (2.96t � 0.17)

yr(0) � �0.5A � 2.96B � 0, B � 0.5A>2.96 � 0.027

yr � e�0.5t(�0.5A cos 2.96t � 0.5B sin 2.96t � 2.96A sin 2.96t � 2.96B cos 2.96t)

y(0) � A � 0.16

y � e�0.5t(A cos 2.96t � B sin 2.96t)

l � �0.5 � 20.52 � 9 � �0.5 � 2.96i

b � 9a � 1
10l2 � 10l � 90 � 10[(l � 1

2) 2 � 9 � 1
4] � 0

c � 1010ys � 10yr � 90y � 0

y � (0.16 � 0.48t)e�3t

y(0) � c1 � 0.16, yr(0) � c2 � 3c1 � 0, c2 � 0.48

yr � (c2 � 3c1 � 3c2t)e�3ty � (c1 � c2t)e�3t

�310l2 � 60l � 90 � 10(l � 3) 2 � 0
c � 60

t : �

y � �0.02e�9t � 0.18e�t

c1 � �0.02, c2 � 0.18c1 � c2 � 0.16, �9c1 � c2 � 0

yr � �9c1e�9t � c2e�ty � c1e�9t � c2e�t

�1�910l2 � 100l � 90 � 10(l � 9)(l � 1) � 0
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102 4 6 8 t

–0.05

–0.1

0

0.05

0.1

0.15
y

Fig. 40. The three solutions in Example 2

This section concerned free motions of mass–spring systems. Their models are homo-
geneous linear ODEs. Nonhomogeneous linear ODEs will arise as models of forced
motions, that is, motions under the influence of a “driving force.” We shall study them
in Sec. 2.8, after we have learned how to solve those ODEs.
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1–10 HARMONIC OSCILLATIONS 
(UNDAMPED MOTION)

1. Initial value problem. Find the harmonic motion (4)
that starts from with initial velocity . Graph or
sketch the solutions for , and various

of your choice on common axes. At what t-values
do all these curves intersect? Why?

2. Frequency. If a weight of 20 nt (about 4.5 lb) stretches
a certain spring by 2 cm, what will the frequency of the
corresponding harmonic oscillation be? The period?

3. Frequency. How does the frequency of the harmonic
oscillation change if we (i) double the mass, (ii) take
a spring of twice the modulus? First find qualitative
answers by physics, then look at formulas.

4. Initial velocity. Could you make a harmonic oscillation
move faster by giving the body a greater initial push?

5. Springs in parallel. What are the frequencies of
vibration of a body of mass kg (i) on a spring
of modulus , (ii) on a spring of modulus

, (iii) on the two springs in parallel? See
Fig. 41.
k2 � 45 nt>m

k1 � 20 nt>m
m � 5

v0

v0 � p, y0 � 1
v0y0

P R O B L E M  S E T  2 . 4
The cylindrical buoy of diameter 60 cm in Fig. 43 is
floating in water with its axis vertical. When depressed
downward in the water and released, it vibrates with
period 2 sec. What is its weight?

Fig. 41. Parallel springs (Problem 5)

Fig. 42. Pendulum (Problem 7)

6. Spring in series. If a body hangs on a spring of
modulus , which in turn hangs on a spring 
of modulus , what is the modulus k of this
combination of springs?

7. Pendulum. Find the frequency of oscillation of a
pendulum of length L (Fig. 42), neglecting air
resistance and the weight of the rod, and assuming 
to be so small that practically equals .usin u

u

k2 � 12
s2k1 � 8

s1

10. TEAM PROJECT. Harmonic Motions of Similar
Models. The unifying power of mathematical meth-
ods results to a large extent from the fact that different
physical (or other) systems may have the same or very
similar models. Illustrate this for the following three
systems

(a) Pendulum clock. A clock has a 1-meter pendulum.
The clock ticks once for each time the pendulum
completes a full swing, returning to its original position.
How many times a minute does the clock tick?

(b) Flat spring (Fig. 45). The harmonic oscillations
of a flat spring with a body attached at one end and
horizontally clamped at the other are also governed by
(3). Find its motions, assuming that the body weighs
8 nt (about 1.8 lb), the system has its static equilibrium
1 cm below the horizontal line, and we let it start from
this position with initial velocity 10 cm/sec.

8. Archimedian principle. This principle states that the
buoyancy force equals the weight of the water
displaced by the body (partly or totally submerged).

Fig. 44. Tube (Problem 9)

9. Vibration of water in a tube. If 1 liter of water (about
1.06 US quart) is vibrating up and down under the
influence of gravitation in a U-shaped tube of diameter
2 cm (Fig. 44), what is the frequency? Neglect friction.
First guess.

Fig. 43. Buoy (Problem 8)

L

θ
Body of
mass m

Water 
level

( y = 0)
y

y

Fig. 45. Flat spring

c02.qxd  10/27/10  6:06 PM  Page 69



(c) Torsional vibrations (Fig. 46). Undamped
torsional vibrations (rotations back and forth) of a
wheel attached to an elastic thin rod or wire are
governed by the equation , where 
is the angle measured from the state of equilibrium.
Solve this equation for , initial
angle and initial angular velocity

.20° sec�1 (� 0.349 rad # sec�1)
30°(� 0.5235 rad)

K>I0 �  13.69 sec�2

uI0us � Ku �  0

70 CHAP. 2 Second-Order Linear ODEs

11–20 DAMPED MOTION
11. Overdamping. Show that for (7) to satisfy initial condi-

tions and we must have 
and 

.

12. Overdamping. Show that in the overdamped case, the
body can pass through at most once (Fig. 37).

13. Initial value problem. Find the critical motion (8)
that starts from with initial velocity . Graph
solution curves for and several such
that (i) the curve does not intersect the t-axis, (ii) it
intersects it at respectively.

14. Shock absorber. What is the smallest value of the
damping constant of a shock absorber in the suspen-
sion of a wheel of a car (consisting of a spring and an
absorber) that will provide (theoretically) an oscillation-
free ride if the mass of the car is 2000 kg and the spring
constant equals ?

15. Frequency. Find an approximation formula for in
terms of by applying the binomial theorem in (9)
and retaining only the first two terms. How good is the
approximation in Example 2, III?

16. Maxima. Show that the maxima of an underdamped
motion occur at equidistant t-values and find the
distance.

17. Underdamping. Determine the values of t corre-
sponding to the maxima and minima of the oscillation

. Check your result by graphing .

18. Logarithmic decrement. Show that the ratio of 
two consecutive maximum amplitudes of a damped
oscillation (10) is constant, and the natural logarithm
of this ratio called the logarithmic decrement,

y(t)y(t) � e�t sin t

v0

v*

4500 kg>sec2

t � 1, 2, . . . , 5,

v0a � 1, y0 � 1
v0y0

y � 0

v0>b]>2
c2 � [(1 � a>b)y0 �[(1 � a>b)y0 � v0>b]>2

c1 �v(0) � v0y(0) � y0

equals . Find for the solutions of
.

19. Damping constant. Consider an underdamped motion
of a body of mass . If the time between two
consecutive maxima is 3 sec and the maximum
amplitude decreases to its initial value after 10 cycles,
what is the damping constant of the system?

20. CAS PROJECT. Transition Between Cases I, II,
III. Study this transition in terms of graphs of typical
solutions. (Cf. Fig. 47.)

(a) Avoiding unnecessary generality is part of good
modeling. Show that the initial value problems (A)
and (B),

(A)

(B) the same with different c and (instead
of 0), will give practically as much information as a
problem with other m, k, .

(b) Consider (A). Choose suitable values of c,
perhaps better ones than in Fig. 47, for the transition
from Case III to II and I. Guess c for the curves in the
figure.

(c) Time to go to rest. Theoretically, this time is
infinite (why?). Practically, the system is at rest when
its motion has become very small, say, less than 0.1%
of the initial displacement (this choice being up to us),
that is in our case,

(11) for all t greater than some .

In engineering constructions, damping can often be
varied without too much trouble. Experimenting with
your graphs, find empirically a relation between 
and c.

(d) Solve (A) analytically. Give a reason why the
solution c of , with the solution of

, will give you the best possible c satisfying
(11).

(e) Consider (B) empirically as in (a) and (b). What
is the main difference between (B) and (A)?

yr(t) � 0
t2y(t2) � �0.001

t1

t1ƒ y(t) ƒ � 0.001

y(0), yr(0)

yr(0) � �2

ys � cyr � y � 0,  y(0) � 1,  yr(0) � 0

1
2

m � 0.5 kg

ys � 2yr � 5y � 0
¢¢ � 2pa>v*

Fig. 47. CAS Project 20

Fig. 46. Torsional vibrations

θ

1

0.5

–0.5

–1

6 1084

y

t2
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2.5 Euler–Cauchy Equations
Euler–Cauchy equations4 are ODEs of the form

(1)

with given constants a and b and unknown function . We substitute

into (1). This gives

and we now see that was a rather natural choice because we have obtained a com-
mon factor . Dropping it, we have the auxiliary equation or

(2) . (Note: , not a.)

Hence is a solution of (1) if and only if m is a root of (2). The roots of (2) are

(3) .

Case I. Real different roots give two real solutions

and .

These are linearly independent since their quotient is not constant. Hence they constitute
a basis of solutions of (1) for all x for which they are real. The corresponding general
solution for all these x is

(4) (c1, c2 arbitrary).

E X A M P L E  1 General Solution in the Case of Different Real Roots

The Euler–Cauchy equation has the auxiliary equation . The
roots are 0.5 and . Hence a basis of solutions for all positive x is and and gives the general
solution

. �(x � 0)y � c11x �
c2

x

y2 � 1>xy1 � x0.5�1
m2 � 0.5m � 0.5 � 0x2ys � 1.5xyr � 0.5y � 0

y � c1xm1 �  c2xm2

y2(x) � xm2y1(x) � xm1

m1 and m2

m1 � 1
2 

(1 � a) � 21
4 

(1 � a)2 � b,  m2 � 1
2 

(1 � a) � 21
4 

(1 � a)2 � b

y � xm

a � 1m2 � (a � 1)m � b � 0

m(m � 1) � am � b � 0xm
y � xm

x2m(m � 1)xm�2 � axmxm�1 � bxm � 0

y � xm,  yr � mxm�1,  ys � m(m � 1)xm�2

y(x)

x2ys � axyr � by � 0

SEC. 2.5 Euler–Cauchy Equations 71

4LEONHARD EULER (1707–1783) was an enormously creative Swiss mathematician. He made
fundamental contributions to almost all branches of mathematics and its application to physics. His important
books on algebra and calculus contain numerous basic results of his own research. The great French
mathematician AUGUSTIN LOUIS CAUCHY (1789–1857) is the father of modern analysis. He is the creator
of complex analysis and had great influence on ODEs, PDEs, infinite series, elasticity theory, and optics.
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Case II. A real double root occurs if and only if because 

then (2) becomes as can be readily verified. Then a solution is
, and (1) is of the form

(5) or .

A second linearly independent solution can be obtained by the method of reduction of
order from Sec. 2.1, as follows. Starting from , we obtain for u the expression
(9) Sec. 2.1, namely,

where

From (5) in standard form (second ODE) we see that (not ax; this is essential!).
Hence . Division by 
gives , so that by integration. Thus, , and and 
are linearly independent since their quotient is not constant. The general solution
corresponding to this basis is

(6) , .

E X A M P L E  2 General Solution in the Case of a Double Root

The Euler–Cauchy equation has the auxiliary equation . It has the
double root , so that a general solution for all positive x is

Case III. Complex conjugate roots are of minor practical importance, and we discuss
the derivation of real solutions from complex ones just in terms of a typical example.

E X A M P L E  3 Real General Solution in the Case of Complex Roots

The Euler–Cauchy equation has the auxiliary equation .
The roots are complex conjugate, and , where . We now use the trick
of writing and obtain

Next we apply Euler’s formula (11) in Sec. 2.2 with t � 4 ln x to these two formulas. This gives

We now add these two formulas, so that the sine drops out, and divide the result by 2. Then we subtract the
second formula from the first, so that the cosine drops out, and divide the result by 2i. This yields

and

respectively. By the superposition principle in Sec. 2.2 these are solutions of the Euler–Cauchy equation (1).
Since their quotient is not constant, they are linearly independent. Hence they form a basis of solutions,
and the corresponding real general solution for all positive x is

(8) .y � x0.2[A cos (4 ln x) � B sin (4 ln x)]

cot (4 ln x)

x0.2 sin (4 ln x)x0.2 cos (4 ln x)

 xm2 � x0.2[cos (4 ln x) � i sin (4 ln x)].

 xm1 � x0.2[cos (4 ln x) � i sin (4 ln x)],

 xm2 � x0.2�4i � x0.2(eln x)�4i � x0.2e�(4 ln x)i.

 xm1 � x0.2�4i � x0.2(eln x)4i � x0.2e(4 ln x)i,

x � eln x
i � 1�1m2 � 0.2 � 4im1 � 0.2 � 4i

m2 � 0.4m � 16.04 � 0x2ys � 0.6xyr � 16.04y � 0

�y � (c1 � c2 ln x) x3.

m � 3
m2 � 6m � 9 � 0x2ys � 5xyr � 9y � 0

m � 1
2 

(1 � a)y � (c1 � c2 ln x) xm

y2y1 y2 � uy1 � y1 ln xu � ln xU � 1>x
y 1

2 � x1�   aexp�(�p dx) � exp (�a ln x) � exp (ln x�a) � 1>xa
p � a>x

U �
1

y1
2
 exp a��p dxb .u � �U dx

y2 � uy1

ys �
a
x

 yr �
(1 � a)2

4x2  y � 0x2ys � axyr � 1
4 

(1 � a)2y � 0

y1 � x (1�a)>2
[m � 1

2 
(a � 1)]2,

b � 1
4 

(a � 1)2m1 � 1
2 

(1 � a)
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Figure 48 shows typical solution curves in the three cases discussed, in particular the real basis functions in
Examples 1 and 3. �

SEC. 2.5 Euler–Cauchy Equations 73

y

x0

Case I: Real roots

x1.5
x ln x

x–1.5

x–1.5 ln xx0.5

x0.5 ln x x0.2 sin (4 ln x) 

x0.2 cos (4 ln x) 

x–0.5

x–0.5 ln x
x1

x–1

Case II: Double root Case III: Complex roots

1.0

2.0

3.0
y

x0 20.4 1.41

1.0

–1.0
–1.5

0.5

–0.5

1.5

y

x0

1.0

–1.0
–1.5

0.5

–0.5

1.5

21

0.4 1.41 2

Fig. 48. Euler–Cauchy equations

E X A M P L E  4 Boundary Value Problem. Electric Potential Field Between Two Concentric Spheres

Find the electrostatic potential between two concentric spheres of radii cm and cm
kept at potentials and , respectively.

Physical Information. v(r) is a solution of the Euler–Cauchy equation , where .

Solution. The auxiliary equation is . It has the roots 0 and . This gives the general solution
. From the “boundary conditions” (the potentials on the spheres) we obtain

.

By subtraction, . From the second equation, . Answer:
V. Figure 49 shows that the potential is not a straight line, as it would be for a potential

between two parallel plates. For example, on the sphere of radius 7.5 cm it is not V, but considerably
less. (What is it?) �

110>2 � 55
v(r) � �110 � 1100>r

c1 � �c2>10 � �110c2>10 � 110, c2 � 1100

v(10) � c1 �
c2

10
� 0v(5) � c1 �

c2

5
� 110.

v(r) � c1 � c2>r
�1m2 � m � 0

vr � dv>drrvs � 2vr � 0
v2 � 0v1 � 110 V

r2 � 10r1 � 5v � v(r)

5 6 7 8 9 10 r

100

80

60

40

20

0

v

Fig. 49. Potential in Example 4v(r)

1. Double root. Verify directly by substitution that
is a solution of (1) if (2) has a double root,

but and are not solutions of (1) if the
roots m1 and m2 of (2) are different.

2–11 GENERAL SOLUTION 
Find a real general solution. Show the details of your work.

2.

3. 5x2ys � 23xyr � 16.2y � 0

x2ys � 20y � 0

xm2 ln xxm1 ln x
x (1�a)>2 ln x

4.
5.
6.
7.
8.
9.

10.
11. (x2D2 � 3xD � 10I)y � 0

(x2D2 � xD � 5I)y � 0

(x2D2 � 0.2xD � 0.36I)y � 0 

(x2D2 � 3xD � 4I)y � 0

(x2D2 � 4xD � 6I)y � C

x2ys � 0.7xyr � 0.1y � 0

4x2ys � 5y � 0

xys � 2yr � 0

P R O B L E M  S E T  2 . 5

c02.qxd  10/27/10  6:06 PM  Page 73



12–19 INITIAL VALUE PROBLEM 
Solve and graph the solution. Show the details of your work.

12.

13.

14.

15.

16.

17.

18.

19.
yr(1) � �4.5
(x2D2 � xD � 15I  )y � 0, y(1) � 0.1,

(9x2D2 � 3xD � I )y � 0, y(1) � 1, yr(1) � 0

(x2D2 � xD � I )y � 0, y(1) � 1, yr(1) � 1

(x2D2 � 3xD � 4I )y � 0, y(1) � �p, yr(1) � 2p

x2ys � 3xyr � y � 0, y(1) � 3.6, yr(1) � 0.4

x2ys � xyr � 9y � 0, y(1) � 0, yr(1) � 2.5

yr(1) � �1.5
x2ys � 3xyr � 0.75y � 0, y(1) � 1,

x2ys � 4xyr � 6y � 0, y(1) � 0.4, yr(1) � 0

74 CHAP. 2 Second-Order Linear ODEs

20. TEAM PROJECT. Double Root

(a) Derive a second linearly independent solution of
(1) by reduction of order; but instead of using (9), Sec.
2.1, perform all steps directly for the present ODE (1).

(b) Obtain by considering the solutions 
and of a suitable Euler–Cauchy equation and
letting .

(c) Verify by substitution that 
is a solution in the critical case.

(d) Transform the Euler–Cauchy equation (1) into
an ODE with constant coefficients by setting

.

(e) Obtain a second linearly independent solution of
the Euler–Cauchy equation in the “critical case” from
that of a constant-coefficient ODE.

x � et (x � 0)

m � (1 � a)>2,xm ln x,

s : 0
xm�s

xmxm ln x

2.6 Existence and Uniqueness 
of Solutions. Wronskian

In this section we shall discuss the general theory of homogeneous linear ODEs

(1)

with continuous, but otherwise arbitrary, variable coefficients p and q. This will concern
the existence and form of a general solution of (1) as well as the uniqueness of the solution
of initial value problems consisting of such an ODE and two initial conditions

(2)

with given .
The two main results will be Theorem 1, stating that such an initial value problem

always has a solution which is unique, and Theorem 4, stating that a general solution

(3)

includes all solutions. Hence linear ODEs with continuous coefficients have no “singular
solutions” (solutions not obtainable from a general solution).

Clearly, no such theory was needed for constant-coefficient or Euler–Cauchy equations
because everything resulted explicitly from our calculations.

Central to our present discussion is the following theorem.

T H E O R E M  1 Existence and Uniqueness Theorem for Initial Value Problems

If and are continuous functions on some open interval I (see Sec. 1.1) and
x0 is in I, then the initial value problem consisting of (1) and (2) has a unique
solution on the interval I.y(x)

q(x)p(x)

(c1, c2 arbitrary)y � c1y1 � c2y2

x0, K0, and K1

y(x0) � K0,  yr(x0) � K1

ys � p(x)yr � q(x)y � 0
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The proof of existence uses the same prerequisites as the existence proof in Sec. 1.7
and will not be presented here; it can be found in Ref. [A11] listed in App. 1. Uniqueness
proofs are usually simpler than existence proofs. But for Theorem 1, even the uniqueness
proof is long, and we give it as an additional proof in App. 4.

Linear Independence of Solutions
Remember from Sec. 2.1 that a general solution on an open interval I is made up from a
basis on I, that is, from a pair of linearly independent solutions on I. Here we call

linearly independent on I if the equation

(4) .

We call linearly dependent on I if this equation also holds for constants 
not both 0. In this case, and only in this case, are proportional on I, that is (see
Sec. 2.1),

(5) (a) or (b) for all on I.

For our discussion the following criterion of linear independence and dependence of
solutions will be helpful.

T H E O R E M  2 Linear Dependence and Independence of Solutions

Let the ODE (1) have continuous coefficients and on an open interval I.
Then two solutions of (1) on I are linearly dependent on I if and only if
their “Wronskian”

(6)

is 0 at some in I. Furthermore, if at an in I, then on I;
hence, if there is an in I at which W is not 0, then are linearly independent
on I.

P R O O F (a) Let be linearly dependent on I. Then (5a) or (5b) holds on I. If (5a) holds,
then

Similarly if (5b) holds.
(b) Conversely, we let for some and show that this implies linear

dependence of on I. We consider the linear system of equations in the unknowns

(7)
 k1y1r(x0) � k2y2r(x0) � 0.

 k1y1(x0) � k2y2(x0) � 0

k1, k2

y1 and y2

x � x0W(y1, y2) � 0

W(y1, y2) � y1y2r � y2y1r � ky2y2r � y2ky2r � 0.

y1 and y2

y1, y2x1

W � 0x � x0W � 0x0

W(y1, y2) � y1y2r �  y2y1r

y1 and y2

q(x)p(x)

y2 � ly1y1 � ky2

y1 and y2

k1, k2y1, y2

k1y1(x) � k2y2(x) � 0 on I  implies  k1 � 0, k2 � 0

y1, y2

y1, y2
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To eliminate , multiply the first equation by and the second by and add the
resulting equations. This gives

.

Similarly, to eliminate , multiply the first equation by and the second by and
add the resulting equations. This gives

.

If W were not 0 at , we could divide by W and conclude that . Since W is
0, division is not possible, and the system has a solution for which are not both
0. Using these numbers , we introduce the function

.

Since (1) is homogeneous linear, Fundamental Theorem 1 in Sec. 2.1 (the superposition
principle) implies that this function is a solution of (1) on I. From (7) we see that it satisfies
the initial conditions . Now another solution of (1) satisfying the
same initial conditions is . Since the coefficients p and q of (1) are continuous,
Theorem 1 applies and gives uniqueness, that is, , written out

on I.

Now since and are not both zero, this means linear dependence of , on I.
(c) We prove the last statement of the theorem. If at an in I, we have

linear dependence of on I by part (b), hence by part (a) of this proof. Hence
in the case of linear dependence it cannot happen that at an in I. If it does
happen, it thus implies linear independence as claimed.

For calculations, the following formulas are often simpler than (6).

(6*) or (b)

These formulas follow from the quotient rule of differentiation.

Remark. Determinants. Students familiar with second-order determinants may have
noticed that

.

This determinant is called the Wronski determinant5 or, briefly, the Wronskian, of two
solutions and of (1), as has already been mentioned in (6). Note that its four entries
occupy the same positions as in the linear system (7).

y2y1

W( y1, y2) � ` y1 y2

yr1 yr2
` � y1yr2 � y2yr1

�ay1

y2
bry 

2
2  ( y2 � 0).W( y1, y2) � (a)  ay2

y1
br y2

1  ( y1 � 0)

�

x1W(x1) � 0
W � 0y1, y2

x0W(x0) � 0
y2y1k2k1

k1y1 � k2y2 � 0

y � y*
y* � 0

y(x0) � 0, yr(x0) � 0

y(x) � k1y1(x) � k2y2(x)

k1, k2

k1 and k2

k1 � k2 � 0x0

k2W( y1(x0), y2(x0)) � 0

y1�y1rk1

k1y1(x0)y2r(x0) �  k1y1r(x0)y2(x0) �  k1W( y1(x0), y2(x0)) � 0

�y2yr2k2
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E X A M P L E  1 Illustration of Theorem 2

The functions and are solutions of . Their Wronskian is

.

Theorem 2 shows that these solutions are linearly independent if and only if . Of course, we can see
this directly from the quotient . For we have , which implies linear dependence
(why?).

E X A M P L E  2 Illustration of Theorem 2 for a Double Root

A general solution of on any interval is . (Verify!). The corresponding
Wronskian is not 0, which shows linear independence of and on any interval. Namely,

.

A General Solution of (1) Includes All Solutions
This will be our second main result, as announced at the beginning. Let us start with
existence.

T H E O R E M  3 Existence of a General Solution

If p(x) and q(x) are continuous on an open interval I, then (1) has a general solution
on I.

P R O O F By Theorem 1, the ODE (1) has a solution on I satisfying the initial conditions

and a solution on I satisfying the initial conditions

The Wronskian of these two solutions has at the value

Hence, by Theorem 2, these solutions are linearly independent on I. They form a basis of
solutions of (1) on I, and with arbitrary is a general solution of (1)
on I, whose existence we wanted to prove. �

c1, c2y � c1y1 � c2˛

y2

W( y1(0), y2(0)) � y1(x0)y2r(x0) � y2(x0)y1r(x0) � 1.

x � x0

y2r(x0) � 1.y2(x0) � 0,

y2(x)

y1r(x0) � 0y1(x0) � 1,

y1(x)

�W(x, xex) � ` e
x xex

ex (x � 1)ex
` � (x � 1)e2x � xe2x � e2x � 0

xexex
y � (c1 � c2x)exys � 2yr � y � 0

�
y2 � 0v � 0y2>y1 � tan vx

v � 0

W(cos vx, sin vx) � ` cos vx sin vx

�v sin vx v cos vx
` � y1y2r � y2y1r � v cos2 vx � v sin2 vx � v

ys � v2y � 0y2 � sin vxy1 � cos vx
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We finally show that a general solution is as general as it can possibly be.

T H E O R E M  4 A General Solution Includes All Solutions

If the ODE (1) has continuous coefficients p(x) and q(x) on some open interval I,
then every solution of (1) on I is of the form

(8) 

where is any basis of solutions of (1) on I and are suitable constants. 
Hence (1) does not have singular solutions (that is, solutions not obtainable from

a general solution).

P R O O F Let be any solution of (1) on I. Now, by Theorem 3 the ODE (1) has a general
solution

(9)

on I. We have to find suitable values of such that on I. We choose any
in I and show first that we can find values of such that we reach agreement at
that is, and . Written out in terms of (9), this becomes

(10)
(a)

(b)

We determine the unknowns and . To eliminate we multiply (10a) by and
(10b) by and add the resulting equations. This gives an equation for Then we
multiply (10a) by and (10b) by and add the resulting equations. This gives
an equation for These new equations are as follows, where we take the values of

at 

Since is a basis, the Wronskian W in these equations is not 0, and we can solve for
and We call the (unique) solution By substituting it into (9) we

obtain from (9) the particular solution

Now since is a solution of (10), we see from (10) that

From the uniqueness stated in Theorem 1 this implies that y* and Y must be equal
everywhere on I, and the proof is complete. �

y*r(x0) � Yr(x0).y*(x0) � Y(x0),

C1, C2

y*(x) � C1y1(x) � C2 y2(x).

c1 � C1, c2 � C2.c2.c1

y1, y2

 c2( y1y2r � y2y1r) � c2W( y1, y2) � y1Yr � Yy1r.

 c1( y1y2r � y2y1r) � c1W( y1, y2) � Yy2r � y2Yr

x0.y1, y1r, y2, y2r, Y, Yr
c2.

y1(x0)�y1r(x0)
c1.�y2(x0)

y2r(x0)c2,c2c1

 c1y1r(x0) � c2y2r(x0) � Yr(x0).

 c1y1(x0) � c2y2(x0) � Y(x0)

yr(x0) � Yr(x0)y(x0) � Y(x0)x0,
c1, c2x0

y(x) � Y(x)c1, c2

y(x) � c1y1(x) � c2y2(x)

y � Y(x)

C1, C2y1, y2

Y(x) � C1y1(x) � C2y2(x)

y � Y(x)
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Reflecting on this section, we note that homogeneous linear ODEs with continuous variable
coefficients have a conceptually and structurally rather transparent existence and uniqueness
theory of solutions. Important in itself, this theory will also provide the foundation for our
study of nonhomogeneous linear ODEs, whose theory and engineering applications form
the content of the remaining four sections of this chapter.
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1. Derive (6*) from (6).

2–8 BASIS OF SOLUTIONS. WRONSKIAN 
Find the Wronskian. Show linear independence by using
quotients and confirm it by Theorem 2.

2.

3.

4.

5.

6.

7.

8.

9–15 ODE FOR GIVEN BASIS. WRONSKIAN. IVP
(a) Find a second-order homogeneous linear ODE for
which the given functions are solutions. (b) Show linear
independence by the Wronskian. (c) Solve the initial value
problem.
9.

10.
11.

12.
13.
14.

15. cosh 1.8x, sinh 1.8x, y(0) � 14.20, yr(0) � 16.38
yr(0) � �k �p
e�kx cos px, e�kx sin px, y(0) � 1,
1, e�2x, y(0) � 1, yr(0) � �1
x2, x2 ln x, y(1) � 4, yr(1) � 6
yr(0) � �7.5
e�2.5x cos 0.3x, e�2.5x sin 0.3x, y(0) � 3,
xm1, xm2, y(1) � �2, yr(1) � 2m1 � 4m2

cos 5x, sin 5x, y(0) � 3, yr(0) � �5

xk cos (ln x), xk sin (ln x)

cosh ax, sinh ax

e�x cos vx, e�x sin vx

x3, x2

x, 1>x

e�0.4x, e�2.6x

e4.0x, e�1.5x

16. TEAM PROJECT. Consequences of the Present
Theory. This concerns some noteworthy general
properties of solutions. Assume that the coefficients p
and q of the ODE (1) are continuous on some open
interval I, to which the subsequent statements refer.

(a) Solve (a) by exponential functions, 
(b) by hyperbolic functions. How are the constants in
the corresponding general solutions related?

(b) Prove that the solutions of a basis cannot be 0 at
the same point.

(c) Prove that the solutions of a basis cannot have a
maximum or minimum at the same point.

(d) Why is it likely that formulas of the form (6*)
should exist?

(e) Sketch if and 0 if 
if and if Show linear

independence on What is their
Wronskian? What Euler–Cauchy equation do 
satisfy? Is there a contradiction to Theorem 2?

(f) Prove Abel’s formula6

where Apply it to Prob. 6. Hint:
Write (1) for and for Eliminate q algebraically
from these two ODEs, obtaining a first-order linear
ODE. Solve it.

y2.y1

c � W(y1(x0), y2(x0)).

W( y1(x), y2(x)) � c exp c��
x

x0

p(t) dt d

y1, y2

�1 � x � 1.
x � 0.x3x  �  0y2(x) � 0

x � 0,x  �  0y1(x) � x3

ys � y � 0

P R O B L E M  S E T  2 . 6

6NIELS HENRIK ABEL (1802–1829), Norwegian mathematician.

2.7 Nonhomogeneous ODEs
We now advance from homogeneous to nonhomogeneous linear ODEs. 

Consider the second-order nonhomogeneous linear ODE

(1)

where We shall see that a “general solution” of (1) is the sum of a general
solution of the corresponding homogeneous ODE

r(x) [ 0.

ys � p(x)yr � q(x)y � r(x)
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(2)

and a “particular solution” of (1). These two new terms “general solution of (1)” and
“particular solution of (1)” are defined as follows.

D E F I N I T I O N General Solution, Particular Solution

A general solution of the nonhomogeneous ODE (1) on an open interval I is a
solution of the form

(3)

here, is a general solution of the homogeneous ODE (2) on I and
is any solution of (1) on I containing no arbitrary constants.
A particular solution of (1) on I is a solution obtained from (3) by assigning

specific values to the arbitrary constants and in .

Our task is now twofold, first to justify these definitions and then to develop a method
for finding a solution of (1).

Accordingly, we first show that a general solution as just defined satisfies (1) and that
the solutions of (1) and (2) are related in a very simple way.

T H E O R E M  1 Relations of Solutions of (1) to Those of (2)

(a) The sum of a solution y of (1) on some open interval I and a solution of
(2) on I is a solution of (1) on I. In particular, (3) is a solution of (1) on I.

(b) The difference of two solutions of (1) on I is a solution of (2) on I.

P R O O F (a) Let denote the left side of (1). Then for any solutions y of (1) and of (2) on I,

(b) For any solutions y and y* of (1) on I we have 

Now for homogeneous ODEs (2) we know that general solutions include all solutions.
We show that the same is true for nonhomogeneous ODEs (1).

T H E O R E M  2 A General Solution of a Nonhomogeneous ODE Includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in (1) are continuous on some
open interval I, then every solution of (1) on I is obtained by assigning suitable
values to the arbitrary constants and in a general solution (3) of (1) on I.

P R O O F Let be any solution of (1) on I and any x in I. Let (3) be any general solution of
(1) on I. This solution exists. Indeed, exists by Theorem 3 in Sec. 2.6yh � c1y1 � c2y2

x0y*

c2c1

�r � r � 0.
L[ y � y*] � L[ y] � L[ y*] �

L[ y � y~] � L[ y] � L[ y~] � r � 0 � r.

y~L[y]

y~

yp

yhc2c1

yp

yh � c1y1 � c2y2

y(x) � yh(x) � yp1x2;

ys � p(x)yr � q(x)y � 0
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because of the continuity assumption, and exists according to a construction to be
shown in Sec. 2.10. Now, by Theorem 1(b) just proved, the difference is a
solution of (2) on I. At we have

Theorem 1 in Sec. 2.6 implies that for these conditions, as for any other initial conditions
in I, there exists a unique particular solution of (2) obtained by assigning suitable values
to in . From this and the statement follows.

Method of Undetermined Coefficients
Our discussion suggests the following. To solve the nonhomogeneous ODE (1) or an initial
value problem for (1), we have to solve the homogeneous ODE (2) and find any solution

of (1), so that we obtain a general solution (3) of (1).
How can we find a solution of (1)? One method is the so-called method of

undetermined coefficients. It is much simpler than another, more general, method (given
in Sec. 2.10). Since it applies to models of vibrational systems and electric circuits to be
shown in the next two sections, it is frequently used in engineering.

More precisely, the method of undetermined coefficients is suitable for linear ODEs
with constant coefficients a and b

(4)

when is an exponential function, a power of x, a cosine or sine, or sums or products
of such functions. These functions have derivatives similar to itself. This gives the
idea. We choose a form for similar to , but with unknown coefficients to be
determined by substituting that and its derivatives into the ODE. Table 2.1 on p. 82
shows the choice of for practically important forms of . Corresponding rules are
as follows.

Choice Rules for the Method of Undetermined Coefficients

(a) Basic Rule. If in (4) is one of the functions in the first column in
Table 2.1, choose in the same line and determine its undetermined
coefficients by substituting and its derivatives into (4).

(b) Modification Rule. If a term in your choice for happens to be a
solution of the homogeneous ODE corresponding to (4), multiply this term
by x (or by if this solution corresponds to a double root of the
characteristic equation of the homogeneous ODE).

(c) Sum Rule. If is a sum of functions in the first column of Table 2.1,
choose for the sum of the functions in the corresponding lines of the
second column.

The Basic Rule applies when is a single term. The Modification Rule helps in the
indicated case, and to recognize such a case, we have to solve the homogeneous ODE
first. The Sum Rule follows by noting that the sum of two solutions of (1) with 
and (and the same left side!) is a solution of (1) with . (Verify!)r � r1 � r2r � r2

r � r1

r (x)

yp

r (x)

x2

yp

yp

yp

r (x)

r (x)yp

yp

r (x)yp

r (x)
r (x)

ys � ayr � by � r(x)

yp

yp

�y* � Y � ypyhc1, c2

Yr1x02 � y*r1x02 � yrp1x02.Y1x02 � y*1x02 � yp(x0).

x0

Y � y* � yp

yp
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The method is self-correcting. A false choice for or one with too few terms will lead
to a contradiction. A choice with too many terms will give a correct result, with superfluous
coefficients coming out zero.

Let us illustrate Rules (a)–(c) by the typical Examples 1–3.

yp

82 CHAP. 2 Second-Order Linear ODEs

Term in Choice for 

keax sin vx
keax cos vx
k sin vx
k cos vx

Knxn � Kn�1xn�1 � Á � K1x � K0kxn (n � 0, 1, Á )
Cegxkegx

yp(x)r (x)

Table 2.1 Method of Undetermined Coefficients

f eax(K cos vx � M sin vx)

fK cos vx � M sin vx

E X A M P L E  1 Application of the Basic Rule (a)

Solve the initial value problem

(5)

Solution. Step 1. General solution of the homogeneous ODE. The ODE has the general solution

Step 2. Solution of the nonhomogeneous ODE. We first try Then By substitution,
For this to hold for all x, the coefficient of each power of must be the same

on both sides; thus and a contradiction.
The second line in Table 2.1 suggests the choice

Then

Equating the coefficients of on both sides, we have Hence
This gives and

Step 3. Solution of the initial value problem. Setting and using the first initial condition gives
hence By differentiation and from the second initial condition,

and

This gives the answer (Fig. 50)

Figure 50 shows y as well as the quadratic parabola about which y is oscillating, practically like a sine curve 
since the cosine term is smaller by a factor of about �1>1000.

yp

y � 0.002 cos x � 1.5 sin x � 0.001x2 � 0.002.

yr(0) � B � 1.5.yr � yrh � yrp � �A sin x � B cos x � 0.002x

A � 0.002.y(0) � A � 0.002 � 0,
x � 0

y � yh � yp � A cos x � B sin x � 0.001x2 � 0.002.

yp � 0.001x2 � 0.002,K0 � �2K2 � �0.002.
K2 � 0.001, K1 � 0, 2K2 � K0 � 0.x2, x, x0

ysp � yp � 2K2 � K2x2 � K1x � K0 � 0.001x2.yp � K2 x
2 � K1x � K0.

2K � 0,K � 0.001
x (x2 and x0)2K � Kx2 � 0.001x2.

ysp � 2K.yp � Kx2.yp

yh � A cos x � B sin x.

ys � y � 0

yr(0) � 1.5.y(0) � 0,ys � y � 0.001x2,

1

0

2

–1
20 x

y

30 4010

Fig. 50. Solution in Example 1
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E X A M P L E  2 Application of the Modification Rule (b)

Solve the initial value problem

(6)

Solution. Step 1. General solution of the homogeneous ODE. The characteristic equation of the homogeneous
ODE is Hence the homogeneous ODE has the general solution

Step 2. Solution of the nonhomogeneous ODE. The function on the right would normally require
the choice . But we see from that this function is a solution of the homogeneous ODE, which
corresponds to a double root of the characteristic equation. Hence, according to the Modification Rule we have
to multiply our choice function by . That is, we choose

. Then .

We substitute these expressions into the given ODE and omit the factor . This yields

Comparing the coefficients of gives hence This gives the solution
. Hence the given ODE has the general solution

Step 3. Solution of the initial value problem. Setting in y and using the first initial condition, we obtain
Differentiation of y gives

From this and the second initial condition we have Hence This gives
the answer (Fig. 51)

The curve begins with a horizontal tangent, crosses the x-axis at (where ) and
approaches the axis from below as x increases. �

1 � 1.5x � 5x2 � 0x � 0.6217

y � (1 � 1.5x)e�1.5x � 5x2e�1.5x � (1 � 1.5x � 5x2)e�1.5x.

c2 � 1.5c1 � 1.5.yr(0) � c2 � 1.5c1 � 0.

yr � (c2 � 1.5c1 � 1.5c2x)e�1.5x � 10xe�1.5x � 7.5x2e�1.5x.

y(0) � c1 � 1.
x � 0

y � yh � yp � (c1 � c2x)e�1.5x � 5x2e�1.5x.

yp � �5x2e�1.5x
C � �5.0 � 0, 0 � 0, 2C � �10,x2, x, x0

C(2 � 6x � 2.25x2) � 3C(2x � 1.5x2) � 2.25Cx2 � �10.

e�1.5x

ysp � C(2 � 3x � 3x � 2.25x2)e�1.5xyrp � C(2x � 1.5x2)e�1.5x,yp � Cx2e�1.5x

x2

yhCe�1.5x
e�1.5xyp

yh � (c1 � c2˛

x)e�1.5x.

l2 � 3l � 2.25 � (l � 1.5)2 � 0.

yr(0) � 0.y(0) � 1,ys � 3yr � 2.25y � �10e�1.5x,
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Fig. 51. Solution in Example 2

54321 x
–0.5

–1.0

0

0.5

1.0
y

E X A M P L E  3 Application of the Sum Rule (c)

Solve the initial value problem

(7)

Solution. Step 1. General solution of the homogeneous ODE. The characteristic equation of the homogeneous
ODE is

which gives the general solution yh � c1e�x>2 � c2e�3x>2.

l2 � 2l � 0.75 � (l � 1
2) (l � 3

2) � 0

yr(0) � �0.43.y(0) � 2.78,ys � 2yr � 0.75y � 2 cos x � 0.25 sin x � 0.09x,
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Step 2. Particular solution of the nonhomogeneous ODE. We write and, following Table 2.1,
(C) and (B),

and

Differentiation gives and Substitution
of into the ODE in (7) gives, by comparing the cosine and sine terms,

hence and Substituting into the ODE in (7) and comparing the - and -terms gives

thus

Hence a general solution of the ODE in (7) is

Step 3. Solution of the initial value problem. From and the initial conditions we obtain

.

Hence This gives the solution of the IVP (Fig. 52)

�y � 3.1e�x>2 � sin x � 0.12x � 0.32.

c1 � 3.1, c2 � 0.

y(0) � c1 � c2 � 0.32 � 2.78,  yr(0) � �1
2  

c1 � 3
2 c2 � 1 � 0.12 � �0.4

y, yr

y � c1e�x>2 � c2e�3x>2 � sin x � 0.12x � 0.32.

K1 � 0.12, K0 � �0.32.0.75K1 � 0.09, 2K1 � 0.75K0 � 0,

x0xyp2M � 1.K � 0

�K � 2M � 0.75K � 2,  �M � 2K � 0.75M � �0.25,

yp1

yp2r � 1, yp2s � 0.yp1r � �K sin x � M cos x, yp1s � �K cos x � M sin x

yp2 � K1x � K0.yp1 � K cos x � M sin x

yp � yp1 � yp2
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Fig. 52. Solution in Example 3

x2 4 6 8 10 12 14 16 18 20

y

0

0.5

1
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2

2.5

3

–0.5

Stability. The following is important. If (and only if) all the roots of the characteristic
equation of the homogeneous ODE in (4) are negative, or have a negative
real part, then a general solution of this ODE goes to 0 as , so that the “transient
solution” of (4) approaches the “steady-state solution” . In this case the
nonhomogeneous ODE and the physical or other system modeled by the ODE are called
stable; otherwise they are called unstable. For instance, the ODE in Example 1 is unstable.

Applications follow in the next two sections.

ypy � yh � yp

x : �yh

ys � ayr � by � 0

1–10 NONHOMOGENEOUS LINEAR ODEs:
GENERAL SOLUTION 

Find a (real) general solution. State which rule you are
using. Show each step of your work.

1. ys � 5yr � 4y � 10e�3x

2.

3.

4.

5.

6. ys � yr � (p2 � 1
4)y � e�x>2 sin p x

ys � 4yr � 4y � e�x cos x

ys � 9y � 18 cos px

ys � 3yr � 2y � 12x2

10ys � 50yr � 57.6y � cos x

P R O B L E M  S E T  2 . 7
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7.

8.

9.

10.

11–18 NONHOMOGENEOUS LINEAR 
ODEs: IVPs

Solve the initial value problem. State which rule you are
using. Show each step of your calculation in detail.

11.

12.

13.

14.

15.

16.

17.
yr(0) � 0.35
(D2 � 0.2D � 0.26I)y � 1.22e0.5x, y(0) � 3.5,

(D2 � 2D)y � 6e2x � 4e�2x, y(0) � �1, yr(0) � 6

yp � ln xy(1) � 0, yr(1) � 1; 
(x2D2 � 3xD � 3I )y � 3 ln x � 4,

yr(0) � �1.5
ys � 4yr � 4y � e�2x sin 2x, y(0) � 1,

yr(0) � 0.05
8ys � 6yr � y � 6 cosh x, y(0) � 0.2,

ys � 4y � �12 sin 2x, y(0) � 1.8, yr(0) � 5.0

ys � 3y � 18x2, y(0) � �3, yr(0) � 0

(D2 � 2D � I )y � 2x sin x

(D2 � 16I )y � 9.6e4x � 30ex

(3D2 � 27I )y � 3 cos x � cos 3x

(D2 � 2D � 3
4 I )y � 3ex � 9

2 x
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18.

19. CAS PROJECT. Structure of Solutions of Initial
Value Problems. Using the present method, find,
graph, and discuss the solutions y of initial value
problems of your own choice. Explore effects on
solutions caused by changes of initial conditions.
Graph separately, to see the separate
effects. Find a problem in which (a) the part of y
resulting from decreases to zero, (b) increases,
(c) is not present in the answer y. Study a problem with

Consider a problem in which
you need the Modification Rule (a) for a simple root,
(b) for a double root. Make sure that your problems
cover all three Cases I, II, III (see Sec. 2.2).

20. TEAM PROJECT. Extensions of the Method of
Undetermined Coefficients. (a) Extend the method
to products of the function in Table 2.1, (b) Extend
the method to Euler–Cauchy equations. Comment on
the practical significance of such extensions.

y(0) � 0, yr(0) � 0.

yh

yp, y, y � yp

yr(0) � �2.2y(0) � 6.6, 
(D2 � 2D � 10I)y � 17 sin x � 37 sin 3x,

2.8 Modeling: Forced Oscillations. Resonance
In Sec. 2.4 we considered vertical motions of a mass–spring system (vibration of a mass
m on an elastic spring, as in Figs. 33 and 53) and modeled it by the homogeneous linear
ODE

(1)

Here as a function of time t is the displacement of the body of mass m from rest.
The mass–spring system of Sec. 2.4 exhibited only free motion. This means no external

forces (outside forces) but only internal forces controlled the motion. The internal forces
are forces within the system. They are the force of inertia the damping force 
(if ), and the spring force ky, a restoring force.c � 0

cyrmys,

y(t)

mys � cyr � ky � 0.

Dashpot

Mass

Springk

m

c

r(t)

Fig. 53. Mass on a spring
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We now extend our model by including an additional force, that is, the external force
on the right. Then we have

(2*)

Mechanically this means that at each instant t the resultant of the internal forces is in
equilibrium with The resulting motion is called a forced motion with forcing function

which is also known as input or driving force, and the solution to be obtained
is called the output or the response of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a driving force
of the form

Then we have the nonhomogeneous ODE

(2)

Its solution will reveal facts that are fundamental in engineering mathematics and allow
us to model resonance.

Solving the Nonhomogeneous ODE (2)
From Sec. 2.7 we know that a general solution of (2) is the sum of a general solution 
of the homogeneous ODE (1) plus any solution of (2). To find we use the method
of undetermined coefficients (Sec. 2.7), starting from

(3)

By differentiating this function (chain rule!) we obtain

Substituting and into (2) and collecting the cosine and the sine terms, we get

The cosine terms on both sides must be equal, and the coefficient of the sine term 
on the left must be zero since there is no sine term on the right. This gives the two
equations

(4)
(k � mv2)b � 0��vca

� F0vcb(k � mv2)a �

[(k � mv2)a � vcb] cos vt � [�vca � (k � mv2)b] sin vt � F0 cos vt.

yspyp, yrp,

 ysp � �v2a cos vt � v2b sin vt.

 yrp � �va sin vt � vb cos vt,

yp(t) � a cos vt � b sin vt.

yp,yp

yh

mys � cyr � ky � F0 cos vt.

(F0 � 0, v � 0).r(t) � F0 cos vt

y(t)r(t),
r(t).

mys � cyr � ky � r(t).

r(t),
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for determining the unknown coefficients a and b. This is a linear system. We can solve
it by elimination. To eliminate b, multiply the first equation by and the second
by and add the results, obtaining

Similarly, to eliminate a, multiply (the first equation by and the second by 
and add to get

If the factor is not zero, we can divide by this factor and solve for a
and b,

If we set as in Sec. 2.4, then and we obtain

(5)

We thus obtain the general solution of the nonhomogeneous ODE (2) in the form

(6)

Here is a general solution of the homogeneous ODE (1) and is given by (3) with
coefficients (5).

We shall now discuss the behavior of the mechanical system, distinguishing between
the two cases (no damping) and (damping). These cases will correspond to
two basically different types of output.

Case 1. Undamped Forced Oscillations. Resonance
If the damping of the physical system is so small that its effect can be neglected over the
time interval considered, we can set Then (5) reduces to 
and Hence (3) becomes (use )

(7)

Here we must assume that ; physically, the frequency of
the driving force is different from the natural frequency of the system, which is
the frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4*)
in Sec. 2.4 we have the general solution of the “undamped system”

(8)

We see that this output is a superposition of two harmonic oscillations of the frequencies
just mentioned.

y(t) � C cos (v0t � d) �
F0

m(v0
2 � v2)

 cos vt.

v0>(2p)
v>(2p) [cycles>sec]v2 � v0

2

yp(t) �
F0

m(v0
2 � v2)

 cos vt �
F0

k[1 � (v>v0)2]
 cos vt.

v0
2 � k>mb � 0.

a � F0>[m(v0
2 � v2)]c � 0.

c � 0c � 0

ypyh

y(t) � yh(t) � yp(t).

b � F0 
vc

m2(v0
2 � v2)2 � v2c2

 .a � F0 
m(v0

2 � v2)

m2(v0
2 � v2)2 � v2c2

 ,

k � mv0
22k>m � v0 ( � 0)

b � F0 
vc

(k � mv2)2 � v2c2
 .a � F0 

k � mv2

(k � mv2)2 � v2c2
 ,

(k � mv2)2 � v2c2

v2c2b � (k � mv2)2b � F0vc.

k � mv2vc

(k � mv2)2a � v2c2a � F0(k � mv2).

�vc
k � mv2
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Resonance. We discuss (7). We see that the maximum amplitude of is (put 

(9) where

depends on and If , then and tend to infinity. This excitation of large
oscillations by matching input and natural frequencies is called resonance. is
called the resonance factor (Fig. 54), and from (9) we see that is the ratio
of the amplitudes of the particular solution and of the input We shall see
later in this section that resonance is of basic importance in the study of vibrating systems.

In the case of resonance the nonhomogeneous ODE (2) becomes

(10)

Then (7) is no longer valid, and, from the Modification Rule in Sec. 2.7, we conclude that
a particular solution of (10) is of the form

yp(t) � t(a cos v0t � b sin v0t).

ys � v0
2 y �

F0

m  cos v0t.

F0 cos vt.yp

r>k � a0>F0

r(v � v0)
a0rv: v0v0.va0

r �
1

1 � (v>v0)2
 .a0 �

F0

k
 r

cos vt � 1)yp

88 CHAP. 2 Second-Order Linear ODEs

ω

ρ

ω
0

ω
1

Fig. 54. Resonance factor r(v)

By substituting this into (10) we find and . Hence (Fig. 55)

(11) yp(t) �
F0

2mv0
 t sin v0t.

b � F0>(2mv0)a � 0

yp

t

Fig. 55. Particular solution in the case of resonance

We see that, because of the factor t, the amplitude of the vibration becomes larger and
larger. Practically speaking, systems with very little damping may undergo large vibrations

c02.qxd  10/27/10  6:06 PM  Page 88



that can destroy the system. We shall return to this practical aspect of resonance later in
this section.

Beats. Another interesting and highly important type of oscillation is obtained if is
close to . Take, for example, the particular solution [see (8)]

(12)

Using (12) in App. 3.1, we may write this as

Since is close to , the difference is small. Hence the period of the last sine
function is large, and we obtain an oscillation of the type shown in Fig. 56, the dashed
curve resulting from the first sine factor. This is what musicians are listening to when
they tune their instruments.

v0 � vv0v

y(t) �
2F0

m(v0
2 � v2)

 sin av0 � v

2
 tb sin av0 � v

2
 tb .

(v � v0).y(t) �
F0

m(v0
2 � v2)

 (cos vt � cos v0t)

v0

v

SEC. 2.8 Modeling: Forced Oscillations. Resonance 89

y

t

Fig. 56. Forced undamped oscillation when the difference of the input 
and natural frequencies is small (“beats”)

Case 2. Damped Forced Oscillations
If the damping of the mass–spring system is not negligibly small, we have and
a damping term in (1) and (2). Then the general solution of the homogeneous
ODE (1) approaches zero as t goes to infinity, as we know from Sec. 2.4. Practically,
it is zero after a sufficiently long time. Hence the “transient solution” (6) of (2),
given by approaches the “steady-state solution” . This proves the
following.

T H E O R E M  1 Steady-State Solution

After a sufficiently long time the output of a damped vibrating system under a purely
sinusoidal driving force [see (2)] will practically be a harmonic oscillation whose
frequency is that of the input.

ypy � yh � yp,

yhcyr
c � 0
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Amplitude of the Steady-State Solution. Practical Resonance
Whereas in the undamped case the amplitude of approaches infinity as approaches

, this will not happen in the damped case. In this case the amplitude will always be
finite. But it may have a maximum for some depending on the damping constant c.
This may be called practical resonance. It is of great importance because if is not too
large, then some input may excite oscillations large enough to damage or even destroy
the system. Such cases happened, in particular in earlier times when less was known about
resonance. Machines, cars, ships, airplanes, bridges, and high-rising buildings are vibrating
mechanical systems, and it is sometimes rather difficult to find constructions that are
completely free of undesired resonance effects, caused, for instance, by an engine or by
strong winds.

To study the amplitude of as a function of , we write (3) in the form

(13)

C* is called the amplitude of and the phase angle or phase lag because it measures
the lag of the output behind the input. According to (5), these quantities are

(14)

Let us see whether has a maximum and, if so, find its location and then its size.
We denote the radicand in the second root in C* by R. Equating the derivative of C* to
zero, we obtain

The expression in the brackets [. . .] is zero if

(15)

By reshuffling terms we have

The right side of this equation becomes negative if so that then (15) has no
real solution and C* decreases monotone as increases, as the lowest curve in Fig. 57
shows. If c is smaller, then (15) has a real solution where

(15*)

From (15*) we see that this solution increases as c decreases and approaches as c
approaches zero. See also Fig. 57.

v0

vmax
2 � v0

2 �
c2

2m2
 .

v � vmax,c2 � 2mk,
v

c2 � 2mk,

2m2v2 � 2m2v0
2 � c2 � 2mk � c2.

(v0
2 � k>m).c2 � 2m2(v0

2 � v2)

dC*
dv

� F0 a� 
1
2

 R�3>2b
 

[2m2(v0
2 � v2)(�2v) � 2vc2].

C*(v)

tan h (v) �
b

a
�

vc

m(v0
2 � v2)

 .

C*(v) � 2a2 � b2 �
F0

2m2(v0
2 � v2)2 � v2c2

 ,

hyp

yp(t) � C* cos (vt � h).

vyp

c
v

v0

vyp
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The size of is obtained from (14), with given by (15*). For this
we obtain in the second radicand in (14) from (15*)

and

The sum of the right sides of these two formulas is

Substitution into (14) gives

(16)

We see that is always finite when Furthermore, since the expression

in the denominator of (16) decreases monotone to zero as goes to zero, the maximum
amplitude (16) increases monotone to infinity, in agreement with our result in Case 1. Figure 57
shows the amplification (ratio of the amplitudes of output and input) as a function of

for hence and various values of the damping constant c.
Figure 58 shows the phase angle (the lag of the output behind the input), which is less

than when and greater than for v � v0.p>2v � v0,p>2

v0 � 1,m � 1, k � 1,v

C*>F0

c2 ( �  2mk)

c24m2v0
2 � c4 � c2(4mk � c2)

c � 0.C*(vmax)

C*(vmax) �
2mF0

c24m2v0
2 � c2

 .

(c4 � 4m2v0
2c2 � 2c4)>(4m2) � c2(4m2v0

2 � c2)>(4m2).

vmax
2 c2 � av0

2 �
c2

2m2
b c2.m2(v0

2 � vmax
2 )2 �

c4

4m2

v2
v2 � vmax

2C*(vmax)
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4

3

2

0
0 1 2

c = 1

c = 2

c = 1_
4

c = 1_
2

C*
F0

1

ω

Fig. 57. Amplification as a function of
for and various values of the

damping constant c
m � 1, k � 1,v

C*>F0

η

ω

c = 1/2

__
2

c = 0

c = 1
c = 2

π

π

0
0

1 2

Fig. 58. Phase lag as a function of for
thus and various values

of the damping constant c
v0 � 1,m � 1, k � 1,

vh

1. WRITING REPORT. Free and Forced Vibrations.
Write a condensed report of 2–3 pages on the most
important similarities and differences of free and forced
vibrations, with examples of your own. No proofs.

2. Which of Probs. 1–18 in Sec. 2.7 (with time t)
can be models of mass–spring systems with a harmonic
oscillation as steady-state solution?

x �

3–7 STEADY-STATE SOLUTIONS 
Find the steady-state motion of the mass–spring system
modeled by the ODE. Show the details of your work.

3.

4.

5. (D2 � D � 4.25I )y � 22.1 cos 4.5t

ys � 2.5yr � 10y � �13.6 sin 4t

ys � 6yr � 8y � 42.5 cos 2t

P R O B L E M  S E T  2 . 8

c02.qxd  10/27/10  6:06 PM  Page 91



92 CHAP. 2 Second-Order Linear ODEs

k = 1m = 1

F = 0

F = 1 – t2/π2
F

1

π t

Fig. 59. Problem 24

Fig. 60. Typical solution curves in CAS Experiment 25

6.

7.

8–15 TRANSIENT SOLUTIONS 
Find the transient motion of the mass–spring system
modeled by the ODE. Show the details of your work.

8.

9.

10.

11.

12.

13.

14.

15.

16–20 INITIAL VALUE PROBLEMS
Find the motion of the mass–spring system modeled by the
ODE and the initial conditions. Sketch or graph the solution
curve. In addition, sketch or graph the curve of to
see when the system practically reaches the steady state.

16.

17.

18.

19.

20.

21. Beats. Derive the formula after (12) from (12). Can
we have beats in a damped system?

22. Beats. Solve 
How does the graph of the solution change

if you change (a) (b) the frequency of the driving
force?

23. TEAM EXPERIMENT. Practical Resonance.
(a) Derive, in detail, the crucial formula (16).

(b) By considering show that in-
creases as decreases.

(c) Illustrate practical resonance with an ODE of your
own in which you vary c, and sketch or graph
corresponding curves as in Fig. 57.

(d) Take your ODE with c fixed and an input of two
terms, one with frequency close to the practical
resonance frequency and the other not. Discuss and
sketch or graph the output.

(e) Give other applications (not in the book) in which
resonance is important.

c (	 12mk)
C*(vmax)dC*>dc

y(0),
(0) � 0.yr

y(0) � 2,ys � 25y � 99 cos 4.9t, 

 yr(0) � 0(D2 � 5I )y � cos pt � sin pt, y(0) � 0,

yr(0) � 1
(D2 � 2D � 2I )y � e�t>2 sin 12 t, y(0) � 0,

yr(0) � 9.4
(D2 � 8D � 17I )y � 474.5 sin 0.5t, y(0) � �5.4,

y(0) � 0, yr(0) � 3
35

(D2 � 4I)y � sin t � 1
3 sin 3t � 1

5 sin 5t,

ys � 25y � 24 sin t, y(0) � 1, yr(0) � 1

y � yp

(D2 � 4D � 8I )y � 2 cos 2t � sin 2t

(D2 � I )y � 5e�t cos t

(D2 � I )y � cos vt, v2 � 1

(D2 � 2D � 5I )y � 4 cos t � 8 sin t

(D2 � 2I )y � cos 12t � sin12t

ys � 16y � 56 cos 4t

ys � 3yr � 3.25y � 3 cos t � 1.5 sin t

2ys � 4yr � 6.5y � 4 sin 1.5t

(4D2 � 12D � 9I )y � 225 � 75 sin 3t

(D2 � 4D � 3I )y � cos t � 1
3 cos 3t 24. Gun barrel. Solve if 

and 0 if here, This
models an undamped system on which a force F acts
during some interval of time (see Fig. 59), for instance,
the force on a gun barrel when a shell is fired, the barrel
being braked by heavy springs (and then damped by a
dashpot, which we disregard for simplicity). Hint: At 
both y and must be continuous.yr

p

y(0) � 0, yr(0) � 0.t : �;t 	 p
0 	ys � y � 1 � t 2>p2

25. CAS EXPERIMENT. Undamped Vibrations.
(a) Solve the initial value problem 

Show that the solution
can be written

(b) Experiment with the solution by changing to
see the change of the curves from those for small

to beats, to resonance, and to large values of
(see Fig. 60).v

v (�  0)

v

y (t) �
2

1 � v2 sin [1
2 (1 � v)t] sin [1

2 (1 � v)t].

v2 � 1, y(0) � 0, yr(0) � 0.
ys � y � cos vt,

10π 20π

1

–1

ω = 0.2

20π

10

–10

ω = 0.9

0.04

–0.04

0.04

ω = 6

10π
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2.9 Modeling: Electric Circuits
Designing good models is a task the computer cannot do. Hence setting up models has
become an important task in modern applied mathematics. The best way to gain experience
in successful modeling is to carefully examine the modeling process in various fields and
applications. Accordingly, modeling electric circuits will be profitable for all students,
not just for electrical engineers and computer scientists.

Figure 61 shows an RLC-circuit, as it occurs as a basic building block of large electric
networks in computers and elsewhere. An RLC-circuit is obtained from an RL-circuit by
adding a capacitor. Recall Example 2 on the RL-circuit in Sec. 1.5: The model of the
RL-circuit is It was obtained by KVL (Kirchhoff’s Voltage Law)7 by
equating the voltage drops across the resistor and the inductor to the EMF (electromotive
force). Hence we obtain the model of the RLC-circuit simply by adding the voltage drop
Q C across the capacitor. Here, C F (farads) is the capacitance of the capacitor. Q coulombs
is the charge on the capacitor, related to the current by

See also Fig. 62. Assuming a sinusoidal EMF as in Fig. 61, we thus have the model of
the RLC-circuit

I(t) �
dQ

dt
,  equivalently  Q(t) � �I(t) dt.

>

LIr � RI � E(t).

SEC. 2.9 Modeling: Electric Circuits 93

7GUSTAV ROBERT KIRCHHOFF (1824–1887), German physicist. Later we shall also need Kirchhoff’s
Current Law (KCL):

At any point of a circuit, the sum of the inflowing currents is equal to the sum of the outflowing currents.

The units of measurement of electrical quantities are named after ANDRÉ MARIE AMPÈRE (1775–1836),
French physicist, CHARLES AUGUSTIN DE COULOMB (1736–1806), French physicist and engineer,
MICHAEL FARADAY (1791–1867), English physicist, JOSEPH HENRY (1797–1878), American physicist,
GEORG SIMON OHM (1789–1854), German physicist, and ALESSANDRO VOLTA (1745–1827), Italian
physicist.

R L

C

E(t) = E
0
 sin ωtω

Fig. 61. RLC-circuit

Fig. 62. Elements in an RLC-circuit

Name

Ohm’s Resistor

Inductor

Capacitor

Symbol Notation

R    Ohm’s Resistance

L    Inductance

C    Capacitance

Unit

ohms ()

henrys (H)

farads (F)

Voltage Drop

RI

L

Q/C

dI
dt
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This is an “integro-differential equation.” To get rid of the integral, we differentiate 
with respect to t, obtaining

(1)

This shows that the current in an RLC-circuit is obtained as the solution of this
nonhomogeneous second-order ODE (1) with constant coefficients.

In connection with initial value problems, we shall occasionally use

obtained from and 

Solving the ODE (1) for the Current in an RLC-Circuit
A general solution of (1) is the sum where is a general solution of the
homogeneous ODE corresponding to (1) and is a particular solution of (1). We first
determine by the method of undetermined coefficients, proceeding as in the previous
section. We substitute

(2)

into (1). Then we collect the cosine terms and equate them to on the right,
and we equate the sine terms to zero because there is no sine term on the right,

(Cosine terms)

(Sine terms).

Before solving this system for a and b, we first introduce a combination of L and C, called
the reactance

(3)

Dividing the previous two equations by ordering them, and substituting S gives

 �Ra � Sb � 0.

 �Sa � Rb � E0

v,

S � vL �
1
vC

 .

Lv2(�b) � Rv(�a) � b>C � 0

Lv2(�a) � Rvb � a>C � E0v

E0v cos vt

 Ips � v2(�a cos vt � b sin vt)

 Ipr � v(�a sin vt � b cos vt)

 Ip � a cos vt � b sin vt

Ip

Ip

IhI � Ih � Ip,

I � Qr.(1r)

LQs � RQs �
1
C

Q � E(t),(1s)

LIs � RIr �
1
C  

 I � Er(t) � E0v cos vt.

(1r)

LIr � RI �
1
C �I dt � E(t) � E0 sin vt.(1r)
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We now eliminate b by multiplying the first equation by S and the second by R, and
adding. Then we eliminate a by multiplying the first equation by R and the second by

and adding. This gives

We can solve for a and b,

(4)

Equation (2) with coefficients a and b given by (4) is the desired particular solution of
the nonhomogeneous ODE (1) governing the current I in an RLC-circuit with sinusoidal
electromotive force.

Using (4), we can write in terms of “physically visible” quantities, namely, amplitude
and phase lag of the current behind the EMF, that is,

(5)

where [see (14) in App. A3.1]

The quantity is called the impedance. Our formula shows that the impedance
equals the ratio This is somewhat analogous to (Ohm’s law) and, because
of this analogy, the impedance is also known as the apparent resistance.

A general solution of the homogeneous equation corresponding to (1) is

where and are the roots of the characteristic equation

We can write these roots in the form and where

Now in an actual circuit, R is never zero (hence ). From this it follows that 
approaches zero, theoretically as but practically after a relatively short time. Hence
the transient current tends to the steady-state current and after some time
the output will practically be a harmonic oscillation, which is given by (5) and whose
frequency is that of the input (of the electromotive force).

Ip,I � Ih � Ip

t : �,
IhR � 0

b �
B

R2

4L2
�

1
LC

�
1

2L
 
B

R2 �
4L
C

 .a �
R
2L

 ,

l2 � �a � b,l1 � �a � b

l2 �
R
L

 l �
1

LC
� 0.

l2l1

Ih � c1el1t � c2el2t

E>I � RE0>I0.
2R2 � S2

tan u � � 
a

b
�

S

R
 .I0 � 2a2 � b2 �

E0

2R2 � S2
 ,

Ip(t) � I0 sin (vt � u)

uI0

Ip

Ip

b �
E0 R

R2 � S2
 .a �

�E0 S

R2 � S2
 ,

(R2 � S2)b � E0 R.�(S2 � R2)a � E0 S,

�S,
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E X A M P L E  1 RLC-Circuit

Find the current in an RLC-circuit with (ohms), (henry), (farad), which
is connected to a source of EMF sin 377 t (hence 60 cycles sec, the
usual in the U.S. and Canada; in Europe it would be 220 V and 50 Hz). Assume that current and capacitor
charge are 0 when 

Solution. Step 1. General solution of the homogeneous ODE. Substituting R, L, C and the derivative 
into (1), we obtain

Hence the homogeneous ODE is Its characteristic equation is

The roots are and The corresponding general solution of the homogeneous ODE is

Step 2. Particular solution of (1). We calculate the reactance and the steady-state
current

with coefficients obtained from (4) (and rounded)

Hence in our present case, a general solution of the nonhomogeneous ODE (1) is

(6)

Step 3. Particular solution satisfying the initial conditions. How to use We finally determine 
and from the in initial conditions and From the first condition and (6) we have

(7) hence

We turn to The integral in equals see near the beginning of this section. Hence for
Eq. becomes

so that

Differentiating (6) and setting we thus obtain

The solution of this and (7) is Hence the answer is

You may get slightly different values depending on the rounding. Figure 63 shows as well as which
practically coincide, except for a very short time near because the exponential terms go to zero very rapidly.
Thus after a very short time the current will practically execute harmonic oscillations of the input frequency

cycles sec. Its maximum amplitude and phase lag can be seen from (5), which here takes the form

�Ip(t) � 2.824 sin (377t � 1.29).

>60 Hz � 60

t � 0
Ip(t),I(t)

I(t) � �0.323e�10t � 3.033e�100t � 2.71 cos 377t � 0.796 sin 377t .

c1 � �0.323, c2 � 3.033.

Ir(0) � �10c1 � 100c2 � 0 � 0.796 # 377 � 0,  hence by (7),  �10c1 � 100(2.71 � c1) � 300.1.

t � 0,

Ir(0) � 0.LIr(0) � R # 0 � 0,

(1r)t � 0,
�I dt � Q(t);(1r)Q(0) � 0.

c2 � 2.71 � c1.I(0) � c1 � c2 � 2.71 � 0,

Q(0) � 0.I(0) � 0c2

c1Q(0) � 0?

I(t) � c1e�10t � c2e�100t � 2.71 cos 377t � 0.796 sin 377t.

a �
�110 # 37.4

112 � 37.42
� �2.71,  b �

110 # 11

112 � 37.42
� 0.796.

Ip(t) � a cos 377t � b sin 377t

S � 37.7 � 0.3 � 37.4Ip

Ih(t) � c1e�10t � c2e�100t.

l2 � �100.l1 � �10

0.1l2 � 11l � 100 � 0.

0.1Is � 11Ir � 100I � 0.

0.1Is � 11Ir � 100I � 110 # 377 cos 377t.

Er(t)

t � 0.

>Hz � 60E(t) � 110 sin (60 # 2pt) � 110
C � 10�2 FL � 0.1 HR � 11 I(t)
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Analogy of Electrical and Mechanical Quantities
Entirely different physical or other systems may have the same mathematical model.
For instance, we have seen this from the various applications of the ODE in
Chap. 1. Another impressive demonstration of this unifying power of mathematics is
given by the ODE (1) for an electric RLC-circuit and the ODE (2) in the last section for
a mass–spring system. Both equations

and

are of the same form. Table 2.2 shows the analogy between the various quantities involved.
The inductance L corresponds to the mass m and, indeed, an inductor opposes a change
in current, having an “inertia effect” similar to that of a mass. The resistance R corresponds
to the damping constant c, and a resistor causes loss of energy, just as a damping dashpot
does. And so on.

This analogy is strictly quantitative in the sense that to a given mechanical system we
can construct an electric circuit whose current will give the exact values of the displacement
in the mechanical system when suitable scale factors are introduced.

The practical importance of this analogy is almost obvious. The analogy may be used
for constructing an “electrical model” of a given mechanical model, resulting in substantial
savings of time and money because electric circuits are easy to assemble, and electric
quantities can be measured much more quickly and accurately than mechanical ones.

mys � cyr � ky � F0 cos vtLIs � RIr �
1
C

I � E0v cos vt

yr � ky
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t0 0.02 0.03 0.04 0.050.01

2

–2

–3

1

–1

3I (t )

Fig. 63. Transient (upper curve) and steady-state currents in Example 1

Table 2.2 Analogy of Electrical and Mechanical Quantities

Electrical System Mechanical System

Inductance L Mass m
Resistance R Damping constant c
Reciprocal 1 C of capacitance Spring modulus k
Derivative of } Driving force 

electromotive force
Current Displacement y(t)I(t)

F0 cos vt
E0v cos vt
>
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Related to this analogy are transducers, devices that convert changes in a mechanical
quantity (for instance, in a displacement) into changes in an electrical quantity that can
be monitored; see Ref. [GenRef11] in App. 1.
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1–6 RLC-CIRCUITS: SPECIAL CASES
1. RC-Circuit. Model the RC-circuit in Fig. 64. Find the

current due to a constant E.

P R O B L E M  S E T  2 . 9

Fig. 64. RC-circuit

2. RC-Circuit. Solve Prob. 1 when and 
R, C, , and are arbitrary.

3. RL-Circuit. Model the RL-circuit in Fig. 66. Find a
general solution when R, L, E are any constants. Graph
or sketch solutions when H, , and
E � 48 V.

R � 10 L � 0.25

vE0

E � E0 sin vt

4. RL-Circuit. Solve Prob. 3 when and R,
L, and are arbitrary. Sketch a typical solution.E0,

E � E0 sin vt

5. LC-Circuit. This is an RLC-circuit with negligibly
small R (analog of an undamped mass–spring system).
Find the current when , , and

, assuming zero initial current and charge.E � sin t V
C � 0.005 FL � 0.5 H

6. LC-Circuit. Find the current when ,
F, , and initial current and charge

zero.

7–18 GENERAL RLC-CIRCUITS
7. Tuning. In tuning a stereo system to a radio station,

we adjust the tuning control (turn a knob) that changes
C (or perhaps L) in an RLC-circuit so that the amplitude
of the steady-state current (5) becomes maximum. For
what C will this happen?

8–14 Find the steady-state current in the RLC-circuit
in Fig. 61 for the given data. Show the details of your work.

8.
9.

10. R � 2 , L � 1 H, C � 1
20 F, E � 157 sin 3t V

R � 4 , L � 0.1 H, C � 0.05 F, E � 110 V
R �  4 , L � 0.5 H, C � 0.1 F, E � 500 sin 2t V

E � 2t 2 VC � 0.005
L � 0.5 H

E(t)

C

R

Fig. 65. Current 1 in Problem 1

Current I(t)

t

c

Fig. 67. Currents in Problem 3

0.020 0.04 0.06 0.08 0.1

Current I(t)

t

1

2

3

4

5

Fig. 68. Typical current 
in Problem 4

I � e�0.1t � sin (t � 1
4  
p)

0.5

–0.5

–1

1

1.5

2

Current I(t)

t12π4π 8π

Fig. 66. RL-circuit

E(t)

L

R Fig. 69. LC-circuit

C L

E(t)
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11.

12.

13.

14. Prove the claim in the text that if (hence 
then the transient current approaches as 

15. Cases of damping. What are the conditions for an 
RLC-circuit to be (I) overdamped, (II) critically damped,
(III) underdamped? What is the critical resistance 
(the analog of the critical damping constant )?

16–18 Solve the initial value problem for the RLC-
circuit in Fig. 61 with the given data, assuming zero initial
current and charge. Graph or sketch the solution. Show the
details of your work.

21mk
Rcrit

t : �.Ip

R � 0),R � 0

E � 12,000 sin 25t V
R � 12, L � 1.2 H, C � 20

3
# 10�3 F,

R � 0.2 , L � 0.1 H, C � 2 F, E � 220 sin 314t V

E � 220 sin 10t V
R � 12 , L � 0.4 H, C � 1

80 F,
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16.

17.

18.

19. WRITING REPORT. Mechanic-Electric Analogy.
Explain Table 2.2 in a 1–2 page report with examples,
e.g., the analog (with ) of a mass–spring system
of mass 5 kg, damping constant 10 kg sec, spring constant

, and driving force 

20. Complex Solution Method. Solve 
by substituting 

(K unknown) and its derivatives and taking the real
part of the solution . Show agreement with (2), (4).
Hint: Use (11) cf. Sec. 2.2,
and i2 � �1.

eivt � cos vt � i sin vt;
I
~
pIp

Ip � Keivti � 1�1,I
~
>C � E0eivt,

LI
~s � RI

~r �

220 cos 10t kg>sec.60 kg>sec2
>

L � 1 H

E � 820 cos 10t V
R � 18 , L � 1 H, C � 12.5 # 10�3 F,

E � 600 (cos t � 4 sin t) V
R � 6 , L � 1 H, C � 0.04 F,

E � 100 sin 10t V
R � 8 , L � 0.2 H, C � 12.5 # 10�3 F,

2.10 Solution by Variation of Parameters
We continue our discussion of nonhomogeneous linear ODEs, that is

(1)

In Sec. 2.6 we have seen that a general solution of (1) is the sum of a general solution 
of the corresponding homogeneous ODE and any particular solution of (1). To obtain 
when is not too complicated, we can often use the method of undetermined coefficients,
as we have shown in Sec. 2.7 and applied to basic engineering models in Secs. 2.8 and 2.9.

However, since this method is restricted to functions whose derivatives are of a form
similar to itself (powers, exponential functions, etc.), it is desirable to have a method valid
for more general ODEs (1), which we shall now develop. It is called the method of variation
of parameters and is credited to Lagrange (Sec. 2.1). Here p, q, r in (1) may be variable
(given functions of x), but we assume that they are continuous on some open interval I.

Lagrange’s method gives a particular solution of (1) on I in the form

(2)

where form a basis of solutions of the corresponding homogeneous ODE

(3)

on I, and W is the Wronskian of 

(4) (see Sec. 2.6).

CAUTION! The solution formula (2) is obtained under the assumption that the ODE
is written in standard form, with as the first term as shown in (1). If it starts with

divide first by f (x).f (x)ys,
ys

W � y1y2r � y2y1r

y1, y2,

ys � p(x)yr � q(x)y � 0

y1, y2

yp(x) � �y1� y2r

W
 dx � y2� y1r

W
 dx

yp

r (x)
r (x)

r (x)
ypyp

yh

ys � p(x)yr � q(x)y � r (x).
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The integration in (2) may often cause difficulties, and so may the determination of
if (1) has variable coefficients. If you have a choice, use the previous method. It is

simpler. Before deriving (2) let us work an example for which you do need the new
method. (Try otherwise.)

E X A M P L E  1 Method of Variation of Parameters

Solve the nonhomogeneous ODE

Solution. A basis of solutions of the homogeneous ODE on any interval is . This gives
the Wronskian

From (2), choosing zero constants of integration, we get the particular solution of the given ODE

(Fig. 70)

Figure 70 shows and its first term, which is small, so that essentially determines the shape of the curve
of . (Recall from Sec. 2.8 that we have seen in connection with resonance, except for notation.) From

and the general solution of the homogeneous ODE we obtain the answer

Had we included integration constants in (2), then (2) would have given the additional
that is, a general solution of the given ODE directly from (2). This will

always be the case. �
c1 cos x � c2 sin x � c1y1 � c2y2,

�c1, c2

y � yh � yp � (c1 � ln ƒ cos x ƒ ) cos x � (c2 � x) sin x.

yh � c1y1 � c2y2yp

x sin xyp

x sin xyp

 � cos x ln ƒ cos x ƒ � x sin x

 yp � �cos x�sin x sec x dx � sin x�cos x sec x dx

W( y1, y2) � cos x cos x � sin x (�sin x) � 1.

y1 � cos x, y2 � sin x

ys � y � sec x �
1

cos x
 .

y1, y 2

100 CHAP. 2 Second-Order Linear ODEs

y

x
0

4 82

5

10

–5

–10

6 10 12

Fig. 70. Particular solution yp and its first term in Example 1

Idea of the Method. Derivation of (2)
What idea did Lagrange have? What gave the method the name? Where do we use the
continuity assumptions?

The idea is to start from a general solution

yh(x) � c1y1(x) � c2y2(x)
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of the homogeneous ODE (3) on an open interval I and to replace the constants (“the
parameters”) and by functions and this suggests the name of the method.
We shall determine u and v so that the resulting function

(5)

is a particular solution of the nonhomogeneous ODE (1). Note that exists by Theorem
3 in Sec. 2.6 because of the continuity of p and q on I. (The continuity of r will be used
later.)

We determine u and v by substituting (5) and its derivatives into (1). Differentiating (5),
we obtain

Now must satisfy (1). This is one condition for two functions u and v. It seems plausible
that we may impose a second condition. Indeed, our calculation will show that we can
determine u and v such that satisfies (1) and u and v satisfy as a second condition the
equation

(6)

This reduces the first derivative to the simpler form

(7)

Differentiating (7), we obtain

(8)

We now substitute and its derivatives according to (5), (7), (8) into (1). Collecting
terms in u and terms in v, we obtain

Since and are solutions of the homogeneous ODE (3), this reduces to

(9a)

Equation (6) is

(9b)

This is a linear system of two algebraic equations for the unknown functions and 
We can solve it by elimination as follows (or by Cramer’s rule in Sec. 7.6). To eliminate

we multiply (9a) by and (9b) by and add, obtaining

Here, W is the Wronskian (4) of To eliminate we multiply (9a) by and (9b)
by and add, obtaining�y1r

y1,ury1, y2.

ur(y1y2r � y2y1r) � �y2r,  thus  urW � �y2r.

y2r�y2 vr,

vr.ur

ury1 � vry2 � 0.

ury1r � vry2r � r.

y2y1

u( y1s � py1r � qy1) � v( y2s � py2r � qy2) � ury1r � vry2r � r.

yp

yps � ury1r � uy1s � vry2r � vy2s.

ypr � uy1r � vy2r.

ypr

ury1 � vry2 � 0.

yp

yp

ypr � ury1 � uy1r � vry2 � vy2r.

yh

yp(x) � u(x)y1(x) � v(x)y2(x)

v(x);u(x)c2c1
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Since form a basis, we have (by Theorem 2 in Sec. 2.6) and can divide by W,

(10)

By integration,

These integrals exist because is continuous. Inserting them into (5) gives (2) and
completes the derivation. �

r (x)

u � �� y2r

W
 dx,  v � � y1r

W
 dx.

ur � � 

y2r

W
 ,  vr �

y1r

W
 .

W � 0y1, y 2

vr(y1y 2r � y2yr1) � �y1r,  thus  vrW � y1r.
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1–13 GENERAL SOLUTION 
Solve the given nonhomogeneous linear ODE by variation
of parameters or undetermined coefficients. Show the
details of your work.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. (D2 � 2D � 2I )y � 4e�x sec3
 x

(D2 � 2D � I )y � 35x3>2ex

(D2 � 4I )y � cosh 2x

(D2 � 4D � 4I )y � 6e2x>x4

(D2 � 6D � 9I )y � 16e�3x>(x2 � 1)

ys � y � cos x � sin x

ys � 4yr � 5y � e2x csc x

x2ys � 2xyr � 2y � x3 sin x

ys � 9y � csc 3x

ys � 9y � sec 3x

11.

12.

13.

14. TEAM PROJECT. Comparison of Methods. Inven-
tion. The undetermined-coefficient method should be
used whenever possible because it is simpler. Compare
it with the present method as follows.

(a) Solve by both methods,
showing all details, and compare.

(b) Solve 
by applying each method to a suitable function on

the right.

(c) Experiment to invent an undetermined-coefficient
method for nonhomogeneous Euler–Cauchy equations.

x2
r2 �ys � 2yr � y � r1 � r2, r1 � 35x3>2ex

ys � 4yr � 3y � 65 cos 2x

(x2D2 � xD � 9I )y � 48x5

(D2 � I )y � 1>cosh x

(x2D2 � 4xD � 6I )y � 21x�4

P R O B L E M  S E T  2 . 1 0

1. Why are linear ODEs preferable to nonlinear ones in
modeling?

2. What does an initial value problem of a second-order
ODE look like? Why must you have a general solution
to solve it?

3. By what methods can you get a general solution of a
nonhomogeneous ODE from a general solution of a
homogeneous one?

4. Describe applications of ODEs in mechanical systems.
What are the electrical analogs of the latter?

5. What is resonance? How can you remove undesirable
resonance of a construction, such as a bridge, a ship,
or a machine?

6. What do you know about existence and uniqueness of
solutions of linear second-order ODEs?

7–18 GENERAL SOLUTION
Find a general solution. Show the details of your calculation.

7.
8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18. yys � 2yr2
(4D2 � 12D � 9I )y � 2e1.5x

(D2 � 2D � 2I )y � 3e�x cos 2x

(2D2 � 3D � 2I )y � 13 � 2x2

(x2D2 � xD � 9I )y � 0

(x2D2 � 2xD � 12I )y � 0

(D2 � 4pD � 4p2I )y � 0

(100D2 � 160D � 64I )y � 0

ys � 0.20yr � 0.17y � 0

ys � 6yr � 34y � 0

ys � yr � 12y � 0

4ys � 32yr � 63y � 0

C H A P T E R  2  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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19–22 INITIAL VALUE PROBLEMS 
Solve the problem, showing the details of your work.
Sketch or graph the solution.

19.
20.

21.

22.

23–30 APPLICATIONS
23. Find the steady-state current in the RLC-circuit in Fig. 71

when and
(66 cycles sec).

24. Find a general solution of the homogeneous linear
ODE corresponding to the ODE in Prob. 23.

25. Find the steady-state current in the RLC-circuit 
in Fig. 71 when 

.E � 200 sin 4t V
R � 50 , L � 30 H, C � 0.025 F,

>E � 110 sin 415t V
R � 2 k (2000 ), L � 1 H, C � 4 # 10�3 F,

yr(1) � �11
(x2D2 � 15xD � 49I )y � 0, y(1) � 2,

(x2D2 � xD � I )y � 16x3, y(1) � �1, yr(1) � 1

ys � 3yr � 2y � 10 sin x, y(0) � 1, yr(0) � �6

ys � 16y � 17ex, y(0) � 6, yr(0) � �2
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27. Find an electrical analog of the mass–spring system
with mass 4 kg, spring constant 10 damping
constant 20 kg sec, and driving force 

28. Find the motion of the mass–spring system in Fig. 72
with mass 0.125 kg, damping 0, spring constant
1.125 and driving force ass-
uming zero initial displacement and velocity. For what
frequency of the driving force would you get resonance?

cos t � 4 sin t nt,kg>sec2,

100 sin 4t nt.>
kg>sec2,

29. Show that the system in Fig. 72 with 
and driving force exhibits beats.

Hint: Choose zero initial conditions.

30. In Fig. 72, let kg, kg sec, 
and nt. Determine w such that you
get the steady-state vibration of maximum possible
amplitude. Determine this amplitude. Then find the
general solution with this and check whether the results
are in agreement.

v

r(t) � 10 cos vt
kg>sec2,k � 24>c � 4m � 1

61 cos 3.1tk � 36,
m � 4, c � 0,

Fig. 71. RLC-circuit
E(t )

C

R L

Fig. 72. Mass–spring system

Dashpot

Mass

Springk

m

c

Second-order linear ODEs are particularly important in applications, for instance,
in mechanics (Secs. 2.4, 2.8) and electrical engineering (Sec. 2.9). A second-order
ODE is called linear if it can be written

(1) (Sec. 2.1).

(If the first term is, say, divide by to get the “standard form” (1) with
as the first term.) Equation (1) is called homogeneous if is zero for all x

considered, usually in some open interval; this is written Then

(2)

Equation (1) is called nonhomogeneous if (meaning is not zero for
some x considered).

r (x)r (x) [ 0

ys � p(x)yr � q(x)y � 0.

r (x) � 0.
r (x)ys

f (x)f (x)ys,

ys � p(x)yr � q(x)y � r (x)

SUMMARY OF CHAPTER 2
Second-Order Linear ODEs

26. Find the current in the RLC-circuit in Fig. 71 
when

(50 cycles sec).>220 sin 314t V
E �C � 10�4 F,L � 0.4 H,R � 40 ,
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For the homogeneous ODE (2) we have the important superposition principle (Sec.
2.1) that a linear combination of two solutions is again a solution.

Two linearly independent solutions of (2) on an open interval I form a basis
(or fundamental system) of solutions on I. and with arbitrary
constants a general solution of (2) on I. From it we obtain a particular
solution if we specify numeric values (numbers) for and usually by prescribing
two initial conditions

(3) given numbers; Sec. 2.1).

(2) and (3) together form an initial value problem. Similarly for (1) and (3). 
For a nonhomogeneous ODE (1) a general solution is of the form

(4) (Sec. 2.7).

Here is a general solution of (2) and is a particular solution of (1). Such a 
can be determined by a general method (variation of parameters, Sec. 2.10) or in
many practical cases by the method of undetermined coefficients. The latter applies
when (1) has constant coefficients p and q, and is a power of x, sine, cosine,
etc. (Sec. 2.7). Then we write (1) as

(5) (Sec. 2.7).

The corresponding homogeneous ODE has solutions 
where is a root of

(6)

Hence there are three cases (Sec. 2.2):

l2 � al � b � 0.

l

y � elx,yr � ayr � by � 0

ys � ayr � by � r (x)

r (x)

ypypyh

y � yh � yp

(x0, K0, K1yr(x0) � K1y(x0) � K0,

c2,c1

c1, c2

y � c1y1 � c2y2

y1, y2

y1, y2y � ky1 � ly2

104 CHAP. 2 Second-Order Linear ODEs

Case Type of Roots General Solution

I Distinct real 
II Double 
III Complex y � e�ax>2(A cos v*x � B sin v*x)�1

2 
a � iv*

y � (c1 � c2x)e�ax>2�1
2 

a
y � c1el1x � c2el2xl1, l2

Here is used since is needed in driving forces.
Important applications of (5) in mechanical and electrical engineering in connection

with vibrations and resonance are discussed in Secs. 2.4, 2.7, and 2.8.
Another large class of ODEs solvable “algebraically” consists of the Euler–Cauchy

equations

(7) (Sec. 2.5).

These have solutions of the form where m is a solution of the auxiliary equation

(8)

Existence and uniqueness of solutions of (1) and (2) is discussed in Secs. 2.6
and 2.7, and reduction of order in Sec. 2.1.

m2 � (a � 1)m � b � 0.

y � xm,

x2ys � axyr � by � 0

vv*
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105

C H A P T E R 3

Higher Order Linear ODEs

The concepts and methods of solving linear ODEs of order extend nicely to linear
ODEs of higher order n, that is, etc. This shows that the theory explained in
Chap. 2 for second-order linear ODEs is attractive, since it can be extended in a
straightforward way to arbitrary n. We do so in this chapter and notice that the formulas
become more involved, the variety of roots of the characteristic equation (in Sec. 3.2)
becomes much larger with increasing n, and the Wronskian plays a more prominent role.

The concepts and methods of solving second-order linear ODEs extend readily to linear
ODEs of higher order.

This chapter follows Chap. 2 naturally, since the results of Chap. 2 can be readily
extended to that of Chap. 3.

Prerequisite: Secs. 2.1, 2.2, 2.6, 2.7, 2.10.
References and Answers to Problems: App. 1 Part A, and App. 2.

3.1 Homogeneous Linear ODEs
Recall from Sec. 1.1 that an ODE is of nth order if the nth derivative of
the unknown function is the highest occurring derivative. Thus the ODE is of the form

where lower order derivatives and y itself may or may not occur. Such an ODE is called
linear if it can be written

(1)

(For this is (1) in Sec. 2.1 with and .) The coefficients
and the function r on the right are any given functions of x, and y is unknown. has
coefficient 1. We call this the standard form. (If you have divide by 
to get this form.) An nth-order ODE that cannot be written in the form (1) is called
nonlinear.

If is identically zero, (zero for all x considered, usually in some open
interval I ), then (1) becomes

(2) y(n) � pn�1(x)y(n�1) � Á � p1(x)yr � p0(x)y � 0

r (x) � 0r (x)

pn(x)pn(x)y(n),
y(n)

p0, Á , pn�1p0 � qp1 � pn � 2

y(n) � pn�1(x)y(n�1) � Á � p1(x)yr � p0(x)y � r (x).

F (x, y, yr, Á , y(n)) � 0

y(x)
y(n) � dny>dxn

n � 3, 4,
n � 2
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and is called homogeneous. If is not identically zero, then the ODE is called
nonhomogeneous. This is as in Sec. 2.1.

A solution of an nth-order (linear or nonlinear) ODE on some open interval I is a
function that is defined and n times differentiable on I and is such that the ODE
becomes an identity if we replace the unknown function y and its derivatives by h and its
corresponding derivatives.

Sections 3.1–3.2 will be devoted to homogeneous linear ODEs and Section 3.3 to
nonhomogeneous linear ODEs.

Homogeneous Linear ODE: Superposition Principle,
General Solution
The basic superposition or linearity principle of Sec. 2.1 extends to nth order
homogeneous linear ODEs as follows.

T H E O R E M  1 Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), sums and constant multiples of solutions on
some open interval I are again solutions on I. (This does not hold for a
nonhomogeneous or nonlinear ODE!)

The proof is a simple generalization of that in Sec. 2.1 and we leave it to the student.
Our further discussion parallels and extends that for second-order ODEs in Sec. 2.1.

So we next define a general solution of (2), which will require an extension of linear
independence from 2 to n functions.

D E F I N I T I O N General Solution, Basis, Particular Solution

A general solution of (2) on an open interval I is a solution of (2) on I of the form

(3)

where is a basis (or fundamental system) of solutions of (2) on I; that
is, these solutions are linearly independent on I, as defined below.

A particular solution of (2) on I is obtained if we assign specific values to the
n constants in (3).

D E F I N I T I O N Linear Independence and Dependence

Consider n functions defined on some interval I.
These functions are called linearly independent on I if the equation

(4)

implies that all are zero. These functions are called linearly dependent
on I if this equation also holds on I for some not all zero.k1, Á , kn

k1, Á , kn

k1 y1(x) � Á � kn yn(x) � 0  on I

y1(x), Á , yn(x)

c1, Á , cn

y1, Á , yn

(c1, Á , cn arbitrary)y(x) � c1 y1(x) � Á � cn yn(x)

y � h(x)

r (x)
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If and only if are linearly dependent on I, we can express (at least) one of
these functions on I as a “linear combination” of the other functions, that is, as a
sum of those functions, each multiplied by a constant (zero or not). This motivates the
term “linearly dependent.” For instance, if (4) holds with we can divide by 
and express as the linear combination

Note that when these concepts reduce to those defined in Sec. 2.1.

E X A M P L E  1 Linear Dependence

Show that the functions are linearly dependent on any interval.

Solution. . This proves linear dependence on any interval.

E X A M P L E  2 Linear Independence

Show that are linearly independent on any interval, for instance, on 

Solution. Equation (4) is Taking (a) (b) (c) we get

(a) (b) (c) 

from Then from (c) (b). Then from (b). This proves linear independence.
A better method for testing linear independence of solutions of ODEs will soon be explained.

E X A M P L E  3 General Solution. Basis

Solve the fourth-order ODE

(where ).

Solution. As in Sec. 2.2 we substitute . Omitting the common factor we obtain the characteristic
equation

This is a quadratic equation in namely,

The roots are and 4. Hence This gives four solutions. A general solution on any
interval is

provided those four solutions are linearly independent. This is true but will be shown later.

Initial Value Problem. Existence and Uniqueness
An initial value problem for the ODE (2) consists of (2) and n initial conditions

(5) ,

with given in the open interval I considered, and given .K0, Á , Kn�1x0

y(n�1)(x0) � Kn�1
Áyr(x0) � K1,y(x0) � K0,

�

y � c1e�2x � c2e�x � c3ex � c4e2x

l � �2, �1, 1, 2.� � 1

�2 � 5� � 4 � (� � 1)(� � 4) � 0.

� � l2,

l4 � 5l2 � 4 � 0.

elx,y � elx

yiv � d4y>dx4yiv � 5ys � 4y � 0

�
k1 � 0�2k3 � 0(a) � (b).k2 � 0

2k1 � 4k2 � 8k3 � 0.k1 � k2 � k3 � 0,�k1 � k2 � k3 � 0,

x � 2,x � 1,x � �1,k1x � k2x2 � k3x3 � 0.

�1 � x � 2.y1 � x, y2 � x2, y3 � x3

�y2 � 0y1 � 2.5y3

y1 � x2, y2 � 5x, y3 � 2x

n � 2,

y1 � � 
1
k1

 (k2 y2 � Á � kn yn).

y1

k1k1 � 0,

n � 1
y1, Á , yn
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In extension of the existence and uniqueness theorem in Sec. 2.6 we now have the
following.

T H E O R E M  2 Existence and Uniqueness Theorem for Initial Value Problems

If the coefficients of (2) are continuous on some open interval I
and is in I, then the initial value problem (2), (5) has a unique solution on I.

Existence is proved in Ref. [A11] in App. 1. Uniqueness can be proved by a slight
generalization of the uniqueness proof at the beginning of App. 4.

E X A M P L E  4 Initial Value Problem for a Third-Order Euler–Cauchy Equation

Solve the following initial value problem on any open interval I on the positive x-axis containing 

Solution. Step 1. General solution. As in Sec. 2.5 we try By differentiation and substitution,

Dropping and ordering gives If we can guess the root We can divide
by and find the other roots 2 and 3, thus obtaining the solutions which are linearly independent
on I (see Example 2). [In general one shall need a root-finding method, such as Newton’s (Sec. 19.2), also
available in a CAS (Computer Algebra System).] Hence a general solution is

valid on any interval I, even when it includes where the coefficients of the ODE divided by (to have
the standard form) are not continuous.

Step 2. Particular solution. The derivatives are and From this, and
y and the initial conditions, we get by setting 

(a)

(b)

(c)

This is solved by Cramer’s rule (Sec. 7.6), or by elimination, which is simple, as follows. gives
(d) Then (c) (d) gives Then (c) gives Finally from (a).
Answer:

Linear Independence of Solutions. Wronskian
Linear independence of solutions is crucial for obtaining general solutions. Although it can
often be seen by inspection, it would be good to have a criterion for it. Now Theorem 2
in Sec. 2.6 extends from order to any n. This extended criterion uses the Wronskian
W of n solutions defined as the nth-order determinant

(6) W(y1, Á , yn) � 5 y1 y2
Á yn

y1r y2r Á ynr
# # Á #

y1
(n�1) y2

(n�1) Á yn
(n�1)

5 .
y1, Á , yn

n � 2

�y � 2x � x2 � x3.
c1 � 2c2 � 1.c3 � �1.� 2c2 � 2c3 � �1.

(b) � (a)

 ys(1) � 2c2 � 6c3 � �4.

 yr(1) � c1 � 2c2 � 3c3 � 1

y(1)  � c1 � c2 � c3 � 2

x � 1
ys � 2c2 � 6c3 x.yr � c1 � 2c2 x � 3c3 x

2

x3x � 0

y � c1x � c2 x
2 � c3 x

3

x, x2, x3,m � 1
m � 1.m3 � 6m2 � 11m � 6 � 0.xm

m(m � 1)(m � 2)xm � 3m(m � 1)xm � 6mxm � 6xm � 0.

y � xm.

ys(1) � �4.yr(1) � 1,y(1) � 2,x3yt � 3x2ys � 6xyr � 6y � 0,

x � 1.

y(x)x0

p0(x), Á , pn�1(x)
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Note that W depends on x since do. The criterion states that these solutions
form a basis if and only if W is not zero; more precisely:

T H E O R E M  3 Linear Dependence and Independence of Solutions

Let the ODE (2) have continuous coefficients on an open interval
I. Then n solutions of (2) on I are linearly dependent on I if and only if their
Wronskian is zero for some in I. Furthermore, if W is zero for then W
is identically zero on I. Hence if there is an in I at which W is not zero, then 
are linearly independent on I, so that they form a basis of solutions of (2) on I.

P R O O F (a) Let be linearly dependent solutions of (2) on I. Then, by definition, there
are constants not all zero, such that for all x in I,

(7)

By differentiations of (7) we obtain for all x in I

(8)

(7), (8) is a homogeneous linear system of algebraic equations with a nontrivial solution
Hence its coefficient determinant must be zero for every x on I, by Cramer’s

theorem (Sec. 7.7). But that determinant is the Wronskian W, as we see from (6). Hence
W is zero for every x on I.

(b) Conversely, if W is zero at an in I, then the system (7), (8) with has a
solution not all zero, by the same theorem. With these constants we define
the solution of (2) on I. By (7), (8) this solution satisfies the
initial conditions But another solution satisfying the
same conditions is Hence by Theorem 2, which applies since the coefficients
of (2) are continuous. Together, on I. This means linear
dependence of on I.

(c) If W is zero at an in I, we have linear dependence by (b) and then by (a).
Hence if W is not zero at an in I, the solutions must be linearly independent
on I.

E X A M P L E  5 Basis, Wronskian

We can now prove that in Example 3 we do have a basis. In evaluating W, pull out the exponential functions
columnwise. In the result, subtract Column 1 from Columns 2, 3, 4 (without changing Column 1). Then expand by
Row 1. In the resulting third-order determinant, subtract Column 1 from Column 2 and expand the result by Row 2:

�W � 6  
e�2x e�x ex e2x

�2e�2x �e�x ex 2e2x

4e�2x e�x ex 4e2x

�8e�2x �e�x ex 8e2x

  6 � 6  
1 1 1 1

�2 �1 1 2

4 1 1 4

�8 �1 1 8

  6 � 3  1 3 4

�3 �3 0

7 9 16

  3 � 72.

�

y1, Á , ynx1

W � 0x0

y1, Á , yn

y* � k1*y1 � Á � kn*yn � 0
y* � yy � 0.

y*(x0) � 0, Á , y*(n�1)(x0) � 0.
y* � k1*y1 � Á � kn*yn

k1*, Á , kn*,
x � x0x0

k1, Á , kn.

k1y1
(n�1) �  Á � knyn

(n�1) � 0.

.

.

.

 k1 y1r � Á � kn ynr  � 0

n � 1

k1 y1 � Á � kn yn � 0.

k1, Á , kn

y1, Á , yn

y1, Á , ynx1

x � x0,x � x0

y1, Á , yn

p0(x), Á , pn�1(x)

y1, Á , yn
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A General Solution of (2) Includes All Solutions
Let us first show that general solutions always exist. Indeed, Theorem 3 in Sec. 2.6 extends
as follows.

T H E O R E M  4 Existence of a General Solution

If the coefficients of (2) are continuous on some open interval I,
then (2) has a general solution on I.

P R O O F We choose any fixed in I. By Theorem 2 the ODE (2) has n solutions where
satisfies initial conditions (5) with and all other K’s equal to zero. Their

Wronskian at equals 1. For instance, when then 
and the other initial values are zero. Thus, as claimed,

Hence for any n those solutions are linearly independent on I, by Theorem 3.
They form a basis on I, and is a general solution of (2) on I.

We can now prove the basic property that, from a general solution of (2), every solution
of (2) can be obtained by choosing suitable values of the arbitrary constants. Hence an
nth-order linear ODE has no singular solutions, that is, solutions that cannot be obtained
from a general solution.

T H E O R E M  5 General Solution Includes All Solutions

If the ODE (2) has continuous coefficients on some open interval
I, then every solution of (2) on I is of the form

(9)

where is a basis of solutions of (2) on I and are suitable constants.

P R O O F Let Y be a given solution and a general solution of (2) on I. We
choose any fixed in I and show that we can find constants for which y and
its first derivatives agree with Y and its corresponding derivatives at That is,
we should have at 

(10)

But this is a linear system of equations in the unknowns Its coefficient
determinant is the Wronskian W of at Since form a basis, theyy1, Á , ynx0.y1, Á , yn

c1, Á , cn.

 c1 y1
(n�1) � Á � cn yn

(n�1) � Y 
(n�1).

.

.

.

 c1 y1r � Á �  cn ynr  � Y r

 c1 y1 � Á �  cn yn  � Y

x � x0

x0.n � 1
c1, Á , cnx0

y � c1 y1 � Á � cn yn

C1, Á , Cny1, Á , yn

Y(x) � C1 y1(x) � Á � Cn yn(x)

y � Y(x)
p0(x), Á , pn�1(x)

�y � c1 y1 � Á � cn yn

y1, Á , yn

W( y1(x0), y2(x0), y3(x0)) � 4  y1(x0) y2(x0) y3(x0)

y1r(x0) y2r(x0) y3r(x0)

y1s(x0) y2s(x0) y3s(x0)

 4 � 4  1 0 0

0 1 0

0 0 1

 4 � 1.

y3s(x0) � 1,
y1(x0) � 1, y2r(x0) � 1,n � 3,x0

Kj�1 � 1yj

y1, Á , yn,x0

p0(x), Á , pn�1(x)
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are linearly independent, so that W is not zero by Theorem 3. Hence (10) has a unique
solution (by Cramer’s theorem in Sec. 7.7). With these values we
obtain the particular solution

on I. Equation (10) shows that and its first derivatives agree at with Y and
its corresponding derivatives. That is, and Y satisfy, at , the same initial conditions.
The uniqueness theorem (Theorem 2) now implies that on I. This proves the
theorem.

This completes our theory of the homogeneous linear ODE (2). Note that for it is
identical with that in Sec. 2.6. This had to be expected.

n � 2

�

y* � Y
x0y*

x0n � 1y*

y*(x) � C1 y1(x) � Á � Cn yn(x)

c1 � C1, Á , cn � Cn
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1–6 BASES: TYPICAL EXAMPLES
To get a feel for higher order ODEs, show that the given
functions are solutions and form a basis on any interval.
Use Wronskians. In Prob. 6, 

1.

2.

3.

4.

5.

6.

7. TEAM PROJECT. General Properties of Solutions
of Linear ODEs. These properties are important in
obtaining new solutions from given ones. Therefore
extend Team Project 38 in Sec. 2.2 to nth-order ODEs.
Explore statements on sums and multiples of solutions
of (1) and (2) systematically and with proofs.
Recognize clearly that no new ideas are needed in this
extension from to general n.

8–15 LINEAR INDEPENDENCE
Are the given functions linearly independent or dependent
on the half-axis Give reason.

8. 9. tan x, cot x, 1x2, 1>x2, 0

x � 0?

n � 2

1, x2, x4, x2yt � 3xys � 3yr � 0

1, e�x cos 2x, e�x sin 2x, yt � 2ys � 5yr � 0

e�4x, xe�4x, x2e�4x, yt� 12ys� 48yr� 64y � 0

cos x, sin x, x cos x, x sin x, yiv � 2ys � y � 0

ex, e�x, e2x, yt � 2ys � yr � 2y � 0

1, x, x2, x3, yiv � 0

x � 0,

P R O B L E M  S E T  3 . 1

10. 11.

12. 13.

14. 15.

16. TEAM PROJECT. Linear Independence and
Dependence. (a) Investigate the given question about
a set S of functions on an interval I. Give an example.
Prove your answer.

(1) If S contains the zero function, can S be linearly
independent?

(2) If S is linearly independent on a subinterval J of I,
is it linearly independent on I?

(3) If S is linearly dependent on a subinterval J of I,
is it linearly dependent on I?

(4) If S is linearly independent on I, is it linearly
independent on a subinterval J?

(5) If S is linearly dependent on I, is it linearly
independent on a subinterval J?

(6) If S is linearly dependent on I, and if T contains S,
is T linearly dependent on I?

(b) In what cases can you use the Wronskian for
testing linear independence? By what other means can
you perform such a test?

cosh 2x, sinh 2x, e2xcos2 x, sin2 x, 2p

sin x, cos x, sin 2xsin2 x, cos2 x, cos 2x

ex cos x, ex sin x, exe2x, xe2x, x2e2x

3.2 Homogeneous Linear ODEs 
with Constant Coefficients

We proceed along the lines of Sec. 2.2, and generalize the results from to arbitrary n.
We want to solve an nth-order homogeneous linear ODE with constant coefficients,
written as

(1) y(n) � an�1 y
(n�1) � Á � a1 yr � a0y � 0

n � 2
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where etc. As in Sec. 2.2, we substitute to obtain the characteristic
equation

(2)

of (1). If is a root of (2), then is a solution of (1). To find these roots, you may
need a numeric method, such as Newton’s in Sec. 19.2, also available on the usual CASs.
For general n there are more cases than for We can have distinct real roots, simple
complex roots, multiple roots, and multiple complex roots, respectively. This will be shown
next and illustrated by examples.

Distinct Real Roots
If all the n roots of (2) are real and different, then the n solutions

(3)

constitute a basis for all x. The corresponding general solution of (1) is

(4)

Indeed, the solutions in (3) are linearly independent, as we shall see after the example.

E X A M P L E  1 Distinct Real Roots

Solve the ODE 

Solution. The characteristic equation is It has the roots if you find one
of them by inspection, you can obtain the other two roots by solving a quadratic equation (explain!). The
corresponding general solution (4) is 

Linear Independence of (3). Students familiar with nth-order determinants may verify
that, by pulling out all exponential functions from the columns and denoting their product
by the Wronskian of the solutions in (3) becomes

(5)

 � E 7
1 1 Á 1

l1 l2
Á ln

l1
2 l2

2 Á ln
2

# # Á #

l1
n�1 l2

n�1 Á ln
n�1

7 .

 W � 7
el1x el2x Á elnx

l1el1x l2el2x Á lnelnx

l1
2el1x l2

2el2x Á ln
2elnx

# # Á #

l1
n�1el1x l2

n�1el2x Á ln
n�1elnx

7
E � exp [l1 � Á � ln)x],

�y � c1e�x � c2ex � c3e2x.

�1, 1, 2;l3 � 2l2 � l � 2 � 0.

yt � 2ys � yr � 2y � 0.

y � c1el1x � Á � cnelnx.

y1 � el1x,  Á ,   yn � elnx.

l1, Á , ln

n � 2.

y � elxl

l(n) � an�1l
(n�1) � Á � a1l � a0y � 0

y � elxy(n) � dny>dxn,
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The exponential function E is never zero. Hence if and only if the determinant on
the right is zero. This is a so-called Vandermonde or Cauchy determinant.1 It can be
shown that it equals

(6)

where V is the product of all factors with for instance, when 
we get This shows that the Wronskian is not zero
if and only if all the n roots of (2) are different and thus gives the following.

T H E O R E M  1 Basis

Solutions of (1) (with any real or complex ’s) form a
basis of solutions of (1) on any open interval if and only if all n roots of (2) are
different.

Actually, Theorem 1 is an important special case of our more general result obtained
from (5) and (6):

T H E O R E M  2 Linear Independence

Any number of solutions of (1) of the form are linearly independent on an open
interval I if and only if the corresponding are all different.

Simple Complex Roots
If complex roots occur, they must occur in conjugate pairs since the coefficients of (1)
are real. Thus, if is a simple root of (2), so is the conjugate and
two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation)

E X A M P L E  2 Simple Complex Roots. Initial Value Problem

Solve the initial value problem

Solution. The characteristic equation is It has the root 1, as can perhaps be
seen by inspection. Then division by shows that the other roots are Hence a general solution and
its derivatives (obtained by differentiation) are

 ys � c1ex � 100A cos 10x � 100B sin 10x.

 yr � c1ex � 10A sin 10x � 10B cos 10x,

 y � c1ex � A cos 10x � B sin 10x,

	10i.l � 1
l3 � l2 � 100l � 100 � 0.

ys(0) � �299.yr(0) � 11,y(0) � 4,yt � ys � 100yr � 100y � 0,

y2 � egx sin vx.y1 � egx cos vx,

l � g � iv,l � g � iv

l

elx

ljy1 � el1x, Á , yn � elnx

�V � �(l1 � l2)(l1 � l3)(l2 � l3).
n � 3j 
 k ( � n);lj � lk

(�1)n(n�1)>2V

W � 0
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From this and the initial conditions we obtain, by setting ,

(a) (b) (c)

We solve this system for the unknowns A, B, Equation (a) minus Equation (c) gives 
Then from (a) and from (b). The solution is (Fig. 73)

This gives the solution curve, which oscillates about (dashed in Fig. 73). �ex

y � ex � 3 cos 10x � sin 10x.

B � 1c1 � 1
101A � 303, A � 3.c1.

c1 � 100A � �299.c1 � 10B � 11,c1 � A � 4,

x � 0
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Fig. 73. Solution in Example 2

Multiple Real Roots
If a real double root occurs, say, then in (3), and we take and as
corresponding linearly independent solutions. This is as in Sec. 2.2.

More generally, if is a real root of order m, then m corresponding linearly independent
solutions are

(7)

We derive these solutions after the next example and indicate how to prove their linear
independence.

E X A M P L E  3 Real Double and Triple Roots

Solve the ODE 

Solution. The characteristic equation has the roots and 
and the answer is

(8)

Derivation of (7). We write the left side of (1) as

Let Then by performing the differentiations we have

L[elx] � (ln � an�1l
n�1 � Á � a0)elx.

y � elx.

L[ y] � y(n) � an�1 y
(n�1) � Á � a0y.

�y � c1 � c2 x � (c3 � c4 x � c5 x
2)ex.

l5 � 1,
l3 � l4 �l1 � l2 � 0,l5 � 3l4 � 3l3 � l2 � 0

yv � 3yiv � 3yt � ys � 0.

elx, xelx, x2elx, Á , xm�1elx.

l

xy1y1y1 � y2l1 � l2,
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Now let be a root of mth order of the polynomial on the right, where For 
let be the other roots, all different from Writing the polynomial in
product form, we then have

with if and if Now comes the
key idea: We differentiate on both sides with respect to 

(9)

The differentiations with respect to x and are independent and the resulting derivatives
are continuous, so that we can interchange their order on the left:

(10)

The right side of (9) is zero for because of the factors (and since
we have a multiple root!). Hence by (9) and (10). This proves that is
a solution of (1).

We can repeat this step and produce by another such
differentiations with respect to Going one step further would no longer give zero on the
right because the lowest power of would then be multiplied by 
and because has no factors so we get precisely the solutions in (7).

We finally show that the solutions (7) are linearly independent. For a specific n this
can be seen by calculating their Wronskian, which turns out to be nonzero. For arbitrary
m we can pull out the exponential functions from the Wronskian. This gives 
times a determinant which by “row operations” can be reduced to the Wronskian of 1,

The latter is constant and different from zero (equal to 
These functions are solutions of the ODE so that linear independence follows
from Theroem 3 in Sec. 3.1.

Multiple Complex Roots
In this case, real solutions are obtained as for complex simple roots above. Consequently,
if is a complex double root, so is the conjugate Corresponding
linearly independent solutions are

(11)

The first two of these result from and as before, and the second two from 
and in the same fashion. Obviously, the corresponding general solution is

(12)

For complex triple roots (which hardly ever occur in applications), one would obtain
two more solutions and so on.x2egx cos vx, x2egx sin vx,

y � egx[(A1 � A2x) cos vx � (B1 � B2x) sin vx].

xelx
xelxelxelx

egx cos vx, egx sin vx, xegx cos vx, xegx sin vx.

l � g � iv.l � g � iv

y(m) � 0,
1!2! Á (m � 1)!).x, Á , xm�1.

(elx)m � elmx

l � l1;h(l)h(l1) � 0
m!h(l)(l � l1)0,l � l1

l.
m � 2x2el1x, Á , xm�1el1x

xel1xL[xel1x] � 0
m � 2l � l1l � l1

0

0l
 L[elx] � L c 0

0l
 elx d � L[xelx].

l

0

0l
 L[elx] � m(l � l1)m�1h(l)elx � (l � l1)m 

0

0l
 [h(l)elx].

l,
m 
 n.h(l) � (l � lm�1) Á (l � ln)m � n,h(l) � 1

L[elx] � (l � l1)mh(l)elx

l1.lm�1, Á , ln

m 
 nm � n.l1
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3.3 Nonhomogeneous Linear ODEs
We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write
them in standard form

(1)

with as the first term, and As for second-order ODEs, a general
solution of (1) on an open interval I of the x-axis is of the form

(2)

Here is a general solution of the corresponding
homogeneous ODE

(3)

on I. Also, is any solution of (1) on I containing no arbitrary constants. If (1) has
continuous coefficients and a continuous on I, then a general solution of (1) exists
and includes all solutions. Thus (1) has no singular solutions.

r (x)
yp

y(n) � pn�1(x)y(n�1) � Á � p1(x)yr � p0(x)y � 0

yh(x) � c1 y1(x) � Á � cn yn(x)

y(x) � yh(x) � yp(x).

r (x) [ 0.y(n) � dny>dxn

y(n) � pn�1(x)y(n�1) � Á � p1(x)yr � p0(x)y � r (x)
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1–6 GENERAL SOLUTION 
Solve the given ODE. Show the details of your work.

1.

2.

3.

4.

5.

6.

7–13 INITIAL VALUE PROBLEM 
Solve the IVP by a CAS, giving a general solution and the
particular solution and its graph.

7.

8.

9.

10.

11.

12.
ys(0) � 11, yt(0) � �23, yiv(0) � 47
yv � 5yt � 4yr � 0, y(0) � 3, yr(0) � �5,

yt(0) � 0ys(0) � 41,
yiv � 9ys � 400y � 0, y(0) � 0, yr(0) � 0,

yt(0) � �7
2

yiv � 4y � 0, y(0) � 1
2, yr(0) � � 

3
2, ys(0) � 5

2,

ys(0) � �39.75yr(0) � �6.5,
4yt � 8ys � 41yr � 37y � 0, y(0) � 9,

yr(0) � �54.975, ys(0) � 257.5125
yt � 7.5ys � 14.25yr � 9.125y � 0, y(0) � 10.05,

ys(0) � 9.91
yr(0) � �4.6,yt� 3.2ys� 4.81yr � 0, y(0) � 3.4, 

(D5 � 8D3 � 16D) y � 0

(D4 � 10D2 � 9I ) y � 0

(D3 � D2 � D � I ) y � 0

yiv � 4ys � 0

yiv � 2ys � y � 0

yt � 25yr � 0

13.

14. PROJECT. Reduction of Order. This is of practical
interest since a single solution of an ODE can often be
guessed. For second order, see Example 7 in Sec. 2.1.

(a) How could you reduce the order of a linear
constant-coefficient ODE if a solution is known?

(b) Extend the method to a variable-coefficient ODE

Assuming a solution to be known, show that another
solution is with and
z obtained by solving

(c) Reduce

using (perhaps obtainable by inspection).

15. CAS EXPERIMENT. Reduction of Order. Starting
with a basis, find third-order linear ODEs with variable
coefficients for which the reduction to second order
turns out to be relatively simple.

y1 � x

x3yt � 3x2ys � (6 � x2)xyr � (6 � x2)y � 0,

y1zs� (3y1r � p2 y1)zr� (3y1s� 2p2 y1r � p1 y1)z � 0.

u(x) � �z(x) dxy2(x) � u(x)y1(x)
y1

yt � p2(x)ys � p1(x)yr � p0(x)y � 0.

yt(0) � �1.458675
y(0) � 17.4, yr(0) � �2.82, ys(0) � 2.0485,
yiv � 0.45yt� 0.165ys� 0.0045yr� 0.00175y � 0,

P R O B L E M  S E T  3 . 2
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An initial value problem for (1) consists of (1) and n initial conditions

(4)

with in I. Under those continuity assumptions it has a unique solution. The ideas of
proof are the same as those for in Sec. 2.7.

Method of Undetermined Coefficients
Equation (2) shows that for solving (1) we have to determine a particular solution of (1).
For a constant-coefficient equation

(5)

( constant) and special as in Sec. 2.7, such a can be determined by
the method of undetermined coefficients, as in Sec. 2.7, using the following rules.

(A) Basic Rule as in Sec. 2.7.

(B) Modification Rule. If a term in your choice for is a solution of the
homogeneous equation (3), then multiply this term by where k is the smallest
positive integer such that this term times is not a solution of (3).

(C) Sum Rule as in Sec. 2.7.

The practical application of the method is the same as that in Sec. 2.7. It suffices to
illustrate the typical steps of solving an initial value problem and, in particular, the new
Modification Rule, which includes the old Modification Rule as a particular case (with

or 2). We shall see that the technicalities are the same as for except perhaps
for the more involved determination of the constants.

E X A M P L E  1 Initial Value Problem. Modification Rule

Solve the initial value problem

(6)

Solution. Step 1. The characteristic equation is It has the triple root
Hence a general solution of the homogeneous ODE is

Step 2. If we try we get which has no solution. Try and
The Modification Rule calls for

Then

 ypt � C(6 � 18x � 9x2 � x3)e�x.

 yps � C(6x � 6x2 � x3)e�x,

 ypr � C(3x2 � x3)e�x,

 yp � Cx3e�x.

Cx2e�x.
Cxe�x�C � 3C � 3C � C � 30,yp � Ce�x,

 � (c1 � c2 x � c3 x
2)e�x.

 yh � c1e�x � c2 xe�x � c3 x
2e�x

l � �1.
l3 � 3l2 � 3l � 1 � (l � 1)3 � 0.

yt � 3ys � 3yr � y � 30e�x,  y(0) � 3,  yr(0) � �3,  ys(0) � �47.

n � 2,k � 1

xk
xk,
yp(x)

yp(x)r (x)a0, Á , an�1

y(n) � an�1 y
(n�1) � Á � a1 yr � a0y � r (x)

n � 2
x0

y(x0) � K0,  yr(x0) � K1,  Á ,   y(n�1)(x0) � Kn�1
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Substitution of these expressions into (6) and omission of the common factor gives

The linear, quadratic, and cubic terms drop out, and Hence This gives 

Step 3. We now write down the general solution of the given ODE. From it we find by the
first initial condition. We insert the value, differentiate, and determine from the second initial condition, insert
the value, and finally determine from and the third initial condition:

Hence the answer to our problem is (Fig. 73)

The curve of y begins at (0, 3) with a negative slope, as expected from the initial values, and approaches zero
as The dashed curve in Fig. 74 is �yp.x : �.

y � (3 � 25x2)e�x � 5x3e�x.

 ys � [3 � 2c3 � (30 � 4c3)x � (�30 � c3)x2 � 5x3]e�x,  ys(0) � 3 � 2c3 � �47,  c3 � �25.

 yr � [�3 � c2 � (�c2 � 2c3)x � (15 � c3)x2 � 5x3]e�x,  yr(0) � �3 � c2 � �3,  c2 � 0

 y � yh � yp � (c1 � c2x � c3x2)e�x � 5x3e�x,  y(0) � c1 � 3

ys(0)c3

c2

c1y � yh � yp,

yp � 5x3e�x.C � 5.6C � 30.

C(6 � 18x � 9x2 � x3) � 3C(6x � 6x2 � x3) � 3C(3x2 � x3) � Cx3 � 30.

e�x
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Fig. 74. y and (dashed) in Example 1yp

Method of Variation of Parameters
The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order n.
It gives a particular solution for the nonhomogeneous equation (1) (in standard form
with as the first term!) by the formula

(7)

on an open interval I on which the coefficients of (1) and are continuous. In (7) the
functions form a basis of the homogeneous ODE (3), with Wronskian W, and

is obtained from W by replacing the jth column of W by the column
Thus, when this becomes identical with (2) in Sec. 2.10,

W � ` y1 y2

y1r y2r
` ,  W1 � `0 y2

1 y2r
` � �y2,  W2 � ` y1 0

y1r 1
` � y1.

n � 2,[0 0 Á  0 1]T.
Wj ( j � 1, Á , n)

y1, Á , yn

r (x)

� y1(x)�W1(x)

W(x)
 r (x) dx � Á � yn(x)�Wn(x)

W(x)
 r (x) dx

yp(x) � a
n

k�1
 yk(x)�Wk(x)

W(x)
 r (x) dx

y(n)
yp
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The proof of (7) uses an extension of the idea of the proof of (2) in Sec. 2.10 and can
be found in Ref [A11] listed in App. 1.

E X A M P L E  2 Variation of Parameters. Nonhomogeneous Euler–Cauchy Equation

Solve the nonhomogeneous Euler–Cauchy equation

Solution. Step 1. General solution of the homogeneous ODE. Substitution of and the derivatives
into the homogeneous ODE and deletion of the factor gives

The roots are 1, 2, 3 and give as a basis

Hence the corresponding general solution of the homogeneous ODE is

Step 2. Determinants needed in (7). These are

Step 3. Integration. In (7) we also need the right side of our ODE in standard form, obtained by division
of the given equation by the coefficient of thus, In (7) we have the simple
quotients Hence (7) becomes

Simplification gives Hence the answer is

Figure 75 shows Can you explain the shape of this curve? Its behavior near The occurrence of a minimum?
Its rapid increase? Why would the method of undetermined coefficients not have given the solution? �

x � 0?yp.

y � yh � yp � c1x � c2 x
2 � c3 x

3 � 1
6 x

4 (ln x � 11
6 ).

yp � 1
6 x

4 (ln x � 11
6 ).

 �
x

2
 ax3

3
 ln x �

x3

9
b � x2 ax2

2
 ln x �

x2

4
b �

x3

2
 (x ln x � x).

 yp � x � x

2
 x ln x dx � x2 �x ln x dx � x3 � 1

2x
 x ln x dx

W1>W � x>2, W2>W � �1, W3>W � 1>(2x).
r (x) � (x4 ln x)>x3 � x ln x.yt;x3

r (x)

 W3 � 4  x x2 0

1 2x 0

0 2 1

 4 � x2.

 W2 � 4  x 0 x3

1 0 3x2

0 1 6x

 4 � �2x3

 W1 � 4  0 x2 x3

0 2x 3x2

1 2 6x

 4 � x4

 W � 3  x x2 x3

1 2x 3x2

0 2 6x

 3 � 2x3

yh � c1x � c2x2 � c3x3.

y1 � x,  y2 � x2,  y3 � x3.

m(m � 1)(m � 2) � 3m(m � 1) � 6m � 6 � 0.

xm
y � xm

(x � 0).x3yt � 3x2ys � 6xyr � 6y � x4 ln x
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Application: Elastic Beams
Whereas second-order ODEs have various applications, of which we have discussed some
of the more important ones, higher order ODEs have much fewer engineering applications.
An important fourth-order ODE governs the bending of elastic beams, such as wooden or
iron girders in a building or a bridge.

A related application of vibration of beams does not fit in here since it leads to PDEs
and will therefore be discussed in Sec. 12.3.

E X A M P L E  3 Bending of an Elastic Beam under a Load

We consider a beam B of length L and constant (e.g., rectangular) cross section and homogeneous elastic
material (e.g., steel); see Fig. 76. We assume that under its own weight the beam is bent so little that it is
practically straight. If we apply a load to B in a vertical plane through the axis of symmetry (the x-axis in
Fig. 76), B is bent. Its axis is curved into the so-called elastic curve C (or deflection curve). It is shown in
elasticity theory that the bending moment is proportional to the curvature of C. We assume the bending
to be small, so that the deflection and its derivative (determining the tangent direction of C) are small.
Then, by calculus, Hence

EI is the constant of proportionality. E is Young’s modulus of elasticity of the material of the beam. I is the
moment of inertia of the cross section about the (horizontal) z-axis in Fig. 76.

Elasticity theory shows further that where is the load per unit length. Together,

(8) EIyiv � f (x).

f (x)Ms(x) � f (x),

M(x) � EIys(x).

k � ys>(1 � yr2)3>2 � ys.
yr(x)y(x)

k(x)M(x)
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Fig. 75. Particular solution of the nonhomogeneous 
Euler–Cauchy equation in Example 2
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Fig. 76. Elastic beam
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In applications the most important supports and corresponding boundary conditions are as follows and shown
in Fig. 77.

(A) Simply supported at and L

(B) Clamped at both ends at and L

(C) Clamped at , free at 

The boundary condition means no displacement at that point, means a horizontal tangent, 
means no bending moment, and means no shear force.

Let us apply this to the uniformly loaded simply supported beam in Fig. 76. The load is 
Then (8) is

(9)

This can be solved simply by calculus. Two integrations give

gives Then (since ). Hence

Integrating this twice, we obtain

with from Then

Inserting the expression for k, we obtain as our solution

Since the boundary conditions at both ends are the same, we expect the deflection to be “symmetric” with
respect to that is, Verify this directly or set and show that y becomes an
even function of u,

From this we can see that the maximum deflection in the middle at is Recall
that the positive direction points downward. �

5f0L4>(16 # 24EI).u � 0 (x � L>2)

y �
f0

24EI
 au2 �

1

4
 L2b

 

au2 �
5

4
 L2b

 

.

x � u � L>2y(x) � y(L � x).L>2,
y(x)

y �
f0

24EI
 (x4 � 2L x3 � L3x).

y(L) �
kL

2
 aL3

12
�

L3

6
� c3b � 0,  c3 �

L3

12
 .

y(0) � 0.c4 � 0

y �
k

2
 a 1

12
 x4 �

L

6
 x3 � c3 x � c4b

ys �
k

2
 (x2 � Lx).

L � 0ys(L) � L (1
2  

kL � c1) � 0, c1 � �kL>2c2 � 0.ys(0) � 0

ys �
k

2
 x2 � c1x � c2.

yiv � k,  k �
f0
EI

 .

f (x) � f0 � const.
yt � 0

ys � 0yr � 0y � 0

y(0) � yr(0) � 0, ys(L) � yt(L) � 0.x � Lx � 0

x � 0y � yr � 0

x � 0y � ys � 0
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1–7 GENERAL SOLUTION
Solve the following ODEs, showing the details of your
work.

1.

2.

3.

4.

5.

6.

7.

8–13 INITIAL VALUE PROBLEM
Solve the given IVP, showing the details of your work.

8.

9.

10.

11.

12.
ys(0) � 17.2yr(0) � 8.8,

y(0) � 4.5,(D3 � 2D2 � 9D � 18I )y � e2x, 
ys(0) � �5.2yr(0) � 3.2,

y(0) � �1.4,(D3 � 2D2 � 3D)y � 74e�3x sin x, 
ys(1) � 14

yr(1) � 3,y(1) � 1,x3yt � xyr � y � x2,

yt(0) � �32ys(0) � �1,
yr(0) � 2,y(0) � 1,yiv � 5ys � 4y � 90 sin 4x,

yt(0) � 0ys(0) � 0,
yr(0) � 0,y(0) � 1,yiv � 5ys � 4y � 10e�3x,

(D3 � 9D2 � 27D � 27I )y � 27 sin 3x

(D3 � 4D)y � sin x

(x3D3 � x2D2 � 2xD � 2I )y � x�2

(D3 � 3D2 � 5D � 39I )y � �300 cos x

(D4 � 10D2 � 9I ) y � 6.5 sinh 2x

yt � 2ys � yr � 2y � 1 � 4x3

yt � 3ys � 3yr � y � ex � x � 1

P R O B L E M  S E T  3 . 3

13.

14. CAS EXPERIMENT. Undetermined Coefficients.
Since variation of parameters is generally complicated,
it seems worthwhile to try to extend the other method.
Find out experimentally for what ODEs this is possible
and for what not. Hint: Work backward, solving ODEs
with a CAS and then looking whether the solution
could be obtained by undetermined coefficients. For
example, consider

and

15. WRITING REPORT. Comparison of Methods. Write
a report on the method of undetermined coefficients and
the method of variation of parameters, discussing and
comparing the advantages and disadvantages of each
method. Illustrate your findings with typical examples.
Try to show that the method of undetermined coefficients,
say, for a third-order ODE with constant coefficients and
an exponential function on the right, can be derived from
the method of variation of parameters.

x3yt � x2ys � 2xyr � 2y � x3 ln x.

yt � 3ys � 3yr � y � x1>2ex

ys(0) � �1yr(0) � �2,
y(0) � 3,(D3 � 4D)y � 10 cos x � 5 sin x, 

1. What is the superposition or linearity principle? For
what nth-order ODEs does it hold?

2. List some other basic theorems that extend from
second-order to nth-order ODEs.

3. If you know a general solution of a homogeneous linear
ODE, what do you need to obtain from it a general
solution of a corresponding nonhomogeneous linear
ODE?

4. What form does an initial value problem for an nth-
order linear ODE have?

5. What is the Wronskian? What is it used for?

6–15 GENERAL SOLUTION
Solve the given ODE. Show the details of your work.

6.

7.

8.

9.

10. x2yt � 3xys � 2yr � 0

(D4 � 16I )y � �15 cosh x

yt � 4ys � yr � 4y � 30e2x

yt � 4ys � 13yr � 0

yiv � 3ys � 4y � 0

C H A P T E R  3  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

11.

12.

13.

14.

15.

16–20 INITIAL VALUE PROBLEM
Solve the IVP. Show the details of your work.

16.

17.

18.

19.

20.
ys(0) � 5yr(0) � �3,

y(0) � �1,(D3 � 3D2 � 3D � I )y � 8 sin x,

D2y(0) � 189Dy(0) � �41, y(0) � 9, 
(D3 � 9D2 � 23D � 15I )y � 12exp(�4x),

D3y(0) � �130D2y(0) � 34, Dy(0) � �6, 
y(0) � 12.16,(D4 � 26D2 � 25I )y � 50(x � 1)2, 

ys � �24yr(0) � �3.95,
y(0) � 1.94,yt � 5ys � 24yr � 20y � x,

D2y(0) � 0
Dy(0) � 1,y(0) � 0,(D3 � D2 � D � I )y � 0,

4x3yt � 3xyr � 3y � 10

(D4 � 13D2 � 36I )y � 12ex

(D3 � 6D2 � 12D � 8I )y � 8x2

(D3 � D)y � sinh 0.8x

yt � 4.5ys � 6.75yr � 3.375y � 0
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Summary of Chapter 3 123

Compare with the similar Summary of Chap. 2 (the case ).
Chapter 3 extends Chap. 2 from order to arbitrary order n. An nth-order
linear ODE is an ODE that can be written

(1)

with as the first term; we again call this the standard form. Equation
(1) is called homogeneous if on a given open interval I considered,
nonhomogeneous if on I. For the homogeneous ODE

(2)

the superposition principle (Sec. 3.1) holds, just as in the case A basis or
fundamental system of solutions of (2) on I consists of n linearly independent
solutions of (2) on I. A general solution of (2) on I is a linear combination
of these,

(3) ( arbitrary constants).

A general solution of the nonhomogeneous ODE (1) on I is of the form

(4) (Sec. 3.3).

Here, is a particular solution of (1) and is obtained by two methods (undetermined
coefficients or variation of parameters) explained in Sec. 3.3.

An initial value problem for (1) or (2) consists of one of these ODEs and n
initial conditions (Secs. 3.1, 3.3)

(5)

with given in I and given If are continuous on I,
then general solutions of (1) and (2) on I exist, and initial value problems (1), (5)
or (2), (5) have a unique solution.

p0, Á , pn�1, rK0, Á , Kn�1.x0

y(x0) � K0,  yr(x0) � K1,  Á ,  y(n�1)(x0) � Kn�1

yp

y � yh � yp

c1, Á , cny � c1 y1 � Á � cn yn

y1, Á , yn

n � 2.

y(n) � pn�1(x)y(n�1) � Á � p1(x)yr � p0(x)y � 0

r (x) [ 0
r (x) � 0

y(n) � dny>dxn

y(n) � pn�1(x)y(n�1) � Á � p1(x)yr � p0(x)y � r (x)

n � 2
n � 2

SUMMARY OF CHAPTER 3
Higher Order Linear ODEs
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C H A P T E R 4

Systems of ODEs. Phase Plane.
Qualitative Methods

Tying in with Chap. 3, we present another method of solving higher order ODEs in
Sec. 4.1. This converts any nth-order ODE into a system of n first-order ODEs. We also
show some applications. Moreover, in the same section we solve systems of first-order
ODEs that occur directly in applications, that is, not derived from an nth-order ODE but
dictated by the application such as two tanks in mixing problems and two circuits in
electrical networks. (The elementary aspects of vectors and matrices needed in this chapter
are reviewed in Sec. 4.0 and are probably familiar to most students.)

In Sec. 4.3 we introduce a totally different way of looking at systems of ODEs. The
method consists of examining the general behavior of whole families of solutions of ODEs
in the phase plane, and aptly is called the phase plane method. It gives information on the
stability of solutions. (Stability of a physical system is desirable and means roughly that a
small change at some instant causes only a small change in the behavior of the system at
later times.) This approach to systems of ODEs is a qualitative method because it depends
only on the nature of the ODEs and does not require the actual solutions. This can be very
useful because it is often difficult or even impossible to solve systems of ODEs. In contrast,
the approach of actually solving a system is known as a quantitative method.

The phase plane method has many applications in control theory, circuit theory,
population dynamics and so on. Its use in linear systems is discussed in Secs. 4.3, 4.4,
and 4.6 and its even more important use in nonlinear systems is discussed in Sec. 4.5 with
applications to the pendulum equation and the Lokta–Volterra population model. The
chapter closes with a discussion of nonhomogeneous linear systems of ODEs.

NOTATION. We continue to denote unknown functions by y; thus, —
analogous to Chaps. 1–3. (Note that some authors use x for functions, when
dealing with systems of ODEs.)

Prerequisite: Chap. 2.
References and Answers to Problems: App. 1 Part A, and App. 2.

4.0 For Reference: 
Basics of Matrices and Vectors

For clarity and simplicity of notation, we use matrices and vectors in our discussion
of linear systems of ODEs. We need only a few elementary facts (and not the bulk of
the material of Chaps. 7 and 8). Most students will very likely be already familiar

x1(t), x2(t)
y1(t), y2(t)
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with these facts. Thus this section is for reference only. Begin with Sec. 4.1 and consult
4.0 as needed.

Most of our linear systems will consist of two linear ODEs in two unknown functions
,

(1)

(perhaps with additional given functions on the right in the two ODEs).
Similarly, a linear system of n first-order ODEs in n unknown functions 

is of the form

(2)

(perhaps with an additional given function on the right in each ODE).

Some Definitions and Terms
Matrices. In (1) the (constant or variable) coefficients form a 2 2 matrix A, that is,
an array

(3) , for example, .

Similarly, the coefficients in (2) form an n n matrix

(4)

The are called entries, the horizontal lines rows, and the vertical lines columns.
Thus, in (3) the first row is , the second row is , and the first and
second columns are

and .

In the “double subscript notation” for entries, the first subscript denotes the row and the
second the column in which the entry stands. Similarly in (4). The main diagonal is the
diagonal in (4), hence in (3).a22a11a11 a22 

Á  ann

ca12

a22
dca11

a21
d

[a21  a22][a11  a12]
a11, a12, Á

A � [ajk] � E a11  a12
Á  a1n

 a21  a22
Á  a2n

# # Á #

 an1  an2
Á  ann

U  .

�

A � c�5 2

13 1
2

dA � [ajk] � c a11  a12

 a21  a22

d

�

yr1 � a11y1 � a12y2 � Á � a1nyn

yr2 � a21y1 � a22y2 � Á � a2nyn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

yrn � an1y1 � an2y2 � Á � annyn

y1(t), Á , yn(t)
g1(t), g2(t)

 yr1 � a11y1 � a12y2,  yr1 � �5y1 � 2y2
for example,

yr2 � a21y1 � a22y2,  yr2 �   13y1 � 1
2 y2

y1(t), y2(t)

SEC. 4.0 For Reference: Basics of Matrices and Vectors 125
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We shall need only square matrices, that is, matrices with the same number of rows
and columns, as in (3) and (4).

Vectors. A column vector x with n components is of the form

thus if .

Similarly, a row vector v is of the form

, thus if , then .

Calculations with Matrices and Vectors
Equality. Two n n matrices are equal if and only if corresponding entries are equal.
Thus for , let

and .

Then A B if and only if

.

Two column vectors (or two row vectors) are equal if and only if they both have n
components and corresponding components are equal. Thus, let

. Then if and only if

Addition is performed by adding corresponding entries (or components); here, matrices
must both be n n, and vectors must both have the same number of components. Thus
for ,

(5) .

Scalar multiplication (multiplication by a number c) is performed by multiplying each
entry (or component) by c. For example, if

A � c 9 3

�2 0
d ,  then  �7A � c�63 �21

14 0
d .

A � B � ca11 � b11  a12 � b12

a21 � b21  a22 � b22

d ,  v � x � cv1 � x1

v2 � x2

d
n � 2

�

v1 � x1

v2 � x2.
v � xv � cv1

v2

d and x � c x1

x2

d

 a21 � b21,   a22 � b22

 a11 � b11,   a12 � b12

�

B � cb11 b12

b21 b22

dA � ca11 a12

a21 a22

d
n � 2

�

v � [v1 v2]n � 2v � [v1
Á vn]

x � c x1

 x2

dn � 2,x � E x1

 x2

o

 xn

U  ,

x1, Á , xn

126 CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods
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If

.

Matrix Multiplication. The product (in this order) of two n n matrices
is the n n matrix with entries

(6)

that is, multiply each entry in the jth row of A by the corresponding entry in the kth column
of B and then add these n products. One says briefly that this is a “multiplication of rows
into columns.” For example,

CAUTION! Matrix multiplication is not commutative, in general. In our
example,

Multiplication of an n n matrix A by a vector x with n components is defined by the
same rule: is the vector with the n components

.

For example,

Systems of ODEs as Vector Equations
Differentiation. The derivative of a matrix (or vector) with variable entries (or
components) is obtained by differentiating each entry (or component). Thus, if

.y(t) � c y1(t)

y2(t)
d � c e�2t

sin t
d ,  then  yr(t) � c yr1(t)

yr2(t)
d � c�2e�2t

cos t
d

c 12 7

�8 3
d  c x1

x2

d � c 12x1 � 7x2

�8x1 � 3x2

d .

j � 1, Á , nvj � a
n

m�1

 ajmxm

v � Ax
�

 � c17 3

8 6
d .

 c1 �4

2 5
d c 9 3

�2 0
d � c1 � 9 � (�4) � (�2) 1 � 3 � (�4) � 0

2 � 9 � 5 � (�2) 2 � 3 � 5 � 0
d

AB � BA

 � c 15 �21

�2 8
d .

 c 9 3

�2 0
d c1 �4

2 5
d � c 9 � 1 � 3 � 2 9 � (�4) � 3 � 5

�2 � 1 � 0 � 2  (�2) � (�4) � 0 � 5
d ,

j � 1, Á , n

k � 1, Á , n,
cjk � a

n

m�1

 ajmbmk

C � [cjk]�A � [ajk] and B � [bjk]
�C � AB

v � c 0.4

�13
d ,  then  10v � c 4

�130
d

SEC. 4.0 For Reference: Basics of Matrices and Vectors 127

c04.qxd  10/27/10  9:32 PM  Page 127



Using matrix multiplication and differentiation, we can now write (1) as

(7) .

Similarly for (2) by means of an n n matrix A and a column vector y with n components,
namely, . The vector equation (7) is equivalent to two equations for the
components, and these are precisely the two ODEs in (1).

Some Further Operations and Terms
Transposition is the operation of writing columns as rows and conversely and is indicated
by T. Thus the transpose of the 2 2 matrix

is .

The transpose of a column vector, say,

, is a row vector, ,

and conversely.

Inverse of a Matrix. The n n unit matrix I is the n n matrix with main diagonal
and all other entries zero. If, for a given n n matrix A, there is an n n

matrix B such that , then A is called nonsingular and B is called the inverse
of A and is denoted by ; thus

(8) .

The inverse exists if the determinant det A of A is not zero.
If A has no inverse, it is called singular. For ,

(9)

where the determinant of A is

(10) .

(For general n, see Sec. 7.7, but this will not be needed in this chapter.)

Linear Independence. r given vectors with n components are called a
linearly independent set or, more briefly, linearly independent, if

(11) c1v(1) � Á � crv
(r) � 0

v(1), Á , v(r)

det A � 2  a11 a12

a21 a22

 2 � a11a22 � a12a21

A�1 �
1

det A
 c a22 �a12

�a21 a11

d ,
n � 2

AA�1 � A�1A � I

A�1
AB � BA � I

��1, 1, Á , 1
��

vT � [v1 v2]v � cv1

v2

d

AT � ca11 a21

a12 a22

d � c�5 13

2 1
2

dA � ca11 a12

a21 a22

d � c�5 2

13 1
2

d
�AT

yr � Ay
�

yr � c yr1
yr2
d � Ay � ca11 a12

a21 a22

d  c y1

y2

d , e.g., yr � c�5 2

13 1
2

d  c  

y1

y2

d
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implies that all scalars must be zero; here, 0 denotes the zero vector, whose n
components are all zero. If (11) also holds for scalars not all zero (so that at least one of
these scalars is not zero), then these vectors are called a linearly dependent set or, briefly,
linearly dependent, because then at least one of them can be expressed as a linear
combination of the others; that is, if, for instance, in (11), then we can obtain

Eigenvalues, Eigenvectors
Eigenvalues and eigenvectors will be very important in this chapter (and, as a matter of
fact, throughout mathematics).

Let be an n n matrix. Consider the equation

(12)

where is a scalar (a real or complex number) to be determined and x is a vector to be
determined. Now, for every , a solution is . A scalar such that (12) holds for
some vector is called an eigenvalue of A, and this vector is called an eigenvector
of A corresponding to this eigenvalue .

We can write (12) as or

(13) .

These are n linear algebraic equations in the n unknowns (the components
of x). For these equations to have a solution , the determinant of the coefficient
matrix must be zero. This is proved as a basic fact in linear algebra (Theorem 4
in Sec. 7.7). In this chapter we need this only for . Then (13) is

(14) ;

in components,

Now is singular if and only if its determinant , called the characteristic
determinant of A (also for general n), is zero. This gives

(15)

 � l2 � (a11 � a22)l � a11a22 � a12a21 � 0.

 � (a11 � l)(a22 � l) � a12a21

 det (A � lI) � 2  a11 � l a12

a21 a22 � l
 2
det (A � lI)A � lI

  a21 x1  � (a22 � l)x2 � 0.

 (a11 � l)x1 �   a12 x2  � 0
(14*)

ca11 � l a12

a21 a22 � l
d  c x1

x2

d � c0
0
d

n � 2
A � lI

x � 0
x1, Á , xn

(A � lI)x � 0

Ax � lx � 0
l

x � 0
lx � 0l

l

Ax � lx

�A � [ajk]

v(1) � � 
1
c1

 (c2v(2) � Á � crv
(r)).

c1 � 0

c1, Á , cr
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This quadratic equation in is called the characteristic equation of A. Its solutions are
the eigenvalues of A. First determine these. Then use with to
determine an eigenvector of A corresponding to . Finally use with 
to find an eigenvector of A corresponding to . Note that if x is an eigenvector of
A, so is kx with any .

E X A M P L E  1 Eigenvalue Problem

Find the eigenvalues and eigenvectors of the matrix

(16)

Solution. The characteristic equation is the quadratic equation

.

It has the solutions . These are the eigenvalues of A.
Eigenvectors are obtained from . For we have from 

A solution of the first equation is . This also satisfies the second equation. (Why?) Hence an
eigenvector of A corresponding to is

(17) . Similarly,

is an eigenvector of A corresponding to , as obtained from with . Verify this.

4.1 Systems of ODEs as Models 
in Engineering Applications

We show how systems of ODEs are of practical importance as follows. We first illustrate
how systems of ODEs can serve as models in various applications. Then we show how a
higher order ODE (with the highest derivative standing alone on one side) can be reduced
to a first-order system.

E X A M P L E  1 Mixing Problem Involving Two Tanks

A mixing problem involving a single tank is modeled by a single ODE, and you may first review the
corresponding Example 3 in Sec. 1.3 because the principle of modeling will be the same for two tanks. The
model will be a system of two first-order ODEs.

Tank and in Fig. 78 contain initially 100 gal of water each. In the water is pure, whereas 150 lb of
fertilizer are dissolved in . By circulating liquid at a rate of and stirring (to keep the mixture uniform)
the amounts of fertilizer in and in change with time t. How long should we let the liquid circulate
so that will contain at least half as much fertilizer as there will be left in ?T2T1

T2y2(t)T1y1(t)
2 gal>minT2

T1T2T1

�l � l2(14*)l2 � �0.8

x(2) � c 1

0.8
dx(1) � c2

1
d

l1 � �2.0
x1 � 2, x2 � 1

  �1.6x1  � (1.2 � 2.0)x2 � 0.

 (�4.0 � 2.0)x1 �   4.0x2  � 0

(14*)l � l1 � �2(14*)
l1 � �2 and l2 � �0.8

det ƒ A � lI ƒ � 2  �4 � l 4

�1.6 1.2 � l 

2 � l2 � 2.8l � 1.6 � 0

A � c�4.0 4.0

�1.6 1.2
d

k � 0
l2x(2)

l � l2(14*)l1x(1)
l � l1(14*)l1 and l2

l
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Solution. Step 1. Setting up the model. As for a single tank, the time rate of change of equals
inflow minus outflow. Similarly for tank . From Fig. 78 we see that

(Tank ) 

(Tank ).

Hence the mathematical model of our mixture problem is the system of first-order ODEs

(Tank )

(Tank ).

As a vector equation with column vector and matrix A this becomes

.

Step 2. General solution. As for a single equation, we try an exponential function of t,

(1) .

Dividing the last equation by and interchanging the left and right sides, we obtain

.

We need nontrivial solutions (solutions that are not identically zero). Hence we have to look for eigenvalues
and eigenvectors of A. The eigenvalues are the solutions of the characteristic equation

(2) .

We see that (which can very well happen—don’t get mixed up—it is eigenvectors that must not be zero)
and . Eigenvectors are obtained from in Sec. 4.0 with and . For our present
A this gives [we need only the first equation in ]

and , (�0.02 � 0.04)x1 � 0.02x2 � 0�0.02x1 � 0.02x2 � 0

(14*)
l � �0.04l � 0(14*)l2 � �0.04

l1 � 0

det (A � lI) � 2  �0.02 � l 0.02

0.02 �0.02 � l
 2 � (�0.02 � l)2 � 0.022 � l(l � 0.04) � 0

Ax � lx

eltlxelt � Axelt

y � xelt.  Then  yr � lxelt � Axelt

yr � Ay,  where  A � c�0.02 0.02

0.02 �0.02
d

y � c y1

y2

d

T2 yr2 � 0.02y1 � 0.02y2

T1 yr1 � �0.02y1 � 0.02y2

T2yr2 � Inflow>min � Outflow>min �
2

100
 y1 �

2

100
 y2

T1yr1 � Inflow>min � Outflow>min �
2

100
 y2 �

2

100
 y1

T2

y1(t)yr1(t)
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respectively. Hence and , respectively, and we can take and .
This gives two eigenvectors corresponding to and , respectively, namely,

and .

From (1) and the superposition principle (which continues to hold for systems of homogeneous linear ODEs)
we thus obtain a solution

(3)

where are arbitrary constants. Later we shall call this a general solution.

Step 3. Use of initial conditions. The initial conditions are (no fertilizer in tank ) and .
From this and (3) with we obtain

In components this is . The solution is . This gives the answer

.

In components,

(Tank , lower curve)

(Tank , upper curve).

Figure 78 shows the exponential increase of and the exponential decrease of to the common limit 75 lb.
Did you expect this for physical reasons? Can you physically explain why the curves look “symmetric”? Would
the limit change if initially contained 100 lb of fertilizer and contained 50 lb?

Step 4. Answer. contains half the fertilizer amount of if it contains of the total amount, that is,
50 lb. Thus

.

Hence the fluid should circulate for at least about half an hour.

E X A M P L E  2 Electrical Network

Find the currents and in the network in Fig. 79. Assume all currents and charges to be zero at ,
the instant when the switch is closed.

t � 0I2(t)I1(t)

�

y1 � 75 � 75e�0.04t � 50,   e�0.04t � 1
3 ,  t � (ln 3)>0.04 � 27.5

1>3T2T1

T2T1

y2y1

T2 y2 � 75 � 75e�0.04t

T1 y1 � 75 � 75e�0.04t

y � 75x(1) � 75x(2)e�0.04t � 75 c1
1
d � 75 c 1

�1
d  e�0.04t

c1 � 75, c2 � �75c1 �  c2 � 0, c1 �  c2 � 150

y(0) � c1 c1
1
d � c2 c 1

�1
d � c c1 � c2

 c1 � c2

d � c 0

150
d .

t � 0
y2(0) � 150T1y1(0) � 0

c1 and c2

y � c1x(1)el1t � c2x(2)el2t � c1 c1
1
d � c2 c 1

�1
d e�0.04t

x(2) � c 1

�1
dx(1) � c1

1
d

l2 � �0.04l1 � 0
x1 � �x2 � 1x1 � x2 � 1x1 � �x2x1 � x2
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Solution. Step 1. Setting up the mathematical model. The model of this network is obtained from
Kirchhoff’s Voltage Law, as in Sec. 2.9 (where we considered single circuits). Let and be the currentsI2(t)I1(t)

Switch
t = 0

E = 12 volts

L = 1 henry C = 0.25 farad

R
1
 = 4 ohms

R
2
 = 6 ohms

I
1

I
1

I
1

I
2

I
2

I
2

Fig. 79. Electrical network in Example 2
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in the left and right loops, respectively. In the left loop, the voltage drops are over the inductor
and over the resistor, the difference because and flow through the resistor in
opposite directions. By Kirchhoff’s Voltage Law the sum of these drops equals the voltage of the battery; that
is, , hence

(4a) .

In the right loop, the voltage drops are and over the resistors and
over the capacitor, and their sum is zero,

or .

Division by 10 and differentiation gives .
To simplify the solution process, we first get rid of , which by (4a) equals .

Substitution into the present ODE gives

and by simplification

(4b) .

In matrix form, (4) is (we write J since I is the unit matrix)

(5) , where .

Step 2. Solving (5). Because of the vector g this is a nonhomogeneous system, and we try to proceed as for a
single ODE, solving first the homogeneous system (thus ) by substituting . This
gives

, hence .

Hence, to obtain a nontrivial solution, we again need the eigenvalues and eigenvectors. For the present matrix
A they are derived in Example 1 in Sec. 4.0:

, ; ,

Hence a “general solution” of the homogeneous system is

.

For a particular solution of the nonhomogeneous system (5), since g is constant, we try a constant column
vector with components . Then , and substitution into (5) gives ; in components,

The solution is ; thus . Hence

(6) ;

in components,

 I2 � c1e�2t � 0.8c2e�0.8t.

 I1 � 2c1e�2t � c2e�0.8t � 3

J � Jh � Jp � c1x(1)e�2t � c2x(2)e�0.8t � a

a � c3
0
da1 � 3, a2 � 0

 �1.6a1 � 1.2a2 �  4.8 � 0.

 �4.0a1 � 4.0a2 � 12.0 � 0

Aa � g � 0Jrp � 0a1, a2Jp � a

Jh � c1x(1)e�2t � c2x(2)e�0.8t

x(2) � c 1

0.8
d .l2 � �0.8x(1) � c2

1
dl1 � �2

Ax � lxJr � lxelt � Axelt

J � xeltJr � AJ � 0Jr � AJ

J � c I1

I2

d , A � c�4.0 4.0

�1.6 1.2
d , g � c12.0

4.8
dJr � AJ � g

Ir2 � �1.6I1 � 1.2I2 � 4.8

Ir2 � 0.4Ir1 � 0.4I2 � 0.4(�4I1 � 4I2 � 12) � 0.4I2

0.4(�4I1 � 4I2 � 12)0.4Ir1
Ir2 � 0.4Ir1 � 0.4I2 � 0

10I2 � 4I1 � 4�  I2 dt � 06I2 � 4(I2 � I1) � 4�  I2 dt � 0

(I>C)�  I2 dt � 4�  I2 dt [V]
R1(I2 �  I1) � 4(I2 � I1) [V]R2I2 � 6I2 [V]

Ir1 � �4I1 � 4I2 � 12

Ir1 � 4(I1 � I2) � 12

I2I1R1(I1 � I2) � 4(I1 � I2) [V]
LIr1 � Ir1 [V]
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The initial conditions give

Hence and . As the solution of our problem we thus obtain

(7)

In components (Fig. 80b),

Now comes an important idea, on which we shall elaborate further, beginning in Sec. 4.3. Figure 80a shows
and as two separate curves. Figure 80b shows these two currents as a single curve in the

-plane. This is a parametric representation with time t as the parameter. It is often important to know in
which sense such a curve is traced. This can be indicated by an arrow in the sense of increasing t, as is shown.
The -plane is called the phase plane of our system (5), and the curve in Fig. 80b is called a trajectory. We
shall see that such “phase plane representations” are far more important than graphs as in Fig. 80a because
they will give a much better qualitative overall impression of the general behavior of whole families of solutions,
not merely of one solution as in the present case. �

I1I2

I1I2

[I1(t), I2(t)]I2(t)I1(t)

 I2 � �4e�2t � 4e�0.8t.

 I1 � �8e�2t � 5e�0.8t � 3

J � �4x(1)e�2t � 5x(2)e�0.8t � a.

c2 � 5c1 � �4

 I2(0) � c1 � 0.8c2 � 0.

 I1(0) � 2c1 � c2 � 3 � 0
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-plane
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I
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(t )

I
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Fig. 80. Currents in Example 2

Remark. In both examples, by growing the dimension of the problem (from one tank to
two tanks or one circuit to two circuits) we also increased the number of ODEs (from one
ODE to two ODEs). This “growth” in the problem being reflected by an “increase” in the
mathematical model is attractive and affirms the quality of our mathematical modeling and
theory.

Conversion of an nth-Order ODE to a System
We show that an nth-order ODE of the general form (8) (see Theorem 1) can be converted
to a system of n first-order ODEs. This is practically and theoretically important—
practically because it permits the study and solution of single ODEs by methods for
systems, and theoretically because it opens a way of including the theory of higher order
ODEs into that of first-order systems. This conversion is another reason for the importance
of systems, in addition to their use as models in various basic applications. The idea of
the conversion is simple and straightforward, as follows.
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T H E O R E M  1  Conversion of an ODE

An nth-order ODE

(8)

can be converted to a system of n first-order ODEs by setting

(9) .

This system is of the form

(10) .

P R O O F The first of these n ODEs follows immediately from (9) by differentiation. Also,
by (9), so that the last equation in (10) results from the given ODE (8).

E X A M P L E  3 Mass on a Spring

To gain confidence in the conversion method, let us apply it to an old friend of ours, modeling the free motions
of a mass on a spring (see Sec. 2.4)

For this ODE (8) the system (10) is linear and homogeneous,

Setting , we get in matrix form

The characteristic equation is

det (A � lI) � 4 �l 1

� 

k
m

� 

c
m

� l

 4 � l2 �
c
m

 l �
k
m

� 0.

yr � Ay � D 0 1

� 

k
m

� 

c
m

T c y1

y2

d .

y � c y1

y2

d
 yr2 � � 

k
m

 y1 �  

c
m

 y2.

 yr1 � y2

mys � cyr � ky � 0  or  ys � � 

c
m

 yr �  

k
m

 y.

�yrn � y(n)
n � 1

yr1 � y2

yr2 � y3

o

yrn�1 � yn

yrn �  F(t, y1, y2, Á , yn).

 

y1 � y, y2 � yr, y3 � ys, Á , yn � y(n�1)

y(n) � F(t, y, yr, Á , y(n�1))
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136 CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

15. CAS EXPERIMENT. Electrical Network. (a) In
Example 2 choose a sequence of values of C that
increases beyond bound, and compare the corresponding
sequences of eigenvalues of A. What limits of these
sequences do your numeric values (approximately)
suggest?

(b) Find these limits analytically.

(c) Explain your result physically.

(d) Below what value (approximately) must you decrease
C to get vibrations?

k
1 

= 3

k
2 

= 2 (Net change in
 spring length
  = y

2 
– y

1
)

System in
motion

System in
static

equilibrium 

m
1 

= 1(y
1 

= 0)

(y
2 

= 0) m
2 

= 1

y
1

y
2

y
2

y
1

Fig. 81. Mechanical system in Team Project

1–6 MIXING PROBLEMS
1. Find out, without calculation, whether doubling the

flow rate in Example 1 has the same effect as halfing
the tank sizes. (Give a reason.)

2. What happens in Example 1 if we replace by a tank
containing 200 gal of water and 150 lb of fertilizer
dissolved in it?

3. Derive the eigenvectors in Example 1 without consulting
this book.

4. In Example 1 find a “general solution” for any ratio
, tank sizes being equal.

Comment on the result.

5. If you extend Example 1 by a tank of the same size
as the others and connected to by two tubes with
flow rates as between and , what system of ODEs
will you get?

6. Find a “general solution” of the system in Prob. 5.

7–9 ELECTRICAL NETWORK
In Example 2 find the currents:

7. If the initial currents are 0 A and A (minus meaning
that flows against the direction of the arrow).

8. If the capacitance is changed to . (General
solution only.)

9. If the initial currents in Example 2 are 28 A and 14 A.

10–13 CONVERSION TO SYSTEMS 
Find a general solution of the given ODE (a) by first converting
it to a system, (b), as given. Show the details of your work.

10. 11.

12.

13. ys � 2yr � 24y � 0

yt � 2ys � yr � 2y � 0

4ys � 15yr � 4y � 0ys � 3yr � 2y � 0

C � 5>27 F

I2(0)
�3

T2T1

T2

T3

a � (flow rate)>(tank size)

T1

14. TEAM PROJECT. Two Masses on Springs. (a) Set
up the model for the (undamped) system in Fig. 81.
(b) Solve the system of ODEs obtained. Hint. Try

and set . Proceed as in Example 1 or
2. (c) Describe the influence of initial conditions on the
possible kind of motions.

v2 � ly � xevt

P R O B L E M  S E T  4 . 1

It agrees with that in Sec. 2.4. For an illustrative computation, let , and . Then

This gives the eigenvalues and . Eigenvectors follow from the first equation in 
which is . For this gives , say, , . For it gives

, say, , . These eigenvectors

give

This vector solution has the first component

which is the expected solution. The second component is its derivative

�y2 � yr1 � yr � �c1e�0.5t � 1.5c2e�1.5t.

y � y1 � 2c1e�0.5t � c2e�1.5t

y � c1 c 2

�1
d  e�0.5t � c2 c 1

�1.5
d  e�1.5t.x(1) � c 2

�1
d , x(2) � c 1

�1.5
d

x2 � �1.5x1 � 11.5x1 � x2 � 0
l2 � �1.5x2 � �1x1 � 20.5x1 � x2 � 0l1�lx1 � x2 � 0

A � lI � 0,l2 � �1.5l1 � �0.5

l2 � 2l � 0.75 � (l � 0.5)(l � 1.5) � 0.

k � 0.75m � 1, c � 2
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4.2 Basic Theory of Systems of ODEs.
Wronskian

In this section we discuss some basic concepts and facts about system of ODEs that are
quite similar to those for single ODEs.

The first-order systems in the last section were special cases of the more general system

(1)

We can write the system (1) as a vector equation by introducing the column vectors
and (where means transposition and saves us

the space that would be needed for writing y and f as columns). This gives

(1)

This system (1) includes almost all cases of practical interest. For it becomes
or, simply, , well known to us from Chap. 1.

A solution of (1) on some interval is a set of n differentiable functions

on that satisfy (1) throughout this interval. In vector from, introducing the
“solution vector” (a column vector!) we can write

An initial value problem for (1) consists of (1) and n given initial conditions

(2)

in vector form, , where is a specified value of t in the interval considered and
the components of are given numbers. Sufficient conditions for the
existence and uniqueness of a solution of an initial value problem (1), (2) are stated in
the following theorem, which extends the theorems in Sec. 1.7 for a single equation. (For
a proof, see Ref. [A7].)

T H E O R E M  1 Existence and Uniqueness Theorem

Let in (1) be continuous functions having continuous partial derivatives
in some domain R of -space

containing the point . Then (1) has a solution on some interval
satisfying (2), and this solution is unique.t0 � a � t � t0 � a
(t0, K1, Á , Kn)

ty1 y2
Á yn0f1 >0y1, Á , 0f1 >0yn, Á , 0fn >0yn

f1, Á , fn

K � [K1 
Á

 Kn]T
t0y(t0) � K

y1(t0) � K1,  y2(t0) � K2,  Á ,  yn(t0) � Kn,

y � h(t).

h � [h1 
Á

 hn]T
a � t � b

y1 � h1(t), Á , yn � hn(t)

a � t � b
yr � f (t, y)yr1 � f1(t, y1)

n � 1

yr � f(t, y).

Tf � [  f1 Á
 fn]Ty � [ y1 

Á
 yn]T

yr1 � f1(t, y1, Á , yn)

yr2 � f2(t, y1, Á , yn)

Á

yrn � fn(t, y1, Á , yn).
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Linear Systems
Extending the notion of a linear ODE, we call (1) a linear system if it is linear in

that is, if it can be written

(3)

As a vector equation this becomes

(3)

where

This system is called homogeneous if so that it is

(4)

If then (3) is called nonhomogeneous. For example, the systems in Examples 1 and
3 of Sec. 4.1 are homogeneous. The system in Example 2 of that section is nonhomogeneous.

For a linear system (3) we have in Theorem 1.
Hence for a linear system we simply obtain the following.

T H E O R E M  2 Existence and Uniqueness in the Linear Case

Let the ’s and ’s in (3) be continuous functions of t on an open interval
containing the point Then (3) has a solution y(t) on this interval

satisfying (2), and this solution is unique.

As for a single homogeneous linear ODE we have

T H E O R E M  3 Superposition Principle or Linearity Principle

If and are solutions of the homogeneous linear system (4) on some interval,
so is any linear combination .

P R O O F Differentiating and using (4), we obtain

� � A(c1 y(1) � c2 y(2)) � Ay.

 � c1Ay(1) � c2Ay(2)

 � c1y(1)r � c2 y
(2)r

 yr � [c1 y(1) � c1 y(2)]r

y � c1 y(1) � c1 y(2)
y(2)y(1)

t � t0.a � t � b
gjajk

0f1 >0y1 � a11(t), Á , 0fn >0yn � ann(t)

g � 0,

yr � Ay.

g � 0,

A � Da11
Á a1n

. Á .

an1
Á ann

T ,  y � Dy1

o

yn

T ,  g � Dg1

o

gn

T .

yr � Ay � g

yr1 � a11(t)y1 � Á � a1n(t)yn � g1(t)

o

yrn � an1(t)y1 � Á � ann(t)yn � gn(t).

y1, Á , yn;
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The general theory of linear systems of ODEs is quite similar to that of a single linear
ODE in Secs. 2.6 and 2.7. To see this, we explain the most basic concepts and facts. For
proofs we refer to more advanced texts, such as [A7].

Basis. General Solution. Wronskian
By a basis or a fundamental system of solutions of the homogeneous system (4) on some
interval J we mean a linearly independent set of n solutions of (4) on that
interval. (We write J because we need I to denote the unit matrix.) We call a corresponding
linear combination

(5)

a general solution of (4) on J. It can be shown that if the (t) in (4) are continuous on
J, then (4) has a basis of solutions on J, hence a general solution, which includes every
solution of (4) on J.

We can write n solutions of (4) on some interval J as columns of an 
matrix

(6)

The determinant of Y is called the Wronskian of , written

(7)

The columns are these solutions, each in terms of components. These solutions form a
basis on J if and only if W is not zero at any in this interval. W is either identically
zero or nowhere zero in J. (This is similar to Secs. 2.6 and 3.1.)

If the solutions in (5) form a basis (a fundamental system), then (6) is
often called a fundamental matrix. Introducing a column vector 
we can now write (5) simply as

(8)

Furthermore, we can relate (7) to Sec. 2.6, as follows. If y and z are solutions of a
second-order homogeneous linear ODE, their Wronskian is

To write this ODE as a system, we have to set and similarly for z
(see Sec. 4.1). But then becomes (7), except for notation.W( y, z)

y � y1, yr � y1r � y2

W( y, z) � 2  y z

yr zr
2 .

y � Yc.

c � [c1 c2 
Á

 cn]T,
y(1), Á , y(n)

t1

W(y(1), Á , y(n)) � 5  y1
(1) y1

(2) Á y1
(n)

y2
(1) y2

(2) Á y2
(n)

# # Á #

yn
(1) yn

(2) Á yn
(n)

 5 .
y(1), Á , y(n)

Y � [y(1)  Á   y(n)].

n � ny(1), Á , y(n)

ajk

(c1, Á , cn arbitrary)y � c1y(1) Á � cn y
(n)

y(1), Á , y(n)
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4.3 Constant-Coefficient Systems. 
Phase Plane Method

Continuing, we now assume that our homogeneous linear system

(1)

under discussion has constant coefficients, so that the matrix has entries
not depending on t. We want to solve (1). Now a single ODE has the solution

. So let us try

(2)

Substitution into (1) gives . Dividing by , we obtain the
eigenvalue problem

(3)

Thus the nontrivial solutions of (1) (solutions that are not zero vectors) are of the form
(2), where is an eigenvalue of A and x is a corresponding eigenvector.

We assume that A has a linearly independent set of n eigenvectors. This holds in most
applications, in particular if A is symmetric or skew-symmetric 
or has n different eigenvalues.

Let those eigenvectors be and let them correspond to eigenvalues
(which may be all different, or some––or even all––may be equal). Then the

corresponding solutions (2) are

(4)

Their Wronskian [(7) in Sec. 4.2] is given by

On the right, the exponential function is never zero, and the determinant is not zero either
because its columns are the n linearly independent eigenvectors. This proves the following
theorem, whose assumption is true if the matrix A is symmetric or skew-symmetric, or if
the n eigenvalues of A are all different.

W � (y(1), Á , y(n)) � 5  x1
(1)el1t Á x1

(n)elnt

x2
(1)el1t Á x2

(n)elnt

# Á #

xn
(1)el1t Á xn

(n)elnt

 5 � el1t� Á �lnt 5  x1
(1) Á x1

(n)

x2
(1) Á x2

(n)

# Á #

xn
(1) Á xn

(n)

 5 .
W � W(y(1), Á , y(n))

y(4) � x(1)el1t, Á , y(n) � x(n)elnt.

l1, Á , ln

x(1), Á , x(n)

(akj � �ajk)(akj � ajk)

l

Ax � lx.

eltyr � lxelt � Ay � Axelt

y � xelt.

y � Cekt
yr � ky

A � [ajk]n � n

y� � Ay
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T H E O R E M  1 General Solution

If the constant matrix A in the system (1) has a linearly independent set of n
eigenvectors, then the corresponding solutions in (4) form a basis of
solutions of (1), and the corresponding general solution is

(5)

How to Graph Solutions in the Phase Plane
We shall now concentrate on systems (1) with constant coefficients consisting of two
ODEs

(6) in components,

Of course, we can graph solutions of (6),

(7)

as two curves over the t-axis, one for each component of y(t). (Figure 80a in Sec. 4.1 shows
an example.) But we can also graph (7) as a single curve in the -plane. This is a parametric
representation (parametric equation) with parameter t. (See Fig. 80b for an example. Many
more follow. Parametric equations also occur in calculus.) Such a curve is called a trajectory
(or sometimes an orbit or path) of (6). The -plane is called the phase plane.1 If we fill
the phase plane with trajectories of (6), we obtain the so-called phase portrait of (6).

Studies of solutions in the phase plane have become quite important, along with
advances in computer graphics, because a phase portrait gives a good general qualitative
impression of the entire family of solutions. Consider the following example, in which
we develop such a phase portrait.

E X A M P L E  1 Trajectories in the Phase Plane (Phase Portrait)

Find and graph solutions of the system.
In order to see what is going on, let us find and graph solutions of the system

(8) thus
y1r � �3y1 � y2

y2r � y1 � 3y2.
yr � Ay � c�3 1

1 �3
d  y,

y1 y2

y1 y2

y(t) � c y1(t)

y2(t)
d ,

y1r � a11 y1 � a12 y2

y2r � a21 y1 � a22 y2.
y� � Ay;

y � c1x(1)el1t � Á � cnx(n)elnt.

y(1), Á , y(n)
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1A name that comes from physics, where it is the y-(mv)-plane, used to plot a motion in terms of position y
and velocity y� � v (m � mass); but the name is now used quite generally for the y1y2-plane.

The use of the phase plane is a qualitative method, a method of obtaining general qualitative information
on solutions without actually solving an ODE or a system. This method was created by HENRI POINCARÉ
(1854–1912), a great French mathematician, whose work was also fundamental in complex analysis, divergent
series, topology, and astronomy.
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Solution. By substituting and and dropping the exponential function we get 
The characteristic equation is

This gives the eigenvalues and . Eigenvectors are then obtained from

For this is . Hence we can take . For this becomes 
and an eigenvector is . This gives the general solution

Figure 82 shows a phase portrait of some of the trajectories (to which more trajectories could be added if so
desired). The two straight trajectories correspond to and and the others to other choices of

The method of the phase plane is particularly valuable in the frequent cases when solving
an ODE or a system is inconvenient of impossible.

Critical Points of the System (6)
The point in Fig. 82 seems to be a common point of all trajectories, and we want
to explore the reason for this remarkable observation. The answer will follow by calculus.
Indeed, from (6) we obtain

(9)

This associates with every point a unique tangent direction of the
trajectory passing through P, except for the point , where the right side of (9)
becomes . This point , at which becomes undetermined, is called a critical
point of (6).

Five Types of Critical Points
There are five types of critical points depending on the geometric shape of the trajectories
near them. They are called improper nodes, proper nodes, saddle points, centers, and
spiral points. We define and illustrate them in Examples 1–5.

E X A M P L E  1 (Continued ) Improper Node (Fig. 82)

An improper node is a critical point at which all the trajectories, except for two of them, have the same
limiting direction of the tangent. The two exceptional trajectories also have a limiting direction of the tangent
at which, however, is different.

The system (8) has an improper node at 0, as its phase portrait Fig. 82 shows. The common limiting direction
at 0 is that of the eigenvector because goes to zero faster than as t increases. The two
exceptional limiting tangent directions are those of and . ��x(2) � [�1 1]Tx(2) � [1 �1]T

e�2te�4tx(1) � [1 1]T

P0

P0

dy2>dy1P00>0
P � P0 : (0, 0)

dy2>dy1P: ( y1, y2)

dy2

dy1
�

y2r  dt

y1r dt
�

y2r
y1r

�
a21 y1 � a22 y2

a11 y1 � a12 y2
 .

y � 0

�c1, c2.
c2 � 0c1 � 0

y � c y1

y2

d � c1 y(1) � c2 y(2) � c1 c1
1
d  e�2t � c2 c 1

�1
d  e�4t.

x(2) � [1 �1]T
x1 � x2 � 0,l2 � �4x(1) � [1 1]T�x1 � x2 � 0l1 � �2

(�3 � l)x1 � x2 � 0.

l2 � �4l1 � �2

� l2 � 6l � 8 � 0.det (A � lI) � 2  �3 � l 1

1 �3 � l
 2

Ax � lx.yr � lxelty � xelt
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E X A M P L E  2 Proper Node (Fig. 83)

A proper node is a critical point at which every trajectory has a definite limiting direction and for any given
direction d at there is a trajectory having d as its limiting direction.

The system

(10)

has a proper node at the origin (see Fig. 83). Indeed, the matrix is the unit matrix. Its characteristic equation
has the root . Any is an eigenvector, and we can take and . Hence

a general solution is

�y � c1 c1
0
d  et � c2 c0

1
d  et 

 
or  

y1 � c1et

y2 � c2et
  or  c1 y2 � c2 y1.

[0 1]T[1 0]Tx � 0l � 1(1 � l)2 � 0

yr � c1 0

0 1
d  y,  thus  

y1r � y1

y2r � y2

P0

P0
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y
2

y
1

y(1)(t )

y(2)(t )

Fig. 82. Trajectories of the system (8)
(Improper node)

y
2

y
1

Fig. 83. Trajectories of the system (10)
(Proper node)

E X A M P L E  3 Saddle Point (Fig. 84)

A saddle point is a critical point at which there are two incoming trajectories, two outgoing trajectories, and
all the other trajectories in a neighborhood of bypass .

The system

(11)

has a saddle point at the origin. Its characteristic equation has the roots and
. For an eigenvector is obtained from the second row of that is,

. For the first row gives . Hence a general solution is

This is a family of hyperbolas (and the coordinate axes); see Fig. 84. �

y � c1 c1
0
d  et � c2 c0

1
d  e�t  or  

y1 � c1et

y2 � c2e�t
  or  y1 y2 � const.

[0 1]Tl2 � �10x1 � (�1 � 1)x2 � 0
(A � lI)x � 0,[1 0]Tl � 1l2 � �1

l1 � 1(1 � l)(�1 � l) � 0

yr � c1 0

0 �1
d  y,   thus   

y1r � y1

y1r � �y2

P0P0

P0
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E X A M P L E  4 Center (Fig. 85)

A center is a critical point that is enclosed by infinitely many closed trajectories.
The system

(12)

has a center at the origin. The characteristic equation gives the eigenvalues 2i and . For 2i an
eigenvector follows from the first equation of , say, . For that
equation is and gives, say, . Hence a complex general solution is

(12 )

A real solution is obtained from (12 ) by the Euler formula or directly from (12) by a trick. (Remember the
trick and call it a method when you apply it again.) Namely, the left side of (a) times the right side of (b) is

. This must equal the left side of (b) times the right side of (a). Thus, 

. By integration, . 

This is a family of ellipses (see Fig. 85) enclosing the center at the origin. �

2y1
2 � 1

2 y2
2 � const�4y1 y1r � y2 y2r

�4y1y1r

*

y � c1 c 1

2i
d  e2it � c2 c 1

�2i
d  e�2it,  thus  

y1 � c1e2it � c2e�2it

y2 � 2ic1e2it � 2ic2e�2it.
*

[1 �2i]T�(�2i)x1 � x2 � 0
l � �2i[1 2i]T(A � lI)x � 0�2ix1 � x2 � 0

�2il2 � 4 � 0

yr � c 0 1

�4 0
d  y,   thus   

(a)

(b)
 

y1r � y2

y2r � �4y1

144 CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

y
2

y
1

Fig. 84. Trajectories of the system (11)
(Saddle point)

y
2

y
1

Fig. 85. Trajectories of the system (12)
(Center)

E X A M P L E  5 Spiral Point (Fig. 86)

A spiral point is a critical point about which the trajectories spiral, approaching as (or tracing these
spirals in the opposite sense, away from ).

The system

(13)

has a spiral point at the origin, as we shall see. The characteristic equation is . It gives the
eigenvalues and . Corresponding eigenvectors are obtained from . For(�1 � l)x1 � x2 � 0�1 � i�1 � i

l2 � 2l � 2 � 0

yr � c�1 1

�1 �1
d  y,  thus  

y1r � �y1 � y2

y2r � �y1 � y2

P0

t : 	P0P0
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this becomes and we can take as an eigenvector. Similarly, an eigenvector
corresponding to is . This gives the complex general solution

The next step would be the transformation of this complex solution to a real general solution by the Euler
formula. But, as in the last example, we just wanted to see what eigenvalues to expect in the case of a spiral
point. Accordingly, we start again from the beginning and instead of that rather lengthy systematic calculation
we use a shortcut. We multiply the first equation in (13) by , the second by , and add, obtaining

.

We now introduce polar coordinates r, t, where . Differentiating this with respect to t gives
. Hence the previous equation can be written

, Thus, , , .

For each real c this is a spiral, as claimed (see Fig. 86). �

r � ce�tln ƒ r ƒ � �t � c*,dr>r � �dtrr � �rrrr � �r 2

2rrr � 2y1 yr1 � 2y2 yr2
r 2 � y1

2 � y2
2

y1 yr1 �  y2 yr2 � �(y1
2 � y2

2)

y2y1

y � c1 c1
i
d  e(�1�i)t � c2 c 1

�i
d  e(�1�i)t.

[1 �i]T�1 � i
[1 i]T�ix1 � x2 � 0l � �1 � i
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y
2

y
1

Fig. 86. Trajectories of the system (13) (Spiral point)

E X A M P L E  6 No Basis of Eigenvectors Available. Degenerate Node (Fig. 87)

This cannot happen if A in (1) is symmetric , as in Examples 1–3) or skew-symmetric 
thus . And it does not happen in many other cases (see Examples 4 and 5). Hence it suffices to explain
the method to be used by an example.

Find and graph a general solution of

(14)

Solution. A is not skew-symmetric! Its characteristic equation is

.det (A � lI) � 2  4 � l 1

�1 2 � l
 2 � l2 � 6l � 9 � (l � 3)2 � 0

yr � Ay � c 4 1

�1 2
d  y.

ajj � 0)
(akj � �ajk,(akj � ajk
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It has a double root . Hence eigenvectors are obtained from , thus from 
say, and nonzero multiples of it (which do not help). The method now is to substitute

with constant into (14). (The xt-term alone, the analog of what we did in Sec. 2.2 in the case
of a double root, would not be enough. Try it.) This gives

.

On the right, . Hence the terms cancel, and then division by gives

, thus .

Here and , so that

, thus

A solution, linearly independent of , is . This yields the answer (Fig. 87)

The critical point at the origin is often called a degenerate node. gives the heavy straight line, with 
the lower part and the upper part of it. gives the right part of the heavy curve from 0 through 

the second, first, and—finally—fourth quadrants. gives the other part of that curve. ��y(2)
y(2)c1 � 0c1 
 0

c1y(1)

y � c1y(1) � c2y(2) � c1 c 1

�1
d  e3t � c2  £ c 1

�1
d  t � c0

1
d≥ e3t.

u � [0 1]Tx � [1 �1]T

u1 �  u2 � 1

�u1 �  u2 � �1.
(A � 3I)u � c4 � 3 1

�1 2 � 3
d  u � c 1

�1
d

x � [1 �1]Tl � 3

(A � lI)u � xx � lu � Au

eltlxteltAx � lx

y(2)r � xelt � lxtelt � luelt � Ay(2) � Axtelt � Auelt

u � [u1 u2]T

y(2) � xtelt � uelt

x(1) � [1 �1]T
x1 � x2 � 0,(4 � l)x1 � x2 � 0l � 3
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y
2

y
1

y(1)

y(2)

Fig. 87. Degenerate node in Example 6

We mention that for a system (1) with three or more equations and a triple eigenvalue
with only one linearly independent eigenvector, one will get two solutions, as just
discussed, and a third linearly independent one from

with v from u � lv � Av.y(3) � 1
2 xt 2elt � utelt � velt
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1–9 GENERAL SOLUTION
Find a real general solution of the following systems. Show
the details.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10–15 IVPs
Solve the following initial value problems.

10.

11.

12.

13.

y1(0) � 0, y2(0) � 2

y2r � y1

y1r � y2

y1(0) � 12, y2(0) � 2

y2r � 1
3 y1 � y2

y1r � y1 � 3y2

y1(0) � �12, y2(0) � 0

y2r � �1
2 y1 �  

3
2 y2

y1r � 2y1 � 5y2

y1(0) � 0, y2(0) � 7

y2r � 5y1 � y2

y1r � 2y1 � 2y2

y3r � �4y1 � 14y2 � 2y3

y2r � �10y1 � y2 � 14y3

y1r � 10y1 � 10y2 � 4y3

y2r � y1 � 10y2

y1r � 8y1 � y2

y3r � �y2

y2r � �y1 � y3

y1r � y2

y2r � 2y1 � 2y2

y1r � 2y1 � 2y2

y2r � 5y1 � 12.5y2

y1r � 2y1 � 5y2

y2r � 2y1 � 4y2

y1r � �8y1 � 2y2

y2r � 1
2 y1 � y2

y1r � y1 � 2y2

y2r � y1 � 6y2

y1r � 6y1 � 9y2

y2r � 3y1 � y2

y1r � y1 � y2

14.

15.

16–17 CONVERSION 
Find a general solution by conversion to a single ODE.

16. The system in Prob. 8.

17. The system in Example 5 of the text.

18. Mixing problem, Fig. 88. Each of the two tanks
contains 200 gal of water, in which initially 100 lb
(Tank ) and 200 lb (Tank ) of fertilizer are dissolved.
The inflow, circulation, and outflow are shown in
Fig. 88. The mixture is kept uniform by stirring. Find
the fertilizer contents in and in .T2y2(t)T1y1(t)

T2T1

y1(0) � 0.5, y2(0) � �0.5

y2r � 2y1 � 3y2

y1r � 3y1 � 2y2

y1(0) � 1, y2(0) � 0

y2r � y1 � y2

y1r � �y1 � y2

P R O B L E M  S E T  4 . 3

Fig. 88. Tanks in Problem 18

4 gal/min

16 gal/min 12 gal/min

12 gal/min

(Pure water)
T

1
T

2

19. Network. Show that a model for the currents and
in Fig. 89 is

, .

Find a general solution, assuming that ,
.C � 1>12 FL � 4 H,

R � 3 �

LIr2 � R(I2 � I1) � 0
1
C �I1 dt � R(I1 � I2) � 0

I2(t)
I1(t)

Fig. 89. Network in Problem 19

I
1

C

R

L I
2

20. CAS PROJECT. Phase Portraits. Graph some of
the figures in this section, in particular Fig. 87 on the
degenerate node, in which the vector depends on t.
In each figure highlight a trajectory that satisfies an
initial condition of your choice.

y(2)
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4.4 Criteria for Critical Points. Stability
We continue our discussion of homogeneous linear systems with constant coefficients (1).
Let us review where we are. From Sec. 4.3 we have

(1) in components,

From the examples in the last section, we have seen that we can obtain an overview of
families of solution curves if we represent them parametrically as 
and graph them as curves in the -plane, called the phase plane. Such a curve is called
a trajectory of (1), and their totality is known as the phase portrait of (1).

Now we have seen that solutions are of the form

. Substitution into (1) gives .

Dropping the common factor , we have

(2)

Hence is a (nonzero) solution of (1) if is an eigenvalue of A and x a corresponding
eigenvector.

Our examples in the last section show that the general form of the phase portrait is
determined to a large extent by the type of critical point of the system (1) defined as a
point at which becomes undetermined, ; here [see (9) in Sec. 4.3]

(3)

We also recall from Sec. 4.3 that there are various types of critical points.
What is now new, is that we shall see how these types of critical points are related

to the eigenvalues. The latter are solutions and of the characteristic equation

(4) .

This is a quadratic equation with coefficients p, q and discriminant 
given by

(5) , , .

From algebra we know that the solutions of this equation are

(6) , .l2 � 1
2 ( p � 1¢)l1 � 1

2 ( p � 1¢)

¢ � p2 � 4qq � det A � a11a22 � a12a21p � a11 � a22

¢l2 � pl � q � 0

det (A � lI) � 2  a11 � l a12

a21 a22 � l
 2 � l 2 � (a11 � a22)l � det A � 0

l2l � l1

dy2

dy1
�

yr2 dt

yr1 dt
�

a21 y1 � a22 y2

a11 y1 �  a12 y2
 .

0>0dy2 >dy1

ly(t)

Ax � lx.

elt

yr(t) � lxelt � Ay � Axelty(t) � xelt

y1 y2

y(t) � [ y1(t) y2(t)]T

yr1 � a11 y1 �  a12 y2

yr2 � a21 y1 �  a22 y2.
yr � Ay � ca11 a12

a21  a22

d  y,
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Furthermore, the product representation of the equation gives

.

Hence p is the sum and q the product of the eigenvalues. Also from (6).
Together,

(7) , , .

This gives the criteria in Table 4.1 for classifying critical points. A derivation will be
indicated later in this section.

¢ � (l1 � l2)2q � l1l2p � l1 � l2

l1 � l2 � 1¢

l2 � pl � q � (l � l1)(l � l2) � l2 � (l1 � l2)l � l1l2
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Table 4.1 Eigenvalue Criteria for Critical Points 
(Derivation after Table 4.2)

Name Comments on 

(a) Node Real, same sign
(b) Saddle point Real, opposite signs
(c) Center Pure imaginary
(d) Spiral point Complex, not pure 

imaginary
¢ � 0p � 0

q 
 0p � 0
q � 0

¢ � 0q 
 0

l1, l2¢ � (l1 � l2)2q � l1l2p � l1 � l2

Stability
Critical points may also be classified in terms of their stability. Stability concepts are basic
in engineering and other applications. They are suggested by physics, where stability
means, roughly speaking, that a small change (a small disturbance) of a physical system
at some instant changes the behavior of the system only slightly at all future times t. For
critical points, the following concepts are appropriate.

D E F I N I T I O N S Stable, Unstable, Stable and Attractive

A critical point of (1) is called stable2 if, roughly, all trajectories of (1) that at
some instant are close to remain close to at all future times; precisely: if for
every disk of radius with center there is a disk of radius with
center such that every trajectory of (1) that has a point (corresponding to 
say) in has all its points corresponding to in . See Fig. 90.

is called unstable if is not stable.
is called stable and attractive (or asymptotically stable) if is stable and

every trajectory that has a point in approaches as . See Fig. 91.

Classification criteria for critical points in terms of stability are given in Table 4.2. Both
tables are summarized in the stability chart in Fig. 92. In this chart region of instability
is dark blue.

t : 	P0Dd

P0P0

P0P0

D
P

t � t1Dd

t � t1,P1P0

d 
 0DdP0P 
 0D
P

P0P0

P0

2In the sense of the Russian mathematician ALEXANDER MICHAILOVICH LJAPUNOV (1857–1918),
whose work was fundamental in stability theory for ODEs. This is perhaps the most appropriate definition of
stability (and the only we shall use), but there are others, too.
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We indicate how the criteria in Tables 4.1 and 4.2 are obtained. If , both
of the eigenvalues are positive or both are negative or complex conjugates. If also

, both are negative or have a negative real part. Hence is stable and
attractive. The reasoning for the other two lines in Table 4.2 is similar.

If , the eigenvalues are complex conjugates, say, and 
If also , this gives a spiral point that is stable and attractive. If

, this gives an unstable spiral point.
If , then and . If also , then , so

that , and thus , must be pure imaginary. This gives periodic solutions, their trajectories
being closed curves around , which is a center.

E X A M P L E  1 Application of the Criteria in Tables 4.1 and 4.2

In Example 1, Sec 4.3, we have a node by Table 4.1(a), which is

stable and attractive by Table 4.2(a). �

yr � c�3 1

1 �3
d  y, p � �6, q � 8, ¢ � 4,

P0

l2l1

l1
2 � �q � 0q 
 0q � l1l2 � �l1

2l2 � �l1p � 0
p � 2a 
 0

p � l1 � l2 � 2a � 0
l2 � a � ib.l1 � a � ib¢ � 0

P0p � l1 � l2 � 0

q � l1l2 
 0
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P
1

P
0

∈ δ

Fig. 90. Stable critical point P0 of (1) 
(The trajectory initiating at P1 stays 

in the disk of radius .)

P
0

∈
δ

Fig. 91. Stable and attractive critical 
point P0 of (1)

Table 4.2 Stability Criteria for Critical Points

Type of Stability

(a) Stable and attractive
(b) Stable
(c) Unstable OR q � 0p 
 0

q 
 0p � 0
q 
 0p � 0

q � l1l2p � l1 � l2

q

p

Δ = 0

Δ > 0 Δ < 0 Δ < 0 Δ > 0

Δ 
= 

0

Spiral
point

Spiral
point

Node Node

Saddle point

Fig. 92. Stability chart of the system (1) with p, q, � defined in (5). 
Stable and attractive: The second quadrant without the q-axis. 

Stability also on the positive q-axis (which corresponds to centers). 
Unstable: Dark blue region
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E X A M P L E  2 Free Motions of a Mass on a Spring

What kind of critical point does in Sec. 2.4 have?

Solution. Division by m gives . To get a system, set (see Sec. 4.1).
Then . Hence

, .

We see that . From this and Tables 4.1 and 4.2 we obtain the following
results. Note that in the last three cases the discriminant plays an essential role.

No damping. , a center.
Underdamping. , a stable and attractive spiral point.
Critical damping. , a stable and attractive node.
Overdamping. , a stable and attractive node. �c2 
 4mk, p � 0, q 
 0, ¢ 
 0

c2 � 4mk, p � 0, q 
 0, ¢ � 0
c2 � 4mk, p � 0, q 
 0, ¢ � 0

c � 0, p � 0, q 
 0

¢

p � �c>m, q � k>m, ¢ � (c>m)2 � 4k>m

det (A � lI) �  2 �l 1

�k>m �c>m � l 

2 � l2 �
c
m

 l �
k
m

� 0yr � c 0 1

�k>m �c>m
d  y

yr2 � ys � �(k>m)y1 � (c>m)y2

y1 � y, y2 � yrys � �(k>m)y � (c>m)yr

mys � cyr � ky � 0
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1–10 TYPE AND STABILITY OF 
CRITICAL POINT

Determine the type and stability of the critical point. Then
find a real general solution and sketch or graph some of the
trajectories in the phase plane. Show the details of your work.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11–18 TRAJECTORIES OF SYSTEMS AND
SECOND-ORDER ODEs. CRITICAL
POINTS

11. Damped oscillations. Solve . What
kind of curves are the trajectories?

12. Harmonic oscillations. Solve Find the
trajectories. Sketch or graph some of them.

13. Types of critical points. Discuss the critical points in
(10)–(13) of Sec. 4.3 by using Tables 4.1 and 4.2.

14. Transformation of parameter. What happens to the
critical point in Example 1 if you introduce as
a new independent variable?

t � �t

ys � 1
9 y � 0.

ys � 2yr � 2y � 0

y2r � �5y1 � 2y2y2r � 4y1 � 4y2

y1r � y2y1r � 4y1 � y2

y2r � 3y1 � 2y2y2r � 2y1 � y2

y1r � �y1 � 4y2y1r � y1 � 2y2

y2r � �9y1 � 6y2y2r � �2y1 � 2y2

y1r � �6y1 � y2y1r � �2y1 � 2y2

y2r � 5y1 � 2y2y2r � �9y1

y1r � 2y1 � y2y1r � y2

y2r � �3y2y2r � 2y2

y1r � �4y1y1r � y1

15. Perturbation of center. What happens in Example 4
of Sec. 4.3 if you change A to , where I is the
unit matrix?

16. Perturbation of center. If a system has a center as
its critical point, what happens if you replace the
matrix A by with any real number 
(representing measurement errors in the diagonal
entries)?

17. Perturbation. The system in Example 4 in Sec. 4.3
has a center as its critical point. Replace each in
Example 4, Sec. 4.3, by . Find values of b such
that you get (a) a saddle point, (b) a stable and attractive
node, (c) a stable and attractive spiral, (d) an unstable
spiral, (e) an unstable node.

18. CAS EXPERIMENT. Phase Portraits. Graph phase
portraits for the systems in Prob. 17 with the values
of b suggested in the answer. Try to illustrate how
the phase portrait changes “continuously” under a
continuous change of b.

19. WRITING PROBLEM. Stability. Stability concepts
are basic in physics and engineering. Write a two-part
report of 3 pages each (A) on general applications
in which stability plays a role (be as precise as you
can), and (B) on material related to stability in this
section. Use your own formulations and examples; do
not copy.

20. Stability chart. Locate the critical points of the
systems (10)–(14) in Sec. 4.3 and of Probs. 1, 3, 5 in
this problem set on the stability chart.

ajk � b
ajk

k � 0A
~

� A � kI

A � 0.1I

P R O B L E M  S E T  4 . 4
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4.5 Qualitative Methods for Nonlinear Systems
Qualitative methods are methods of obtaining qualitative information on solutions
without actually solving a system. These methods are particularly valuable for systems
whose solution by analytic methods is difficult or impossible. This is the case for many
practically important nonlinear systems

(1) , thus

In this section we extend phase plane methods, as just discussed, from linear systems
to nonlinear systems (1). We assume that (1) is autonomous, that is, the independent
variable t does not occur explicitly. (All examples in the last section are autonomous.)
We shall again exhibit entire families of solutions. This is an advantage over numeric
methods, which give only one (approximate) solution at a time.

Concepts needed from the last section are the phase plane (the -plane), trajectories
(solution curves of (1) in the phase plane), the phase portrait of (1) (the totality of these
trajectories), and critical points of (1) (points ( ) at which both and 
are zero).

Now (1) may have several critical points. Our approach shall be to discuss one critical
point after another. If a critical point is not at the origin, then, for technical
convenience, we shall move this point to the origin before analyzing the point. More
formally, if is a critical point with (a, b) not at the origin (0, 0), then we apply
the translation

which moves to as desired. Thus we can assume to be the origin ( ), and
for simplicity we continue to write (instead of ). We also assume that is
isolated, that is, it is the only critical point of (1) within a (sufficiently small) disk with
center at the origin. If (1) has only finitely many critical points, that is automatically
true. (Explain!)

Linearization of Nonlinear Systems
How can we determine the kind and stability property of a critical point of
(1)? In most cases this can be done by linearization of (1) near , writing (1) as

and dropping , as follows.
Since is critical, , , so that and have no constant terms

and we can write

(2) , thus

A is constant (independent of t) since (1) is autonomous. One can prove the following
(proof in Ref. [A7], pp. 375–388, listed in App. 1).

yr1 � a11 y1 � a12 y2 � h1( y1, y2)

yr2 � a21 y1 � a22 y2 � h2( y1, y2).
yr � Ay � h(y)

f2f1f2(0, 0) � 0f1(0, 0) � 0P0

h(y)yr � f( y) � Ay � h( y)
P0

P0: (0, 0)

P0y~1, y~2y1, y2

0, 0P0(0, 0)P0

y~1 � y1 � a,  y~2 � y2 � b

P0: (a, b)

P0

f2( y1, y2)f1( y1, y2)y1, y2

y1 y2

yr1 � f1( y1, y2)

yr2 � f2( y1, y2).
yr � f(y)
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T H E O R E M  1 Linearization

If and in (1) are continuous and have continuous partial derivatives in a
neighborhood of the critical point , and if det in (2), then the kind
and stability of the critical point of (1) are the same as those of the linearized
system

(3) thus

Exceptions occur if A has equal or pure imaginary eigenvalues; then (1) may have
the same kind of critical point as (3) or a spiral point.

E X A M P L E  1 Free Undamped Pendulum. Linearization

Figure 93a shows a pendulum consisting of a body of mass m (the bob) and a rod of length L. Determine the
locations and types of the critical points. Assume that the mass of the rod and air resistance are negligible.

Solution. Step 1. Setting up the mathematical model. Let denote the angular displacement, measured
counterclockwise from the equilibrium position. The weight of the bob is mg (g the acceleration of gravity). It
causes a restoring force tangent to the curve of motion (circular arc) of the bob. By Newton’s second
law, at each instant this force is balanced by the force of acceleration , where is the acceleration;
hence the resultant of these two forces is zero, and we obtain as the mathematical model

.

Dividing this by mL, we have

(4)

When is very small, we can approximate rather accurately by and obtain as an approximate solution
, but the exact solution for any is not an elementary function.

Step 2. Critical points Linearization. To obtain a system of ODEs, we set
. Then from (4) we obtain a nonlinear system (1) of the form

(4*)

The right sides are both zero when and . This gives infinitely many critical points ,
where . We consider . Since the Maclaurin series is

,

the linearized system at is

, thus

To apply our criteria in Sec. 4.4 we calculate , and
. From this and Table 4.1(c) in Sec. 4.4 we conclude that is a center, which is always

stable. Since is periodic with period , the critical points , are all centers.

Step 3. Critical points Linearization. We now consider the critical point
( ), setting and . Then in (4),

sin u � sin ( y1 � p) � �sin y1 � �y1 � 1
6 y1

3 � � Á � �y1

(u � p)r � ur � y2u � p � y1p, 0
(��, 0), (�3�, 0), (�5�, 0), Á ,

(np, 0), n � �2, �4, Á2psin u � sin y1

(0, 0)�4k¢ � p2 � 4q �
p � a11 � a22 � 0, q � det A � k � g>L (�0)

yr1 � y2

yr2 � �ky1.
yr � Ay � c 0 1

�k 0
d  y

(0, 0)

sin y1 � y1 �  
1
6 y1

3 � � Á � y1

(0, 0)n � 0, �1, �2, Á

(np, 0)sin y1 � 0y2 � 0

yr1 � f1( y1, y2) � y2

yr2 � f2( y1, y2) � �k sin y1.

u � y1, ur � y2

(0, 0), (�2�, 0), (�4�, 0), Á ,

uA cos 1kt � B sin 1kt
usin uu

ak �
g

L
b .us � k sin u � 0

mLus � mg sin u � 0

LusmLus
mg sin u

u

yr1 � a11 y1 � a12 y2

yr2 � a21 y1 � a22 y2.
yr � Ay,

A � 0P0: (0, 0)
f2f1
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E X A M P L E  2 Linearization of the Damped Pendulum Equation

To gain further experience in investigating critical points, as another practically important case, let us see how
Example 1 changes when we add a damping term (damping proportional to the angular velocity) to equation
(4), so that it becomes

(5)

where and (which includes our previous case of no damping, ). Setting , as
before, we obtain the nonlinear system (use )

We see that the critical points have the same locations as before, namely, . We
consider . Linearizing as in Example 1, we get the linearized system at 

(6) y, thus

This is identical with the system in Example 2 of Sec. 4.4, except for the (positive!) factor m (and except for
the physical meaning of ). Hence for (no damping) we have a center (see Fig. 93b), for small damping
we have a spiral point (see Fig. 94), and so on.

We now consider the critical point . We set and linearize

.

This gives the new linearized system at 

(6*) y, thus
yr1 � y2

yr2 � ky1 � cy2.
yr � Ay � c0 1

k �c
d

(p, 0)

sin u � sin ( y1 � p) � �sin y1 � �y1

u � p � y1, (u � p)r � ur � y2(p, 0)

c � 0y1

yr1 � y2

yr2 � �ky1 � cy2.
yr � Ay � c 0 1

�k �c
d

(0, 0)sin y1 � y1(0, 0)
(0, 0), (�p, 0), (�2p, 0), Á

 yr2 � �k sin y1 � cy2.

 yr1 � y2

us � yr2
u � y1, ur � y2c � 0c � 0k 
 0

us � cur � k sin u � 0

cur
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mg sin 

mg

m

Lθ

θ

π 2π 3π−π

y
2

y
1

C = k
C > k

 (a) Pendulum  (b) Solution curves y
2
(y

1
) of (4) in the phase plane

Fig. 93. Example 1 (C will be explained in Example 4.)

and the linearized system at is now

y, thus

We see that , and . Hence, by Table 4.1(b), this gives a saddle point, which
is always unstable. Because of periodicity, the critical points , are all saddle points.
These results agree with the impression we get from Fig. 93b. �

(np, 0), n � �1, �3, Á

¢ � �4q � 4kp � 0, q � �k (�0)

yr1 � y2

yr2 � ky1.
yr � Ay � c0 1

k 0
d

(p, 0)
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For our criteria in Sec. 4.4 we calculate , and 
This gives the following results for the critical point at ( ).

No damping. , a saddle point. See Fig. 93b.
Damping. , a saddle point. See Fig. 94.

Since is periodic with period , the critical points are of the same type as
, and the critical points are of the same type as , so that our task is finished.

Figure 94 shows the trajectories in the case of damping. What we see agrees with our physical intuition.
Indeed, damping means loss of energy. Hence instead of the closed trajectories of periodic solutions in
Fig. 93b we now have trajectories spiraling around one of the critical points . Even the
wavy trajectories corresponding to whirly motions eventually spiral around one of these points. Furthermore,
there are no more trajectories that connect critical points (as there were in the undamped case for the saddle
points). �

(0, 0), (�2p, 0), Á

(p, 0)(�p, 0), (�3p, 0), Á(0, 0)
(�2p, 0), (�4p, 0), Á2psin y1

c 
 0, p � 0, q � 0, ¢ 
 0
c � 0, p � 0, q � 0, ¢ 
 0

p, 0
¢ � p2 � 4q � c2 � 4k.p � a11 � a22 � �c, q � det A � �k
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π−π 2π 3π y1

y2

Fig. 94. Trajectories in the phase plane for the damped pendulum in Example 2

Lotka–Volterra Population Model

E X A M P L E  3 Predator–Prey Population Model3

This model concerns two species, say, rabbits and foxes, and the foxes prey on the rabbits.

Step 1. Setting up the model. We assume the following.

1. Rabbits have unlimited food supply. Hence, if there were no foxes, their number would grow
exponentially, .

2. Actually, is decreased because of the kill by foxes, say, at a rate proportional to , where is
the number of foxes. Hence , where and .

3. If there were no rabbits, then would exponentially decrease to zero, . However, is
increased by a rate proportional to the number of encounters between predator and prey; together we
have , where and .

This gives the (nonlinear!) Lotka–Volterra system

(7)
yr1 � f1( y1, y2) � ay1 � by1 y2

yr2 � f2( y1, y2) � ky1 y2 � ly2.

l 
 0k 
 0yr2 � �ly2 � ky1 y2

y2yr2 � �ly2y2(t)

b 
 0a 
 0yr1 � ay1 � by1 y2

y2(t)y1 y2y1

yr1 � ay1

y1(t)

3Introduced by ALFRED J. LOTKA (1880–1949), American biophysicist, and VITO VOLTERRA
(1860–1940), Italian mathematician, the initiator of functional analysis (see [GR7] in App. 1).
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Step 2. Critical point , Linearization. We see from (7) that the critical points are the solutions of

(7*) .

The solutions are and We consider . Dropping and from (7) gives

the linearized system

Its eigenvalues are and . They have opposite signs, so that we get a saddle point.

Step. 3. Critical point , Linearization. We set , . Then the critical point
corresponds to . Since , we obtain from (7) [factorized as in (7*)]

Dropping the two nonlinear terms and , we have the linearized system

(7**)

(a)

(b)

The left side of (a) times the right side of (b) must equal the right side of (a) times the left side of (b),

. By integration,

This is a family of ellipses, so that the critical point of the linearized system (7**) is a center (Fig. 95).
It can be shown, by a complicated analysis, that the nonlinear system (7) also has a center (rather than a spiral
point) at surrounded by closed trajectories (not ellipses).

We see that the predators and prey have a cyclic variation about the critical point. Let us move counterclockwise
around the ellipse, beginning at the right vertex, where the rabbits have a maximum number. Foxes are sharply
increasing in number until they reach a maximum at the upper vertex, and the number of rabbits is then sharply
decreasing until it reaches a minimum at the left vertex, and so on. Cyclic variations of this kind have
been observed in nature, for example, for lynx and snowshoe hare near the Hudson Bay, with a cycle of about
10 years.

For models of more complicated situations and a systematic discussion, see C. W. Clark, Mathematical
Bioeconomics: The Mathematics of Conservation, 3rd ed. Hoboken, NJ, Wiley, 2010. �

(l>k, a>b)

(l>k, a>b)

ak

b
 y~1

2 �
lb

k
 y~2

2 � const.
ak

b
 y~1 y

~r1 � � 

lb

k
 y~2 y

~r2

 y~r2 �
ak

b
 y~1.

 y~r1 � � 

lb

k
 y~2

ky~1 y
~

2�by~1 y
~

2

 y~r2 � ay~2 �
a

b
b Bk ay~1 �

l

k
b � lR � ay~2 �

a

b
b ky~1.

 y~r1 � ay~1 �
l

k
b Ba � b ay~2 �

a

b
bR � ay~1 �

l

k
b (�by~2)

y~1r � y1r, y~r2 � yr2( y~1, y~2) � (0, 0)(l>k, a>b)
y2 � y~2 � a>by1 � y~1 � l>k(l>k, a>b)

l2 � �l � 0l1 � a 
 0

yr � ca 0

0 �l
d  y.

ky1 y2�by1 y2(0, 0)a l

k
,  

a

b
b .( y1, y2) � (0, 0)

f1( y1, y2) � y1(a � by2) � 0,  f2( y1, y2) � y2(ky1 � l) � 0

(0, 0)
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y
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y
1

a__

b

l__

k

Fig. 95. Ecological equilibrium point and trajectory 
of the linearized Lotka–Volterra system (7**)
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Transformation to a First-Order Equation 
in the Phase Plane
Another phase plane method is based on the idea of transforming a second-order
autonomous ODE (an ODE in which t does not occur explicitly)

to first order by taking as the independent variable, setting and transforming
by the chain rule,

Then the ODE becomes of first order,

(8)

and can sometimes be solved or treated by direction fields. We illustrate this for the
equation in Example 1 and shall gain much more insight into the behavior of solutions.

E X A M P L E  4 An ODE (8) for the Free Undamped Pendulum

If in (4) we set (the angular velocity) and use

, we get .

Separation of variables gives . By integration,

(9) (C constant).

Multiplying this by , we get

.

We see that these three terms are energies. Indeed, is the angular velocity, so that is the velocity and the
first term is the kinetic energy. The second term (including the minus sign) is the potential energy of the pendulum,
and is its total energy, which is constant, as expected from the law of conservation of energy, because
there is no damping (no loss of energy). The type of motion depends on the total energy, hence on C, as follows.

Figure 93b shows trajectories for various values of C. These graphs continue periodically with period to
the left and to the right. We see that some of them are ellipse-like and closed, others are wavy, and there are two
trajectories (passing through the saddle points ) that separate those two types of
trajectories. From (9) we see that the smallest possible C is ; then , and , so that the
pendulum is at rest. The pendulum will change its direction of motion if there are points at which 
Then by (9). If , then and . Hence if , then the
pendulum reverses its direction for a , and for these values of C with the pendulum
oscillates. This corresponds to the closed trajectories in the figure. However, if , then is impossible
and the pendulum makes a whirly motion that appears as a wavy trajectory in the -plane. Finally, the value

corresponds to the two “separating trajectories” in Fig. 93b connecting the saddle points.

The phase plane method of deriving a single first-order equation (8) may be of practical
interest not only when (8) can be solved (as in Example 4) but also when a solution

�C � k
y1 y2

y2 � 0C 
 k
ƒ C ƒ � kƒ y1 ƒ � ƒ u ƒ � p

�k � C � kC � kcos y1 � �1y1 � pk cos y1 � C � 0
y2 � ur � 0.

cos y1 � 1y2 � 0C � �k
(np, 0), n � �1, �3, Á

2p

mL2C

Ly2y2

1
2 m(Ly2)2 � mL2k cos y1 � mL2C

mL2

1
2 y2

2 � k cos y1 � C

y2 dy2 � �k sin y1 dy1

dy2

dy1

 y2 � �k sin y1us �
dy2

dt
�

dy2

dy1

  
dy1

dt
�

dy2

dy1

 y2

u � y1, ur � y2us � k sin u � 0

F ay1, y2, 
dy2

dy1
 y2b � 0

ys � yr2 �
dy2

dt
�

dy2

dy1
 
dy1

dt
�

dy2

dy1
 y2.

ys
yr � y2y � y1

F( y, yr, ys) � 0
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is not possible and we have to utilize fields (Sec. 1.2). We illustrate this with a very
famous example:

E X A M P L E  5 Self-Sustained Oscillations. Van der Pol Equation

There are physical systems such that for small oscillations, energy is fed into the system, whereas for large
oscillations, energy is taken from the system. In other words, large oscillations will be damped, whereas for
small oscillations there is “negative damping” (feeding of energy into the system). For physical reasons we
expect such a system to approach a periodic behavior, which will thus appear as a closed trajectory in the phase
plane, called a limit cycle. A differential equation describing such vibrations is the famous van der Pol equation4

(10) ( , constant).

It first occurred in the study of electrical circuits containing vacuum tubes. For this equation becomes
and we obtain harmonic oscillations. Let . The damping term has the factor .

This is negative for small oscillations, when , so that we have “negative damping,” is zero for 
(no damping), and is positive if (positive damping, loss of energy). If is small, we expect a limit cycle
that is almost a circle because then our equation differs but little from . If is large, the limit cycle
will probably look different.

Setting and using as in (8), we have from (10)

(11) .

The isoclines in the -plane (the phase plane) are the curves that is,

.

Solving algebraically for , we see that the isoclines are given by

(Figs. 96, 97).y2 �
y1

�(1 � y1
2) � K

y2

dy2

dy1
� �(1 � y1

2) �  

y1

y2
� K

dy2>dy1 � K � const, y1y2

dy2

dy1

 y2 � �(1 � y1
2)y2 � y1 � 0

ys � (dy2>dy1)y2y � y1, yr � y2

�ys � y � 0
�y2 
 1

y2 � 1y2 � 1
��(1 � y2)� 
 0ys � y � 0

� � 0

� 
 0ys � �(1 � y2)yr � y � 0
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Fig. 96. Direction field for the van der Pol equation with � � 0.1 in the phase plane, 
showing also the limit cycle and two trajectories. See also Fig. 8 in Sec. 1.2

4BALTHASAR VAN DER POL (1889–1959), Dutch physicist and engineer.
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Figure 96 shows some isoclines when is small, , the limit cycle (almost a circle), and two (blue) trajectories
approaching it, one from the outside and the other from the inside, of which only the initial portion, a small spiral, is
shown. Due to this approach by trajectories, a limit cycle differs conceptually from a closed curve (a trajectory)
surrounding a center, which is not approached by trajectories. For larger the limit cycle no longer resembles a 
circle, and the trajectories approach it more rapidly than for smaller . Figure 97 illustrates this for . �� � 1�

�

� � 0.1�
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2
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1–1 y1
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K = 0

K = 0
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K = –1

K = –1K = –1

K = –1

Fig. 97. Direction field for the van der Pol equation with � � 1 in the phase plane, 
showing also the limit cycle and two trajectories approaching it

1. Pendulum. To what state (position, speed, direction
of motion) do the four points of intersection of a
closed trajectory with the axes in Fig. 93b
correspond? The point of intersection of a wavy curve
with the -axis?

2. Limit cycle. What is the essential difference between
a limit cycle and a closed trajectory surrounding a
center?

3. CAS EXPERIMENT. Deformation of Limit Cycle.
Convert the van der Pol equation to a system. Graph
the limit cycle and some approaching trajectories for

. Try to observe how
the limit cycle changes its form continuously if you
vary continuously. Describe in words how the limit
cycle is deformed with growing .�

�

� � 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0

y2

P R O B L E M  S E T  4 . 5

4–8 CRITICAL POINTS. LINEARIZATION 
Find the location and type of all critical points by
linearization. Show the details of your work.

4. 5.

6. 7.

8.

9–13 CRITICAL POINTS OF ODEs
Find the location and type of all critical points by first
converting the ODE to a system and then linearizing it.

9. 10.

11. 12. ys � 9y � y2 � 0ys � cos y � 0

ys � y � y3 � 0ys � 9y � y3 � 0

y2r � y1 � y1
2

y1r � y2 � y2
2

y2r � �y1 � y2y2r � �y1 � y1
2

y1r � �y1 � y2 � y2
2y1r � y2

y2r � �y1 � 1
2 y1

2y2r � y2

y1r � y2y1r � 4y1 � y1
2
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13.

14. TEAM PROJECT. Self-sustained oscillations.
(a) Van der Pol equation. Determine the type of the
critical point at ( ) when .

(b) Rayleigh equation. Show that the Rayleigh
equation5

also describes self-sustained oscillations and that by
differentiating it and setting one obtains the van
der Pol equation.

(c) Duffing equation. The Duffing equation is

where usually is small, thus characterizing a small
deviation of the restoring force from linearity. 
and are called the cases of a hard spring and a
soft spring, respectively. Find the equation of the
trajectories in the phase plane. (Note that for all
these curves are closed.)

b 
 0

b � 0
b 
 0

ƒb ƒ

ys � v0
2y � by3 � 0

y � Yr

Ys � �(1 �  
1
3Yr2)Yr � Y � 0 (� 
 0)

� 
 0, � � 0, � � 00, 0

ys � sin y � 0
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15. Trajectories. Write the ODE as a
system, solve it for as a function of , and sketch
or graph some of the trajectories in the phase plane.

y1y2

ys � 4y � y3 � 0

y
2 c = 5

c = 4

c = 3–2 2
y
1

Fig. 98. Trajectories in Problem 15

4.6 Nonhomogeneous Linear Systems of ODEs
In this section, the last one of Chap. 4, we discuss methods for solving nonhomogeneous
linear systems of ODEs

(1) (see Sec. 4.2)

where the vector is not identically zero. We assume and the entries of the
matrix to be continuous on some interval J of the t-axis. From a general

solution of the homogeneous system on J and a particular solution
of (1) on J [i.e., a solution of (1) containing no arbitrary constants], we get a

solution of (1),

(2) .

y is called a general solution of (1) on J because it includes every solution of (1) on J.
This follows from Theorem 2 in Sec. 4.2 (see Prob. 1 of this section).

Having studied homogeneous linear systems in Secs. 4.1–4.4, our present task will be
to explain methods for obtaining particular solutions of (1). We discuss the method of

y � y(h) � y(p)

y(p)(t)
yr � Ayy(h)(t)

A(t)n � n
g(t)g(t)

y� � Ay � g

5LORD RAYLEIGH (JOHN WILLIAM STRUTT) (1842–1919), English physicist and mathematician,
professor at Cambridge and London, known by his important contributions to the theory of waves, elasticity
theory, hydrodynamics, and various other branches of applied mathematics and theoretical physics. In 1904 he
was awarded the Nobel Prize in physics.
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undetermined coefficients and the method of the variation of parameters; these have
counterparts for a single ODE, as we know from Secs. 2.7 and 2.10.

Method of Undetermined Coefficients
Just as for a single ODE, this method is suitable if the entries of A are constants and
the components of g are constants, positive integer powers of t, exponential functions,
or cosines and sines. In such a case a particular solution is assumed in a form similar
to g; for instance, if g has components quadratic in t, with u, v,
w to be determined by substitution into (1). This is similar to Sec. 2.7, except for the
Modification Rule. It suffices to show this by an example.

E X A M P L E  1 Method of Undetermined Coefficients. Modification Rule

Find a general solution of

(3) .

Solution. A general equation of the homogeneous system is (see Example 1 in Sec. 4.3)

(4) .

Since is an eigenvalue of A, the function on the right side also appears in , and we must apply
the Modification Rule by setting

(rather than ).

Note that the first of these two terms is the analog of the modification in Sec. 2.7, but it would not be sufficient
here. (Try it.) By substitution,

.

Equating the -terms on both sides, we have . Hence u is an eigenvector of A corresponding to
; thus [see (5)] with any . Equating the other terms gives

thus .

Collecting terms and reshuffling gives

.

By addition, , and then , say, , thus, 
We can simply choose . This gives the answer

(5) .

For other k we get other v; for instance, gives , so that the answer becomes

(5*) , etc. �y � c1 c1
1
d  e�2t � c2 c 1

�1
d  e�4t �  2 c1

1
d  te�2t �  c�2

2
d  e�2t

v � [�2 2]Tk � �2

y � y(h) � y(p) � c1 c1
1
d  e�2t �  c2 c 1

�1
d  e�4t � 2 c1

1
d  te�2t � c0

4
d  e�2t

k � 0
v � [k k � 4]T.v1 � k, v2 � k � 4v2 � v1 � 40 � �2a � 4, a � �2

�v1 � v2 � �a � 2

v1 � v2 � �a � 6

ca
a
d � c2v1

2v2

d � c�3v1 � v2

v1 � 3v2

d � c�6

2
du � 2v � Av � c�6

2
d

a � 0u � a[1 1]Tl � �2
�2u � Aute�2t

y(p)r � ue�2t � 2ute�2t � 2ve�2t � Aute�2t � Ave�2t � g

ue�2ty(p) � ute�2t � ve�2t

y(h)e�2tl � �2

y(h) � c1 c1
1
d  e�2t �  c2 c 1

�1
d  e�4t

yr � Ay � g � c�3 1

1 �3
d  y � c�6

2
d  e�2t

y(p) � u � vt � wt 2
y(p)
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Method of Variation of Parameters
This method can be applied to nonhomogeneous linear systems

(6)

with variable and general . It yields a particular solution of (6) on some
open interval J on the t-axis if a general solution of the homogeneous system 
on J is known. We explain the method in terms of the previous example.

E X A M P L E  2 Solution by the Method of Variation of Parameters

Solve (3) in Example 1.

Solution. A basis of solutions of the homogeneous system is and . Hence
the general solution (4) of the homogeneous system may be written

(7) .

Here, is the fundamental matrix (see Sec. 4.2). As in Sec. 2.10 we replace the constant
vector c by a variable vector u(t) to obtain a particular solution

.

Substitution into (3) gives

(8)

Now since and are solutions of the homogeneous system, we have

, , thus .

Hence , so that (8) reduces to

. The solution is ;

here we use that the inverse of Y (Sec. 4.0) exists because the determinant of Y is the Wronskian W, which
is not zero for a basis. Equation (9) in Sec. 4.0 gives the form of ,

.

We multiply this by g, obtaining

Integration is done componentwise (just as differentiation) and gives

(where comes from the lower limit of integration). From this and Y in (7) we obtain

.Yu � c e�2t e�4t

e�2t �e�4t
d c �2t

�2e2t � 2
d � c�2te�2t � 2e�2t � 2e�4t

�2te�2t � 2e�2t � 2e�4t
d � c�2t � 2

�2t � 2
d  e�2t � c 2

�2
d  e�4t

� 2

u(t) � �
t

0

c �2

�4e2t
~ d  d t~ � c �2t

�2e2t � 2
d

ur � Y�1g �
1

2
 c e2t e2t

e4t �e4t
d  c�6e�2t

2e�2t
d �

1

2
 c �4

�8e2t
d � c �2

�4e2t
d .

Y�1 �
1

�2e�6t
 c�e�4t �e�4t

�e�2t e�2t
d �

1

2
 c e2t e2t

e4t �e4t
d

Y�1
Y�1

ur � Y�1gYur � g

Yru � AYu

Yr � AYy(2)r � Ay(2)y(1)r � Ay(1)

y(2)y(1)

Yru � Yur � AYu � g.

yr � Ay � g

y(p) � Y(t)u(t)

Y(t) � [ y(1) y(2)]T

y(h) � c e�2t e�4t

e�2t �e�4t
d  c c1

c2

d � Y(t) c

[e�4t �e�4t]T[e�2t e�2t]T

yr � A(t)y
y(p)g(t)A � A(t)

yr � A(t)y � g(t)
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The last term on the right is a solution of the homogeneous system. Hence we can absorb it into . We thus
obtain as a general solution of the system (3), in agreement with .

(9) . �y � c1 c1
1
d  e�2t � c2 c 1

�1
d  e�4t � 2 c1

1
d  te�2t � c�2

2
d  e�2t

(5*)
y(h)
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1. Prove that (2) includes every solution of (1).

2–7 GENERAL SOLUTION
Find a general solution. Show the details of your work.

2.

3.

4.

5.

6.

7.

8. CAS EXPERIMENT. Undetermined Coefficients.
Find out experimentally how general you must choose

, in particular when the components of g have
a different form (e.g., as in Prob. 7). Write a short
report, covering also the situation in the case of the
modification rule.

9. Undetermined Coefficients. Explain why, in Example
1 of the text, we have some freedom in choosing the
vector v.

10–15 INITIAL VALUE PROBLEM
Solve, showing details:

10.

11.

12.

13.

14.

y1(0) � 1, y2(0) � 0
yr2 � �y1 � 20e�t
yr1 � 4y2 � 5et

y1(0) � 5, y2(0) � 2
y2r � �4y1 � 17 cos t
y1r � y2 � 5 sin t

y1(0) � 2, y2(0) � �1
y2r � y1 � y2 � t 2 � t � 1
y1r � y1 � 4y2 � t 2 � 6t

y1(0) � 1, y2(0) � 0
y2r � y1 � e2t
y1r � y2 � 6e2t

y1(0) � 19, y2(0) � �23
y2r � 5y1 � 6y2 � 6et
y1r � �3y1 � 4y2 � 5et

y(p)

yr2 � 5y1 � 6y2 � 3e�t � 15t � 20
yr1 � �3y1 � 4y2 � 11t � 15

y2r � 4y1 � 16t 2 � 2
y1r � 4y2

y2r � 2y1 � 3y2 � 2.5t
y1r � 4y1 � y2 � 0.6t

y2r � 2y1 � 6y2 � cosh t � 2 sinh t
y1r � 4y1 � 8y2 � 2 cosh t

y2r � y1 � 3e3t
y1r � y2 � e3t

y2r � 3y1 � y2 � 10 sin t
y1r � y1 � y2 � 10 cos t

15.

16. WRITING PROJECT. Undetermined Coefficients.
Write a short report in which you compare the
application of the method of undetermined coefficients
to a single ODE and to a system of ODEs, using ODEs
and systems of your choice.

17–20 NETWORK
Find the currents in Fig. 99 (Probs. 17–19) and Fig. 100
(Prob. 20) for the following data, showing the details of
your work.

17.

18. Solve Prob. 17 with and the other data
as before.

19. In Prob. 17 find the particular solution when currents
and charge at are zero.t � 0

E � 440 sin t V

E � 200 VC � 0.5 F,L � 1 H,R2 � 8 �,R1 � 2 �,

y1(0) � 1, y2(0) � �4
yr2 � �y2 � 1 � t
yr1 � y1 � 2y2 � e2t � 2t

P R O B L E M  S E T  4 . 6

Switch

E

L

R
1

R
2

C

I
1

I
2

Fig. 99. Problems 17–19

E R
1

R
2

I
1

I
2

L
1

L
2

Fig. 100. Problem 20

20.
I1(0) � I2(0) � 0E � 100 V,

L2 � 1 H,L1 � 0.8 H,R2 � 1.4 �,R1 � 1 �,
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1. State some applications that can be modeled by systems
of ODEs.

2. What is population dynamics? Give examples.

3. How can you transform an ODE into a system of ODEs?

4. What are qualitative methods for systems? Why are they
important?

5. What is the phase plane? The phase plane method? A
trajectory? The phase portrait of a system of ODEs?

6. What are critical points of a system of ODEs? How did
we classify them? Why are they important?

7. What are eigenvalues? What role did they play in this
chapter?

8. What does stability mean in general? In connection with
critical points? Why is stability important in engineering?

9. What does linearization of a system mean?

10. Review the pendulum equations and their linearizations.

11–17 GENERAL SOLUTION. CRITICAL POINTS
Find a general solution. Determine the kind and stability of
the critical point.

11. 12.

13. 14.

15. 16.

17.

18–19 CRITICAL POINT
What kind of critical point does have if A has the
eigenvalues

18. 4 and 2 19.

20–23 NONHOMOGENEOUS SYSTEMS
Find a general solution. Show the details of your work.

20.

21.

22.

23.
y2r � y1 � y2 � cos t � sin t
y1r � y1 � 4y2 � 2 cos t

y2r � 4y1 � y2

y1r � y1 � y2 � sin t

y2r � 4y1 � 32t 2
y1r � 4y2

y2r � �2y1 � 3y2 � et
y1r � 2y1 � 2y2 � et

2 � 3i, 2 � 3i�

yr � Ay

y2r � �2y1 � y2

y1r � �y1 � 2y2

y2r � �4y1y2r � �2y1 � 3y2

y1r � 4y2y1r � �3y1 � 2y2

y2r � 3y1 � 2y2y2r � �y1 � 6y2

y1r � 3y1 � 4y2y1r � �2y1 � 5y2

y2r � y2y2r � 8y1

y1r � 5y1y1r � 2y2

24. Mixing problem. Tank in Fig. 101 initially contains
200 gal of water in which 160 lb of salt are dissolved.
Tank initially contains 100 gal of pure water. Liquid
is pumped through the system as indicated, and the
mixtures are kept uniform by stirring. Find the amounts
of salt and in and , respectively.T2T1y2(t)y1(t)

T2

T1

C H A P T E R  4  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

T
1

Water,
10 gal/min

T
2 

6 gal/min

16 gal/min
Mixture,

10 gal/min

Fig. 101. Tanks in Problem 24

25. Network. Find the currents in Fig. 102 when

, .I2(0) � 0I1(0) � 0
E(t) � 169 sin t V,C � 0.04 F,L � 1 H,R � 2.5 �,

26. Network. Find the currents in Fig. 103 when 
.I2(0) � 1 AI1(0) � 1 A,C � 0.2 F,L � 1.25 H,

R � 1 �,

27–30 LINEARIZATION
Find the location and kind of all critical points of the given
nonlinear system by linearization.

27. 28.

29. 30.
y2r � �8y1y2r � sin y1

y1r � 2y2 � 2y2
2y1r � �4y2

y2r � 3y1y2r � y1 � y1
3

y1r � cos y2y1r � y2

E C

L

R
I1 I2

Fig. 102. Network in Problem 25

C R L

I1 I2

Fig. 103. Network in Problem 26
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Summary of Chapter 4 165

Whereas single electric circuits or single mass–spring systems are modeled by
single ODEs (Chap. 2), networks of several circuits, systems of several masses
and springs, and other engineering problems lead to systems of ODEs, involving
several unknown functions . Of central interest are first-order
systems (Sec. 4.2):

, in components,

to which higher order ODEs and systems of ODEs can be reduced (Sec. 4.1). In
this summary we let , so that

(1) , in components,

Then we can represent solution curves as trajectories in the phase plane (the 
-plane), investigate their totality [the “phase portrait” of (1)], and study the kind

and stability of the critical points (points at which both and are zero), and
classify them as nodes, saddle points, centers, or spiral points (Secs. 4.3, 4.4). These
phase plane methods are qualitative; with their use we can discover various general
properties of solutions without actually solving the system. They are primarily used
for autonomous systems, that is, systems in which t does not occur explicitly.

A linear system is of the form

(2) where , , .

If , the system is called homogeneous and is of the form

(3) .

If are constants, it has solutions , where is a solution of the
quadratic equation2a11 � l a12

a21 a22 � l
2 � (a11 � l)(a22 � l) � a12a21 � 0

ly � xelta11, Á , a22

yr � Ay

g � 0

g � cg1

g2

dy � c y1

y2

dA � ca11 a12

a21 a22

dyr � Ay � g,

f2f1

y1y2

yr1 � f1(t, y1, y2)

yr2 � f2(t, y1, y2).
yr � f(t, y)

n � 2

yr1 � f1(t, y1, Á , yn)

.

.

.
yrn � fn(t, y1, Á , yn),

yr � f(t, y)

y1(t), Á , yn(t)

SUMMARY OF CHAPTER 4
Systems of ODEs. Phase Plane. Qualitative Methods
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166 CHAP. 4 Systems of ODEs. Phase Plane. Qualitative Methods

and has components determined up to a multiplicative constant by

(These ’s are called the eigenvalues and these vectors x eigenvectors of the
matrix A. Further explanation is given in Sec. 4.0.)

A system (2) with is called nonhomogeneous. Its general solution is of
the form , where is a general solution of (3) and a particular
solution of (2). Methods of determining the latter are discussed in Sec. 4.6.

The discussion of critical points of linear systems based on eigenvalues is
summarized in Tables 4.1 and 4.2 in Sec. 4.4. It also applies to nonlinear systems
if the latter are first linearized. The key theorem for this is Theorem 1 in Sec. 4.5,
which also includes three famous applications, namely the pendulum and van der
Pol equations and the Lotka–Volterra predator–prey population model.

ypyhy � yh � yp

g � 0

l

(a11 � l)x1 � a12 x2 � 0.

x1, x2x � 0
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C H A P T E R 5

Series Solutions of ODEs.
Special Functions

In the previous chapters, we have seen that linear ODEs with constant coefficients can be
solved by algebraic methods, and that their solutions are elementary functions known from
calculus. For ODEs with variable coefficients the situation is more complicated, and their
solutions may be nonelementary functions. Legendre’s, Bessel’s, and the hypergeometric
equations are important ODEs of this kind. Since these ODEs and their solutions, the
Legendre polynomials, Bessel functions, and hypergeometric functions, play an important
role in engineering modeling, we shall consider the two standard methods for solving
such ODEs.

The first method is called the power series method because it gives solutions in the
form of a power series .

The second method is called the Frobenius method and generalizes the first; it gives
solutions in power series, multiplied by a logarithmic term or a fractional power ,
in cases such as Bessel’s equation, in which the first method is not general enough.

All those more advanced solutions and various other functions not appearing in calculus
are known as higher functions or special functions, which has become a technical term.
Each of these functions is important enough to give it a name and investigate its properties
and relations to other functions in great detail (take a look into Refs. [GenRef1],
[GenRef10], or [All] in App. 1). Your CAS knows practically all functions you will ever
need in industry or research labs, but it is up to you to find your way through this vast
terrain of formulas. The present chapter may give you some help in this task.

COMMENT. You can study this chapter directly after Chap. 2 because it needs no
material from Chaps. 3 or 4.

Prerequisite: Chap. 2.
Section that may be omitted in a shorter course: 5.5.
References and Answers to Problems: App. 1 Part A, and App. 2.

5.1 Power Series Method
The power series method is the standard method for solving linear ODEs with variable
coefficients. It gives solutions in the form of power series. These series can be used
for computing values, graphing curves, proving formulas, and exploring properties of
solutions, as we shall see. In this section we begin by explaining the idea of the power
series method.

x rln x

a0 � a1x � a2 x2 � a3 x3 � Á
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168 CHAP. 5 Series Solutions of ODEs. Special Functions

From calculus we remember that a power series (in powers of ) is an infinite
series of the form

(1)

Here, x is a variable. are constants, called the coefficients of the series. 
is a constant, called the center of the series. In particular, if , we obtain a power

series in powers of x

(2)

We shall assume that all variables and constants are real.
We note that the term “power series” usually refers to a series of the form (1) [or (2)]

but does not include series of negative or fractional powers of x. We use m as the
summation letter, reserving n as a standard notation in the Legendre and Bessel equations
for integer values of the parameter.

E X A M P L E  1 Familiar Power Series are the Maclaurin series

Idea and Technique of the Power Series Method
The idea of the power series method for solving linear ODEs seems natural, once we
know that the most important ODEs in applied mathematics have solutions of this form.
We explain the idea by an ODE that can readily be solved otherwise.

E X A M P L E  2 Power Series Solution. Solve .

Solution. In the first step we insert

(2) y � a0 � a1x � a2 x2 � a3 x3 � Á � a
�

m�0

 am xm

yr � y � 0

� sin x � a
�

m�0

 
(�1)mx2m�1

(2m � 1)!
� x �

x3

3!
�

x5

5!
� � Á .

 cos x � a
�

m�0

 
(�1)mx2m

(2m)!
� 1 �

x2

2!
�

x4

4!
� � Á

 ex � a
�

m�0

 
xm

m!
� 1 � x �

x2

2!
�

x3

3!
� Á

 
1

1 � x
� a

�

m�0

 xm � 1 � x � x2 � Á  
 

( ƒ x ƒ � 1, geometric series)

a
�

m�0

 am x
m � a0 � a1x � a2 x2 � a3 x3 � Á .

x0 � 0x0

a0, a1, a2, Á

a
�

m�0

 am(x � x0)m � a0 � a1(x � x0) � a2(x � x0)2 � Á .

x � x0
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SEC. 5.1 Power Series Method 169

and the series obtained by termwise differentiation

(3)

into the ODE:

Then we collect like powers of x, finding

Equating the coefficient of each power of x to zero, we have

Solving these equations, we may express in terms of , which remains arbitrary:

With these values of the coefficients, the series solution becomes the familiar general solution

Test your comprehension by solving by power series. You should get the result

We now describe the method in general and justify it after the next example. For a given
ODE

(4)

we first represent p(x) and q(x) by power series in powers of x (or of if solutions
in powers of are wanted). Often p(x) and q(x) are polynomials, and then nothing
needs to be done in this first step. Next we assume a solution in the form of a power series
(2) with unknown coefficients and insert it as well as (3) and

(5)

into the ODE. Then we collect like powers of x and equate the sum of the coefficients of
each occurring power of x to zero, starting with the constant terms, then taking the terms
containing x, then the terms in , and so on. This gives equations from which we can
determine the unknown coefficients of (3) successively.

E X A M P L E  3 A Special Legendre Equation. The ODE

occurs in models exhibiting spherical symmetry. Solve it.

(1 � x2)ys � 2xyr � 2y � 0

x2

ys � 2a2 � 3 # 2a3 x � 4 # 3a4 x
2 � Á � a

�

m�2

 m(m � 1)am xm�2

x � x0

x � x0

ys � p(x)yr � q(x)y � 0

�y � a0 cos x � a1 sin x.
ys � y � 0

y � a0 � a0 x �
a0

2!
 x2 �

a0

3!
 x3 � Á � a0 a1 � x �

x2

2!
�

x3

3!
b � a0ex.

a1 � a0,  a2 �
a1

2
�

a0

2!
 ,  a3 �

a2

3
�

a0

3!
 , Á .

a0a1, a2, Á

a1 � a0 � 0,  2a2 � a1 � 0,  3a3 � a2 � 0, Á .

(a1 � a0) � (2a2 � a1)x � (3a3 � a2)x2 � Á � 0.

(a1 � 2a2 x � 3a3 x2 � Á ) � (a0 � a1x � a2 x2 � Á ) � 0.

yr � a1 � 2a2 x � 3a3 x2 � Á � a
�

m�1

 mam xm�1
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170 CHAP. 5 Series Solutions of ODEs. Special Functions

Solution. Substitute (2), (3), and (5) into the ODE. gives two series, one for and one for
In the term use (3) and in 2y use (2). Write like powers of x vertically aligned. This gives

Add terms of like powers of x. For each power equate the sum obtained to zero. Denote these sums
by (constant terms), (first power of x), and so on:

Sum Power Equations

This gives the solution

and remain arbitrary. Hence, this is a general solution that consists of two solutions: x and
. These two solutions are members of families of functions called Legendre polynomials

and Legendre functions ; here we have and . The
minus is by convention. The index 1 is called the order of these two functions and here the order is 1. More on
Legendre polynomials in the next section.

Theory of the Power Series Method
The nth partial sum of (1) is

(6)

where If we omit the terms of from (1), the remaining expression is

(7)

This expression is called the remainder of (1) after the term .
For example, in the case of the geometric series

we have

s0 � 1,  R0 � x � x2 � x3 � Á ,

s1 � 1 � x,  R1 � x2 � x3 � x4 � Á ,

s2 � 1 � x � x2,  R2 � x3 � x4 � x5 � Á ,  etc.

1 � x � x2 � Á � xn � Á

an(x � x0)n

Rn(x) � an�1(x � x0)n�1 � an�2(x � x0)n�2 � Á .

snn � 0, 1, Á .

sn(x) � a0 � a1(x � x0) � a2(x � x0)2 � Á � an(x � x0)n

�

1 � x2 � 1
3 x4 � 1

5 x6 � Á � �Q1(x)x � P1(x)Qn(x)Pn(x)
1 � x2 � 1

3 x4 � 1
5 x6 � Á

a1a0

y � a1x � a0(1 � x2 � 1
3 x4 � 1

5 x6 � Á ).

30a6 � 18a4,   a6 � 18
30 a4 � 18

30 (�1
3)a0 � �1

5 a0.[x4][4]

a5 � 0    since  a3 � 0[x3][3]

12a4 � 4a2,  a4 � 4
12  

a2 � �1
3  

a0[x2][2]

a3 � 0[x][1]

a2 � �a0[x0][0]

[1][0]
x0, x, x2, Á

 2y � 2a0 � 2a1x � 2a2x2 � 2a3 x3 � 2a4 x
4 � Á .

 �2xyr � � 2a1x � 4a2 x2 � 6a3 x3 � 8a4 x
4 � Á

 �x2ys � � 2a2 x2 � 6a3 x3 � 12a4 x
4 � Á

 ys � 2a2 � 6a3 x � 12a4 x
2 � 20a5 x

3 � 30a6 x
4 � Á

�2xyr�x2ys.
ys(1 � x2)ys
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SEC. 5.1 Power Series Method 171

In this way we have now associated with (1) the sequence of the partial sums
. If for some this sequence converges, say,

then the series (1) is called convergent at , the number is called the value
or sum of (1) at , and we write

Then we have for every n,

(8)

If that sequence diverges at , the series (1) is called divergent at .
In the case of convergence, for any positive there is an N (depending on ) such that,

by (8)

(9)

Geometrically, this means that all with lie between and 
(Fig. 104). Practically, this means that in the case of convergence we can approximate the
sum of (1) at by as accurately as we please, by taking n large enough.sn(x1)x1s(x1)

s(x1) � Ps(x1) � Pn � Nsn(x1)

for all n � N.ƒ Rn(x1) ƒ � ƒ s(x1) � sn(x1) ƒ � P

PP

x � x1x � x1

s(x1) � sn(x1) � Rn(x1).

s(x1) � a
�

m�0

 am(x1 � x0)m.

x1

s(x1)x � x1

lim
n:�  

sn(x1) � s(x1),

x � x1s0(x), s1(x), s2(x), Á

∈ ∈

s(x
1
) – ε s(x

1
)∈ s(x

1
) + ε∈

Fig. 104. Inequality (9)

R R

x
0 

– R x
0

x
0
 + R

ConvergenceDivergence Divergence

Fig. 105. Convergence interval (10) of a power series with center x0

Where does a power series converge? Now if we choose in (1), the series reduces
to the single term because the other terms are zero. Hence the series converges at .
In some cases this may be the only value of x for which (1) converges. If there are other
values of x for which the series converges, these values form an interval, the convergence
interval. This interval may be finite, as in Fig. 105, with midpoint . Then the series (1)
converges for all x in the interior of the interval, that is, for all x for which

(10)

and diverges for . The interval may also be infinite, that is, the series may
converge for all x.

ƒ x � x0 ƒ � R

ƒ x � x0 ƒ � R

x0

x0a0

x � x0
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172 CHAP. 5 Series Solutions of ODEs. Special Functions

The quantity R in Fig. 105 is called the radius of convergence (because for a complex
power series it is the radius of disk of convergence). If the series converges for all x, we
set (and ).

The radius of convergence can be determined from the coefficients of the series by
means of each of the formulas

(11)

provided these limits exist and are not zero. [If these limits are infinite, then (1) converges
only at the center .]

E X A M P L E  4 Convergence Radius , 1, 0

For all three series let 

Convergence for all is the best possible case, convergence in some finite interval the usual, and
convergence only at the center is useless.

When do power series solutions exist? Answer: if p, q, r in the ODEs

(12)

have power series representations (Taylor series). More precisely, a function is called
analytic at a point if it can be represented by a power series in powers of 
with positive radius of convergence. Using this concept, we can state the following basic
theorem, in which the ODE (12) is in standard form, that is, it begins with the If
your ODE begins with, say, , divide it first by and then apply the theorem to
the resulting new ODE.

T H E O R E M  1 Existence of Power Series Solutions

If p, q, and r in (12) are analytic at then every solution of (12) is analytic
at and can thus be represented by a power series in powers of with
radius of convergence .

The proof of this theorem requires advanced complex analysis and can be found in Ref.
[A11] listed in App. 1.

We mention that the radius of convergence R in Theorem 1 is at least equal to the distance
from the point to the point (or points) closest to at which one of the functions
p, q, r, as functions of a complex variable, is not analytic. (Note that that point may not
lie on the x-axis but somewhere in the complex plane.)

x0x � x0

R � 0
x � x0x � x0

x � x0,

h(x)h(x)ys
ys.

x � x0x � x0

f (x)

ys � p(x)yr � q(x)y � r(x)

�(R � 0)
x (R � �)

 a
�

m�0

 m!xm � 1 � x � 2x2 � Á ,  ` am�1

am
` �

(m � 1)!

m!
� m � 1 : �,   R � 0.

 
1

1 � x
� a

�

m�0

 xm � 1 � x � x2 � Á ,  ` am�1

am

` �
1

1
� 1,  R � 1

 ex � a
�

m�0

 
xm

m!
� 1 � x �

x2

2!
� Á ,   ` am�1

am
` �

1>(m � 1)!

1>m!
�

1

m � 1
 :  0,   R � �

m : �

R � �

x0

^ lim
m:�

 ` am�1

am
`^ lim

m:�
2
m

ƒ am ƒ  (b) R � 1(a) R � 1

1>R � 0R � �
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SEC. 5.1 Power Series Method 173

Further Theory: Operations on Power Series
In the power series method we differentiate, add, and multiply power series, and we obtain
coefficient recursions (as, for instance, in Example 3) by equating the sum of the
coefficients of each occurring power of x to zero. These four operations are permissible
in the sense explained in what follows. Proofs can be found in Sec. 15.3.

1. Termwise Differentiation. A power series may be differentiated term by term. More
precisely: if

converges for , where , then the series obtained by differentiating term
by term also converges for those x and represents the derivative of y for those x:

Similarly for the second and further derivatives.

2. Termwise Addition. Two power series may be added term by term. More precisely:
if the series

(13)

have positive radii of convergence and their sums are and g(x), then the series

converges and represents for each x that lies in the interior of the convergence
interval common to each of the two given series.

3. Termwise Multiplication. Two power series may be multiplied term by term. More
precisely: Suppose that the series (13) have positive radii of convergence and let and
g(x) be their sums. Then the series obtained by multiplying each term of the first series
by each term of the second series and collecting like powers of , that is,

converges and represents for each x in the interior of the convergence interval of
each of the two given series.

f (x)g(x)

� a
�

m�0

 (a0bm � a1bm�1 � Á � amb0)(x � x0)m

a0b0 � (a0b1 � a1b0)(x � x0) � (a0b2 � a1b1 � a2b0)(x � x0)2 � Á

x � x0

f (x)

f (x) � g(x)

a
�

m�0

 (am � bm)(x � x0)m

f (x)

a
�

m�0

 am(x � x0)m  and  a
�

m�0

 bm(x � x0)m

( ƒ x � x0 ƒ � R).yr(x) � a
�

m�1

 mam(x � x0)m�1

yr
R � 0ƒ x � x0 ƒ � R

y(x) � a
�

m�0

 am(x � x0)m
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174 CHAP. 5 Series Solutions of ODEs. Special Functions

4. Vanishing of All Coefficients (“Identity Theorem for Power Series.”) If a power
series has a positive radius of convergent convergence and a sum that is identically zero
throughout its interval of convergence, then each coefficient of the series must be zero.

1. WRITING AND LITERATURE PROJECT. Power
Series in Calculus. (a) Write a review (2–3 pages) on
power series in calculus. Use your own formulations and
examples—do not just copy from textbooks. No proofs.
(b) Collect and arrange Maclaurin series in a systematic
list that you can use for your work.

2–5 REVIEW: RADIUS OF CONVERGENCE
Determine the radius of convergence. Show the details of
your work.

2.

3.

4.

5.

6–9 SERIES SOLUTIONS BY HAND
Apply the power series method. Do this by hand, not by a
CAS, to get a feel for the method, e.g., why a series may
terminate, or has even powers only, etc. Show the details.

6.

7.

8.

9.

10–14 SERIES SOLUTIONS
Find a power series solution in powers of x. Show the details.

10.

11.

12.

13.

14. ys � 4xyr � (4x2 � 2)y � 0

ys � (1 � x2)y � 0

(1 � x2)ys � 2xyr � 2y � 0

ys � yr � x2y � 0

ys � yr � xy � 0

ys � y � 0

xyr � 3y � k (� const)

yr � �2xy

(1 � x)yr � y

a
�

m�0

 a2
3
b

m

x2m

a
�

m�0

 
x2m�1

(2m � 1)!

a
�

m�0

 
(�1)m

km  x2m

a
�

m�0

 (m � 1)mxm

15. Shifting summation indices is often convenient or
necessary in the power series method. Shift the index
so that the power under the summation sign is .
Check by writing the first few terms explicity.

16–19 CAS PROBLEMS. IVPs
Solve the initial value problem by a power series. Graph
the partial sums of the powers up to and including . Find
the value of the sum s (5 digits) at .

16.

17.

18.

19.

20. CAS Experiment. Information from Graphs of
Partial Sums. In numerics we use partial sums of
power series. To get a feel for the accuracy for various
x, experiment with . Graph partial sums of the
Maclaurin series of an increasing number of terms,
describing qualitatively the “breakaway points” of
these graphs from the graph of . Consider other
Maclaurin series of your choice.

sin x

sin x

(x � 2)yr � xy, y(0) � 4, x1 � 2

x1 � 0.5yr(0) � 1.875,
y(0) � 0,(1 � x2)ys � 2xyr � 30y � 0,

x � 0.5
yr(0) � 1,y(0) � 1,ys � 3xyr � 2y � 0,

yr � 4y � 1, y(0) � 1.25, x1 � 0.2

x1

x5

a
�

s�2

s(s � 1)

s2 � 1
 xs�1,  a

�

p�1

p2

( p � 1)!
 xp�4

xm

P R O B L E M  S E T  5 . 1

–0.5

0.5

0

1

1.5

1 2 3 4 5 6

–1

–1.5

x

Fig. 106. CAS Experiment 20. and partial 
sums s3, s5, s7

sin x
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SEC. 5.2 Legendre’s Equation. Legendre Polynomials 175Pn(x)

5.2 Legendre’s Equation. 
Legendre Polynomials 

Legendre’s differential equation1

(1) (n constant)

is one of the most important ODEs in physics. It arises in numerous problems, particularly
in boundary value problems for spheres (take a quick look at Example 1 in Sec. 12.10).

The equation involves a parameter n, whose value depends on the physical or
engineering problem. So (1) is actually a whole family of ODEs. For we solved it
in Example 3 of Sec. 5.1 (look back at it). Any solution of (1) is called a Legendre function.
The study of these and other “higher” functions not occurring in calculus is called the
theory of special functions. Further special functions will occur in the next sections.

Dividing (1) by , we obtain the standard form needed in Theorem 1 of Sec. 5.1
and we see that the coefficients and of the new equation
are analytic at , so that we may apply the power series method. Substituting

(2)

and its derivatives into (1), and denoting the constant simply by k, we obtain

.

By writing the first expression as two separate series we have the equation

It may help you to write out the first few terms of each series explicitly, as in Example 3
of Sec. 5.1; or you may continue as follows. To obtain the same general power in all
four series, set (thus ) in the first series and simply write s instead
of m in the other three series. This gives

.a
�

s�0

 (s � 2)(s � 1)as�2 x
s � a

�

s�2

 s(s � 1)as x
s � a

�

s�1

 2sas x
s � a

�

s�0

 kas x
s � 0

m � s � 2m � 2 � s
xs

a
�

m�2

 m(m � 1)am xm�2 � a
�

m�2

 m(m � 1)am xm � a
�

m�1

 2mam xm � a
�

m�0

 kam xm � 0.

(1 � x2) a
�

m�2

m(m � 1)am xm�2 � 2x a
�

m�1

mam xm�1 � k a
�

m�0

am xm � 0

n(n � 1)

y � a
�

m�0

am xm

x � 0
n(n � 1)>(1 � x2)�2x>(1 � x2)

1 � x2

n � 1

(1 � x2)ys � 2xyr � n(n � 1)y � 0

Pn(x)

1ADRIEN-MARIE LEGENDRE (1752–1833), French mathematician, who became a professor in Paris in
1775 and made important contributions to special functions, elliptic integrals, number theory, and the calculus
of variations. His book Éléments de géométrie (1794) became very famous and had 12 editions in less than
30 years.

Formulas on Legendre functions may be found in Refs. [GenRef1] and [GenRef10].
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176 CHAP. 5 Series Solutions of ODEs. Special Functions

(Note that in the first series the summation begins with .) Since this equation with
the right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the
coefficients of each power of x on the left must be zero. Now occurs in the first and
fourth series only, and gives [remember that ]

(3a) .

occurs in the first, third, and fourth series and gives

(3b) .

The higher powers occur in all four series and give

(3c)

The expression in the brackets can be written , as you may
readily verify. Solving (3a) for and (3b) for as well as (3c) for , we obtain the
general formula

(4) .

This is called a recurrence relation or recursion formula. (Its derivation you may verify
with your CAS.) It gives each coefficient in terms of the second one preceding it, except
for and , which are left as arbitrary constants. We find successively

and so on. By inserting these expressions for the coefficients into (2) we obtain

(5)

where

(6)

(7)  y2(x) � x �
(n � 1)(n � 2)

3!
 x3 �

(n � 3)(n � 1)(n � 2)(n � 4)

5!
 x5 � � Á .

 y1(x) � 1 �
n(n � 1)

2!
 x2 �

(n � 2)n(n � 1)(n � 3)

4!
 x4 � � Á

y(x) � a0y1(x) � a1y2(x)

  �
(n � 3)(n � 1)(n � 2)(n � 4)

5!
 a1  �

(n � 2)n(n � 1)(n � 3)

4!
 a0

 a5 � � 

(n � 3)(n � 4)

5 # 4
 a3 a4 � � 

(n � 2)(n � 3)

4 # 3
 a2

 a3 � � 

(n � 1)(n � 2)

3!
 a1 a2 � � 

n(n � 1)

2!
 a0

a1a0

(s � 0, 1, Á )as�2 � � 

(n � s)(n � s � 1)

(s � 2)(s � 1)
 as

as�2a3a2

(n � s)(n � s � 1)[ Á ]

(s � 2)(s � 1)as�2 � [�s(s � 1) � 2s � n(n � 1)]as � 0.

x2, x3, Á

3 # 2a3 � [�2 � n(n � 1)]a1 � 0

x1

2 # 1a2 � n(n � 1)a0 � 0

k � n(n � 1)
x0

s � 0
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SEC. 5.2 Legendre’s Equation. Legendre Polynomials 177Pn(x)

These series converge for (see Prob. 4; or they may terminate, see below). Since
(6) contains even powers of x only, while (7) contains odd powers of x only, the ratio

is not a constant, so that and are not proportional and are thus linearly
independent solutions. Hence (5) is a general solution of (1) on the interval 

Note that are the points at which , so that the coefficients of the
standardized ODE are no longer analytic. So it should not surprise you that we do not get
a longer convergence interval of (6) and (7), unless these series terminate after finitely
many powers. In that case, the series become polynomials.

Polynomial Solutions. Legendre Polynomials 
The reduction of power series to polynomials is a great advantage because then we have
solutions for all x, without convergence restrictions. For special functions arising as
solutions of ODEs this happens quite frequently, leading to various important families of
polynomials; see Refs. [GenRef1], [GenRef10] in App. 1. For Legendre’s equation this
happens when the parameter n is a nonnegative integer because then the right side of (4)
is zero for , so that . Hence if n is even, 
reduces to a polynomial of degree n. If n is odd, the same is true for . These
polynomials, multiplied by some constants, are called Legendre polynomials and are
denoted by . The standard choice of such constants is done as follows. We choose
the coefficient of the highest power as

(8) (n a positive integer)

(and ). Then we calculate the other coefficients from (4), solved for in
terms of , that is,

(9)

The choice (8) makes for every n (see Fig. 107); this motivates (8). From (9)
with and (8) we obtain

Using in the numerator and and
in the denominator, we obtain

cancels, so that we get

an�2 � � 

(2n � 2)!

2n(n � 1)! (n � 2)!
 .

n(n � 1)2n(2n � 1)

an�2 � � 

n(n � 1)2n(2n � 1)(2n � 2)!

2(2n � 1)2nn(n � 1)! n(n � 1)(n � 2)!
 .

n! � n(n � 1)(n � 2)!
n! � n(n � 1)!(2n)! � 2n(2n � 1)(2n � 2)!

an�2 � � 

n(n � 1)

2(2n � 1)
 an � � 

n(n � 1)

2(2n � 1)
#

(2n)!

2n(n!)2

s � n � 2
pn(1) � 1

(s � n � 2).as � � 

(s � 2)(s � 1)

(n � s)(n � s � 1)
 as�2

as�2

asan � 1 if n � 0

an �
(2n)!

2n(n!)2 �
1 # 3 # 5 Á (2n � 1)

n!

xnan

Pn(x)

y2(x)
y1(x)an�2 � 0, an�4 � 0, an�6 � 0, Ás � n

Pn(x)

1 � x2 � 0x � 	1
�1 � x � 1.

y2y1y1>y2

ƒ x ƒ � 1
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178 CHAP. 5 Series Solutions of ODEs. Special Functions

Similarly,

and so on, and in general, when ,

(10)

The resulting solution of Legendre’s differential equation (1) is called the Legendre
polynomial of degree n and is denoted by .

From (10) we obtain

(11)

where , whichever is an integer. The first few of these functions
are (Fig. 107)

and so on. You may now program (11) on your CAS and calculate as needed.Pn(x)

P0(x) � 1,     P1(x) � x

P2(x) � 1
2 (3x2 � 1),  P3(x) � 1

2 (5x3 � 3x)

P4(x) � 1
8 (35x4 � 30x2 � 3),  P5(x) � 1

8 (63x5 � 70x3 � 15x)

(11�)

M � n>2 or (n � 1)>2

 �
(2n)!

2n(n!)2
 xn �

(2n � 2)!

2n1! (n � 1)! (n � 2)!
xn�2 � � Á

 Pn(x) � a

M

m�0

 (�1)m 
(2n � 2m)!

2nm! (n � m)! (n � 2m)!
 xn�2m

Pn(x)

an�2m � (�1)m 
(2n � 2m)!

2nm! (n � m)! (n � 2m)!
 .

n � 2m 
 0

 �
(2n � 4)!

2n2! (n � 2)! (n � 4)!

 an�4 � � 

(n � 2)(n � 3)

4(2n � 3)
 an�2

–1

–1 x

Pn(x) P0

P1

P4

P3

P2

1

1

Fig. 107. Legendre polynomials
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The Legendre polynomials are orthogonal on the interval , a basic
property to be defined and used in making up “Fourier–Legendre series” in the chapter
on Fourier series (see Secs. 11.5–11.6).

�1 � x � 1Pn(x)

1–5 LEGENDRE POLYNOMIALS AND
FUNCTIONS

1. Legendre functions for Show that (6) with
gives and (7) gives (use 

)

Verify this by solving (1) with , setting 
and separating variables.

2. Legendre functions for Show that (7) with
gives and (6) gives

3. Special n. Derive from (11).

4. Legendre’s ODE. Verify that the polynomials in 
satisfy (1).

5. Obtain and .

6–9 CAS PROBLEMS
6. Graph on common axes. For what x

(approximately) and is ?

7. From what n on will your CAS no longer produce
faithful graphs of ? Why?

8. Graph , and some further Legendre
functions.

9. Substitute into Legen-
dre’s equation and obtain the coefficient recursion (4).

10. TEAM PROJECT. Generating Functions. Generating
functions play a significant role in modern applied
mathematics (see [GenRef5]). The idea is simple. If we
want to study a certain sequence and can find a
function

,

we may obtain properties of from those of G,
which “generates” this sequence and is called a
generating function of the sequence.

(  fn(x))

G(u, x) � a
�

n�0

 fn(x)un

(  fn(x))

asx
s � as�1x s�1 � as�2x s�2

Q0(x), Q1(x)

Pn(x)

ƒ Pn(x) ƒ � 1
2n � 2, Á , 10

P2(x), Á , P10(x)

P7P6

(11r)
(11r)

� 1 �
1
2

 x ln 
1 � x
1 � x

 .

y1 � 1 � x2 �
1
3

 x4 �
1
5

 x6 � Á

y2(x) � P1(x) � xn � 1
n � 1.

z � yrn � 0

y2(x) � x �
1
3

 x3 �
1
5

 x5 � Á �
1
2

 ln 
1 � x
1 � x

 .

x � 1
2 x2 � 1

3 x3 � Á

ln (1 � x) �P0(x) � 1n � 0
n � 0.

(a) Legendre polynomials. Show that

(12)

is a generating function of the Legendre polynomials.
Hint: Start from the binomial expansion of 
then set , multiply the powers of 
out, collect all the terms involving , and verify that
the sum of these terms is .

(b) Potential theory. Let and be two points in
space (Fig. 108, ). Using (12), show that

This formula has applications in potential theory. (
is the electrostatic potential at due to a charge Q
located at . And the series expresses in terms of
the distances of and from any origin O and the
angle between the segments and .)OA2OA1u

A2A1

1>rA1

A2

Q>r

 �
1
r2 a

�

m�0

Pm(cos u) ar1

r2
b

m

.

 
1
r �

1

2r1
2 � r2

2 � 2r1r2 cos u

r2 � 0
A2A1

Pn(x)un
un

2xu � u2v � 2xu � u2
1>11 � v,

G(u, x) �
1

21 � 2xu � u2
� a

�

n�0

 Pn(x)un

P R O B L E M  S E T  5 . 2

r
2

r

A
2

θ
A

1r
1

0

Fig. 108. Team Project 10

(c) Further applications of (12). Show that
, and

.

11–15 FURTHER FORMULAS
11. ODE. Find a solution of 

, by reduction to the Legendre
equation.

12. Rodrigues’s formula (13)2 Applying the binomial
theorem to , differentiating it n times term
by term, and comparing the result with (11), show that

(13) Pn(x) �
1

2nn!
  

dn

dxn [(x2 � 1)n].

(x2 � 1) n

a � 0n(n � 1)y � 0,
(a2 � x2)ys � 2xyr �

P2n(0) � (�1) n # 1 # 3 Á (2n � 1)>[2 # 4 Á (2n)]
Pn(1) � 1, Pn(�1) � (�1) n, P2n�1(0) � 0

2OLINDE RODRIGUES (1794–1851), French mathematician and economist.
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180 CHAP. 5 Series Solutions of ODEs. Special Functions

15. Associated Legendre functions are needed, e.g.,
in quantum physics. They are defined by

(15)

and are solutions of the ODE

(16)

where . Find 
, and and verify that they satisfy (16).P4

2(x)P2
2(x) P2

1(x),
P1

1(x),q(x) � n(n � 1) � k2>(1 � x2)

(1 � x2)ys � 2xyr � q(x)y � 0

Pn
k(x) � (1 � x2)k>2 

dkpn(x)

dxk

Pn
k

 (x)13. Rodrigues’s formula. Obtain from (13).

14. Bonnet’s recursion.3 Differentiating (13) with
respect to u, using (13) in the resulting formula, and
comparing coefficients of , obtain the Bonnet
recursion.

(14)

where . This formula is useful for com-
putations, the loss of significant digits being small
(except near zeros). Try (14) out for a few computations
of your own choice.

n � 1, 2, Á

(n � 1)Pn�1(x) � (2n � 1)xPn(x) � npn�1(x),

un

(11r)

3OSSIAN BONNET (1819–1892), French mathematician, whose main work was in differential geometry.
4GEORG FROBENIUS (1849–1917), German mathematician, professor at ETH Zurich and University of Berlin,

student of Karl Weierstrass (see footnote, Sect. 15.5). He is also known for his work on matrices and in group theory.
In this theorem we may replace x by x � x0 with any number x0. The condition a0 � 0 is no restriction; it

simply means that we factor out the highest possible power of x.
The singular point of (1) at x � 0 is often called a regular singular point, a term confusing to the student,

which we shall not use.

5.3 Extended Power Series Method: 
Frobenius Method

Several second-order ODEs of considerable practical importance—the famous Bessel
equation among them—have coefficients that are not analytic (definition in Sec. 5.1), but
are “not too bad,” so that these ODEs can still be solved by series (power series times a
logarithm or times a fractional power of x, etc.). Indeed, the following theorem permits
an extension of the power series method. The new method is called the Frobenius
method.4 Both methods, that is, the power series method and the Frobenius method, have
gained in significance due to the use of software in actual calculations.

T H E O R E M  1 Frobenius Method

Let and be any functions that are analytic at . Then the ODE

(1)

has at least one solution that can be represented in the form

(2)

where the exponent r may be any (real or complex) number (and r is chosen so that
).

The ODE (1) also has a second solution (such that these two solutions are linearly
independent) that may be similar to (2) (with a different r and different coefficients)
or may contain a logarithmic term. (Details in Theorem 2 below.)

a0 � 0

(a0 � 0)y(x) � xr
a

�

m�0

am xm � xr(a0 � a1x � a2 x2 � Á )

ys �
b(x)

x
 yr �

c(x)

x2  y � 0

x � 0c(x)b(x)
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For example, Bessel’s equation (to be discussed in the next section)

(v a parameter)

is of the form (1) with and analytic at , so that the theorem
applies. This ODE could not be handled in full generality by the power series method.

Similarly, the so-called hypergeometric differential equation (see Problem Set 5.3) also
requires the Frobenius method.

The point is that in (2) we have a power series times a single power of x whose exponent
r is not restricted to be a nonnegative integer. (The latter restriction would make the whole
expression a power series, by definition; see Sec. 5.1.)

The proof of the theorem requires advanced methods of complex analysis and can be
found in Ref. [A11] listed in App. 1.

Regular and Singular Points. The following terms are practical and commonly used.
A regular point of the ODE

is a point at which the coefficients p and q are analytic. Similarly, a regular point of
the ODE

is an at which are analytic and (so what we can divide by and get
the previous standard form). Then the power series method can be applied. If is not a
regular point, it is called a singular point.

Indicial Equation, Indicating the Form of Solutions
We shall now explain the Frobenius method for solving (1). Multiplication of (1) by 
gives the more convenient form

We first expand and in power series,

or we do nothing if and are polynomials. Then we differentiate (2) term by term,
finding

(2*)

 � xr�23r(r � 1)a0 � (r � 1)ra1x � Á 4.

 ys(x) � a
�

m�0

 (m � r)(m � r � 1)am xm�r�2

 yr(x) � a
�

m�0

 (m � r)am xm�r�1 � xr�13ra0 � (r � 1)a1x � Á 4

c(x)b(x)

b(x) � b0 � b1x � b2 x2 � Á ,  c(x) � c0 � c1x � c2 x2 � Á

c(x)b(x)

x2ys� xb(x)yr � c(x)y � 0.(1r)

x2

x0

h
~

h
~

(x0) � 0h
~

, p~, q~x0

h
~

(x)ys � p~(x)yr(x) � q~(x)y � 0

x0

ys � p(x)yr � q(x)y � 0

x � 0c(x) � x2 � v2b(x) � 1

ys �
1
x

 yr � ax2 � v2

x2 b y � 0
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182 CHAP. 5 Series Solutions of ODEs. Special Functions

By inserting all these series into we obtain

(3)
.

We now equate the sum of the coefficients of each power to zero. This
yields a system of equations involving the unknown coefficients . The smallest power
is and the corresponding equation is

.

Since by assumption , the expression in the brackets must be zero. This
gives

(4) .

This important quadratic equation is called the indicial equation of the ODE (1). Its role
is as follows.

The Frobenius method yields a basis of solutions. One of the two solutions will always
be of the form (2), where r is a root of (4). The other solution will be of a form indicated
by the indicial equation. There are three cases:

Case 1. Distinct roots not differing by an integer .

Case 2. A double root.

Case 3. Roots differing by an integer .

Cases 1 and 2 are not unexpected because of the Euler–Cauchy equation (Sec. 2.5), the
simplest ODE of the form (1). Case 1 includes complex conjugate roots and 
because Im is imaginary, so it cannot be a real integer. The
form of a basis will be given in Theorem 2 (which is proved in App. 4), without a general
theory of convergence, but convergence of the occurring series can be tested in each
individual case as usual. Note that in Case 2 we must have a logarithm, whereas in Case 3
we may or may not.

T H E O R E M  2 Frobenius Method. Basis of Solutions. Three Cases

Suppose that the ODE (1) satisfies the assumptions in Theorem 1. Let and be
the roots of the indicial equation (4). Then we have the following three cases.

Case 1. Distinct Roots Not Differing by an Integer. A basis is

(5)

and

(6)

with coefficients obtained successively from (3) with and , respectively.r � r2r � r1

y2(x) � x r2(A0 � A1x � A2 x2 � Á )

y1(x) � xr1(a0 � a1x � a2 x2 � Á )

r2r1

r1r1 � r2 � r1 � r1 � 2i
r2 � r1r1

1, 2, 3, Á

1, 2, 3, Á

r (r � 1) � b0r � c0 � 0

[ Á ]a0 � 0

[r (r � 1) � b0r � c0]a0 � 0

xr
am

x r, x r�1, x r�2, Á

 � (c0 � c1x � Á ) x r(a0 � a1x � Á ) � 0

 xr[r(r � 1)a0 � Á ] � (b0 � b1x � Á ) x r(ra0 � Á )

(1r)
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SEC. 5.3 Extended Power Series Method: Frobenius Method 183

Case 2. Double Root A basis is

(7)

(of the same general form as before) and

(8) .

Case 3. Roots Differing by an Integer. A basis is

(9)

(of the same general form as before) and

(10)

where the roots are so denoted that and k may turn out to be zero.

Typical Applications
Technically, the Frobenius method is similar to the power series method, once the roots
of the indicial equation have been determined. However, (5)–(10) merely indicate the
general form of a basis, and a second solution can often be obtained more rapidly by
reduction of order (Sec. 2.1).

E X A M P L E  1 Euler–Cauchy Equation, Illustrating Cases 1 and 2 and Case 3 without a Logarithm

For the Euler–Cauchy equation (Sec. 2.5)

( constant)

substitution of gives the auxiliary equation

which is the indicial equation [and is a very special form of (2) ]. For different roots we get a basis
, and for a double root r we get a basis . Accordingly, for this simple ODE, Case 3

plays no extra role.

E X A M P L E  2 Illustration of Case 2 (Double Root)

Solve the ODE

(11) .

(This is a special hypergeometric equation, as we shall see in the problem set.)

Solution. Writing (11) in the standard form (1), we see that it satisfies the assumptions in Theorem 1. [What
are and in (11)?] By inserting (2) and its derivatives into (11) we obtain

(12)

.� 3 a
�

m�0

 (m � r)am xm�r � a
�

m�0

 (m � r)am xm�r�1 � a
�

m�0

 am xm�r � 0

a
�

m�0

 (m � r)(m � r � 1)am xm�r � a
�

m�0

 (m � r)(m � r � 1)am xm�r�1

(2*)c(x)b(x)

x(x � 1)ys � (3x � 1)yr � y � 0

�
x r, x r ln xy1 � xr1, y2 � xr2

r1, r2!y � xr

r(r � 1) � b0r � c0 � 0,

y � xr

b0, c0x2ys � b0 xyr � c0y � 0

r1 � r2 � 0

y2(x) � ky1(x) ln x � x r2(A0 � A1x � A2 x2 � Á ),

y1(x) � x r1(a0 � a1x � a2 x2 � Á)

(x � 0)y2(x) � y1(x) ln x � x r(A1x � A2 x2 � Á)

[r � 1
2 (1 � b0)]y1(x) � x r(a0 � a1x � a2 x2 � Á)

r1 � r2 � r.
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184 CHAP. 5 Series Solutions of ODEs. Special Functions

The smallest power is , occurring in the second and the fourth series; by equating the sum of its coefficients
to zero we have

.

Hence this indicial equation has the double root .

First Solution. We insert this value into (12) and equate the sum of the coefficients of the power
to zero, obtaining

thus . Hence , and by choosing we obtain the solution

.

Second Solution. We get a second independent solution by the method of reduction of order (Sec. 2.1),
substituting and its derivatives into the equation. This leads to (9), Sec. 2.1, which we shall use in
this example, instead of starting reduction of order from scratch (as we shall do in the next example). In (9) of
Sec. 2.1 we have , the coefficient of in (11) in standard form. By partial fractions,

Hence (9), Sec. 2.1, becomes

,

and are shown in Fig. 109. These functions are linearly independent and thus form a basis on the interval 
(as well as on ). �1 � x � �0 � x � 1

y2y1

y2 � uy1 �
ln x

1 � x
 .u � ln xur � U � y1

�2e��p dx �
(x � 1)2

(x � 1)2x
�

1

x
 ,

��p dx � �� 3x � 1
x(x � 1)

 dx � ��a 2
x � 1

�
1
x
b dx � �2 ln (x � 1) � ln x.

yrp � (3x � 1)>(x2 � x)

y2 � uy1

y2

( ƒ x ƒ � 1)y1(x) � a
�

m�0

xm �
1

1 � x

a0 � 1a0 � a1 � a2 � Áas�1 � as

s(s � 1)as � (s � 1)sas�1 � 3sas � (s � 1)as�1 � as � 0

xs
r � 0

r � 0

[�r (r � 1) � r]a0 � 0,  thus  r 2 � 0

xr�1

4

3

2

–1

–2

–2 2 6

–3

–4

0

1

x

y

y2

y1

4

Fig. 109. Solutions in Example 2

E X A M P L E  3 Case 3, Second Solution with Logarithmic Term

Solve the ODE

(13) .

Solution. Substituting (2) and into (13), we have

.(x2 � x) a
�

m�0

(m � r)(m � r � 1)am xm�r�2 � x a
�

m�0

(m � r)am xm�r�1 � a
�

m�0

am xm�r � 0

(2*)

(x2 � x)ys � xyr � y � 0

c05.qxd  10/28/10  1:33 PM  Page 184



SEC. 5.3 Extended Power Series Method: Frobenius Method 185

We now take , x, and x inside the summations and collect all terms with power and simplify algebraically,

.

In the first series we set and in the second , thus . Then

(14) .

The lowest power is (take in the second series) and gives the indicial equation

.

The roots are and . They differ by an integer. This is Case 3.

First Solution. From (14) with we have

.

This gives the recurrence relation

.

Hence successively. Taking , we get as a first solution .

Second Solution. Applying reduction of order (Sec. 2.1), we substitute and
into the ODE, obtaining

.

xu drops out. Division by x and simplification give

.

From this, using partial fractions and integrating (taking the integration constant zero), we get

Taking exponents and integrating (again taking the integration constant zero), we obtain

and are linearly independent, and has a logarithmic term. Hence and constitute a basis of solutions
for positive x.

The Frobenius method solves the hypergeometric equation, whose solutions include
many known functions as special cases (see the problem set). In the next section we use
the method for solving Bessel’s equation.

�
y2y1y2y2y1

ur �
x � 1

x2 �
1

x
�  

1

x2,  u � ln x �
1

x
 ,  y2 � xu � x ln x � 1.

ln ur � ln 2  x � 1

x2  2 .us
ur

� � 

x � 2

x2 � x
� � 

2

x
�

1

1 � x
 ,

(x2 � x)us � (x � 2)ur � 0

(x2 � x)(xus � 2ur) � x(xur � u) � xu � 0

ys2 � xus � 2ur
y2 � y1u � xu, yr2 � xur � u

y1 � xr1a0 � xa0 � 1a1 � 0, a2 � 0, Á

(s � 0, 1, Á )as�1 �
s2

(s � 2)(s � 1)
 as

a
�

s�0

3s2as � (s � 2)(s � 1)as�14x
s�1 � 0

r � r1 � 1

r2 � 0r1 � 1

r(r � 1) � 0

s � �1xr�1

a
�

s�0

(s � r � 1) 2as x
s�r � a

�

s��1

(s � r � 1)(s � r)as�1x s�r � 0

s � m � 1m � s � 1m � s

a
�

m�0

(m � r � 1)2 am xm�r � a
�

m�0

(m � r)(m � r � 1)am xm�r�1 � 0

xm�rx2
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186 CHAP. 5 Series Solutions of ODEs. Special Functions

5CARL FRIEDRICH GAUSS (1777–1855), great German mathematician. He already made the first of his great
discoveries as a student at Helmstedt and Göttingen. In 1807 he became a professor and director of the Observatory
at Göttingen. His work was of basic importance in algebra, number theory, differential equations, differential
geometry, non-Euclidean geometry, complex analysis, numeric analysis, astronomy, geodesy, electromagnetism,
and theoretical mechanics. He also paved the way for a general and systematic use of complex numbers.

1. WRITING PROJECT. Power Series Method and
Frobenius Method. Write a report of 2–3 pages
explaining the difference between the two methods. No
proofs. Give simple examples of your own.

2–13 FROBENIUS METHOD 
Find a basis of solutions by the Frobenius method. Try to
identify the series as expansions of known functions. Show
the details of your work.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. TEAM PROJECT. Hypergeometric Equation, Series,
and Function. Gauss’s hypergeometric ODE5 is

(15)

Here, a, b, c are constants. This ODE is of the form
, where are polyno-

mials of degree 2, 1, 0, respectively. These polynomials
are written so that the series solution takes a most prac-
tical form, namely,

(16)

.

This series is called the hypergeometric series. Its sum
is called the hypergeometric function and is

denoted by F(a, b, c; x). Here, . By
choosing specific values of a, b, c we can obtain an
incredibly large number of special functions as solutions

c � 0, �1, �2, Á

y1(x)

�
a(a � 1)(a � 2)b(b � 1)(b � 2)

3! c(c � 1)(c � 2)
 x3 � Á

y1(x) � 1 �
ab

1! c
 x �

a(a � 1)b(b � 1)
2! c(c � 1)

 x2

p0 p1,p2,p2 ys � p1yr � p0y � 0

x(1 � x)ys� [c � (a � b � 1)x]yr� aby � 0.

xys � (1 � 2x)yr � (x � 1)y � 0

x2ys � 6xyr � (4x2 � 6)y � 0

xys � (2 � 2x)yr � (x � 2)y � 0

xys � 2yr � 4xy � 0

2x(x � 1)ys � (x � 1)yr � y � 0

xys � yr � xy � 0

ys � (x � 1)y � 0

xys � 2x3yr � (x2 � 2)y � 0

xys � (2x � 1)yr � (x � 1)y � 0

xys � y � 0

xys � 2yr � xy � 0

(x � 2)2ys � (x � 2)yr � y � 0

of (15) [see the small sample of elementary functions
in part (c)]. This accounts for the importance of (15).

(a) Hypergeometric series and function. Show that
the indicial equation of (15) has the roots and

. Show that for the Frobenius
method gives (16). Motivate the name for (16) by
showing that

(b) Convergence. For what a or b will (16) reduce to
a polynomial? Show that for any other a, b, c
( ) the series (16) converges when

.

(c) Special cases. Show that

Find more such relations from the literature on special
functions, for instance, from [GenRef1] in App. 1.

(d) Second solution. Show that for the
Frobenius method yields the following solution (where

:

(17)

Show that

.

(e) On the generality of the hypergeometric equation.
Show that

(18) (t 2 � At � B)
# #
y � (Ct � D)y

#
� Ky � 0

y2(x) � x1�cF(a � c � 1, b � c � 1, 2 � c; x)

� Á b .

x2�
(a � c � 1)(a � c � 2)(b � c � 1)(b � c � 2)

2! (�c � 2)(�c � 3)

y2(x) � x1�c a1 �
(a � c � 1)(b � c � 1)

1! (�c � 2)
 x

c � 2, 3, 4, Á)

r2 � 1 � c

 ln 
1 � x
1 � x

� 2xF(1
2 , 1, 32 ; x2).

 ln (1 � x) � xF(1, 1, 2; �x),

 arcsin x � xF(1
2 , 12 , 32 ; x2),

 arctan x � xF(1
2 , 1, 32 ; �x2)

 (1 � x)n � 1 � nxF (1 � n, 1, 2; x),

 (1 � x)n � F (�n, b, b; �x),

ƒ x ƒ � 1
c � 0, �1, �2, Á

F (1, 1, 1; x) � F(1, b, b; x) � F (a, 1, a; x) �
1

1 � x
 .

r1 � 0r2 � 1 � c
r1 � 0

P R O B L E M  S E T  5 . 3
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with , etc., constant A, B, C, D, K, and 
, can be reduced to

the hypergeometric equation with independent variable

and parameters related by 
. From this you see that (15)

is a “normalized form” of the more general (18) and
that various cases of (18) can thus be solved in terms
of hypergeometric functions.

K � abC � a � b � 1,
Ct1 � D � �c(t2 � t1),

x �
t � t1

t2 � t1

At � B � (t � t1)(t � t2), t1 � t2

t 2 �y
#

� dy>dt 15–20 HYPERGEOMETRIC ODE
Find a general solution in terms of hypergeometric
functions.

15.

16.

17.

18.

19.

20. 3t(1 � t)y
# #

� ty
#

� y � 0

2(t 2 � 5t � 6)y
# #

� (2t � 3)y
#

� 8y � 0

4(t 2 � 3t � 2)y
# #

� 2y
#

� y � 0

4x(1 � x)ys � yr � 8y � 0

x(1 � x)ys � (1
2 � 2x)yr � 2y � 0

2x(1 � x)ys � (1 � 6x)yr � 2y � 0

5.4 Bessel’s Equation. Bessel Functions 
One of the most important ODEs in applied mathematics in Bessel’s equation,6

(1)

where the parameter (nu) is a given real number which is positive or zero. Bessel’s
equation often appears if a problem shows cylindrical symmetry, for example, as the
membranes in Sec.12.9. The equation satisfies the assumptions of Theorem 1. To see this,
divide (1) by to get the standard form . Hence, according
to the Frobenius theory, it has a solution of the form

(2) .

Substituting (2) and its first and second derivatives into Bessel’s equation, we obtain

We equate the sum of the coefficients of to zero. Note that this power 
corresponds to in the first, second, and fourth series, and to in the third
series. Hence for and , the third series does not contribute since .m 
 0s � 1s � 0

m � s � 2m � s
xs�rx s�r

� a
�

m�0

 am xm�r�2 � �2
a
�

m�0

 am xm�r � 0. 

a
�

m�0

 (m � r)(m � r � 1)am xm�r � a
�

m�0

 (m � r)am xm�r

(a0 � 0)y(x) � a
�

m�0

 am xm�r

ys � yr>x � (1 � �2>x2)y � 0x2

�

x2ys � xyr � (x2 � �2)y � 0

J�(x)

6FRIEDRICH WILHELM BESSEL (1784–1846), German astronomer and mathematician, studied astronomy
on his own in his spare time as an apprentice of a trade company and finally became director of the new Königsberg
Observatory.

Formulas on Bessel functions are contained in Ref. [GenRef10] and the standard treatise [A13].

c05.qxd  10/28/10  1:33 PM  Page 187



For all four series contribute, so that we get a general formula for all these s.
We find

(a)

(3) (b)

(c) .

From (3a) we obtain the indicial equation by dropping ,

(4) .

The roots are and .

Coefficient Recursion for For , Eq. (3b) reduces to 
Hence since . Substituting in (3c) and combining the three terms
containing gives simply

(5)

Since and , it follows from (5) that . Hence we have to
deal only with even-numbered coefficients with . For , Eq. (5) becomes

.

Solving for gives the recursion formula

(6) , .

From (6) we can now determine successively. This gives

and so on, and in general

(7) .

Bessel Functions for Integer 
Integer values of v are denoted by n. This is standard. For the relation (7) becomes

(8) .m � 1, 2, Áa2m �
(�1)ma0

22mm! (n � 1)(n � 2) Á (n � m)
 ,

� � n

� � nJn(x)

m � 1, 2, Áa2m �
(�1)ma0

22mm! (� � 1)(� � 2) Á (� � m)
 ,

a4 � � 

a2

222(v � 2)
�

a0

242! (� � 1)(� � 2)

a2 � � 

a0

22(� � 1)

a2, a4, Á

m � 1, 2, Áa2m � � 
1

22m(� � m)
 a2m�2

a2m

(2m � 2�)2ma2m � a2m�2 � 0

s � 2ms � 2mas

a3 � 0, a5 � 0, Á� 
 0a1 � 0

(s � 2�)sas � as�2 � 0.

as

r � �� 
 0a1 � 0
(2� � 1)a1 � 0.r � �r � r1 � v.

r2 � ��r1 � � (
 0)

(r � �)(r � �) � 0

a0

(s � 2, 3, Á )(s � r)(s � r � 1)as � (s � r)as � as�2 � �2as � 0

(s � 1)(r � 1)ra1 � (r � 1)a1 � �2a1 � 0

(s � 0)r(r � 1)a0 � ra0 � �2a0 � 0

s � 2, 3, Á
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is still arbitrary, so that the series (2) with these coefficients would contain this arbitrary
factor . This would be a highly impractical situation for developing formulas or
computing values of this new function. Accordingly, we have to make a choice. The choice

would be possible. A simpler series (2) could be obtained if we could absorb the
growing product into a factorial function What
should be our choice? Our choice should be

(9)

because then in (8), so that (8) simply becomes

(10) .

By inserting these coefficients into (2) and remembering that we obtain
a particular solution of Bessel’s equation that is denoted by :

(11) .

is called the Bessel function of the first kind of order n. The series (11) converges
for all x, as the ratio test shows. Hence is defined for all x. The series converges
very rapidly because of the factorials in the denominator.

E X A M P L E  1 Bessel Functions and 

For we obtain from (11) the Bessel function of order 0

(12)

which looks similar to a cosine (Fig. 110). For we obtain the Bessel function of order 1

(13) ,

which looks similar to a sine (Fig. 110). But the zeros of these functions are not completely regularly spaced
(see also Table A1 in App. 5) and the height of the “waves” decreases with increasing x. Heuristically, 
in (1) in standard form [(1) divided by ] is zero (if ) or small in absolute value for large x, and so is

, so that then Bessel’s equation comes close to , the equation of ; also acts
as a “damping term,” in part responsible for the decrease in height. One can show that for large x,

(14)

where is read “asymptotically equal” and means that for fixed n the quotient of the two sides approaches 1
as .x : �

�

Jn(x) � 
B

2
px

 cos ax �  

np

2
�  

p

4
b

yr>xcos x and sin xys � y � 0yr>x
n � 0x2

n2>x2

J1(x) � a
�

m�0

 
(�1)mx2m�1

22m�1m! (m � 1)!
�

x

2
�

x3

231! 2!
�

x5

252! 3!
�

x7

273! 4!
� � Á

n �  1

J0(x) � a
�

m�0

 
(�1)mx2m

22m(m!)2
� 1 �  

x2

22(1!)2
�

x4

24(2!)2
�

x6

26(3!)2
� � Á

n � 0

J1(x)J0(x)

Jn(x)
Jn(x)

(n 
 0)Jn(x) � xn
a
�

m�0

 
(�1) mx2m

22m�nm! (n � m)!

Jn(x)
c1 � 0, c3 � 0, Á

m � 1, 2, Áa2m �
(�1)m

22m�nm! (n � m)!
 ,

n! (n � 1) Á (n � m) � (n � m)!

a0 �
1

2nn!

(n � m)!(n � 1)(n � 2) Á (n � m)
a0 � 1

a0

a0
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Formula (14) is surprisingly accurate even for smaller . For instance, it will give you good starting
values in a computer program for the basic task of computing zeros. For example, for the first three zeros of 
you obtain the values 2.356 (2.405 exact to 3 decimals, error 0.049), 5.498 (5.520, error 0.022), 8.639 (8.654,
error 0.015), etc. �

J0

x (�0)
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0

1

0.5

x105

J
0

J
1

Fig. 110. Bessel functions of the first kind J0 and J1

Bessel Functions for any . Gamma Function
We now proceed from integer to any . We had in (9). So we
have to extend the factorial function to any . For this we choose

(15)

with the gamma function defined by

(16) .

(CAUTION! Note the convention on the left but in the integral.) Integration
by parts gives

.

This is the basic functional relation of the gamma function

(17) .

Now from (16) with and then by (17) we obtain

and then and in general

(18) .(n � 0, 1, Á )(n � 1) � n!

(2) � 1 # (1) � 1!, (3) � 2(1) � 2!

(1) � �
�

0

 e�t dt � �e�t `
0

�

� 0 � (�1) � 1

� � 0

(� � 1) � �(�)

(� � 1) � �e�tt � `
�

0
� ��

�

0

e�tt ��1 dt � 0 � �(�)

�� � 1

(� � �1)(� � 1) � �
�

0
e�tt � dt

(� � 1)

a0 �
1

2�(� � 1)

� 
 0n!
a0 � 1>(2nn!)� 
 0� � n

� 
 0J�(x)
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Hence the gamma function generalizes the factorial function to arbitrary positive .
Thus (15) with agrees with (9).

Furthermore, from (7) with given by (15) we first have

.

Now (17) gives and so on,
so that

.

Hence because of our (standard!) choice (15) of the coefficients (7) are simply

(19) .

With these coefficients and we get from (2) a particular solution of (1), denoted
by and given by

(20) .

is called the Bessel function of the first kind of order �. The series (20) converges
for all x, as one can verify by the ratio test.

Discovery of Properties from Series
Bessel functions are a model case for showing how to discover properties and relations of
functions from series by which they are defined. Bessel functions satisfy an incredibly large
number of relationships—look at Ref. [A13] in App. 1; also, find out what your CAS knows.
In Theorem 3 we shall discuss four formulas that are backbones in applications and theory.

T H E O R E M  1 Derivatives, Recursions

The derivative of with respect to x can be expressed by or (x) by
the formulas

(21)
(a)

(b) .

Furthermore, and its derivative satisfy the recurrence relations

(21)
(c)

(d) J��1(x) �  J��1(x) � 2Jr�(x).

J��1(x) � J��1(x) �
2�
x  J�(x) 

J�(x)

 [x��J�(x)]r � �x��J��1(x)

 [x�J�(x)]r � x�J��1(x)

J��1J��1(x)J�(x)

J�(x)

J�(x) � x�
a
�

m�0

 
(�1)mx2m

22m��m! (� � m � 1)

J�(x)
r � r1 � �

a2m �
(�1)m

22m��m! (� � m � 1)

a0

(� � 1)(� � 2) Á (� � m)(� � 1) � (� � m � 1)

(� � 1)(� � 1) � (� � 2), (� � 2)(� � 2) � (� � 3)

a2m �
(�1)m

22mm! (� � 1)(� � 2) Á (� � m)2�(� � 1)

a0

� � n
�
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P R O O F (a) We multiply (20) by and take under the summation sign. Then we have

We now differentiate this, cancel a factor 2, pull out, and use the functional
relationship [see (17)]. Then (20) with instead
of shows that we obtain the right side of (21a). Indeed,

(b) Similarly, we multiply (20) by , so that in (20) cancels. Then we differentiate,
cancel 2m, and use . This gives, with ,

Equation (20) with instead of and s instead of m shows that the expression on
the right is . This proves (21b).

(c), (d) We perform the differentiation in (21a). Then we do the same in (21b) and
multiply the result on both sides by . This gives

(a*)

(b*) .

Substracting (b*) from (a*) and dividing the result by gives (21c). Adding (a*) and
(b*) and dividing the result by gives (21d).

E X A M P L E  2 Application of Theorem 1 in Evaluation and Integration

Formula (21c) can be used recursively in the form

for calculating Bessel functions of higher order from those of lower order. For instance, 
so that can be obtained from tables of and (in App. 5 or, more accurately, in Ref. [GenRef1] in App. 1).

To illustrate how Theorem 1 helps in integration, we use (21b) with integrated on both sides. This
evaluates, for instance, the integral

.

A table of (on p. 398 of Ref. [GenRef1]) or your CAS will give you

.

Your CAS (or a human computer in precomputer times) obtains from (21), first using (21c) with ,
that is, then (21c) with , that is, . Together,J2 � 2x�1J1 � J0� � 1J3 � 4x�1J2 � J1,

� � 2J3

�1
8

# 0.128943 � 0.019563 � 0.003445

J3

I � �
2

1

x�3J4(x) dx � �x�3J3(x) 2 2
1

� � 

1

8
 J3(2) � J3(1)

� � 3
J1J0J2

J2(x) � 2J1(x)>x � J0(x),

J��1(x) �
2�

x
 J�(x) � J��1(x)

�x�
x�

��x��1J� � x�Jr� � �x�J��1

�x��1J� � x�Jr� � x�J��1

x2�

�x��J��1(x)
�� � 1

(x��J�)r � a
�

m�1

 
(�1)mx2m�1

22m���1(m � 1)! (� � m � 1)
� a

�

s�0

 
(�1)s�1x2s�1

22s���1s! (� � s � 2)
 .

m � s � 1m! � m(m � 1)!
x�x��

(x�J�)r � a
�

m�0

 
(�1)m2(m � �)x2m�2��1

22m��m! (� � m � 1)
� x�x��1

a
�

m�0

 
(�1)mx2m

22m���1m! (� � m)
 .

�
� � 1(� � m � 1) � (� � m)(� � m)

x2��1

x�J�(x) � a
�

m�0

 
(�1)mx2m�2�

22m��m! (� � m � 1)
 .

x2�x�
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This is what you get, for instance, with Maple if you type int . And if you type evalf(int ), you obtain
0.003445448, in agreement with the result near the beginning of the example.

Bessel Functions with Half-Integer Are Elementary
We discover this remarkable fact as another property obtained from the series (20) and
confirm it in the problem set by using Bessel’s ODE.

E X A M P L E  3 Elementary Bessel Functions with . The Value 

We first prove (Fig. 111)

(22)

The series (20) with is

The denominator can be written as a product AB, where (use (16) in B)

here we used (proof below)

(23) .

The product of the right sides of A and B can be written

.

Hence

J1>2(x) �
B

2
px

 a
�

m�0

 
(�1)mx2m�1

(2m � 1)!
�
B

2
px

 sin x.

AB � (2m � 1)2m (2m � 1) Á  3 # 2 # 11p � (2m � 1)!1p

�(1
2) � 1p

 � (2m � 1)(2m � 1) Á  3 # 1 # 1p ;

 B � 2m�1�(m � 3
2) � 2m�1(m � 1

2)(m � 1
2) Á  

3
2

# 1
2�(1

2)

 A � 2mm! � 2m(2m � 2)(2m � 4) Á  4 # 2,

J1>2(x) � 1x a
�

m�0

 
(�1) mx2m

22m�1>2m! �(m � 3
2)

�
B

2

x
 a

�

m�0

  
(�1) mx2m�1

22m�1m! �(m � 3
2)

 .

� � 1
2

(a) J1>2(x) �
B

2
px

 sin x,  (b) J�1>2(x) �
B

2
px

 cos x.

�( 
1
2 

)� � 1
2 

, � 3
2 

, �5
2 

, Á�J�

�J�

�
( Á )( Á )

 � �1
8  

J1(2) � 1
4  

J0(2) � 7J1(1) � 4J0(1).

 � �1
8  
32J1(2) � 2J0(2) � J1(2)4 � 38J1(1) � 4J0(1) � J1(1)4

 I � x�3(4x�1(2x�1J1 � J0) � J1) 2 2
1
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Fig. 111. Bessel functions and J�1>2J1>2
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This proves (22a). Differentiation and the use of (21a) with now gives

This proves (22b). From (22) follow further formulas successively by (21c), used as in Example 2.
We finally prove by a standard trick worth remembering. In (15) we set . Then

and

We square on both sides, write v instead of u in the second integral, and then write the product of the integrals
as a double integral:

We now use polar coordinates r, by setting Then the element of area is 
and we have to integrate over r from 0 to and over from 0 to (that is, over the first quadrant of the
uv-plane):

By taking the square root on both sides we obtain (23).

General Solution. Linear Dependence
For a general solution of Bessel’s equation (1) in addition to we need a second linearly
independent solution. For not an integer this is easy. Replacing by in (20), we
have

(24) .

Since Bessel’s equation involves , the functions and are solutions of the equation
for the same . If is not an integer, they are linearly independent, because the first terms
in (20) and in (24) are finite nonzero multiples of and . Thus, if is not an integer,
a general solution of Bessel’s equation for all is

This cannot be the general solution for an integer because, in that case, we have
linear dependence. It can be seen that the first terms in (20) and (24) are finite nonzero
multiples of and , respectively. This means that, for any integer , we have
linear dependence because

(25) .(n � 1, 2, Á )J�n(x) � (�1)n Jn(x)

� � nx��x�

� � n

y(x) � c1J�(x) � c2J��(x)

x � 0
�x��x�

��
J��J��2

J��(x) � x��
a
�

m�0

 
(�1)mx2m

22m��m! (m � � � 1)

����
J�

�

a 1

2
b

2

� 4�
p>2

0
�

�

0

e�r 
2

 r dr du � 4 #
p

2 �
�

0

 e�r 
2

 r dr � 2a�1

2
b e�r 

2 `
�

0
� p.

p>2u�

du dv � r dr duu � r cos u, v � r sin u.u

a 1

2
b

2

� 4�
�

0

e�u2  

du �
�

0

e�v2

 dv � 4�
�

0
�

�

0

e�(u2�v2) du dv.

a1

2
b � �

�

0

e�tt �1>2 dt � 2�
�

0

e�u2

 du.

dt � 2u du
t � u2(1

2) � 1p

[1x J1>2(x)]r �
B

2
p

 cos x � x1>2 J�1>2(x).

� � 1
2
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P R O O F To prove (25), we use (24) and let approach a positive integer n. Then the gamma
function in the coefficients of the first n terms becomes infinite (see Fig. 553 in App.
A3.1), the coefficients become zero, and the summation starts with . Since in
this case by (18), we obtain

(26)

The last series represents , as you can see from (11) with m replaced by s. This
completes the proof.

The difficulty caused by (25) will be overcome in the next section by introducing further
Bessel functions, called of the second kind and denoted by .Y�

�

(�1)nJn(x)

(m � n � s).J�n(x) � a
�

m�n

 
(�1) mx2m� n

22m�nm! (m � n)!
� a

�

s�0

 
(�1)n�sx2s�n

22s�n (n � s)! s!

(m � n � 1) � (m � n)!
m � n

�
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1. Convergence. Show that the series (11) converges for
all x. Why is the convergence very rapid?

2–10 ODES REDUCIBLE TO BESSEL’S ODE
This is just a sample of such ODEs; some more follow in
the next problem set. Find a general solution in terms of 
and or indicate when this is not possible. Use the
indicated substitutions. Show the details of your work.

2.

3.

4.

5. Two-parameter ODE

6.

7.

8.

9.

10.

11. CAS EXPERIMENT. Change of Coefficient. Find
and graph (on common axes) the solutions of

for (or as far as you get useful
graphs). For what k do you get elementary functions?
Why? Try for noninteger k, particularly between 0 and 2,
to see the continuous change of the curve. Describe the
change of the location of the zeros and of the extrema as
k increases from 0. Can you interpret the ODE as a model
in mechanics, thereby explaining your observations?

12. CAS EXPERIMENT. Bessel Functions for Large x.

(a) Graph for on common axes.n � 0, Á , 5Jn(x)

k � 0, 1, 2, Á , 10

ys � kx�1 yr � y � 0, y(0) � 1, yr(0) � 0,

(y � x�u, x� � z)
x2 ys � (1 � 2�)xyr � �2(x2� � 1 � �2)y � 0

xys � (2� � 1)yr � xy � 0 (y � x��u)

(2x � 1 � z)
(2x � 1) 2ys � 2(2x � 1)yr � 16x(x � 1)y � 0

x2 ys � xyr � 1
4 (x2 � 1)y � 0 (x � 2z)

x2ys � 1
4 (x � 3

4) y � 0 (y � u1x, 1x � z)

(lx � z)x2 ys � xyr � (l2x2 � �2)y � 0 

ys � (e�2x � 1
9)y � 0 (e�x � z)

xys � yr � 1
4 y � 0 (1x � z)

x2 ys � xyr � (x2 � 4
49)y � 0

J��

J�

P R O B L E M  S E T  5 . 4

(b) Experiment with (14) for integer n. Using graphs,
find out from which on the curves of (11)
and (14) practically coincide. How does change
with n?

(c) What happens in (b) if (Our usual notation
in this case would be .)

(d) How does the error of (14) behave as a func-
tion of x for fixed n? [Error exact value minus
approximation (14).]

(e) Show from the graphs that has extrema where
. Which formula proves this? Find further

relations between zeros and extrema.

13–15 ZEROS of Bessel functions play a key role in
modeling (e.g. of vibrations; see Sec. 12.9).

13. Interlacing of zeros. Using (21) and Rolle’s theorem,
show that between any two consecutive positive zeros
of there is precisely one zero of .

14. Zeros. Compute the first four positive zeros of 
and from (14). Determine the error and comment.

15. Interlacing of zeros. Using (21) and Rolle’s theorem,
show that between any two consecutive zeros of 
there is precisely one zero of .

16–18 HALF-INTEGER PARAMETER: APPROACH
BY THE ODE

16. Elimination of first derivative. Show that 
with gives from the ODE

the ODE

not containing the first derivative of u.

us � 3q(x) � 1
4 p(x)2 � 1

2 pr(x)4 u � 0,

p(x)yr � q(x)y � 0ys �

v(x) � exp (�1
2 �  p(x) dx)

y � uv

J1(x)
J0(x)

J1(x)
J0(x)

Jn�1(x)Jn(x)

J1(x) � 0
J0(x)

�

�
n � 	1

2?

xn

x � xn
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5.5 Bessel Functions Y (x). General Solution
To obtain a general solution of Bessel’s equation (1), Sec. 5.4, for any , we now introduce
Bessel functions of the second kind , beginning with the case .

When , Bessel’s equation can be written (divide by x)

(1) .

Then the indicial equation (4) in Sec. 5.4 has a double root . This is Case 2 in Sec.
5.3. In this case we first have only one solution, . From (8) in Sec. 5.3 we see that
the desired second solution must be of the form

(2)

We substitute and its derivatives

into (1). Then the sum of the three logarithmic terms , and is zero
because is a solution of (1). The terms and (from ) cancel. Hence
we are left with

2 Jr0 � a
�

m�1

 m(m � 1) Am xm�1 � a
�

m�1

 m Am xm�1 � a
�

m�1

 Am xm�1 � 0.

xys and yrJ0>x�J0>xJ0

x J0 ln xx Js0 ln x, Jr0 ln x

ys2 � Js0 ln x �
2Jr0
x

�  

J0

x2 � a
�

m�1

 m (m � 1) Am xm�2

yr2 � Jr0 ln x �
J0

x � a
�

m�1

 mAm xm�1

y2

y2(x) � J0(x) ln x � a
�

m�1

 Am xm.

J0(x)
r � 0

xys � yr � xy � 0

n � 0
� � n � 0Y�(x)
�

n

17. Bessel’s equation. Show that for (1) the substitution
in Prob. 16 is and gives

(27) x2u� � (x2 � 1_
4 � �2)u � 0.

18. Elementary Bessel functions. Derive (22) in Example 3
from (27).

19–25 APPLICATION OF (21): DERIVATIVES,
INTEGRALS 

Use the powerful formulas (21) to do Probs. 19–25. Show
the details of your work.

19. Derivatives. Show that 

20. Bessel’s equation. Derive (1) from (21).

J0(x) � J1(x)>x, Jr2(x) � 1
2[J1(x) � J3(x)].

Jr1(x) �Jr0(x) � �J1(x),

y � ux�1>2
21. Basic integral formula. Show that

22. Basic integral formulas. Show that

23. Integration. Show that 
(The last integral is nonelemen-

tary; tables exist, e.g., in Ref. [A13] in App. 1.)

24. Integration. Evaluate .

25. Integration. Evaluate .�J5(x) dx

�x�1J4(x) dx

xJ0(x) ��J0(x) dx.
�x2J0(x) dx � x2J1(x) �

�J��1(x) dx � �J��1(x) dx � 2J�(x).

�x��J��1(x) dx � �x��J�(x) � c,

�x�J��1(x) dx � x�J�(x) � c.
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Addition of the first and second series gives The power series of is
obtained from (12) in Sec. 5.4 and the use of in the form

Together with and this gives

(3*)

First, we show that the with odd subscripts are all zero. The power occurs only in
the second series, with coefficient . Hence . Next, we consider the even powers

. The first series contains none. In the second series, gives the term
In the third series, . Hence by equating the sum of the

coefficients of to zero we have

.

Since , we thus obtain successively.

We now equate the sum of the coefficients of to zero. For this gives

thus .

For the other values of s we have in the first series in , hence
, in the second , and in the third We thus obtain

For this yields

thus

and in general

(3) .

Using the short notations

(4)

and inserting (4) and into (2), we obtain the result

(5)  � J0(x) ln x �
1
4

 x2 �
3

128
 x4 �

11
13,824

 x6 � � Á .

 y2(x) � J0(x) ln x � a
�

m�1

 
(�1)m�1hm

22m(m!)2
 x2m

A1 � A3 � Á � 0

m � 2, 3, Áh1 � 1  hm � 1 �
1
2

� Á �
1
m

m � 1, 2, ÁA2m �
(�1)m�1

22m(m!)2  a1 �
1
2

�
1
3

� Á �
1
m
b ,

  A4 � � 
3

128
1
8 � 16A4 � A2 � 0,  

s � 1

(�1)s�1

22s(s � 1)! s!
� (2s � 2)2A2s�2 � A2s � 0.

m � 1 � 2s � 1.m � 1 � 2s � 1m � s � 1
(3*) 2m � 1 � 2s � 1

  A2 � 1
4�1 � 4A2 � 0,  

s � 0x2s�1

A3 � 0, A5 � 0, Á ,A1 � 0

s � 1, 2, Á(2s � 1)2A2s�1 � A2s�1 � 0,

x2s
m � 1 � 2s(2s � 1)2A2s�1x2s.

m � 1 � 2sx2s
A1 � 0A1

x0Am

a
�

m�1

 
(�1)mx2m�1

22m�2m! (m � 1)!
� a

�

m�1

 m2Am xm�1 � a
�

m�1

 Am xm�1 � 0.

�Am xm�1�m2Am xm �1

Jr0(x) � a
�

m�1

 
(�1)m2mx2m�1

22m (m!)2
� a

�

m�1

 
(�1)mx2m�1

22m�1m! (m � 1)!
.

m!>m � (m � 1)!
Jr0(x)�m2Amxm�1.
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Since and are linearly independent functions, they form a basis of (1) for .
Of course, another basis is obtained if we replace by an independent particular solution
of the form , where and b are constants. It is customary to choose

and , where the number is the so-called
Euler constant, which is defined as the limit of

as s approaches infinity. The standard particular solution thus obtained is called the Bessel
function of the second kind of order zero (Fig. 112) or Neumann’s function of order
zero and is denoted by . Thus [see (4)]

(6)

For small the function behaves about like ln x (see Fig. 112, why?), and

Bessel Functions of the Second Kind 
For a second solution can be obtained by manipulations similar to those
for , starting from (10), Sec. 5.4. It turns out that in these cases the solution also
contains a logarithmic term.

The situation is not yet completely satisfactory, because the second solution is defined
differently, depending on whether the order is an integer or not. To provide uniformity
of formalism, it is desirable to adopt a form of the second solution that is valid for all
values of the order. For this reason we introduce a standard second solution defined
for all by the formula

(7)
(a)

(b)

This function is called the Bessel function of the second kind of order or Neumann’s
function7 of order . Figure 112 shows and .

Let us show that and are indeed linearly independent for all (and ).
For noninteger order , the function is evidently a solution of Bessel’s equation

because and are solutions of that equation. Since for those the solutions
and are linearly independent and involves , the functions and areY�J�J��Y�J��J�

�J�� (x)J�(x)
Y�(x)�

x � 0�Y�J�

Y1(x)Y0(x)�
�

Yn(x) � lim
�:n

Y�(x).

Y�(x) �
1

sin �p
 [J�(x) cos �p � J��(x)] 

�
Y�(x)

�

n � 0
� � n � 1, 2, Á

Yn(x)

Y0(x) : �� as x :  0.
Y0(x)x � 0

Y0(x) �
2
p

 c J0(x) aln 
x
2

� gb � a
�

m�1

 
(�1)m�1hm

22m(m!)2  x2m d .
Y0(x)

1 �
1
2 � Á �

1
s � ln s

g � 0.57721566490 Áb � g � ln 2a � 2>p
a (� 0)a( y2 � bJ0)

y2

x � 0y2J0

198 CHAP. 5 Series Solutions of ODEs. Special Functions

7 CARL NEUMANN (1832–1925), German mathematician and physicist. His work on potential theory using
integer equation methods inspired VITO VOLTERRA (1800–1940) of Rome, ERIK IVAR FREDHOLM (1866–1927)
of Stockholm, and DAVID HILBERT (1962–1943) of Göttingen (see the footnote in Sec. 7.9) to develop the field
of integral equations. For details see Birkhoff, G. and E. Kreyszig, The Establishment of Functional Analysis, Historia
Mathematica 11 (1984), pp. 258–321.

The solutions are sometimes denoted by ; in Ref. [A13] they are called Weber’s functions; Euler’s
constant in (6) is often denoted by C or ln .g

N�(x)Y�(x)
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SEC. 5.5 Bessel Functions Y� (x). General Solution 199

linearly independent. Furthermore, it can be shown that the limit in (7b) exists and 
is a solution of Bessel’s equation for integer order; see Ref. [A13] in App. 1. We shall
see that the series development of contains a logarithmic term. Hence and

are linearly independent solutions of Bessel’s equation. The series development
of can be obtained if we insert the series (20) in Sec. 5.4 and (2) in this section
for and into (7a) and then let approach n; for details see Ref. [A13]. The
result is

(8)

where , and [as in (4)] ,

hm � 1 �
1
2

� Á �
1
m

,  hm�n � 1 �
1
2

� Á �
1

m � n
.

 h0 �  0, h1 � 1x � 0, n � 0, 1, Á

� 
x�n

p
 a

n�1

m�0

(n � m � 1)!
22m�nm!

 x2m

a
�

m�0

 
(�1)m�1(hm � hm�n)

22m�nm! (m � n)!
 x2mYn(x) �

2
p

 Jn(x) aln 
x

2
� gb �

xn

p
 

�J�� (x)J�(x)
Yn(x)

Yn(x)
Jn(x)Yn(x)

Yn

–0.5

0.5

0 5 x

Y
0

Y
1

10

Fig. 112. Bessel functions of the second kind and 
(For a small table, see App. 5.)

Y1.Y0

For the last sum in (8) is to be replaced by 0 [giving agreement with (6)].
Furthermore, it can be shown that

.

Our main result may now be formulated as follows.

T H E O R E M  1 General Solution of Bessel’s Equation

A general solution of Bessel’s equation for all values of (and ) is

(9)

We finally mention that there is a practical need for solutions of Bessel’s equation that
are complex for real values of x. For this purpose the solutions

(10)
H�

(2)(x) � J�(x) � iY�(x)

H�
(1)(x) � J�(x) � iY�(x)

y(x) � C1J�(x) � C2Y�(x).

 x � 0�

Y�n(x) � (�1)nYn(x)

n � 0
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1. Why are we looking for power series solutions of ODEs?

2. What is the difference between the two methods in this
chapter? Why do we need two methods?

3. What is the indicial equation? Why is it needed?

4. List the three cases of the Frobenius method, and give
examples of your own.

5. Write down the most important ODEs in this chapter
from memory.

1–9 FURTHER ODE’s REDUCIBLE 
TO BESSEL’S ODE

Find a general solution in terms of and . Indicate
whether you could also use instead of . Use the
indicated substitution. Show the details of your work.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. CAS EXPERIMENT. Bessel Functions for Large x.
It can be shown that for large x,

(11)

with defined as in (14) of Sec. 5.4.

(a) Graph for on common axes. Are
there relations between zeros of one function and
extrema of another? For what functions?

(b) Find out from graphs from which on the
curves of (8) and (11) (both obtained from your CAS)
practically coincide. How does change with n?xn

x � xn

n � 0, Á , 5Yn(x)

�

Yn(x) � 22>(px) sin (x � 1
2 

np� 1
4 
p)

xys � 5yr � xy � 0 (y � x3u)

ys � k2x4y � 0 (y � u1x, 13 kx3 � z)

ys � k2x2y � 0 (y � u1x, 12 kx2 � z)

xys � yr � 36y � 0 (121x � z)

4xys � 4yr � y � 0 (1x � z)

ys � xy � 0 ( y � u1x, 23x3>2 � z)

9x2
 ys � 9xyr � (36x4 � 16)y � 0 (x2 � z)

xys � 5yr � xy � 0 ( y � u>x2)

x2
 ys � xyr � (x2 � 16) y � 0

Y�J��

Y�J�

(c) Calculate the first ten zeros , of
from your CAS and from (11). How does the error

behave as m increases?

(d) Do (c) for and . How do the errors
compare to those in (c)?

11–15 HANKEL AND MODIFIED 
BESSEL FUNCTIONS

11. Hankel functions. Show that the Hankel functions (10)
form a basis of solutions of Bessel’s equation for any .

12. Modified Bessel functions of the first kind of order

are defined by . Show
that satisfies the ODE

(12)

13. Modified Bessel functions. Show that has the
representation

(13) .

14. Reality of . Show that is real for all real x (and
real ), for all real , and 
where n is any integer.

15. Modified Bessel functions of the third kind (sometimes
called of the second kind) are defined by the formula (14)
below. Show that they satisfy the ODE (12).

(14) .K�(x) �
p

2 sin �p
 3I��(x) � I�(x)4

I�n(x) � In(x),x � 0I�(x) � 0�
I�(x)I�

I�(x) � a
�

m�0

 
x2m��

22m��m! (m � � � 1)

I�(x)

x2
 ys � xyr � (x2 � �2) y � 0.

I�

I� (x) � i��J� (ix), i � 1�1�

�

Y2(x)Y1(x)

Y0(x)
xm, m � 1, Á , 10

P R O B L E M  S E T  5 . 5

C H A P T E R  5  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S

6. Can a power series solution reduce to a polynomial?
When? Why is this important?

7. What is the hypergeometric equation? Where does the
name come from?

8. List some properties of the Legendre polynomials.

9. Why did we introduce two kinds of Bessel functions?

10. Can a Bessel function reduce to an elementary func-
tion? When?

8HERMANN HANKEL (1839–1873), German mathematician.

200 CHAP. 5 Series Solutions of ODEs. Special Functions

are frequently used. These linearly independent functions are called Bessel functions of
the third kind of order or first and second Hankel functions8 of order .

This finishes our discussion on Bessel functions, except for their “orthogonality,” which
we explain in Sec. 11.6. Applications to vibrations follow in Sec. 12.10.

��
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11–20 POWER SERIES METHOD
OR FROBENIUS METHOD

Find a basis of solutions. Try to identify the series as
expansions of known functions. Show the details of your
work.

11.

12.

13. (x � 1)2
 ys � (x � 1) yr � 35y � 0

xys � (1 � 2x) yr � (x � 1) y � 0

ys � 4y � 0

14.

15.

16.

17.

18.

19.

20. xys � yr � xy � 0

ys �
1
4x

 y � 0

xys � 3yr � 4x3 y � 0

xys � (x � 1) yr � y � 0

x2 ys � 2x3 yr � (x2 � 2) y � 0

x2 ys � xyr � (x2 � 5) y � 0

16(x � 1)2 ys � 3y � 0

Summary of Chapter 5 201

SUMMARY OF CHAPTER 5
Series Solution of ODEs. Special Functions

The power series method gives solutions of linear ODEs

(1)

with variable coefficients p and q in the form of a power series (with any center ,
e.g., )

(2) .

Such a solution is obtained by substituting (2) and its derivatives into (1). This gives
a recurrence formula for the coefficients. You may program this formula (or even
obtain and graph the whole solution) on your CAS.

If p and q are analytic at (that is, representable by a power series in powers
of with positive radius of convergence; Sec. 5.1), then (1) has solutions of
this form (2). The same holds if 

are analytic at and so that we can divide by and obtain the standard
form (1). Legendre’s equation is solved by the power series method in Sec. 5.2.

The Frobenius method (Sec. 5.3) extends the power series method to ODEs

(3)

whose coefficients are singular (i.e., not analytic) at , but are “not too bad,”
namely, such that a and b are analytic at . Then (3) has at least one solution of
the form

(4) y(x) � (x � x0)r
a
�

m�0

am(x � x0)m � a0(x � x0)r � a1(x � x0)r�1 � Á

x0

x0

ys �
a(x)

x � x0
 yr �

b(x)

(x � x0)2
 y � 0

h�h�(x0) � 0,x0

h�(x)ys � p�(x)yr � q�(x)y � 0

h, � p,  � q� in
x – x0

x0

y(x) � a
�

m�0

 am(x � x0)m � a0 � a1(x � x0) � a2(x � x0)2 � Á

x0 � 0
x0

ys � p(x) yr � q(x)y � 0
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where r can be any real (or even complex) number and is determined by substituting
(4) into (3) from the indicial equation (Sec. 5.3), along with the coefficients of (4).
A second linearly independent solution of (3) may be of a similar form (with different
r and ’s) or may involve a logarithmic term. Bessel’s equation is solved by the
Frobenius method in Secs. 5.4 and 5.5.

“Special functions” is a common name for higher functions, as opposed to the
usual functions of calculus. Most of them arise either as nonelementary integrals [see
(24)–(44) in App. 3.1] or as solutions of (1) or (3). They get a name and notation
and are included in the usual CASs if they are important in application or in theory.
Of this kind, and particularly useful to the engineer and physicist, are Legendre’s
equation and polynomials (Sec. 5.2), Gauss’s hypergeometric equation
and functions F(a, b, c; x) (Sec. 5.3), and Bessel’s equation and functions and

(Secs. 5.4, 5.5).Y�

J�

P0 , P1, Á

am

202 CHAP. 5 Series Solutions of ODEs. Special Functions

c05.qxd  10/28/10  1:33 PM  Page 202



203

C H A P T E R 6

Laplace Transforms

Laplace transforms are invaluable for any engineer’s mathematical toolbox as they make
solving linear ODEs and related initial value problems, as well as systems of linear ODEs,
much easier. Applications abound: electrical networks, springs, mixing problems, signal
processing, and other areas of engineering and physics.

The process of solving an ODE using the Laplace transform method consists of three
steps, shown schematically in Fig. 113:

Step 1. The given ODE is transformed into an algebraic equation, called the subsidiary
equation.

Step 2. The subsidiary equation is solved by purely algebraic manipulations.

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given
problem.

Fig. 113. Solving an IVP by Laplace transforms

The key motivation for learning about Laplace transforms is that the process of solving
an ODE is simplified to an algebraic problem (and transformations). This type of
mathematics that converts problems of calculus to algebraic problems is known as
operational calculus. The Laplace transform method has two main advantages over the
methods discussed in Chaps. 1–4:

I. Problems are solved more directly: Initial value problems are solved without first
determining a general solution. Nonhomogenous ODEs are solved without first solving
the corresponding homogeneous ODE.

II. More importantly, the use of the unit step function (Heaviside function in Sec. 6.3)
and Dirac’s delta (in Sec. 6.4) make the method particularly powerful for problems with
inputs (driving forces) that have discontinuities or represent short impulses or complicated
periodic functions.

Solution
of the 

IVP

Solving
AP

by Algebra

AP
Algebraic
Problem

IVP
Initial Value

Problem 1 2 3
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204 CHAP. 6 Laplace Transforms

Prerequisite: Chap. 2
Sections that may be omitted in a shorter course: 6.5, 6.7
References and Answers to Problems: App. 1 Part A, App. 2.

6.1 Laplace Transform. Linearity. 
First Shifting Theorem (s-Shifting)

In this section, we learn about Laplace transforms and some of their properties. Because
Laplace transforms are of basic importance to the engineer, the student should pay close
attention to the material. Applications to ODEs follow in the next section.

Roughly speaking, the Laplace transform, when applied to a function, changes that
function into a new function by using a process that involves integration. Details are as
follows.

If is a function defined for all , its Laplace transform1 is the integral of 
times from to . It is a function of s, say, , and is denoted by ; thus

(1)

Here we must assume that is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications—we shall discuss this near the
end of the section.

f (t)

F(s) � l( f ˛) � �
�

0

e�stf (t) dt.

l( f  )F(s)�t � 0e�st
f (t)t � 0f (t)

Topic Where to find it

ODEs, engineering applications and Laplace transforms Chapter 6

PDEs, engineering applications and Laplace transforms Section 12.11

List of general formulas of Laplace transforms Section 6.8

List of Laplace transforms and inverses Section 6.9

Note: Your CAS can handle most Laplace transforms.

1 PIERRE SIMON MARQUIS DE LAPLACE (1749–1827), great French mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in general, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace’s interesting political involvements, see Ref. [GenRef2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical engineer OLIVER HEAVISIDE (1850–1925) and were often called “Heaviside calculus.”

We shall drop variables when this simplifies formulas without causing confusion. For instance, in (1) we
wrote instead of and in instead of .l

�1(F)(t)(1*) l�1(F)l( f )(s)l( f )

The following chart shows where to find information on the Laplace transform in this
book.
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SEC. 6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting) 205

Not only is the result called the Laplace transform, but the operation just described,
which yields from a given , is also called the Laplace transform. It is an “integral
transform”

with “kernel” 
Note that the Laplace transform is called an integral transform because it transforms

(changes) a function in one space to a function in another space by a process of integration
that involves a kernel. The kernel or kernel function is a function of the variables in the
two spaces and defines the integral transform.

Furthermore, the given function in (1) is called the inverse transform of and
is denoted by ; that is, we shall write

(1*)

Note that (1) and (1*) together imply and .

Notation
Original functions depend on t and their transforms on s—keep this in mind! Original
functions are denoted by lowercase letters and their transforms by the same letters in capital,
so that denotes the transform of , and denotes the transform of , and so on.

E X A M P L E  1 Laplace Transform

Let when . Find .

Solution. From (1) we obtain by integration

.

Such an integral is called an improper integral and, by definition, is evaluated according to the rule

.

Hence our convenient notation means

.

We shall use this notation throughout this chapter.

E X A M P L E  2 Laplace Transform of the Exponential Function 

Let when , where a is a constant. Find .

Solution. Again by (1),

;

hence, when ,

. �l(eat) �
1

s � a

s � a � 0

l(eat) � �
�

0

e�steat dt �
1

a � s
 e�(s�a)t 2�

0

l( f )t � 0f (t) � eat

eat
ll(eat)

�

(s � 0)�
�

0

e�st dt � lim
T:� 

 c� 

1
s
 e�st dT

0

� lim
T:� 
c� 

1
s
 e�sT �

1
s
 e0 d �

1
s

�
�

0

e�stf (t) dt � lim
T:�

�
T

0

e�stf (t) dt

(s � 0)l( f ) � l(1) � �
�

0

e�st dt � � 

1
s
 e�st `

�

0
�

1
s

F(s)t � 0f (t) � 1

y(t)Y(s)f (t)F(s)

l(l�1(F )) � Fl
�1(l( f )) � f

f (t) � l�1(F ).

l
�1(F˛)

F(s)f (t)

k(s, t) � e�st.

F(s) � �
�

0

k(s, t) f (t) dt

f (t)F(s)
F(s)
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Must we go on in this fashion and obtain the transform of one function after another
directly from the definition? No! We can obtain new transforms from known ones by the
use of the many general properties of the Laplace transform. Above all, the Laplace
transform is a “linear operation,” just as are differentiation and integration. By this we
mean the following.

T H E O R E M  1 Linearity of the Laplace Transform

The Laplace transform is a linear operation; that is, for any functions and 
whose transforms exist and any constants a and b the transform of
exists, and

P R O O F This is true because integration is a linear operation so that (1) gives

E X A M P L E  3 Application of Theorem 1: Hyperbolic Functions

Find the transforms of and .

Solution. Since and , we obtain from Example 2 and
Theorem 1

E X A M P L E  4 Cosine and Sine

Derive the formulas

, .

Solution. We write and . Integrating by parts and noting that the integral-
free parts give no contribution from the upper limit , we obtain

 Ls � �
�

0

e�st sin vt dt �
e�st

�s
 sin vt 2�

0

�
v

s �
�

0

e�st cos vt dt �
v

s
 Lc.

 Lc � �
�

0

e�st cos vt dt �
e�st

�s
 cos vt 2�

0

�  

v

s �
�

0

e�st sin vt dt �
1
s

�
v

s
 Ls,

�

Ls � l(sin vt)Lc � l(cos vt)

l(sin vt) �
v

s2 � v2
l(cos vt) �

s

s2 � v2

� l(sinh at) �
1

2
 (l(eat) � l(e�at)) �

1

2
 a 1

s � a
�  

1

s � a
b �

a

s2 � a2  .

 l(cosh at) �
1

2
 (l(eat) � l(e�at)) �

1

2
 a 1

s � a
�

1

s � a
b �

s

s2
� a2

sinh at � 1
2(eat � e�at)cosh at � 1

2(eat � e�at)

sinh atcosh at

� � a�
�

0

e�stf (t) dt � b�
�

0

e�stg(t) dt � al{f (t)} � bl{g(t)}.

 l{af (t) � bg(t)} � �
�

0

e�st3af (t) � bg(t)4 dt

l{af (t) � bg(t)} � al{f (t)} � bl{g(t)}.

af (t) � bg(t)
g(t)f (t)
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By substituting into the formula for on the right and then by substituting into the formula for on
the right, we obtain

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
1–3 are special cases of formula 4, which is proved by induction. Indeed, it is true for

because of Example 1 and . We make the induction hypothesis that it holds
for any integer and then get it for directly from (1). Indeed, integration by
parts first gives

.

Now the integral-free part is zero and the last part is times . From this
and the induction hypothesis,

This proves formula 4.

l(t n�1) �
n � 1

s
 l(t n) �

n � 1
s

#
n!

sn�1 �
(n � 1)!

sn�2  .

l(t n)(n � 1)>s

l(t n�1) � �
�

0

e�stt n�1 dt � � 
1
s  e�stt n�1 2�

0

�
n � 1

s �
�

0

e�stt n dt

n � 1n � 0
0! � 1n � 0

� Ls �
v

s
 a 1

s
�  

v

s
 Lsb

 

,  Ls a1 �
v2

s2 b �
v

s2  ,  Ls �
v

s2 � v2  .

 Lc �
1

s
�  

v

s
 a v

s
 Lcb

 

,  Lc a1 �
v2

s2 b �
1

s
 ,  Lc �

s

s2 � v2  ,

LsLcLcLs

ƒ(t) �(ƒ)

1 1

2 t

3

4

5

6
1

s � aeat

�(a � 1)

sa�1

ta

(a positive)

n!

sn�1

tn

(n � 0, 1, • • •)

2!>s3t 2

1>s2

1>s

Table 6.1 Some Functions ƒ(t) and Their Laplace Transforms ���( ƒ)

ƒ(t) �(ƒ)

7 cos � t

8 sin � t

9 cosh at

10 sinh at

11 cos � t

12 sin � t
v

(s � a) 2 � v2
eat

s � a

(s � a) 2 � v2
eat

a

s2 � a2

s

s2 � a2

v

s2 � v2

s

s2 � v2
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in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in 
App. A3.1]. We get formula 5 from (1), setting :

where . The last integral is precisely that defining , so we have
, as claimed. (CAUTION! has in the integral, not .)

Note the formula 4 also follows from 5 because for integer .
Formulas 6–10 were proved in Examples 2–4. Formulas 11 and 12 will follow from 7

and 8 by “shifting,” to which we turn next.

s-Shifting: Replacing s by in the Transform
The Laplace transform has the very useful property that, if we know the transform of 
we can immediately get that of , as follows.

T H E O R E M  2 First Shifting Theorem, s-Shifting

If has the transform (where for some k), then has the transform
(where . In formulas,

or, if we take the inverse on both sides,

.

P R O O F We obtain by replacing s with in the integral in (1), so that

.

If exists (i.e., is finite) for s greater than some k, then our first integral exists for
. Now take the inverse on both sides of this formula to obtain the second formula

in the theorem. (CAUTION! in but 

E X A M P L E  5 s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

For instance, use these formulas to find the inverse of the transform

l( f ) �
3s � 137

s2 � 2s � 401
 .

l{eat cos vt} �
s � a

(s � a)2 � v2
 ,  l{eat sin vt} �

v

(s � a)2 � v2
 .

��a in eatf (t).)F(s � a)�a
s � a � k

F(s)

F(s � a) � �
�

0

 e�(s�a)tf (t) dt � �
�

0

e�st3eatf (t)4 dt � l{eatf (t)}

s � aF(s � a)

eatf (t) � l�1{F(s � a)}

l{eatf (t)} � F(s � a)

s � a � k)F(s � a)
eatf (t)s � kF(s)f (t)

eatf (t)
f (t),

s � a

n � 0�(n � 1) � n!
xa�1xa�(a � 1)�(a � 1)>sa�1

�(a � 1)s � 0

l(t a) � �
�

0

e�stta dt � �
�

0

e�x ax
s
b

a

 
dx
s

�
1

sa�1 �
�

0

e�xxa dx

st � x
�(a � 1)
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Solution. Applying the inverse transform, using its linearity (Prob. 24), and completing the square, we obtain

We now see that the inverse of the right side is the damped vibration (Fig. 114)

�f (t) � e�t(3 cos 20t � 7 sin 20t).

f � l�1b 

3(s � 1) � 140

(s � 1)2 � 400
 r � 3l�1b 

s � 1

(s � 1)2 � 202
 r � 7l�1b 

20

(s � 1)2 � 202
 r .
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t0

4

–4

–6

2

–2

6

1.0 1.5 2.0 2.5 3.00.5

Fig. 114. Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms
This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function has a Laplace transform if it does not grow too fast, say, if for all 
and some constants M and k it satisfies the “growth restriction”

(2)

(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be kt, not or similar.)

need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. is piecewise continuous on a finite
interval where f is defined, if this interval can be divided into finitely many
subintervals in each of which f is continuous and has finite limits as t approaches either
endpoint of such a subinterval from the interior. This then gives finite jumps as in
Fig. 115 as the only possible discontinuities, but this suffices in most applications, and
so does the following theorem.

a 
 t 
 b
f (t)

f (t)
kt 2

ƒ  f (t) ƒ 
 Mekt.

t � 0f (t)

ta b

Fig. 115. Example of a piecewise continuous function f (t). 
(The dots mark the function values at the jumps.)
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T H E O R E M  3 Existence Theorem for Laplace Transforms

If is defined and piecewise continuous on every finite interval on the semi-axis
and satisfies (2) for all and some constants M and k, then the Laplace

transform exists for all 

P R O O F Since is piecewise continuous, is integrable over any finite interval on the
t-axis. From (2), assuming that (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of from

Note that (2) can be readily checked. For instance, (because 
is a single term of the Maclaurin series), and so on. A function that does not satisfy (2)
for any M and k is (take logarithms to see it). We mention that the conditions in
Theorem 3 are sufficient rather than necessary (see Prob. 22).

Uniqueness. If the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

et2

t n>n!cosh t � et, t n � n!et

�ƒl( f ) ƒ � ` �
�

0

e�stf (t) dt ` 
 �
�

0

ƒ  f (t) ƒ e�st dt 
 �
�

0

Mekte�st dt �
M

s � k
 .

l( f )
s � k

e�stf (t)f (t)

s � k.l( f )
t � 0t � 0

f (t)
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1–16 LAPLACE TRANSFORMS
Find the transform. Show the details of your work. Assume
that a, b, are constants.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
k

a b

2

1

–1

1

1 2

b

b

k

c

1

1

1.5 sin (3t � p>2)sin (vt � u)

e�t sinh 4te2t sinh t

cos2 vtcos pt

(a � bt)23t � 12

v, u

15. 16.

17–24 SOME THEORY
17. Table 6.1. Convert this table to a table for finding

inverse transforms (with obvious changes, e.g.,
etc).

18. Using in Prob. 10, find where 
if and if 

19. Table 6.1. Derive formula 6 from formulas 9 and 10.

20. Nonexistence. Show that does not satisfy a
condition of the form (2).

21. Nonexistence. Give simple examples of functions
(defined for all that have no Laplace
transform.

22. Existence. Show that [Use (30)
in App. 3.1.] Conclude from this that the

conditions in Theorem 3 are sufficient but not
necessary for the existence of a Laplace transform.

�(1
2) � 1p

l(1>1t) � 1p>s.

t � 0)

et2

t � 2.f1(t) � 1t 
 2
f1(t) � 0l( f1),l( f )

l
�1(1>sn) � t n�1>(n � 1),

1 2

1

0.5

1

1

P R O B L E M  S E T  6 . 1
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23. Change of scale. If and c is any
positive constant, show that (Hint:
Use (1).) Use this to obtain 

24. Inverse transform. Prove that is linear. Hint:
Use the fact that is linear.

25–32 INVERSE LAPLACE TRANSFORMS
Given find a, b, L, n are constants. Show
the details of your work.

25. 26.

27. 28.

29. 30.

31. 32.
1

(s � a)(s � b)
s � 10

s2 � s � 2

4s � 32

s2 � 16

12

s4
�  

228

s6

1

(s � 12)(s � 13)

s

L2s2 � n2p2

5s � 1

s2 � 25

0.2s � 1.8

s2 � 3.24

f (t).F(s) � l( f ),

l

l
�1

l(cos vt) from l(cos t).
l( f (ct)) � F(s>c)>c

l( f (t)) � F(s) 33–45 APPLICATION OF s-SHIFTING
In Probs. 33–36 find the transform. In Probs. 37–45 find
the inverse transform. Show the details of your work.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42.

43. 44.

45.
k0 (s � a) � k1

(s � a)2

a (s � k) � bp

(s � k)2 � p2

2s � 1

s2 � 6s � 18

a0

s � 1
�

a1

(s � 1)2 �
a2

(s � 1)3

p

s2 � 10ps � 24p2

4

s2 � 2s � 3

21

(s � 22)4

6

(s � 1)3

p

(s � p)2

sinh t  cos t0.5e�4.5t sin 2pt

ke�at cos vtt 2e�3t

6.2 Transforms of Derivatives and Integrals.
ODEs

The Laplace transform is a method of solving ODEs and initial value problems. The crucial
idea is that operations of calculus on functions are replaced by operations of algebra
on transforms. Roughly, differentiation of will correspond to multiplication of 
by s (see Theorems 1 and 2) and integration of to division of by s. To solve
ODEs, we must first consider the Laplace transform of derivatives. You have encountered
such an idea in your study of logarithms. Under the application of the natural logarithm,
a product of numbers becomes a sum of their logarithms, a division of numbers becomes
their difference of logarithms (see Appendix 3, formulas (2), (3)). To simplify calculations
was one of the main reasons that logarithms were invented in pre-computer times.

T H E O R E M  1 Laplace Transform of Derivatives

The transforms of the first and second derivatives of satisfy

(1)

(2)

Formula (1) holds if is continuous for all and satisfies the growth
restriction (2) in Sec. 6.1 and is piecewise continuous on every finite interval
on the semi-axis Similarly, (2) holds if f and are continuous for all 
and satisfy the growth restriction and is piecewise continuous on every finite
interval on the semi-axis t � 0.

f s
t � 0f rt � 0.

f r(t)
t � 0f (t)

l( f s) � s2
l( f ) � sf (0) � f r(0).

l( f r) � sl( f ) � f (0)

f (t)

l( f )f (t)
l( f )f (t)
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P R O O F We prove (1) first under the additional assumption that is continuous. Then, by the
definition and integration by parts,

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when and at the lower limit it contributes The last integral is It exists
for because of Theorem 3 in Sec. 6.1. Hence exists when and (1) holds.

If is merely piecewise continuous, the proof is similar. In this case the interval of
integration of must be broken up into parts such that is continuous in each such part.

The proof of (2) now follows by applying (1) to and then substituting (1), that is

Continuing by substitution as in the proof of (2) and using induction, we obtain the
following extension of Theorem 1.

T H E O R E M  2 Laplace Transform of the Derivative of Any Order

Let be continuous for all and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let be piecewise continuous on every finite interval
on the semi-axis . Then the transform of satisfies

(3)

E X A M P L E  1 Transform of a Resonance Term (Sec. 2.8)

Let Then Hence
by (2),

thus

E X A M P L E  2 Formulas 7 and 8 in Table 6.1, Sec. 6.1

This is a third derivation of and ; cf. Example 4 in Sec. 6.1. Let Then
From this and (2) we obtain

By algebra,

Similarly, let Then From this and (1) we obtain

Hence,

Laplace Transform of the Integral of a Function
Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function (roughly) corresponds to multiplication of its transform

by s, we expect integration of to correspond to division of by s:l( f )f (t)l( f )
f (t)

�l(sin vt) �
v

s
 l(cos vt) �

v

s2 � v2  .l(gr) � sl(g) �  vl(cos vt).

g(0) � 0, gr � v cos vt.g � sin vt.

l(cos vt) �
s

s2 � v2
 .l( f s) � s2

l( f ) � s � �v2
l( f ).

f (0) � 1, f r(0) � 0, f s(t) � �v2 cos vt.
f (t) � cos vt.l(sin vt)l(cos vt)

�l( f ) � l(t sin vt) �
2vs

(s2 � v2)2
 .l( f s) � 2v 

s

s2 � v2
� v2

l( f ) � s2
l( f ),

f (0) � 0,  f r(t) � sin vt � vt cos vt,  f r(0) � 0, f s � 2v cos vt � v2t sin vt.f (t) � t sin vt.

l( f (n)) � sn
l( f ) � sn�1f (0) � sn�2f r(0) � Á � f (n�1)(0).

f (n)t � 0
f (n)

t � 0f, f r, Á , f (n�1)

f 
(n)

�l( f s) � sl( f r) � f r(0) � s3sl( f ) � f (0)4 � s2
l( f ) � sf (0) � f r(0).

f s
f rf r

f r
s � kl( f r)s � k

l( f ).�f (0).s � k,

l( f r) � �
�

0

e�stf r(t) dt � 3e�stf (t)4 `
�

0
� s�

�

0

e�stf (t) dt.

f r
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T H E O R E M  3 Laplace Transform of Integral

Let denote the transform of a function which is piecewise continuous for 
and satisfies a growth restriction (2), Sec. 6.1. Then, for and 

(4) thus

P R O O F Denote the integral in (4) by Since is piecewise continuous, is continuous,
and (2), Sec. 6.1, gives

This shows that also satisfies a growth restriction. Also, except at points
at which is discontinuous. Hence is piecewise continuous on each finite interval
and, by Theorem 1, since (the integral from 0 to 0 is zero)

Division by s and interchange of the left and right sides gives the first formula in (4),
from which the second follows by taking the inverse transform on both sides.

E X A M P L E  3 Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9

Using Theorem 3, find the inverse of and 

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)
we obtain

This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20
in Sec. 6.9:

It is typical that results such as these can be found in several ways. In this example, try partial fraction
reduction.

Differential Equations, Initial Value Problems
Let us now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an initial value problem

(5) ys � ayr � by � r(t),  y(0) � K0,  yr(0) � K1

�

l
�1 b 

1

s2(s2 � v2)
 r �

1

v2
 �

t

0

(1 � cos vt) dt � c t
v2

�
sin vt

v3
d t

0

�
t

v2
�

sin vt

v3
 .

l
�1

 b 1

s(s2 � v2)r � �
t

0

  
sin vt

v
 dt �

1

v2 (1 � cos vt).l
�1 b 

1

s2 � v2  r �
sin vt

v
 ,

1

s2(s2 � v2)
 .

1

s(s2 � v2)

�

l{ f (t)} � l{gr(t)} � sl{g(t)} � g(0) � sl{g(t)}.

g(0) � 0
gr(t)f (t)

gr(t) � f (t),g(t)

(k � 0).ƒ g(t) ƒ � ` �
t

0

f (t) dt ` 
 �
t

0

ƒ  f (t) ƒ  dt 
 M�
t

0

ekt dt �
M
k

 (ekt � 1) 

M
k

 ekt

g(t)f (t)g(t).

�
t

0

f (t) dt � l�1 e 1
s  F(s) f .l e �

t

0

f (t) dt f �
1
s  F(s),

t � 0,s � k,s � 0,
t � 0f (t)F(s)
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where a and b are constant. Here is the given input (driving force) applied to the
mechanical or electrical system and is the output (response to the input) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
obtained by transforming (5) by means of (1) and (2), namely,

where Collecting the Y-terms, we have the subsidiary equation

Step 2. Solution of the subsidiary equation by algebra. We divide by and
use the so-called transfer function

(6)

(Q is often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

(7)

If this is simply ; hence

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution of (5).

E X A M P L E  4 Initial Value Problem: The Basic Laplace Steps

Solve

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation 

thus

Step 2. The transfer function is and (7) becomes

Simplification of the first fraction and an expansion of the last fraction gives

Y �
1

s � 1
� a 1

s2 � 1
�  

1

s2b .

Y � (s � 1)Q �
1

s2
 Q �

s � 1

s2 � 1
�

1

s2(s2 � 1)
 .

Q � 1>(s2 � 1),

(s2 � 1)Y � s � 1 � 1>s2.s2Y � sy(0) � yr(0) � Y � 1>s2,

3with Y � l(y)4

ys � y � t,  y(0) � 1,  yr(0) � 1.

y(t) � l�1(Y )

y � ll�1(Y ).

Q �
Y
R

�
l(output)

l(input)

Y � RQy(0) � yr(0) � 0,

Y(s) � 3(s � a)y(0) � yr(0)4Q(s) � R(s)Q(s).

Q(s) �
1

s2 � as � b
�

1

(s � 1
2 a)2 � b � 1

4 a2
 .

s2 � as � b

(s2 � as � b)Y � (s � a)y(0) � yr(0) � R(s).

R(s) � l(r).

3s2Y � sy(0) � yr(0)4 � a3sY � y(0)4 � bY � R(s)

Y � l(y)

y(t)
r(t)
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Step 3. From this expression for Y and Table 6.1 we obtain the solution

The diagram in Fig. 116 summarizes our approach. �

y(t) � l�1(Y ) � l�1 e 1

s � 1 f � l�1 e 1

s2 � 1 f � l�1 e 1

s2 f � et � sinh t � t.

SEC. 6.2 Transforms of Derivatives and Integrals. ODEs 215

t-space s-space

Given problem
y" – y = t
y(0) = 1
y'(0) =1

Solution of given problem

y(t) = et + sinh t – t

Subsidiary equation

Solution of subsidiary equation

(s2 – 1)Y = s + 1 + 1/s2

1
s – 1

1
s2 – 1

1
s2

Y = –+

Fig. 116. Steps of the Laplace transform method

E X A M P L E  5 Comparison with the Usual Method

Solve the initial value problem

Solution. From (1) and (2) we see that the subsidiary equation is

thus

The solution is

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

This agrees with Example 2, Case (III) in Sec. 2.4. The work was less.

Advantages of the Laplace Method

1. Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.

2. Initial values are automatically taken care of. See Examples 4 and 5.

3. Complicated inputs (right sides of linear ODEs) can be handled very
efficiently, as we show in the next sections.

r(t)

�

 � e�0.5t(0.16 cos 2.96t � 0.027 sin 2.96t).

 y(t) � l�1(Y ) � e�t>2 a0.16 cos 
B

35

4
 t �

0.08
1
2235

 sin 
B

35

4
 tb

Y �
0.16(s � 1)

s2 � s � 9
�

0.16(s � 1
2) � 0.08

(s � 1
2)2 � 35

4

.

(s2 � s � 9)Y � 0.16(s � 1).s2Y � 0.16s � sY � 0.16 � 9Y � 0,

ys � yr � 9y � 0.  y(0) � 0.16,  yr(0) � 0.
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E X A M P L E  6 Shifted Data Problems

This means initial value problems with initial conditions given at some instead of For such a
problem set so that gives and the Laplace transform can be applied. For instance, solve

Solution. We have and we set Then the problem is

where Using (2) and Table 6.1 and denoting the transform of by we see that the subsidiary
equation of the “shifted” initial value problem is

thus

Solving this algebraically for we obtain

The inverse of the first two terms can be seen from Example 3 (with and the last two terms give 
and 

Now so that the answer (the solution) is

�y � 2t � sin t � cos t.

t~ � t � 1
4 p, sin t~ �

1

12
 (sin t � cos t),

 � 2t~ � 1
2  
p � 12 sin t~.

 y~ � l�1( Y
~

) � 2( t~ � sin t~
 

) � 1
2  
p(1 � cos t~

 

) � 1
2  
p cos t~ � (2 � 12) sin t~

sin,
cosv � 1),

Y
~

�
2

(s2 � 1)s2
�

1
2  
p

(s2 � 1)s
�

1
2  
ps

s2 � 1
�  

2 � 12

s2 � 1
 .

Y
~
,

(s2 � 1)Y
~

�
2

s2 �

1
2  
p

s
�

1

2
 ps � 2 � 12.s2Y

~
� s # 1

2  
p � (2 � 12) � Y

~
�

2

s2 �

1
2  
p

s
 ,

Y
~
,y~y~( t

~ 

) � y(t).

y~r(0) � 2 � 12y~(0) � 1
2 p,y~s � y~ � 2( t

~
� 1

4 p),

t � t
~

� 1
4 p.t0 � 1

4 p

yr(1
4 p) � 2 � 12.y(1

4  
p) � 1

2  
p,ys � y � 2t,

t
~

� 0t � t0t � t
~

� t0,
t � 0.t � t0 � 0
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1–11 INITIAL VALUE PROBLEMS (IVPS) 
Solve the IVPs by the Laplace transform. If necessary, use
partial fraction expansion as in Example 4 of the text. Show
all details.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
yr(0) � 31.5

y(0) � 1,ys � 3yr � 2.25y � 9t 3 � 64,

ys � 0.04y � 0.02t 2, y(0) � �25, yr(0) � 0

ys � 4yr � 3y � 6t � 8, y(0) � 0, yr(0) � 0

ys � 4yr � 4y � 0, y(0) � 8.1, yr(0) � 3.9

yr(0) � �10
ys � 7yr � 12y � 21e3t, y(0) � 3.5,

yr(0) � 6.2
ys � 6yr � 5y � 29 cos 2t, y(0) � 3.2,

ys � 1
4 

y � 0, y(0) � 12, yr(0) � 0

ys � 9y � 10e�t, y(0) � 0, yr(0) � 0

ys � yr � 6y � 0, y(0) � 11, yr(0) � 28

yr � 2y � 0, y(0) � 1.5

yr � 5.2y � 19.4 sin 2t, y(0) � 0

12–15 SHIFTED DATA PROBLEMS 
Solve the shifted data IVPs by the Laplace transform. Show
the details.

12.

13.

14.

15.

16–21 OBTAINING TRANSFORMS 
BY DIFFERENTIATION 

Using (1) or (2), find if equals:

16. 17.

18. 19.

20. Use Prob. 19. 21. cosh2 tsin4 t.

sin2 vtcos2 2t

te�att cos 4t

f (t)l( f )

yr(1.5) � 5
y(1.5) � 4,ys � 3yr � 4y � 6e2t�3,

yr(2) � 14
y(2) � �4,ys � 2yr � 5y � 50t � 100,

yr � 6y � 0, y(�1) � 4

yr(4) � �17
ys � 2yr � 3y � 0, y(4) � �3,

P R O B L E M  S E T  6 . 2
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22. PROJECT. Further Results by Differentiation.
Proceeding as in Example 1, obtain

(a)

and from this and Example 1: (b) formula 21, (c) 22,
(d) 23 in Sec. 6.9,

(e)

(f )

23–29 INVERSE TRANSFORMS 
BY INTEGRATION

Using Theorem 3, find f (t) if equals:

23. 24.

25. 26.

27. 28.

29.
1

s3 � as2

3s � 4

s4 � k2s2

s � 1

s4 � 9s2

1

s4 � s2

1

s(s2 � v2)

20

s3 � 2ps2

3

s2 � s>4

l(F )

l(t sinh at) �
2as

(s2 � a2)2
 .

l(t cosh at) �
s2 � a2

(s2 � a2)2
 ,

l(t cos vt) �
s2 � v2

(s2 � v2)2

SEC. 6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting) 217

30. PROJECT. Comments on Sec. 6.2. (a) Give reasons
why Theorems 1 and 2 are more important than
Theorem 3.

(b) Extend Theorem 1 by showing that if is
continuous, except for an ordinary discontinuity (finite
jump) at some the other conditions remaining
as in Theorem 1, then (see Fig. 117)

(1*)

(c) Verify (1*) for if and 0 if

(d) Compare the Laplace transform of solving ODEs
with the method in Chap. 2. Give examples of your
own to illustrate the advantages of the present method
(to the extent we have seen them so far).

t � 1.
0 � t � 1f (t) � e�t

l( f r) � sl( f ) � f (0) � 3 f (a � 0) � f (a � 0)4e�as.

t � a (�0),

f (t)

6.3 Unit Step Function (Heaviside Function).
Second Shifting Theorem (t-Shifting)

This section and the next one are extremely important because we shall now reach the
point where the Laplace transform method shows its real power in applications and its
superiority over the classical approach of Chap. 2. The reason is that we shall introduce
two auxiliary functions, the unit step function or Heaviside function (below) and
Dirac’s delta (in Sec. 6.4). These functions are suitable for solving ODEs with
complicated right sides of considerable engineering interest, such as single waves, inputs
(driving forces) that are discontinuous or act for some time only, periodic inputs more
general than just cosine and sine, or impulsive forces acting for an instant (hammerblows,
for example).

Unit Step Function (Heaviside Function) 
The unit step function or Heaviside function is 0 for has a jump of size
1 at (where we can leave it undefined), and is 1 for in a formula:

(1) (a � 0).u(t � a) � b 

0  if t � a

1  if t � a

t � a,t � a
t � a,u(t � a)

u(t � a)

d(t � a)
u(t � a)

f (t)
f (a – 0)

f (a + 0)

0 ta

Fig. 117. Formula (1*)
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Figure 118 shows the special case which has its jump at zero, and Fig. 119 the general
case for an arbitrary positive a. (For Heaviside, see Sec. 6.1.)

The transform of follows directly from the defining integral in Sec. 6.1,

;

here the integration begins at because is 0 for Hence

(2) (s � 0).l{u(t � a)} �
e�as

s

t � a.u(t � a)t � a (�0)

l{u(t � a)} � �
�

0

e�stu(t � a) dt � �
�

0

e�st # 1 dt � � 
e�st

s `
�

t�a

u(t � a)
u(t � a)

u(t),
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u(t)

t

1

0

u(t – a)

a t

1

0

Fig. 118. Unit step function u(t) Fig. 119. Unit step function u(t � a)

f (t)

(A)  f (t) = 5 sin t (B)  f (t)u(t – 2) (C)  f (t – 2)u(t – 2)

t

5

0

–5

t

5

0

–5

t

5

0

–5

+22 π +2π 2π π 2π2 2π

Fig. 120. Effects of the unit step function: (A) Given function. 
(B) Switching off and on. (C) Shift.

The unit step function is a typical “engineering function” made to measure for engineering
applications, which often involve functions (mechanical or electrical driving forces) that
are either “off ” or “on.” Multiplying functions with we can produce all sorts
of effects. The simple basic idea is illustrated in Figs. 120 and 121. In Fig. 120 the given
function is shown in (A). In (B) it is switched off between and (because

when and is switched on beginning at In (C) it is shifted to the
right by 2 units, say, for instance, by 2 sec, so that it begins 2 sec later in the same fashion
as before. More generally we have the following.

Let for all negative t. Then with is shifted
(translated) to the right by the amount a.

Figure 121 shows the effect of many unit step functions, three of them in (A) and
infinitely many in (B) when continued periodically to the right; this is the effect of a
rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make
sure that you fully understand these figures, in particular the difference between parts (B)
and (C) of Fig. 120. Figure 120(C) will be applied next.

f (t)a � 0f (t � a)u(t � a)f (t) � 0

t � 2.t � 2)u(t � 2) � 0
t � 2t � 0

u(t � a),f (t)
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Time Shifting (t-Shifting): Replacing t by 
The first shifting theorem (“s-shifting”) in Sec. 6.1 concerned transforms 
and The second shifting theorem will concern functions and

Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

T H E O R E M  1 Second Shifting Theorem; Time Shifting

If has the transform then the “shifted function”

(3)

has the transform That is, if then

(4)

Or, if we take the inverse on both sides, we can write

(4*)

Practically speaking, if we know we can obtain the transform of (3) by multiplying
by In Fig. 120, the transform of 5 sin t is hence the shifted

function 5 sin shown in Fig. 120(C) has the transform

P R O O F We prove Theorem 1. In (4), on the right, we use the definition of the Laplace transform,
writing for t (to have t available later). Then, taking inside the integral, we have

Substituting , thus , in the integral (CAUTION, the lower
limit changes!), we obtain

e�asF(s) � �
�

a

e�stf (t � a) dt.

dt � dtt � t � at � a � t

e�asF(s) � e�as�
�

0

e�stf (t) dt � �
�

0

e�s(t�a)f (t) dt.

e�ast

e�2sF(s) � 5e�2s>(s2 � 1).

(t � 2)u(t � 2)
F(s) � 5>(s2 � 1),e�as.F(s)

F(s),

f (t � a)u(t � a) �  l�1{e�asF(s)}.

l{f (t � a)u(t � a)} � e�asF(s).

l{f (t)} � F(s),e�asF(s).

f 
~
(t) � f (t � a)u(t � a) � b  

0 if t � a

f (t � a) if t � a

F(s),f (t)

f (t � a).
f (t)F(s � a) � l{eatf (t)}.

F(s) � l{f (t)}

t � a in f (t)

SEC. 6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting) 219

(A)  k[u(t – 1) – 2u(t – 4) + u(t – 6)] (B)  4 sin (    t)[u(t) – u(t – 2) + u(t – 4) – + ⋅⋅⋅]π

t20 4 6 8

4k

–k 10

1_
2

641 t

Fig. 121. Use of many unit step functions.
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To make the right side into a Laplace transform, we must have an integral from 0 to ,
not from a to . But this is easy. We multiply the integrand by . Then for t from
0 to a the integrand is 0, and we can write, with as in (3),

(Do you now see why appears?) This integral is the left side of (4), the Laplace
transform of in (3). This completes the proof.

E X A M P L E  1 Application of Theorem 1. Use of Unit Step Functions

Write the following function using unit step functions and find its transform.

(Fig. 122)

Solution. Step 1. In terms of unit step functions,

Indeed, gives for , and so on.

Step 2. To apply Theorem 1, we must write each term in in the form . Thus, 
remains as it is and gives the transform . Then

Together,

If the conversion of to is inconvenient, replace it by

(4**) .

(4**) follows from (4) by writing , hence and then again writing f for g. Thus,

as before. Similarly for . Finally, by (4**),

�l e cos t u at �
1

2
 pb f � e�ps>2

l e cos at �
1

2
 pb f � e�ps>2

l{�sin t} � �e�ps>2 
1

s2 � 1
 .

l{1
2  

t 2u(t � 1
2  
p)}

l e 1

2
 t 2u(t � 1) f � e�s

l e 1

2
 (t � 1)2 f � e�s

l e 1

2
 t 2 � t �

1

2
 f � e�s a 1

s3 �
1

s2 �
1

2s
b

f (t) �  g(t � a)f (t � a) � g(t)

l{ f (t)u(t � a)} � e�as
l{ f (t � a)}

f (t � a)f (t)

l( f ) �
2

s
�  

2

s
 e�s � a 1

s3 �
1

s2 �
1

2s
b e�s � a 1

s3 �
p

2s2 �
p2

8s
b e�ps>2 �  

1

s2 � 1
 e�ps>2.

l e (cos t) u at �
1

2
 pb f � l e�asin at �

1

2
 pbb u at �

1

2
 pb f � � 

1

s2 � 1
 e�ps>2.

 � a 1

s3 �
p

2s2 �
p2

8s
b e�ps>2

 l e 1

2
 t 2u at �

1

2
 pb f � l e 1

2
 at �

1

2
 pb

2

�
p

2
 at �

1

2
 pb �

p2

8
b u at �

1

2
 pb f

 l e 1

2
 t 2u(t � 1) f � l a1

2
 (t � 1)2 � (t � 1) �

1

2
 b u(t � 1) f � a 1

s3
�

1

s2
�

1

2s
b e�s

2(1 � e�s)>s
2(1 � u(t � 1))f (t � a)u(t � a)f (t)

0 � t � 1f (t)2(1 � u(t � 1))

f (t) � 2(1 � u(t � 1)) � 1
2t 2(u(t � 1) � u(t � 1

2p)) � (cos t)u(t � 1
2p).

f (t) � d 

2 if 0 � t � 1

1
2 t 2 if 1 � t � 1

2 p

cos t if t � 1
2 p.

�f 
~
(t)

u(t � a)

e�asF(s) � �
�

0

e�stf (t � a)u(t � a) dt � �
�

0

 e�stf 
~
(t) dt.

f 
~ u(t � a)�

�
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E X A M P L E  2 Application of Both Shifting Theorems. Inverse Transform

Find the inverse transform of

Solution. Without the exponential functions in the numerator the three terms of would have the inverses
, and because has the inverse t, so that has the inverse by the

first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (t-shifting),

Now and so that the first and second terms cancel each other
when Hence we obtain if if 0 if and

if See Fig. 123. �t � 3.(t � 3)e�2(t�3)
2 � t � 3,1 � t � 2,0 � t � 1, �(sin pt)>pf (t) � 0t � 2.

sin (pt � 2p) � sin pt,sin (pt � p) � �sin pt

f (t) �
1
p

 sin (p(t � 1)) u(t � 1) �
1
p

 sin (p(t � 2)) u(t � 2) � (t � 3)e�2(t�3) u(t � 3).

te�2t1>(s � 2)21>s2te�2t(sin pt)>p, (sin pt)>p
F(s)

F(s) �
e�s

s2 � p2
�

e�2s

s2 � p2
�

e�3s

(s � 2)2
 .

f (t)
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2

1

0

–1
� 2�1 4� t

f (t)

Fig. 122. ƒ(t) in Example 1

0.3

0.2

0.1

10 2 3 4 5 6
0

t

Fig. 123. ƒ(t) in Example 2

v(t)

ta0 0

V
0

b ta b

v(t)

R

C
i(t)

V
0
/R

Fig. 124. RC-circuit, electromotive force v(t), and current in Example 3

E X A M P L E  3 Response of an RC-Circuit to a Single Rectangular Wave

Find the current in the RC-circuit in Fig. 124 if a single rectangular wave with voltage is applied. The
circuit is assumed to be quiescent before the wave is applied.

Solution. The input is Hence the circuit is modeled by the integro-differential
equation (see Sec. 2.9 and Fig. 124)

Ri(t) �
q(t)

C
� Ri(t) �

1

C �
t

0

i(t) dt � v(t) � V03u(t � a) � u(t � b)4.

V03u(t � a) �  u(t � b)4.

V0i(t)
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Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

Solving this equation algebraically for we get

where and

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem 1 yields the solution (Fig. 124)

that is, and

where and 

E X A M P L E  4 Response of an RLC-Circuit to a Sinusoidal Input Acting Over a Time Interval

Find the response (the current) of the RLC-circuit in Fig. 125, where E(t) is sinusoidal, acting for a short time
interval only, say,

if and if 

and current and charge are initially zero.

Solution. The electromotive force can be represented by Hence the
model for the current in the circuit is the integro-differential equation (see Sec. 2.9)

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for 

Solving it algebraically and noting that we obtain

For the first term in the parentheses times the factor in front of them we use the partial fraction
expansion

Now determine A, B, D, K by your favorite method or by a CAS or as follows. Multiplication by the common
denominator gives

400,000s � A(s � 100)(s2 � 4002) � B(s � 10)(s2 � 4002) � (Ds � K)(s � 10)(s � 100).

400,000s

(s � 10)(s � 100)(s2 � 4002)
�

A

s � 10
�

B

s � 100
�

Ds � K

s2 � 4002  .

( Á )

l(s) �
1000 # 400

(s � 10)(s � 100)
 a  

s

s2 � 4002 �  

se�2ps

s2 � 4002b .

s2 � 110s � 1000 � (s � 10)(s � 100),

0.1sI � 11I � 100 
I

s
�

100 # 400s

s2 � 4002  a1

s
�  

e�2ps

s
b .

I(s) � l(i)

i(0) � 0, ir(0) � 0.0.1ir � 11i � 100�
t

0

i(t) dt � (100 sin 400t)(1 � u(t � 2p)).

i(t)
(100 sin 400t)(1 � u(t � 2p)).E(t)

t � 2pE(t) � 00 � t � 2pE(t) � 100 sin 400t

�K2 � V0eb>(RC)>R.K1 � V0ea>(RC)>R

i(t) � c 

K1e�t>(RC)  if a � t � b

(K1 � K2)e�t>(RC)  if a � b

i(t) � 0 if t � a,

i(t) � l�1(I) � l�1{e�asF(s)} � l�1{e�bsF(s)} �
V0

R
 3e�(t�a)>(RC)u(t � a) � e�(t�b)>(RC)u(t � b)4;

l
�1(F) �

V0

R
 e�t>(RC),F(s) �

V0IR

s � 1>(RC)
I(s) � F(s)(e�as � e�bs)

I(s),

RI(s) �
I(s)

sC
�

V0

s
 3e�as � e�bs4.
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We set and and then equate the sums of the and terms to zero, obtaining (all values rounded)

Since we thus obtain for the first term in 

From Table 6.1 in Sec. 6.1 we see that its inverse is

This is the current when It agrees for with that in Example 1 of Sec. 2.9 (except
for notation), which concerned the same RLC-circuit. Its graph in Fig. 63 in Sec. 2.9 shows that the exponential
terms decrease very rapidly. Note that the present amount of work was substantially less.

The second term of I differs from the first term by the factor Since 
and the second shifting theorem (Theorem 1) gives the inverse if

and for it gives

Hence in the cosine and sine terms cancel, and the current for is

It goes to zero very rapidly, practically within 0.5 sec. �

i(t) � �0.2776(e�10t � e�10(t�2p)) � 2.6144(e�100t � e�100(t�2p)).

t � 2pi(t)

i2(t) � �0.2776e�10(t�2p) � 2.6144e�100(t�2p) � 2.3368 cos 400t � 0.6467 sin 400t.

� 2p0 � t � 2p,
i2(t) � 0sin 400(t � 2p) � sin 400t,

cos 400(t � 2p) � cos 400te�2ps.I1

0 � t � 2p0 � t � 2p.i(t)

i1(t) � �0.2776e�10t � 2.6144e�100t � 2.3368 cos 400t � 0.6467 sin 400t.

I1 � � 

0.2776

s � 10
�

2.6144

s � 100
�  

2.3368s

s2 � 4002 �
0.6467 # 400

s2 � 4002  .

I � I1 � I2I1K � 258.66 � 0.6467 # 400,

 (s2-terms)  0 � 100A � 10B � 110D � K,   K � 258.66.

 (s3-terms)  0 � A � B � D,   D � �2.3368

 (s � �100)  �40,000,000 � �90(1002 � 4002)B,   B � 2.6144

 (s � �10)    �4,000,000 � 90(102 � 4002)A,   A � �0.27760

s2s3�100s � �10
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E(t)

R = 11 Ω L = 0.1 H 

C = 10–2 F

Fig. 125. RLC-circuit in Example 4

1. Report on Shifting Theorems. Explain and compare
the different roles of the two shifting theorems, using your
own formulations and simple examples. Give no proofs.

2–11 SECOND SHIFTING THEOREM, 
UNIT STEP FUNCTION 

Sketch or graph the given function, which is assumed to be
zero outside the given interval. Represent it, using unit step
functions. Find its transform. Show the details of your work.

2. 3.

4. 5. et (0 � t � p>2)cos 4t (0 � t � p)

t � 2 (t � 2)t (0 � t � 2)

6. 7.

8. 9.

10. 11.

12–17 INVERSE TRANSFORMS BY THE 
2ND SHIFTING THEOREM 

Find and sketch or graph if equals

12. 13.

14. 15.

16.

17. (1 � e�2p(s�1))(s � 1)>((s � 1) 2 � 1)

2(e�s � e�3s)>(s2 � 4)

e�3s>s44(e�2s � 2e�5s)>s

6(1 � e�ps)>(s2 � 9)e�3s>(s � 1) 3

l( f )f (t)

sin t (p>2 � t � p)sinh t (0 � t � 2)

t 2 (t � 3
2)t 2 (1 � t � 2)

e�pt (2 � t � 4)sin pt (2 � t � 4)

P R O B L E M  S E T  6 . 3
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18–27 IVPs, SOME WITH DISCONTINUOUS
INPUT

Using the Laplace transform and showing the details, solve

18.

19.

20.

21. if and 0 if 

22. if and 8 if 

23. if and
if 

24. if and 0 if 

25. if and 0 if 

26. Shifted data. if 
and 0 if 

27. Shifted data. if and 0 if

28–40 MODELS OF ELECTRIC CIRCUITS

28–30 RL-CIRCUIT 
Using the Laplace transform and showing the details, find
the current in the circuit in Fig. 126, assuming 
and:

28. if 
and if 

29. if 
and 0 if 

30. if and 0
if t � 2

0 � t � 2R � 10 �, L � 0.5 H, v � 200t V

t � 1
0 � t � 1R � 25 �, L � 0.1 H, v � 490 e�5t V

t � p40 sin t V
0 � t � p,R � 1 k� (�1000 �), L � 1 H, v � 0

i(0) � 0i(t)

yr(1) � 4 � 2 sin 2y(1) � 1 � cos 2,t � 5;
0 � t � 5ys � 4y � 8t 2

yr(p) � 2e�p � 2y(p) � 1,t � 2p;
0 � t � 2pys � 2yr � 5y � 10 sin t

yr(0) � 0
y(0) � 0,t � 1;0 � t � 1ys � y � t

yr(0) � 0y(0) � 0,
t � 1;0 � t � 1ys � 3yr � 2y � 1

yr(0) � 0y(0) � 1,t � 2p;3 sin 2t � cos 2t
0 � t � 2pys � yr � 2y � 3 sin t � cos t

yr(0) � 0y(0) � 0,
t � 1;0 � t � 1ys � 3yr � 2y � 4t

yr(0) � 4y(0) � 0,
t � p;0 � t � pys � 9y � 8 sin t

yr(0) � �5
y(0) � 19>12,ys � 10yr � 24y � 144t 2,

yr(0) � 0y(0) � 0,ys � 6yr � 8y � e�3t � e�5t,

yr(0) � 1y(0) � 3,9ys � 6yr � y � 0,

224 CHAP. 6 Laplace Transforms

31. Discharge in RC-circuit. Using the Laplace transform,
find the charge q(t) on the capacitor of capacitance C
in Fig. 127 if the capacitor is charged so that its potential
is and the switch is closed at 

32–34 RC-CIRCUIT
Using the Laplace transform and showing the details, find
the current i(t) in the circuit in Fig. 128 with and

where the current at is assumed to be
zero, and:

32. if and if 

33. if and V if 

34. if and 0 otherwise. Why
does i(t) have jumps?

0.5 � t � 0.6v(t) � 100 V

t � 2100(t � 2)t � 2v � 0

t � 414 # 106e�3t Vt � 4v � 0

t � 0C � 10�2 F,
R � 10 �

t � 0.V0

R

v(t)

L

Fig. 126. Problems 28–30

v(t)

C R

Fig. 128. Problems 32–34

v(t)

C L

Fig. 129. Problems 35–37

C R

Fig. 127. Problem 31

35–37 LC-CIRCUIT
Using the Laplace transform and showing the details, find
the current in the circuit in Fig. 129, assuming zero
initial current and charge on the capacitor and:

35. if
and 0 otherwise

36. if
and 0 if 

37. if 
and 0 if t � p

0 � t � pv � 78 sin t VC � 0.05 F,L � 0.5 H,

t � 10 � t � 1
v � 200 (t � 1

3 
t 3) VC � 0.25 F,L � 1 H,

p � t � 3p
v � �9900 cos t VC � 10�2 F,L � 1 H,

i(t)

38–40 RLC-CIRCUIT
Using the Laplace transform and showing the details, find
the current i(t) in the circuit in Fig. 130, assuming zero
initial current and charge and:

38. if
and 0 if t � 40 � t � 4

v � 34e�t VC � 0.05 F,L � 1 H,R � 4 �,
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SEC. 6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions 225

6.4 Short Impulses. Dirac’s Delta Function.
Partial Fractions

An airplane making a “hard” landing, a mechanical system being hit by a hammerblow,
a ship being hit by a single high wave, a tennis ball being hit by a racket, and many other
similar examples appear in everyday life. They are phenomena of an impulsive nature
where actions of forces—mechanical, electrical, etc.—are applied over short intervals
of time.

We can model such phenomena and problems by “Dirac’s delta function,” and solve
them very effecively by the Laplace transform.

To model situations of that type, we consider the function

(1) (Fig. 132)

(and later its limit as ). This function represents, for instance, a force of magnitude
acting from to where k is positive and small. In mechanics, the

integral of a force acting over a time interval is called the impulse of
the force; similarly for electromotive forces E(t) acting on circuits. Since the blue rectangle
in Fig. 132 has area 1, the impulse of in (1) is

(2) Ik � �
�

0

 fk(t � a) dt � �
a�k

a

 
1
k

 dt � 1.

fk

a 
 t 
 a � k
t � a � k,t � a1>k

k : 0

fk(t � a) � b 

1>k if a 
 t 
 a � k

0 otherwise

R

C

L

v(t)

Fig. 130. Problems 38–40

10

0

–20

–10
10 1286 t

20

30

42

Fig. 131. Current in Problem 40

39. if
and 0 if t � 20 � t � 2

v(t) � 1 kVC � 0.5 F,L � 1 H,R � 2 �, 40.
if and 0 if t � 2p0 � t � 2p

v � 255 sin t VC � 0.1 F,L � 1 H,R � 2 �,

ta

1/k
Area = 1

a + k

Fig. 132. The function ƒk(t � a) in (1)
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To find out what will happen if k becomes smaller and smaller, we take the limit of 
as This limit is denoted by that is,

is called the Dirac delta function2 or the unit impulse function.
is not a function in the ordinary sense as used in calculus, but a so-called

generalized function.2 To see this, we note that the impulse of is 1, so that from (1)
and (2) by taking the limit as we obtain

(3)

but from calculus we know that a function which is everywhere 0 except at a single point
must have the integral equal to 0. Nevertheless, in impulse problems, it is convenient to
operate on as though it were an ordinary function. In particular, for a continuous
function g(t) one uses the property [often called the sifting property of not to
be confused with shifting]

(4)

which is plausible by (2).
To obtain the Laplace transform of we write

and take the transform [see (2)]

We now take the limit as By l’Hôpital’s rule the quotient on the right has the limit
1 (differentiate the numerator and the denominator separately with respect to k, obtaining

and s, respectively, and use as ). Hence the right side has the
limit This suggests defining the transform of by this limit, that is,

(5)

The unit step and unit impulse functions can now be used on the right side of ODEs
modeling mechanical or electrical systems, as we illustrate next.

l{d(t � a)} � e�as.

d(t � a)e�as.
k : 0se�ks>s : 1se�ks

k : 0.

l{fk(t � a)} �
1
ks

 3e�as � e�(a�k)s4 � e�as 
1 � e�ks

ks
 .

fk(t � a) �
1
k

 3u(t � a) � u(t � (a � k))4

d(t � a),

�
�

0

 g(t)d(t � a) dt � g(a)

d(t � a),
d(t � a)

d(t � a) � b 

� if t � a

0 otherwise
  and  �

�

0

 d(t � a) dt � 1,

k : 0
fkIk

d(t � a)
d(t � a)

d(t � a) � lim
k:0

  fk(t � a).

d(t � a),k : 0 (k � 0).
fk

226 CHAP. 6 Laplace Transforms

2PAUL DIRAC (1902–1984), English physicist, was awarded the Nobel Prize [jointly with the Austrian
ERWIN SCHRÖDINGER (1887–1961)] in 1933 for his work in quantum mechanics.

Generalized functions are also called distributions. Their theory was created in 1936 by the Russian
mathematician SERGEI L’VOVICH SOBOLEV (1908–1989), and in 1945, under wider aspects, by the French
mathematician LAURENT SCHWARTZ (1915–2002).
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E X A M P L E  1 Mass–Spring System Under a Square Wave

Determine the response of the damped mass–spring system (see Sec. 2.8) under a square wave, modeled by
(see Fig. 133)

Solution. From (1) and (2) in Sec. 6.2 and (2) and (4) in this section we obtain the subsidiary equation

Using the notation F(s) and partial fractions, we obtain

From Table 6.1 in Sec. 6.1, we see that the inverse is

Therefore, by Theorem 1 in Sec. 6.3 (t-shifting) we obtain the square-wave response shown in Fig. 133,

�

 � d  

0        (0 � t � 1)

1
2 � e�(t�1) � 1

2  
e�2(t�1)        (1 � t � 2)

�e�(t�1) � e�(t�2) � 1
2  

e�2(t�1) � 1
2  

e�2(t�2)        (t � 2).

 � f (t � 1)u(t � 1) � f (t � 2)u(t � 2)

 y � l�1(F(s)e�s � F(s)e�2s)

f (t) � l�1(F) � 1
2 � e�t � 1

2  
e�2t.

F(s) �
1

s(s2 � 3s � 2)
�

1

s(s � 1)(s � 2)
�

1
2

s
�  

1

s � 1
�

1
2

s � 2
 .

s2Y � 3sY � 2Y �
1

s
 (e�s � e�2s).  Solution  Y(s) �

1

s(s2 � 3s � 2)
 (e�s � e�2s).

ys � 3yr � 2y � r(t) � u(t � 1) � u(t � 2),  y(0) � 0,  yr(0) � 0.

SEC. 6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions 227

t

y(t )

0.5

0
10

1

2 3 4

Fig. 133. Square wave and response in Example 1

E X A M P L E  2 Hammerblow Response of a Mass–Spring System

Find the response of the system in Example 1 with the square wave replaced by a unit impulse at time 

Solution. We now have the ODE and the subsidiary equation

Solving algebraically gives

By Theorem 1 the inverse is

y(t) � l�1(Y) � c 

0 if 0 � t � 1

e�(t�1) � e�2(t�1) if t � 1.

Y(s) �
e�s

(s � 1)(s � 2)
� a 1

s � 1
�  

1

s � 2
b e�s.

ys � 3yr � 2y � d(t � 1),  and  (s2 � 3s � 2)Y � e�s.

t � 1.

c06.qxd  10/28/10  6:33 PM  Page 227



y(t) is shown in Fig. 134. Can you imagine how Fig. 133 approaches Fig. 134 as the wave becomes shorter and
shorter, the area of the rectangle remaining 1? �

228 CHAP. 6 Laplace Transforms

t

y(t )

0.1

0

0.2

10 3 5

Fig. 134. Response to a hammerblow in Example 2

v(t) = ?

�(t)

R

A B

L

C

40

0

80

–80

–40

0.25 0.30.20.150.05 t

v

0.1

Network Voltage on the capacitor

Fig. 135. Network and output voltage in Example 3

E X A M P L E  3 Four-Terminal RLC-Network

Find the output voltage response in Fig. 135 if the input is (a unit impulse
at time ), and current and charge are zero at time 

Solution. To understand what is going on, note that the network is an RLC-circuit to which two wires at A
and B are attached for recording the voltage v(t) on the capacitor. Recalling from Sec. 2.9 that current i(t) and
charge q(t) are related by we obtain the model

From (1) and (2) in Sec. 6.2 and (5) in this section we obtain the subsidiary equation for 

By the first shifting theorem in Sec. 6.1 we obtain from Q damped oscillations for q and v; rounding 
we get (Fig. 135)

�q � l�1(Q) �
1

99.50
 e�10t  sin 99.50t  and  v �

q

C
� 100.5e�10t sin 99.50t.

9900 � 99.502,

(s2 � 20s � 10,000)Q � 1.  Solution  Q �
1

(s � 10)2 � 9900
 .

Q(s) � l(q)

Lir � Ri �
q

C
� Lqs � Rqr �

q

C
� qs � 20qr � 10,000q � d(t).

i � qr � dq>dt,

t � 0.t � 0
d(t)C � 10�4 F,L � 1 H,R � 20 �,

More on Partial Fractions
We have seen that the solution Y of a subsidiary equation usually appears as a quotient
of polynomials so that a partial fraction representation leads to a sum
of expressions whose inverses we can obtain from a table, aided by the first shifting
theorem (Sec. 6.1). These representations are sometimes called Heaviside expansions.

Y(s) � F(s)>G(s),
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An unrepeated factor in G(s) requires a single partial fraction 
See Examples 1 and 2. Repeated real factors , etc., require partial
fractions

etc.,

The inverses are etc.
Unrepeated complex factors , require a partial

fraction For an application, see Example 4 in Sec. 6.3.
A further one is the following.

E X A M P L E  4 Unrepeated Complex Factors. Damped Forced Vibrations

Solve the initial value problem for a damped mass–spring system acted upon by a sinusoidal force for some
time interval (Fig. 136),

Solution. From Table 6.1, (1), (2) in Sec. 6.2, and the second shifting theorem in Sec. 6.3, we obtain the
subsidiary equation

We collect the Y-terms, take to the right, and solve,

(6)

For the last fraction we get from Table 6.1 and the first shifting theorem

(7)

In the first fraction in (6) we have unrepeated complex roots, hence a partial fraction representation

Multiplication by the common denominator gives

We determine A, B, M, N. Equating the coefficients of each power of s on both sides gives the four equations

(a) (b)

(c) (d)

We can solve this, for instance, obtaining from (a), then from (c), then from (b),
and finally from (d). Hence and the first fraction in (6) has the
representation

(8)
�2s � 2

s2 � 4
�

2(s � 1) � 6 � 2

(s � 1)2 � 1
 . Inverse transform: �2 cos 2t � sin 2t � e�t(2 cos t � 4 sin t).

N � 6,M � 2,B � �2,A � �2,A � �2
N � �3AA � BM � �A

3s04 :  20 � 2B � 4N.3s4 :  0 � 2A � 2B � 4M

3s24 :   0 � 2A � B � N3s34 : 0 � A � M

20 � (As � B)(s2 � 2s � 2) � (Ms � N)(s2 � 4).

20

(s2 � 4)(s2 � 2s � 2)
�

As � B

s2 � 4
�

Ms � N

s2 � 2s � 2
.

l
�1 b 

s � 1 � 4

(s � 1)2 � 1
 r � e�t(cos t � 4 sin t).

Y �
20

(s2 � 4)(s2 � 2s � 2)
�  

20e�ps

(s2 � 4)(s2 � 2s � 2)
�

s � 3

s2 � 2s � 2
 .

�s � 5 � 2 � �s � 3(s2 � 2s � 2)Y,

(s2Y � s � 5) � 2(sY � 1) � 2Y � 10 
2

s2 � 4
 (1 � e�ps).

ys � 2yr � 2y � r(t), r(t) � 10 sin 2t if 0 � t � p and 0 if t � p;  y(0) � 1, yr(0) � �5.

(As � B)>3(s � a)2 � b24.
a � a � iba � a � ib,(s � a)(s � a),

(1
2A3t 2 � A2t � A1)eat,(A2t � A1)eat,

A2

(s � a)2 �
A1

s � a
 ,   

A3

(s � a)3 �
A2

(s � a)2 �
A1

s � a
 ,

(s � a)3(s � a)2,
A>(s � a).s � a
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The sum of this inverse and (7) is the solution of the problem for namely (the sines cancel),

(9)

In the second fraction in (6), taken with the minus sign, we have the factor so that from (8) and the second
shifting theorem (Sec. 6.3) we get the inverse transform of this fraction for in the form

The sum of this and (9) is the solution for 

(10)

Figure 136 shows (9) (for ) and (10) (for ), a beginning vibration, which goes to zero rapidly
because of the damping and the absence of a driving force after �t � p.

t � p0 � t � p

if t � p.y(t) � e�t3(3 � 2ep) cos t � 4ep sin t4

t � p,

� 2 cos 2t � sin 2t � e�(t�p) (2 cos t � 4 sin t).

�2 cos (2t � 2p) � sin (2t � 2p) � e�(t�p) 32 cos (t � p) � 4 sin (t � p)4

t � 0
e�ps,

if 0 � t � p.y(t) � 3e�t cos t � 2 cos 2t � sin 2t

0 � t � p,
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–2

t

y(t)

–1

1

0

2

π 2

Output (solution)Mechanical system

π 3π 4π

Dashpot (damping)
Driving force

y

y = 0 (Equilibrium
         position)

Fig. 136. Example 4

The case of repeated complex factors which is important in connection
with resonance, will be handled by “convolution” in the next section.

3(s � a)(s � a )42,

1. CAS PROJECT. Effect of Damping. Consider a
vibrating system of your choice modeled by

(a) Using graphs of the solution, describe the effect of
continuously decreasing the damping to 0, keeping k
constant.

(b) What happens if c is kept constant and k is
continuously increased, starting from 0?

(c) Extend your results to a system with two 
-functions on the right, acting at different times.

2. CAS EXPERIMENT. Limit of a Rectangular Wave.
Effects of Impulse.

(a) In Example 1 in the text, take a rectangular wave
of area 1 from 1 to Graph the responses for a
sequence of values of k approaching zero, illustrating
that for smaller and smaller k those curves approach

1 � k.

d

ys � cyr � ky � d(t).

the curve shown in Fig. 134. Hint: If your CAS gives
no solution for the differential equation, involving k,
take specific k’s from the beginning.

(b) Experiment on the response of the ODE in Example
1 (or of another ODE of your choice) to an impulse

for various systematically chosen a ;
choose initial conditions Also con-
sider the solution if no impulse is applied. Is there a
dependence of the response on a? On b if you choose

? Would ) with annihilate the
effect of ? Can you think of other questions that
one could consider experimentally by inspecting graphs?

3–12 EFFECT OF DELTA (IMPULSE) 
ON VIBRATING SYSTEMS

Find and graph or sketch the solution of the IVP. Show the
details.

3. ys � 4y � d(t � p), y(0) � 8, yr(0) � 0

d(t � a)
a� � a�d(t � a�bd(t � a)

y(0)  0, yr(0) � 0.
(� 0)d(t � a)

P R O B L E M  S E T  6 . 4
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4.

5.

6.

7.

8.

9.

10.

11.

12.

13. PROJECT. Heaviside Formulas. (a) Show that for
a simple root a and fraction in we
have the Heaviside formula

(b) Similarly, show that for a root a of order m and
fractions in

we have the Heaviside formulas for the first coefficient

and for the other coefficients

14. TEAM PROJECT. Laplace Transform of Periodic
Functions

(a) Theorem. The Laplace transform of a piecewise
continuous function with period p is

(11)

Prove this theorem. Hint: Write ��
0 � �p

0 � �2p
p � Á .

(s � 0).l( f ) �
1

1 � e�ps �
p

0

e�st f (t) dt

f (t)

k � 1, Á , m � 1.

Ak �
1

(m � k)!
  lim  

s:a

dm�k

dsm�k
 c (s � a) mF(s)

G(s) d ,

Am � lim
s:a

 
(s � a)mF(s)

G(s)

�
A1

s � a � further fractions

F(s)

G(s)
�

Am

(s � a)m �
Am�1

(s � a)m�1
� Á

A � lim
s:a

  
(s � a)F(s)

G(s)
 .

F(s)>G(s)A>(s � a)

yr(0) � 5
 y(0) � �2,ys � 2yr � 5y � 25t � 100d(t � p),

yr(0) � 1y(0) � 0,
ys � 5yr � 6y � u(t � 1) � d(t � 2),

yr(0) � 0y(0) � 0,
ys � 5yr � 6y � d(t � 1

2p) � u(t � p) cos t,

yr(0) � 1y(0) � 0,
ys � 4yr � 5y � 31 � u(t � 10)4et � e10d(t � 10),

yr(0) � �1
y(0) � 1,ys � 3yr � 2y � 10(sin t � d(t � 1)),

yr(0) � 1y(0) � 1,
4ys � 24yr � 37y � 17e�t � d(t � 1

2),

ys � 4yr � 5y � d(t � 1), y(0) � 0, yr(0) � 3

y(0) � 0, yr(0) � 1
ys � y � d(t � p) � d(t � 2p),

ys � 16y � 4d(t � 3p), y(0) � 2, yr(0) � 0 Set in the nth integral. Take out 
from under the integral sign. Use the sum formula for
the geometric series.

(b) Half-wave rectifier. Using (11), show that the
half-wave rectification of in Fig. 137 has the
Laplace transform

(A half-wave rectifier clips the negative portions of the
curve. A full-wave rectifier converts them to positive;
see Fig. 138.)

(c) Full-wave rectifier. Show that the Laplace trans-
form of the full-wave rectification of is

Fig. 137. Half-wave rectification

Fig. 138. Full-wave rectification

(d) Saw-tooth wave. Find the Laplace transform of the
saw-tooth wave in Fig. 139.

Fig. 139. Saw-tooth wave

15. Staircase function. Find the Laplace transform of the
staircase function in Fig. 140 by noting that it is the
difference of and the function in 14(d).

Fig. 140. Staircase function

tp 2p0 3p

f (t)

k

kt>p

tp 2p0 3p

f (t)

k

t

1

2  /π ω 3  /0 π ω/π ω

f (t)

t

1

2  /π ω 3  /π ω/π ω

f (t)

0

v

s2 � v2
  coth  

ps

2v
.

sin vt

 �
v

(s2 � v2)(1 � e�ps>v)
.

 l( f ) �
v(1 � e�ps>v)

(s2 � v2)(1 � e�2ps>v)

sin vt

e�(n�1)pt � (n � 1)p
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6.5 Convolution. Integral Equations
Convolution has to do with the multiplication of transforms. The situation is as follows.
Addition of transforms provides no problem; we know that .
Now multiplication of transforms occurs frequently in connection with ODEs, integral
equations, and elsewhere. Then we usually know and and would like to know
the function whose transform is the product . We might perhaps guess that it
is fg, but this is false. The transform of a product is generally different from the product
of the transforms of the factors,

in general.

To see this take and . Then , but 
and give .

According to the next theorem, the correct answer is that is the transform of
the convolution of f and g, denoted by the standard notation and defined by the integral

(1) .

T H E O R E M  1 Convolution Theorem

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.1,
so that their transforms F and G exist, the product is the transform of h
given by (1). (Proof after Example 2.)

E X A M P L E  1 Convolution

Let . Find .

Solution. has the inverse , and has the inverse . With 
we thus obtain from (1) the answer

.

To check, calculate

. �

E X A M P L E  2 Convolution

Let . Find .

Solution. The inverse of . Hence from (1) and the first formula in (11) in App. 3.1
we obtain

 �
1

2v2 �
t

0

[�cos vt � cos (2vt � vt)] dt

 h(t) �
sin vt

v
 * 

sin vt

v
�

1

v2 �
t

0

sin vt sin v(t � t) dt

1>(s2 � v2) is (sin vt)>v

h(t)H(s) � 1>(s2 � v2)2

H(s) � l(h)(s) �
1

a
 a 1

s � a
�  

1

s
b �

1

a
#

a

s2 � as
�

1

s � a
#

1

s
� l(eat)l(1)

h(t) � eat * 1 � �
t

0

eat # 1 dt �
1
a

 (eat � 1)

g(t � t) � 1
f (t) � eat andg(t) � 11>sf (t) � eat1>(s � a)

h(t)H(s) � 1>[(s � a)s]

H � FG

h(t) � ( ˛f  * g)(t) � �
t

0

f (t)g(t � t)˛ dt

f * g
l( f )l(g)

l( f )l(g) � 1>(s2 � s)l(1) � 1>s
l( f ) � 1>(s � 1)fg � et, l( fg) � 1>(s � 1)g � 1f � et

l( fg)  l( f )l(g)

l( f )l(g)
l(g)l( f )

l( f � g) � l( f ) � l(g)
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SEC. 6.5 Convolution. Integral Equations 233

in agreement with formula 21 in the table in Sec. 6.9. �

P R O O F We prove the Convolution Theorem 1. CAUTION! Note which ones are the variables
of integration! We can denote them as we want, for instance, by and p, and write

and .

We now set , where is at first constant. Then , and t varies from
. Thus

.

in F and t in G vary independently. Hence we can insert the G-integral into the 
F-integral. Cancellation of and then gives

Here we integrate for fixed over t from to and then over from 0 to . This is the
blue region in Fig. 141. Under the assumption on f and g the order of integration can be
reversed (see Ref. [A5] for a proof using uniform convergence). We then integrate first
over from 0 to t and then over t from 0 to , that is,

This completes the proof. �

Fig. 141. Region of integration in the 
t�-plane in the proof of Theorem 1

τ

t

F(s)G(s) � �
�

0

e�st�
t

0

 f (t)g(t � t) dt dt � �
�

0

 e�sth(t) dt � l(h) � H(s).

�t

�t�tt

F(s)G(s) � �
�

0

e�stf (t)est�
�

t

e�stg(t � t) dt dt � �
�

0

f (t)�
�

t

e�stg(t � t) dt dt.

este�st
t

G(s) � �
�

t

e�s(t�t)g(t � t) dt � est�
�

t

e�stg(t � t) dt

t to �
p � t � ttt � p � t

G(s) � �
�

0

e�spg( p) dpF(s) � �
�

0

e�stf (t) dt

t

 �
1

2v2
 c�t cos vt �

sin vt
v d

 �
1

2v2
 c�t cos vt �

sin vt
v d t

t�0
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From the definition it follows almost immediately that convolution has the properties

(commutative law)

(distributive law)

(associative law)

similar to those of the multiplication of numbers. However, there are differences of which
you should be aware.

E X A M P L E  3 Unusual Properties of Convolution

in general. For instance,

may not hold. For instance, Example 2 with gives

(Fig. 142). �

Fig. 142. Example 3

We shall now take up the case of a complex double root (left aside in the last section in
connection with partial fractions) and find the solution (the inverse transform) directly by
convolution.

E X A M P L E  4 Repeated Complex Factors. Resonance

In an undamped mass–spring system, resonance occurs if the frequency of the driving force equals the natural
frequency of the system. Then the model is (see Sec. 2.8)

where , k is the spring constant, and m is the mass of the body attached to the spring. We assume
and , for simplicity. Then the subsidiary equation is

. Its solution is .Y �
Kv0

(s2 � v0
2) 2

s2Y � v0
2Y �

Kv0

s2 � v0
2

yr(0) � 0y(0) � 0
v0

2 � k>m

ys � v0
2 y � K sin v 0 t

62 4 8 10 t

2

4

0

–2

–4

sin t * sin t � �1
2  

t cos t � 1
2 sin t

v � 1( f  * f )(t) � 0

t * 1 � �
t

0

 t # 1 dt �
1

2
 t 2  t.

f  * 1  f

 f  * 0 � 0 * f � 0

 ( f  * g) * v � f * (g * v)

 f * (g1 � g2) � f * g1 � f * g2

 f  * g � g *  f
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SEC. 6.5 Convolution. Integral Equations 235

This is a transform as in Example 2 with and multiplied by . Hence from Example 2 we can see
directly that the solution of our problem is

.

We see that the first term grows without bound. Clearly, in the case of resonance such a term must occur. (See
also a similar kind of solution in Fig. 55 in Sec. 2.8.) �

Application to Nonhomogeneous Linear ODEs
Nonhomogeneous linear ODEs can now be solved by a general method based on
convolution by which the solution is obtained in the form of an integral. To see this, recall
from Sec. 6.2 that the subsidiary equation of the ODE

(2) (a, b constant)

has the solution [(7) in Sec. 6.2]

with and the transfer function. Inversion of the first
term provides no difficulty; depending on whether is positive, zero, or
negative, its inverse will be a linear combination of two exponential functions, or of the
form , or a damped oscillation, respectively. The interesting term is

because can have various forms of practical importance, as we shall see. If
and , then , and the convolution theorem gives the solution

(3)

E X A M P L E  5 Response of a Damped Vibrating System to a Single Square Wave

Using convolution, determine the response of the damped mass–spring system modeled by

, if and 0 otherwise, .

This system with an input (a driving force) that acts for some time only (Fig. 143) has been solved by partial
fraction reduction in Sec. 6.4 (Example 1).

Solution by Convolution. The transfer function and its inverse are

, hence .

Hence the convolution integral (3) is (except for the limits of integration)

.

Now comes an important point in handling convolution. if only. Hence if , the integral
is zero. If , we have to integrate from (not 0) to t. This gives (with the first two terms from the
upper limit)

.y(t) � e�0 � 1
2e�0 � (e�(t�1) � 1

2e�2(t�1)) � 1
2 � e�(t�1) � 1

2e�2(t�1)

t � 11 � t � 2
t � 11 � t � 2r(t) � 1

y(t) � �q(t � t) # 1 dt � �3e�(t�t) � e�2(t�t)4 dt � e�(t�t) �
1

2
 e�2(t�t)

q(t) � e�t � e�2tQ(s) �
1

s2 � 3s � 2
�

1

(s � 1)(s � 2)
�

1

s � 1
�  

1

s � 2

y(0) � yr(0) � 01 � t � 2r(t) � 1ys � 3yr � 2y � r(t)

y(t) � �
t

0

q(t � t)r(t) dt.

Y � RQyr(0) � 0y(0) � 0
r(t)R(s)Q(s)

(c1 � c2t)e�at>2

1
4a2 � b3Á 4

Q(s) � 1>(s2 � as � b)R(s) � l(r)

Y(s) � [(s � a)y(0) � yr(0)]Q(s) � R(s)Q(s)

ys � ayr � by � r(t)

y(t) �
Kv 0

2v 0
2  a�t cos v 0 t �

sin v 0 t 

v 0

 b �
K

2v 0
2 (�v 0 t cos v 0 t � sin v 0 t)

Kv0v � v0
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If , we have to integrate from to 2 (not to t). This gives

Figure 143 shows the input (the square wave) and the interesting output, which is zero from 0 to 1, then increases,
reaches a maximum (near 2.6) after the input has become zero (why?), and finally decreases to zero in a monotone
fashion. �

Fig. 143. Square wave and response in Example 5

Integral Equations
Convolution also helps in solving certain integral equations, that is, equations in which the
unknown function appears in an integral (and perhaps also outside of it). This concerns
equations with an integral of the form of a convolution. Hence these are special and it suffices
to explain the idea in terms of two examples and add a few problems in the problem set.

E X A M P L E  6 A Volterra Integral Equation of the Second Kind

Solve the Volterra integral equation of the second kind3

Solution. From (1) we see that the given equation can be written as a convolution, . Writing
and applying the convolution theorem, we obtain

The solution is

and gives the answer

Check the result by a CAS or by substitution and repeated integration by parts (which will need patience). �

E X A M P L E  7 Another Volterra Integral Equation of the Second Kind

Solve the Volterra integral equation

y(t) � �
t

0

 (1 � t) y(t � t) dt � 1 � sinh t.

y(t) � t �
t 3

6
.Y(s) �

s2 � 1

s4
�

1

s2
�

1

s4

Y(s) � Y(s) 

1

s2 � 1
� Y(s) 

s2

s2 � 1
�

1

s2
.

Y � l(y)
y � y * sin t � t

y(t) � �
t

0

 y(t) sin (t � t) dt � t.

y(t)

t

y(t )

0.5

0
10

1

2 3 4

Output (response)

y(t) � e�(t�2) � 1
2  

e�2(t�2) � (e�(t�1) � 1
2  

e�2(t�1)).

t � 1t � 2

236 CHAP. 6 Laplace Transforms

3If the upper limit of integration is variable, the equation is named after the Italian mathematician VITO
VOLTERRA (1860–1940), and if that limit is constant, the equation is named after the Swedish mathematician
ERIK IVAR FREDHOLM (1866–1927). “Of the second kind (first kind)” indicates that y occurs (does not
occur) outside of the integral.
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SEC. 6.5 Convolution. Integral Equations 237

Solution. By (1) we can write . Writing , we obtain by using the
convolution theorem and then taking common denominators

, hence

cancels on both sides, so that solving for Y simply gives

and the solution is �y(t) � cosh t.Y(s) �
s

s2 � 1

(s2 � s � 1)>s

Y(s) #
s2 � s � 1

s2 �
s2 � 1 � s

s(s2 � 1)
.Y(s) c1 � a1

s
�

1

s2b d �
1

s
�  

1

s2 � 1

Y � l(y)y � (1 � t) * y � 1 � sinh t

1–7 CONVOLUTIONS BY INTEGRATION
Find:

1. 2.

3. 4.

5. 6.

7.

8–14 INTEGRAL EQUATIONS
Solve by the Laplace transform, showing the details:

8.

9.

10.

11.

12.

13.

14.

15. CAS EXPERIMENT. Variation of a Parameter. 
(a) Replace 2 in Prob. 13 by a parameter k and
investigate graphically how the solution curve changes
if you vary k, in particular near .

(b) Make similar experiments with an integral equation
of your choice whose solution is oscillating.

k � �2

y(t) � �
t

0

 y(t)(t � t) dt � 2 �
1
2

t 2

y(t) � 2et�
t

0

 y(t)e�t dt � tet

y(t) � �
t

0

 y(t) cosh (t � t) dt � t � et

y(t) � �
t

0

 (t � t)y(t) dt � 1

y(t) � �
t

0

 y(t) sin 2(t � t) dt � sin 2t

y(t) � �
t

0

 y(t) dt � 1

y(t) � 4�
t

0

 y(t)(t � t) dt � 2t

t * et

eat * ebt
 (a  b)(sin vt) * (cos vt)

(cos vt) * (cos vt)et * e�t

1 * sin vt1 * 1

16. TEAM PROJECT. Properties of Convolution. Prove:

(a) Commutativity, 

(b) Associativity, 

(c) Distributivity, 

(d) Dirac’s delta. Derive the sifting formula (4) in Sec.
6.4 by using with [(1), Sec. 6.4] and applying
the mean value theorem for integrals.

(e) Unspecified driving force. Show that forced
vibrations governed by

with and an unspecified driving force r(t)
can be written in convolution form,

17–26 INVERSE TRANSFORMS 
BY CONVOLUTION

Showing details, find if equals:

17. 18.

19. 20.

21. 22.

23. 24.

25.

26. Partial Fractions. Solve Probs. 17, 21, and 23 by
partial fraction reduction.

18s

(s2 � 36)2

240

(s2 � 1)(s2 � 25)

40.5

s(s2 � 9)

e�as

s(s � 2)
v

s2(s2 � v2)

9

s(s � 3)

2ps

(s2 � p2)2

1

(s � a)2

5.5
(s � 1.5)(s � 4)

l( f )f (t)

y �
1
v

 sin vt * r(t) � K1 cos vt �
K2

v
 sin vt.

v  0

ys � v2y � r(t), y(0) � K1, yr(0) � K2

a � 0fk

f * (g1 � g2) � f * g1 � f * g2

( f * g) * v � f * (g * v)

f * g � g * f

P R O B L E M  S E T  6 . 5
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238 CHAP. 6 Laplace Transforms

6.6 Differentiation and Integration of Transforms.
ODEs with Variable Coefficients

The variety of methods for obtaining transforms and inverse transforms and their
application in solving ODEs is surprisingly large. We have seen that they include direct
integration, the use of linearity (Sec. 6.1), shifting (Secs. 6.1, 6.3), convolution (Sec. 6.5),
and differentiation and integration of functions (Sec. 6.2). In this section, we shall
consider operations of somewhat lesser importance. They are the differentiation and
integration of transforms and corresponding operations for functions . We show
how they are applied to ODEs with variable coefficients.

Differentiation of Transforms
It can be shown that, if a function f(t) satisfies the conditions of the existence theorem in
Sec. 6.1, then the derivative of the transform can be obtained
by differentiating under the integral sign with respect to s (proof in Ref. [GenRef4]
listed in App. 1). Thus, if

, then

Consequently, if , then

(1)

where the second formula is obtained by applying on both sides of the first formula.
In this way, differentiation of the transform of a function corresponds to the multiplication
of the function by .

E X A M P L E  1 Differentiation of Transforms. Formulas 21–23 in Sec. 6.9

We shall derive the following three formulas.

(2)

(3)

(4)

Solution. From (1) and formula 8 (with ) in Table 6.1 of Sec. 6.1 we obtain by differentiation
(CAUTION! Chain rule!)

.l(t sin bt) �
2bs

(s2 � b2)2

v � b

1

2b
 (sin bt � bt cos bt)

s2

(s2 � b2)2

1

2b
 sin bt

s

(s2 � b2)2

1

2b3
 (sin bt � bt cos bt)

1

(s2 � b2)2

f (t)l( f )

�t

l
�1

l{tf (t)} � �Fr(s),   hence   l�1{Fr(s)} � �tf (t)

l( f ) � F(s)

Fr(s) � ��
�

0

e�stt f (t) dt.F(s) � �
�

0

e�stf (t) dt

F(s)
F(s) � l( f )Fr(s) � dF>ds

f (t)F(s)

f (t)
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Dividing by and using the linearity of , we obtain (3).
Formulas (2) and (4) are obtained as follows. From (1) and formula 7 (with in Table 6.1 we find

(5) .

From this and formula 8 (with ) in Table 6.1 we have

.

On the right we now take the common denominator. Then we see that for the plus sign the numerator becomes
, so that (4) follows by division by 2. Similarly, for the minus sign the numerator

takes the form , and we obtain (2). This agrees with Example 2 in Sec. 6.5.

Integration of Transforms
Similarly, if satisfies the conditions of the existence theorem in Sec. 6.1 and the limit
of , as t approaches 0 from the right, exists, then for ,

(6) hence .

In this way, integration of the transform of a function corresponds to the division of
by t.

We indicate how (6) is obtained. From the definition it follows that

and it can be shown (see Ref. [GenRef4] in App. 1) that under the above assumptions we
may reverse the order of integration, that is,

Integration of with respect to gives . Here the integral over on the right
equals . Therefore,

E X A M P L E  2 Differentiation and Integration of Transforms

Find the inverse transform of .

Solution. Denote the given transform by F(s). Its derivative is

.Fr(s) �
d

ds
 (ln (s2 � v2) � ln s2) �

2s

s2 � v2
�  

2s

s2

ln a1 �
v2

s2
b � ln 

s2 � v2

s2

(s � k). ��
�

s

F(s�) ds� � �
�

0

e�st  

f (t)

t
 dt � l e f (t)

t
f

e�st>t
s�e�s�t>(�t)s�e�s�t

�
�

s

F(s�) ds� � �
�

0

c �
�

s

e�s~tf (t) ds� d  dt � �
�

0

f (t) c �
�

s

e�s~t ds� d  dt.

�
�

s

F(s�) ds� � �
�

s

c �
�

0

e�s~tf (t) dt dds�,

f (t)
f (t)

l
�1 e �

�

s

F(s� ) ds� f �
f (t)

t
l e f (t)

t
f � �

�

s

F(s�) ds�

s � kf (t)>t
f (t)

�s2 � b2 � s2 � b2 � �2b2
s2 � b2 � s2 � b2 � 2s2

l at cos bt �
1

b
 sin btb �

s2 � b2

(s2 � b2)2
� ˛

1

s2 � b2

v � b

l(t cos bt) � � 

(s2 � b2) � 2s2

(s2 � b2)2
�

s2 � b2

(s2 � b2)2

v � b)
l2b
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Taking the inverse transform and using (1), we obtain

.

Hence the inverse is . This agrees with formula 42 in Sec. 6.9.
Alternatively, if we let

, then .

From this and (6) we get, in agreement with the answer just obtained,

,

the minus occurring since s is the lower limit of integration.
In a similar way we obtain formula 43 in Sec. 6.9,

. �

Special Linear ODEs with Variable Coefficients
Formula (1) can be used to solve certain ODEs with variable coefficients. The idea is this.
Let . Then (see Sec. 6.2). Hence by (1),

(7) .

Similarly, and by (1)

(8)

Hence if an ODE has coefficients such as , the subsidiary equation is a first-order
ODE for Y, which is sometimes simpler than the given second-order ODE. But if the latter
has coefficients , then two applications of (1) would give a second-order
ODE for Y, and this shows that the present method works well only for rather special
ODEs with variable coefficients. An important ODE for which the method is advantageous
is the following.

E X A M P L E  3 Laguerre’s Equation. Laguerre Polynomials

Laguerre’s ODE is

(9) .

We determine a solution of (9) with . From (7)–(9) we get the subsidiary equation

.c�2sY � s2
 

dY

ds
� y(0) d � sY � y(0) � a�Y � s 

dY

ds
b � nY � 0

n � 0, 1, 2, Á

tys � (1 � t)yr � ny � 0

at 2 � bt � c

at � b

l(tys) � �  
d
ds

 [s2Y � sy(0) � yr(0)] � �2sY � s2 
dY
ds

� y(0). 

l(ys) � s2Y � sy(0) � yr(0) 

l(tyr) � � 
d
ds

 [sY � y(0)] � �Y � s 
dY
ds

l(yr) � sY � y(0)l(y) � Y

l
�1 e ln a1 �  

a2

s2 b f �
2

t
 (1 � cosh at2

l
�1 e ln 

s2 � v2

s2
 

f � l�1 e �
�

s

G(s) ds f � � 

g(t)

t
�

2

t
 (1 � cos vt2

g(t) � l�1(G) � 2(cos vt � 1)G(s) �
2s

s2 � v2 �  

2

s

f (t) � 2(1 � cos vt)>tf (t) of F(s)

l
�{Fr(s)} � l�1 e 2s

s2 � v2 �
2

s
 f � 2 cos vt � 2 � �tf (t2

240 CHAP. 6 Laplace Transforms
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Simplification gives

.

Separating variables, using partial fractions, integrating (with the constant of integration taken to be zero), and
taking exponentials, we get

(10*) and .

We write and prove Rodrigues’s formula

(10) , .

These are polynomials because the exponential terms cancel if we perform the indicated differentiations. They
are called Laguerre polynomials and are usually denoted by (see Problem Set 5.7, but we continue to reserve
capital letters for transforms). We prove (10). By Table 6.1 and the first shifting theorem (s-shifting),

hence by (3) in Sec. 6.2

because the derivatives up to the order are zero at 0. Now make another shift and divide by to get 
[see (10) and then (10*)]

. �l(ln) �
(s � 1)n

sn�1
� Y

n!n � 1

l e dn

dt n
 (t ne�t) f �

n!sn

(s � 1)n�1
l(t ne�t) �

n!

(s � 1)n�1
 ,

Ln

n � 1, 2, Ál0 � 1,  ln(t) �
et

n!
  

dn

dt n
 (t ne�t)

ln � l�1(Y)

Y �
(s � 1)n

sn�1

dY

Y
� � 

n � 1 � s

s � s2  ds � a n

s � 1
�  

n � 1

s
b ds

(s � s2) 

dY

ds
� (n � 1 � s)Y � 0

1. REVIEW REPORT. Differentiation and Integration
of Functions and Transforms. Make a draft of these
four operations from memory. Then compare your draft
with the text and write a 2- to 3-page report on these
operations and their significance in applications.

2–11 TRANSFORMS BY DIFFERENTIATION
Showing the details of your work, find if equals:

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12. CAS PROJECT. Laguerre Polynomials. (a) Write a
CAS program for finding in explicit form from (10).
Apply it to calculate . Verify that 
satisfy Laguerre’s differential equation (9).

l0, Á , l10l0, Á , l10

ln(t)

4t cos 12 
pt

t nekt

1
2t 2 sin pt

te�kt sin t

t 2 cosh 2t 

t 2 sin 3t

t cos vt

te�t cos t

1
2 

te�3t

3t sinh 4t

f (t)l( f )

(b) Show that

and calculate from this formula.

(c) Calculate recursively from 
t by

.

(d) A generating function (definition in Problem Set
5.2) for the Laguerre polynomials is

.

Obtain from the corresponding partial sum
of this power series in x and compare the with those
in (a), (b), or (c).

13. CAS EXPERIMENT. Laguerre Polynomials. Ex-
periment with the graphs of , finding out
empirically how the first maximum, first minimum,
is moving with respect to its location as a function of
n. Write a short report on this.

Á

l0, Á , l10

ln

l0, Á , l10

a
�

n�0

ln(t)xn � (1 � x)�1etx>(x�1)

(n � 1)ln�1 � (2n � 1 � t)ln � nln�1

1 �
l1 �l0 � 1,l0, Á , l10

l0, Á , l10

ln(t) � a
n

m�0

(�1)m

m!
 a n

m
b t m

P R O B L E M  S E T  6 . 6

c06.qxd  10/28/10  6:33 PM  Page 241



14–20 INVERSE TRANSFORMS
Using differentiation, integration, s-shifting, or convolution,
and showing the details, find if equals:

14.

15.
s

(s2 � 9)2

s

(s2 � 16)2

l( f )f (t)

242 CHAP. 6 Laplace Transforms

16.

17. 18.

19. 20. ln 
s � a
s � b

ln 
s2 � 1

(s � 1)2

arccot 
s
pln 

s
s � 1

2s � 6

(s2 � 6s � 10)2

6.7 Systems of ODEs
The Laplace transform method may also be used for solving systems of ODEs, as we shall
explain in terms of typical applications. We consider a first-order linear system with
constant coefficients (as discussed in Sec. 4.1)

(1)

Writing , we obtain from (1) in Sec. 6.2
the subsidiary system

.

By collecting the - and -terms we have

(2)

By solving this system algebraically for and taking the inverse transform we
obtain the solution of the given system (1).

Note that (1) and (2) may be written in vector form (and similarly for the systems in
the examples); thus, setting 

we have

and .

E X A M P L E  1 Mixing Problem Involving Two Tanks

Tank in Fig. 144 initially contains 100 gal of pure water. Tank initially contains 100 gal of water in which
150 lb of salt are dissolved. The inflow into is from and containing 6 lb of salt from
the outside. The inflow into is 8 gal/min from . The outflow from is , as shown in
the figure. The mixtures are kept uniform by stirring. Find and plot the salt contents and in and

respectively.T2,
T1y2(t)y1(t)

2 � 6 � 8 gal>minT2T1T2

6 gal>minT22 gal>minT1

T2T1

(A � sI)Y � �y(0) � Gyr � Ay � g

G � 3G1 G24
T

Y � 3Y1 Y24
T,g � 3g1 g24

T,A � 3ajk4,y � 3y1 y24
T,

y1 � l�1(Y1), y2 � l�1(Y2)
Y1(s),Y2(s)

   a21Y1  � (a22 � s)Y2 � �y2(0) � G2(s).

 (a11 � s)Y1 �   a12Y2   � �y1(0) � G1(s)

Y2Y1

sY2 � y2(0) � a21Y1 � a22Y2 � G2(s)

sY1 � y1(0) � a11Y1 � a12Y2 � G1(s)

Y1 � l(˛y1), Y2 � l(˛˛y2), G1 � l(g1), G2 � l(g2)

 y2r � a21y1 � a22y2 � g2(t).

 y1r � a11y1 � a12y2 � g1(t)
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Solution. The model is obtained in the form of two equations

for the two tanks (see Sec. 4.1). Thus,

. .

The initial conditions are . From this we see that the subsidiary system (2) is

.

We solve this algebraically for and by elimination (or by Cramer’s rule in Sec. 7.7), and we write the
solutions in terms of partial fractions,

.

By taking the inverse transform we arrive at the solution

Figure 144 shows the interesting plot of these functions. Can you give physical explanations for their main
features? Why do they have the limit 100? Why is not monotone, whereas is? Why is from some time
on suddenly larger than y2? Etc.

Fig. 144. Mixing problem in Example 1

Other systems of ODEs of practical importance can be solved by the Laplace transform
method in a similar way, and eigenvalues and eigenvectors, as we had to determine them
in Chap. 4, will come out automatically, as we have seen in Example 1.

E X A M P L E  2 Electrical Network

Find the currents and in the network in Fig. 145 with L and R measured in terms of the usual units
(see Sec. 2.9), volts if sec and 0 thereafter, and .

Solution. The model of the network is obtained from Kirchhoff’s Voltage Law as in Sec. 2.9. For the lower
circuit we obtain

0.8i r1 � 1(i1 � i2) � 1.4i1 � 100[1 � u(t � 1
2)]

i(0) � 0, ir(0) � 00 � t � 0.5v(t) � 100
i2(t)i1(t)

T
1

100

150

50

20015010050 t

y(t)

Salt content in T
2

Salt content in T
1

8 gal/min

2 gal/min

6 gal/min

T
2 

6 gal/min

�
y1y1y2

 y2 � 100 � 125e�0.12t � 75e�0.04t.

 y1 � 100 � 62.5e�0.12t � 37.5e�0.04t

Y2 �
150s2 � 12s � 0.48

s(s � 0.12)(s � 0.04)
�

100

s
�

125

s � 0.12
�  

75

s � 0.04

Y1 �
9s � 0.48

s(s � 0.12)(s � 0.04)
�

100

s
�  

62.5

s � 0.12
�  

37.5

s � 0.04

Y2Y1

    0.08Y1  � (�0.08 � s)Y2 � �150

 (�0.08 � s)Y1 �   0.02Y2   � � 

6
s

y1(0) � 0, y2(0) � 150

yr2 � 8
100  

y1 � 8
100  

y2yr1 � � 
8

100  
y1 � 2

100  
y2 � 6

Time rate of change � Inflow>min � Outflow>min
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and for the upper

Division by 0.8 and ordering gives for the lower circuit

and for the upper

With we obtain from (1) in Sec. 6.2 and the second shifting theorem the subsidiary
system

Solving algebraically for and gives

,

.

The right sides, without the factor , have the partial fraction expansions

and

respectively. The inverse transform of this gives the solution for ,

i2(t) � � 
250
3  

e�t>2 � 250
21  

e�7t>2 � 500
7

(0 
 t 
 1
2).

i1(t) � � 
125
3  

e�t>2 � 625
21  

e�7t>2 � 500
7

0 
 t 
 1
2

500

7s
�  

250

3(s � 1
2)

�
250

21(s � 7
2)

 ,

500

7s
�  

125

3(s � 1
2)

�  

625

21(s � 7
2)

1 � e�s>2

I2 �
125

s(s � 1
2)(s � 7

2)
 (1 � e�s>2)

I1 �
125(s � 1)

s(s � 1
2)(s � 7

2)
 (1 � e�s>2)

I2I1

 �I1 � (s � 1)I2 � 0.

 (s � 3)I1 � 1.25I2 � 125 a1
s

�  

e�s>2

s
b

i1(0) � 0, i2(0) � 0

i r2 � i1 �  i2 � 0.

i r1 � 3i1 � 1.25 i2 � 125[1 � u(t � 1
2)]

1 # i r2 � 1(i2 � i1)  � 0.
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Fig. 145. Electrical network in Example 2

L
1 

= 0.8 H

L
2 

= 1 H

Network

R
2 

= 1.4 Ω

R
1 

= 1 Ω

i2

i2(t)
i1

i1(t)

v(t)

20

30

10

0
2.5 321.510.50 t

i(t)

Currents
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SEC. 6.7 Systems of ODEs 245

According to the second shifting theorem the solution for is and , that is,

Can you explain physically why both currents eventually go to zero, and why has a sharp cusp whereas
has a continuous tangent direction at ?

Systems of ODEs of higher order can be solved by the Laplace transform method in a
similar fashion. As an important application, typical of many similar mechanical systems,
we consider coupled vibrating masses on springs.

Fig. 146. Example 3

E X A M P L E  3 Model of Two Masses on Springs (Fig. 146)

The mechanical system in Fig. 146 consists of two bodies of mass 1 on three springs of the same spring constant
k and of negligibly small masses of the springs. Also damping is assumed to be practically zero. Then the model
of the physical system is the system of ODEs

(3)
.

Here and are the displacements of the bodies from their positions of static equilibrium. These ODEs
follow from Newton’s second law, , as in Sec. 2.4 for a single body. We again
regard downward forces as positive and upward as negative. On the upper body, is the force of the
upper spring and that of the middle spring, being the net change in spring length—think
this over before going on. On the lower body, is the force of the middle spring and that
of the lower spring.

We shall determine the solution corresponding to the initial conditions 
. Let and . Then from (2) in Sec. 6.2 and the initial conditions we obtain

the subsidiary system

.

This system of linear algebraic equations in the unknowns and may be written

  �ky1   � (s2 � 2k)Y2 � s � 23k.

 (s2 � 2k)Y1 �   kY2  � s � 23k

Y2Y1

s2Y2 � s � 23k � �k(Y2 � Y1) � kY2

s2Y1 � s � 23k � �kY1 � k(Y2 � Y1)

Y2 � l(y2)Y1 � l(y1)yr2(0) � �23k
yr1(0) � 23k,y2(0) � 1,y1(0) � 1,

�ky2�k(y2 � y1)
y2 � y1k(y2 � y1)

�ky1

Mass � Acceleration � Force
y2y1

 ys2 � �k(y2 � y1) � ky2

 ys1 � �ky1 � k(y2 � y1)

0

0

y
1

y
2

k

k

k

m
1
 = 1

m
2
 = 1

�t � 1
2i2(t)

i1(t)

i2(t) � � 
250
3  

(1 � e1>4)e�t>2 � 250
21  

(1 � e7>4)e�7t>2
(t � 1

2).
i1(t) � � 

125
3  

(1 � e1>4)e�t>2 � 625
21  

(1 � e7>4)e�7t>2

i2(t) � i2(t � 1
2)i1(t) � i1(t � 1

2)t � 1
2
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Elimination (or Cramer’s rule in Sec. 7.7) yields the solution, which we can expand in terms of partial fractions,

.

Hence the solution of our initial value problem is (Fig. 147)

.

We see that the motion of each mass is harmonic (the system is undamped!), being the superposition of a “slow”
oscillation and a “rapid” oscillation. �

y2(t) � l�1(Y2) � cos 2kt � sin 23kt

y1(t) � l�1(Y1) � cos 2kt � sin 23kt

Y2 �
(s2 � 2k)(s � 23k) � k(s � 23k)

(s2 � 2k) 2 � k2
�

s

s2 � k
�  

23k

s2 � 3k

Y1 �
(s � 23k)(s2 � 2k) � k(s � 23k)

(s2 � 2k) 2 � k2
�

s

s2 � k
�
23k

s2 � 3k
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t0 42

2

–2

1

–1

π π

y1(t) y2(t)

Fig. 147. Solutions in Example 3

1. TEAM PROJECT. Comparison of Methods for
Linear Systems of ODEs

(a) Models. Solve the models in Examples 1 and 2 of
Sec. 4.1 by Laplace transforms and compare the amount
of work with that in Sec. 4.1. Show the details of your
work.

(b) Homogeneous Systems. Solve the systems (8),
(11)–(13) in Sec. 4.3 by Laplace transforms. Show the
details.

(c) Nonhomogeneous System. Solve the system (3) in
Sec. 4.6 by Laplace transforms. Show the details.

2–15 SYSTEMS OF ODES
Using the Laplace transform and showing the details of
your work, solve the IVP:

2.

3.

4.
y1(0) � 0, y2(0) � 3

y2r � �3y1 � 9 sin 4t,y1r � 4y2 � 8 cos 4t,

y1(0) � 3, y2(0) � 4
y2r � 3y1 � 2y2,y1r � �y1 � 4y2,

y2(0) � 0y1(0) � 1,
y1 � y2r � 2 cos t,y1r � y2 � 0,

5.

6.

7.

8.

9.

10.

11.

12.

13.
 y2r(0) � �6 y2(0) � 8, y1r(0) � 6,y1(0) � 0,

 y2s � y1 � 101 sin 10t,y1s � y2 � �101 sin 10t,

 y2r(0) � 0 y2(0) � 3, y1r(0) � 0,y1(0) � 1,
 y2s � 2y1 � 5y2,y1s � �2y1 � 2y2,

 y2r(0) � 2 y2(0) � 1, y1r(0) � 3,y1(0) � 2,
 y2s � 4y1 � 4et,y1s � y1 � 3y2,

 y2(0) � 0y1(0) � 1,
y1r � �y2, y2r � �y1 � 2[1 � u(t � 2p)] cos t,

y2(0) � 1
 y1(0) � 3, y2r � �y1 � 2y2,y1r � 4y1 � y2,

 y2(0) � 3y1(0) � 4,
 y2r � 4y1 � y2,y1r � �2y1 � 3y2,

 y2(0) � 0 y1(0) � 3,y2r � y1 � 3y2 � u(t � 1)et,
y1r � 2y1 � 4y2 � u(t � 1)et,

 y2(0) � �3y1(0) � 1,
 y2r � y1 � 5y2,y1r � 5y1 � y2,

 y2(0) � 0y1(0) � 0,
 y2r � �y1 � 1 � u(t � 1),y1r � y2 � 1 � u(t � 1),

P R O B L E M  S E T  6 . 7
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will the currents practically reach their steady state?

Fig. 148. Electrical network and 
currents in Problem 19

20. Single cosine wave. Solve Prob. 19 when the EMF
(electromotive force) is acting from 0 to only. Can
you do this just by looking at Prob. 19, practically
without calculation?

2p

v(t)

2 H 4 H

4 Ω 8 Ω

8 Ω
i1 i2

Network

20

0

40

–40

–20
10862 t

i(t)

i1(t)

i2(t)

4

Currents

14.

15.

FURTHER APPLICATIONS

16. Forced vibrations of two masses. Solve the model in
Example 3 with and initial conditions 

under the assumption
that the force is acting on the first body and the
force on the second. Graph the two curves
on common axes and explain the motion physically.

17. CAS Experiment. Effect of Initial Conditions. In
Prob. 16, vary the initial conditions systematically,
describe and explain the graphs physically. The great
variety of curves will surprise you. Are they always
periodic? Can you find empirical laws for the changes
in terms of continuous changes of those conditions?

18. Mixing problem. What will happen in Example 1 if
you double all flows (in particular, an increase to

containing 12 lb of salt from the outside),
leaving the size of the tanks and the initial conditions
as before? First guess, then calculate. Can you relate
the new solution to the old one?

19. Electrical network. Using Laplace transforms,
find the currents and in Fig. 148, where

and . How sooni1(0) � 0, i2(0) � 0v(t) � 390 cos t
i2(t)i1(t)

12 gal>min

�11 sin t
11 sin t

y2r � �1y2(0) � 1,y1r(0) � 1,
y1(0) � 1,k � 4

y3(0) � 0
 y1(0) � 1, y2(0) � 1,y3r � y1r � 2et � e�t,

 y2r � y3r � et,y1r � y2r � 2 sinh t,

y3(0) � 0y2(0) � 0,y1(0) � 2,
2y2r � 4y3r � �16t

�2y1r � y3r � 1,4y1r � y2
r � 2y3r � 0,
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6.8 Laplace Transform: General Formulas
Formula Name, Comments Sec.

Definition of Transform

Inverse Transform
6.1

Linearity 6.1

s-Shifting
(First Shifting Theorem) 6.1

Differentiation of Function

6.2

Integration of Function

Convolution 6.5

t-Shifting
(Second Shifting Theorem)

6.3

Differentiation of Transform

Integration of Transform
6.6

f Periodic with Period p

6.4
Project

16
l( f ) �

1

1 � e�ps �
p

0

e�stf (t) dt

l e f (t)

t
f � �

�

s

F( s�) d s�

l{tf (t)} � �Fr(s)

l
�1{e�asF (s)} � f (t � a) u(t � a)

l{˛f (t � a) u(t � a)} � e�asF(s)

l( f * g) � l( f )l(g)

 � �
t

0

f (t � t)g(t) dt

 ( f * g)(t) � �
t

0

f (t)g(t � t) dt

l e �
t

0

f (t) dtf �
1
s  l(  f )

Á � f (n�1)(0)

l( f (n)) � sn
l(  f ) � s(n�1)f (0) � Á

l( f s) � s2
l(  f ) � sf (0) � f r(0)

l( f r) � sl( f ) � f (0)

l
�1{F(s � a)} � eatf (t)

l{eatf (t)} � F(s � a)

l{af (t) � bg(t)} � al{ f (t)} � bl{g(t)}

f (t) � l�1{F(s)}

F(s) � l{ f (t)} � �
�

0

e�stf (t) dt
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SEC. 6.9 Table of Laplace Transforms 249

6.9 Table of Laplace Transforms
For more extensive tables, see Ref. [A9] in Appendix 1.

Sec.

1 1

2 t

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
1

v3
 (vt � sin vt)

1

s2(s2 � v2)

1

v2
 (1 � cos vt)

1

s(s2 � v2)

eat cos vt
s � a

(s � a)2 � v2

1
v

 eat sinh vt
1

(s � a)2 � v2

cosh at
s

s2 � a2

1
a sinh at

1

s2 � a2

cos vt
s

s2 � v2

1
v

 sin vt
1

s2 � v2

1

a � b
 (aeat � bebt)

s

(s � a)(s � b)
  (a  b)

1

a � b
 (eat � ebt)

1

(s � a)(s � b)
  (a  b)

1

�(k)
 t k�1eat1

(s � a)k
  (k � 0)

1

(n � 1)!
 t n�1eat1

(s � a)n
  (n � 1, 2, Á )

teat1

(s � a)2

eat1
s � a

t a�1>�(a)1>sa  (a � 0)

21t>p1>s3>2

1>1pt1>1s

t n�1>(n � 1)!1>sn  (n � 1, 2, Á )

1>s2

1>s

f (t)F (s) � l{˛f (t)}

(continued )

t 6.1

t 6.1

t 6.1

x 6.2
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Table of Laplace Transforms (continued )

Sec.

21

22

23

24

25

26

27

28

29

30 I 5.5

31 J 5.4

32

33 I 5.5

34 6.3

35 6.4

36 J 5.4

37

38

39
k

22pt 3
 e�k2>4t(k � 0)e�k1s

1

1pk
 sinh 21kt

1

s3>2
 ek>s

1

1pt
 cos 21kt

1

1s
 e�k>s

J0(21kt)
1
s  e�k>s

d(t � a)e�as

u(t � a)e�as>s

1p

�(k)
 a t

2a
b

k�1>2 

Ik�1>2(at)(k � 0)
1

(s2 � a2)k

1

1pt
 eat(1 � 2at)

s

(s � a)3>2

J0(at)
1

2s2 � a2

e�(a�b)t>2I0  aa � b

2
 tb1

1s � a 1s � b

1

22pt 3
 (ebt � eat)1s � a � 1s � b

1

2k2
 (cosh kt � cos kt)

s

s4 � k4

1

2k3
 (sinh kt � sin kt)

1

s4 � k4

1

2k2
 sin kt sinh kt

s

s4 � 4k4

1

4k3
 (sin kt cos kt � cos kt sinh kt)

1

s4 � 4k4

1

b2 � a2
 (cos at � cos bt)(a2  b2)

s

(s2 � a2)(s 2 � b2)

1

2v
 (sin vt � vt cos vt)

s2

(s2 � v2) 2

t

2v
 sin vt

s

(s2 � v2) 2

1

2v3
 (sin vt � vt cos vt)

1

(s2 � v2)2

f (t)F (s) � l{˛f (t)}

250 CHAP. 6 Laplace Transforms

(continued )

t 6.6
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Table of Laplace Transforms (continued )

Sec.

40

41

42 6.6

43

44

45
App. 
A3.1Si(t)

1
s  arccot s

1
t
 sin vtarctan 

v

s

2
t
 (1 � cosh at)ln 

s2 � a2

s2

2
t
 (1 � cos vt)ln 

s2 � v2

s2

1
t

 (ebt � eat)ln 
s � a

s � b

g 5.5�ln t � g (g � 0.5772)
1
s  ln s

f (t)F (s) � l{˛f (t)}

Chapter 6 Review Questions and Problems 251

1. State the Laplace transforms of a few simple functions
from memory.

2. What are the steps of solving an ODE by the Laplace
transform?

3. In what cases of solving ODEs is the present method
preferable to that in Chap. 2?

4. What property of the Laplace transform is crucial in
solving ODEs?

5. Is ?
? Explain.

6. When and how do you use the unit step function and
Dirac’s delta?

7. If you know , how would you find
?

8. Explain the use of the two shifting theorems from memory.

9. Can a discontinuous function have a Laplace transform?
Give reason.

10. If two different continuous functions have transforms,
the latter are different. Why is this practically important?

11–19 LAPLACE TRANSFORMS
Find the transform, indicating the method used and showing
the details.

11. 12.

13. 14. 16t 2u(t � 1
4)sin2 (1

2pt)

e�t(cos 4t � 2 sin 4t)5 cosh 2t � 3 sinh t

l
�1{F(s)>s2}

f (t) � l�1{F(s)}

l{ f (t)g(t)} � l{ f (t)}l{g(t)}
l{ f (t) � g(t)} � l{ f (t)} � l{g(t)}

15. 16.

17. 18.

19.

20–28 INVERSE LAPLACE TRANSFORM
Find the inverse transform, indicating the method used and
showing the details:

20. 21.

22. 23.

24. 25.

26. 27.

28.

29–37 ODEs AND SYSTEMS
Solve by the Laplace transform, showing the details and
graphing the solution:

29.

30. ys � 16y � 4d(t � p), y(0) � �1, yr(0) � 0

ys � 4yr � 5y � 50t, y(0) � 5, yr(0) � �5

3s

s2 � 2s � 2

3s � 4

s2 � 4s � 5

2s � 10

s3
 e�5s

6(s � 1)

s4

s2 � 6.25

(s2 � 6.25)2

v cos u � s sin u

s2 � v2

1
16

s2 � s � 1
2

s � 1

s2
 e�s7.5

s2 � 2s � 8

12t * e�3t

(sin vt) * (cos vt)t cos t � sin t

u(t � 2p) sin tet>2u(t � 3)

C H A P T E R  6  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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31.

32.

33.

34.

35.

36.

37.

38–45 MASS–SPRING SYSTEMS, CIRCUITS,
NETWORKS

Model and solve by the Laplace transform:

38. Show that the model of the mechanical system in 
Fig. 149 (no friction, no damping) is 

Fig. 149. System in Problems 38 and 39

39. In Prob. 38, let 
. Find the solution satisfying the ini-

tial conditions 
.

40. Find the model (the system of ODEs) in Prob. 38
extended by adding another mass and another spring
of modulus in series.

41. Find the current in the RC-circuit in Fig. 150,
where if

if and the initial charge on the
capacitor is 0.

Fig. 150. RC-circuit

R C

v(t)

t � 4,v(t) � 40 V
0 � t � 4,R � 10 �, C � 0.1 F, v(t) � 10t V

i(t)

k4

m3

� �1 meter>secy2r(0)
y1r(0) � 1 meter>sec,y1(0) � y2(0) � 0,

k2 � 40 kg>sec2
20 kg>sec2,k1 � k3 �m1 � m2 � 10 kg,

0
y

1

k
1

k
2

k
3

0
y

2

 m2˛˛

y2s � �k2(˛˛y2 � y1) � k3˛

y2).

 m1˛˛

y1s � �k1˛˛˛

y1 � k2(˛˛y2 � y1)

 y2(0) � 0y1(0) � 1,
 y2r � �y1 � u(t � 2p),y1r � y2 � u(t � p),

y2(0) � �4
 y1(0) � �4, y2r � y1 � 2y2,y1r � 2y1 � 4y2,

y2(0) � 0
 y1(0) � 3, y2r � y1 � 3y2,y1r � 2y1 � 4y2,

y2(0) � 0
 y1(0) � 0,y2r � �4y1 � d(t � p),y1r � y2,

ys � 3yr � 2y � 2u(t � 2), y(0) � 0, yr(0) � 0

yr(0) � 0
ys � 4y � d(t � p) � d(t � 2p), y(0) � 1,

yr(0) � �1
y(0) � 1,ys � yr � 2y � 12u(t � p) sin t,

252 CHAP. 6 Laplace Transforms

42. Find and graph the charge and the current in
the LC-circuit in Fig. 151, assuming 

if if , and
zero initial current and charge.

43. Find the current in the RLC-circuit in Fig. 152, where

and current and charge at are zero.

Fig. 151. LC-circuit Fig. 152. RLC-circuit

44. Show that, by Kirchhoff’s Voltage Law (Sec. 2.9), the
currents in the network in Fig. 153 are obtained from
the system

Solve this system, assuming that ,
.

Fig. 153. Network in Problem 44

45. Set up the model of the network in Fig. 154 and find
the solution, assuming that all charges and currents are
0 when the switch is closed at . Find the limits of

and as , (i) from the solution, (ii) directly
from the given network.

Fig. 154. Network in Problem 45

L = 5 H

Switch 

C = 0.05 F

i1 i2
V

t : �i2(t)i1(t)
t � 0

v(t)

L

R C

i1 i2

i2(0) � 2 Ai1(0) � 0,v � 20 V,C � 0.05 F,
L � 20 HR � 10 �,

 R(i2r � i1r) �
1
C

 i2 � 0.

 Li1r � R(i1 � i2) � v(t)

R

C

L

v(t)

C L

v(t)

t � 0
R � 160 �, L � 20 H, C � 0.002 F, v(t) � 37 sin 10t V,

i(t)

t � p0 � t � p, v(t) � 0v(t) � 1 � e�t
C � 1 F,L � 1 H,

i(t)q(t)
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Summary of Chapter 6 253

The main purpose of Laplace transforms is the solution of differential equations and
systems of such equations, as well as corresponding initial value problems. The
Laplace transform of a function is defined by

(1) (Sec. 6.1).

This definition is motivated by the property that the differentiation of f with respect
to t corresponds to the multiplication of the transform F by s; more precisely,

(2) (Sec. 6.2)

etc. Hence by taking the transform of a given differential equation

(3) (a, b constant)

and writing we obtain the subsidiary equation

(4) .

Here, in obtaining the transform we can get help from the small table in Sec. 6.1
or the larger table in Sec. 6.9. This is the first step. In the second step we solve the
subsidiary equation algebraically for . In the third step we determine the inverse
transform , that is, the solution of the problem. This is generally
the hardest step, and in it we may again use one of those two tables. will often
be a rational function, so that we can obtain the inverse by partial fraction
reduction (Sec. 6.4) if we see no simpler way.

The Laplace method avoids the determination of a general solution of the
homogeneous ODE, and we also need not determine values of arbitrary constants
in a general solution from initial conditions; instead, we can insert the latter directly
into (4). Two further facts account for the practical importance of the Laplace
transform. First, it has some basic properties and resulting techniques that simplify
the determination of transforms and inverses. The most important of these properties
are listed in Sec. 6.8, together with references to the corresponding sections. More
on the use of unit step functions and Dirac’s delta can be found in Secs. 6.3 and
6.4, and more on convolution in Sec. 6.5. Second, due to these properties, the present
method is particularly suitable for handling right sides given by different
expressions over different intervals of time, for instance, when is a square wave
or an impulse or of a form such as if and 0 elsewhere.

The application of the Laplace transform to systems of ODEs is shown in Sec. 6.7.
(The application to PDEs follows in Sec. 12.12.) 

0 
 t 
 4pr(t) � cos t
r(t)

r(t)

l
�1(Y)

Y(s)
y(t) � l�1(Y)

Y(s)

l(r)

(s2 � as � b)Y � l(r) � sf (0) � f r(0) � af (0)

l(y) � Y(s),

ys � ayr � by � r(t)

 l( f s) � s2
l( f ) � sf (0) � f r(0)

 l( f r) � sl( f ) � f (0)

F(s) � l( f ) � �
�

0

e�stf (t) dt

f (t)F(s) � l( f )

SUMMARY OF CHAPTER 6
Laplace Transforms
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C H A P T E R  7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

C H A P T E R  8 Linear Algebra: Matrix Eigenvalue Problems

C H A P T E R  9 Vector Differential Calculus. Grad, Div, Curl

C H A P T E R  1 0 Vector Integral Calculus. Integral Theorems

255

P A R T B

Linear Algebra.
Vector Calculus

Matrices and vectors, which underlie linear algebra (Chaps. 7 and 8), allow us to represent
numbers or functions in an ordered and compact form. Matrices can hold enormous amounts
of data—think of a network of millions of computer connections or cell phone connections—
in a form that can be rapidly processed by computers. The main topic of Chap. 7 is how
to solve systems of linear equations using matrices. Concepts of rank, basis, linear
transformations, and vector spaces are closely related. Chapter 8 deals with eigenvalue
problems. Linear algebra is an active field that has many applications in engineering
physics, numerics (see Chaps. 20–22), economics, and others.

Chapters 9 and 10 extend calculus to vector calculus. We start with vectors from linear
algebra and develop vector differential calculus. We differentiate functions of several
variables and discuss vector differential operations such as grad, div, and curl. Chapter 10
extends regular integration to integration over curves, surfaces, and solids, thereby
obtaining new types of integrals. Ingenious theorems by Gauss, Green, and Stokes allow
us to transform these integrals into one another.

Software suitable for linear algebra (Lapack, Maple, Mathematica, Matlab) can be found
in the list at the opening of Part E of the book if needed.

Numeric linear algebra (Chap. 20) can be studied directly after Chap. 7 or 8 because
Chap. 20 is independent of the other chapters in Part E on numerics.
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C H A P T E R 7

Linear Algebra: Matrices,
Vectors, Determinants. 
Linear Systems

Linear algebra is a fairly extensive subject that covers vectors and matrices, determinants,
systems of linear equations, vector spaces and linear transformations, eigenvalue problems,
and other topics. As an area of study it has a broad appeal in that it has many applications
in engineering, physics, geometry, computer science, economics, and other areas. It also
contributes to a deeper understanding of mathematics itself.

Matrices, which are rectangular arrays of numbers or functions, and vectors are the
main tools of linear algebra. Matrices are important because they let us express large
amounts of data and functions in an organized and concise form. Furthermore, since
matrices are single objects, we denote them by single letters and calculate with them
directly. All these features have made matrices and vectors very popular for expressing
scientific and mathematical ideas.

The chapter keeps a good mix between applications (electric networks, Markov
processes, traffic flow, etc.) and theory. Chapter 7 is structured as follows: Sections 7.1
and 7.2 provide an intuitive introduction to matrices and vectors and their operations,
including matrix multiplication. The next block of sections, that is, Secs. 7.3–7.5 provide
the most important method for solving systems of linear equations by the Gauss
elimination method. This method is a cornerstone of linear algebra, and the method
itself and variants of it appear in different areas of mathematics and in many applications.
It leads to a consideration of the behavior of solutions and concepts such as rank of a
matrix, linear independence, and bases. We shift to determinants, a topic that has
declined in importance, in Secs. 7.6 and 7.7. Section 7.8 covers inverses of matrices.
The chapter ends with vector spaces, inner product spaces, linear transformations, and
composition of linear transformations. Eigenvalue problems follow in Chap. 8.

COMMENT. Numeric linear algebra (Secs. 20.1–20.5) can be studied immediately
after this chapter.

Prerequisite: None.
Sections that may be omitted in a short course: 7.5, 7.9.
References and Answers to Problems: App. 1 Part B, and App. 2.
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7.1 Matrices, Vectors: 
Addition and Scalar Multiplication

The basic concepts and rules of matrix and vector algebra are introduced in Secs. 7.1 and
7.2 and are followed by linear systems (systems of linear equations), a main application,
in Sec. 7.3.

Let us first take a leisurely look at matrices before we formalize our discussion. A matrix
is a rectangular array of numbers or functions which we will enclose in brackets. For example,

(1)

are matrices. The numbers (or functions) are called entries or, less commonly, elements
of the matrix. The first matrix in (1) has two rows, which are the horizontal lines of entries.
Furthermore, it has three columns, which are the vertical lines of entries. The second and
third matrices are square matrices, which means that each has as many rows as columns—
3 and 2, respectively. The entries of the second matrix have two indices, signifying their
location within the matrix. The first index is the number of the row and the second is the
number of the column, so that together the entry’s position is uniquely identified. For
example, (read a two three) is in Row 2 and Column 3, etc. The notation is standard
and applies to all matrices, including those that are not square.

Matrices having just a single row or column are called vectors. Thus, the fourth matrix
in (1) has just one row and is called a row vector. The last matrix in (1) has just one
column and is called a column vector. Because the goal of the indexing of entries was
to uniquely identify the position of an element within a matrix, one index suffices for
vectors, whether they are row or column vectors. Thus, the third entry of the row vector
in (1) is denoted by 

Matrices are handy for storing and processing data in applications. Consider the
following two common examples.

E X A M P L E  1 Linear Systems, a Major Application of Matrices

We are given a system of linear equations, briefly a linear system, such as

where are the unknowns. We form the coefficient matrix, call it A, by listing the coefficients of the
unknowns in the position in which they appear in the linear equations. In the second equation, there is no
unknown which means that the coefficient of is 0 and hence in matrix A, Thus,a22 � 0,x2x2,

x1, x2, x3

4x1 � 6x2 � 9x3 � 6

6x1 � 2x3 � 20

5x1 � 8x2 � x3 � 10

a3.

a23

c e�x 2x2

e6x 4x
d ,  [a1 a2 a3],  c4

1
2

d

c0.3 1 �5

0 �0.2 16
d ,  Da11 a12 a13

a21 a22 a23

a31 a32 a33

T ,

SEC. 7.1 Matrices, Vectors: Addition and Scalar Multiplication 257
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by augmenting A with the right sides of the linear system and call it the augmented matrix of the system.
Since we can go back and recapture the system of linear equations directly from the augmented matrix , 

contains all the information of the system and can thus be used to solve the linear system. This means that we
can just use the augmented matrix to do the calculations needed to solve the system. We shall explain this in
detail in Sec. 7.3. Meanwhile you may verify by substitution that the solution is .

The notation for the unknowns is practical but not essential; we could choose x, y, z or some other
letters.

E X A M P L E  2 Sales Figures in Matrix Form

Sales figures for three products I, II, III in a store on Monday (Mon), Tuesday (Tues), may for each week
be arranged in a matrix

If the company has 10 stores, we can set up 10 such matrices, one for each store. Then, by adding corresponding
entries of these matrices, we can get a matrix showing the total sales of each product on each day. Can you think
of other data which can be stored in matrix form? For instance, in transportation or storage problems? Or in
listing distances in a network of roads?

General Concepts and Notations
Let us formalize what we just have discussed. We shall denote matrices by capital boldface
letters A, B, C, , or by writing the general entry in brackets; thus , and so
on. By an matrix (read m by n matrix) we mean a matrix with m rows and n
columns—rows always come first! is called the size of the matrix. Thus an 
matrix is of the form

(2)

The matrices in (1) are of sizes and respectively.
Each entry in (2) has two subscripts. The first is the row number and the second is the

column number. Thus is the entry in Row 2 and Column 1.
If we call A an square matrix. Then its diagonal containing the entries

is called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are and respectively.

Square matrices are particularly important, as we shall see. A matrix of any size 
is called a rectangular matrix; this includes square matrices as a special case.

m � n
e�x, 4x,a11, a22, a33

a11, a22, Á , ann

n � nm � n,
a21

2 � 1,2 � 3, 3 � 3, 2 � 2, 1 � 3,

A � 3ajk4 � Ea11 a12
Á a1n

a21 a22
Á a2n

# # Á #

am1 am2
Á amn

U  .

m � nm � n
m � n

A � [ajk]Á

�

A �
 

Mon Tues Wed Thur Fri Sat Sun

40 33 81  0 21 47 33D 0 12 78 50 50 96  90 T
10  0  0 27 43 78 56

  
#

 
I

II

III

Á

�
x1, x2, x3

x1 � 3, x2 � 1
2, x3 � �1

A
~

A
~

A � D4 6 9

6 0 �2

5 �8 1

T .   We form another matrix   A
~

� D4 6 9 6

6 0 �2 20

5 �8 1 10

T
258 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
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Vectors
A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b, or by its
general component in brackets, , and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

A column vector is of the form

Addition and Scalar Multiplication 
of Matrices and Vectors
What makes matrices and vectors really useful and particularly suitable for computers is
the fact that we can calculate with them almost as easily as with numbers. Indeed, we
now introduce rules for addition and for scalar multiplication (multiplication by numbers)
that were suggested by practical applications. (Multiplication of matrices by matrices
follows in the next section.) We first need the concept of equality.

D E F I N I T I O N Equality of Matrices

Two matrices and are equal, written if and only if
they have the same size and the corresponding entries are equal, that is, 

and so on. Matrices that are not equal are called different. Thus, matrices
of different sizes are always different.

E X A M P L E  3 Equality of Matrices

Let

Then

The following matrices are all different. Explain!

�c1 3

4 2
d   c4 2

1 3
d   c4 1

2 3
d   c1 3 0

4 2 0
d   c0 1 3

0 4 2
d

A � B  if and only if  
a11 � 4, a12 � 0,

a21 � 3, a22 � �1.

A � ca11 a12

a21 a22

d  and  B � c4 0

3 �1
d .

a12 � b12,
a11 � b11,

A � B,B � 3bjk4A � 3ajk4

b � Eb1

b2

.

.

.

bm

U  .  For instance,  b � D 4

0

�7

T .

a � 3a1 a2 Á  an4.  For instance,  a � 3�2 5 0.8 0 14.

a � 3aj4

Á

SEC. 7.1 Matrices, Vectors: Addition and Scalar Multiplication 259
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D E F I N I T I O N Addition of Matrices

The sum of two matrices and of the same size is written
and has the entries obtained by adding the corresponding entries

of A and B. Matrices of different sizes cannot be added.

As a special case, the sum of two row vectors or two column vectors, which
must have the same number of components, is obtained by adding the corresponding
components.

E X A M P L E  4 Addition of Matrices and Vectors

If and , then .

A in Example 3 and our present A cannot be added. If and , then
.

An application of matrix addition was suggested in Example 2. Many others will follow.

D E F I N I T I O N Scalar Multiplication (Multiplication by a Number)

The product of any matrix and any scalar c (number c) is written
cA and is the matrix obtained by multiplying each entry of A
by c.

Here is simply written and is called the negative of A. Similarly, is
written . Also, is written and is called the difference of A and B
(which must have the same size!).

E X A M P L E  5 Scalar Multiplication

If , then

If a matrix B shows the distances between some cities in miles, 1.609B gives these distances in kilometers.

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the
addition of numbers we obtain similar laws for the addition of matrices of the same size

, namely,

(a)

(3)
(b) (written )

(c)

(d) .

Here 0 denotes the zero matrix (of size ), that is, the matrix with all entries
zero. If or , this is a vector, called a zero vector.n � 1m � 1

m � nm � n

A � (�A) � 0

A � 0 � A

A � B � C(A � B) � C � A � (B � C)

A � B � B � A

m � n

�

�A � D�2.7 1.8

  0   �0.9

�9.0 4.5

T , 
10

9
 A � D 3

0

10

�2

1

�5

T , 0A � D00
0

0

0

0

T .A � D2.7

0  

9.0

�1.8

0.9

�4.5

T

A � BA � (�B)�kA
(�k)A�A(�1)A

cA � 3cajk4m � n
A � 3ajk4m � n

�
a � b � 3�1 9 24

b � 3�6 2 04a � 35 7 24

A � B � c1 5 3

3 2 2
dB � c5 �1 0

3 1 0
dA � c�4 6 3

0 1 2
d

a � b

ajk � bjkA � B
B � 3bjk4A � 3ajk4
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1–7 GENERAL QUESTIONS
1. Equality. Give reasons why the five matrices in

Example 3 are all different.

2. Double subscript notation. If you write the matrix in
Example 2 in the form , what is 

? ?

3. Sizes. What sizes do the matrices in Examples 1, 2, 3,
and 5 have?

4. Main diagonal. What is the main diagonal of A in
Example 1? Of A and B in Example 3?

5. Scalar multiplication. If A in Example 2 shows the
number of items sold, what is the matrix B of units sold
if a unit consists of (a) 5 items and (b) 10 items?

6. If a matrix A shows the distances between
12 cities in kilometers, how can you obtain from A the
matrix B showing these distances in miles?

7. Addition of vectors. Can you add: A row and
a column vector with different numbers of compo-
nents? With the same number of components? Two
row vectors with the same number of components
but different numbers of zeros? A vector and a
scalar? A vector with four components and a 
matrix?

8–16 ADDITION AND SCALAR
MULTIPLICATION OF MATRICES 
AND VECTORS

Let

C � D 5

�2

1

2

4

0

T ,  D � D�4

5

2

1

0

�1

T ,

A � D06
1

2

5

0

4

5

�3

T ,  B � D 0

5

�2

5

3

4

2

4

�2

T

2 � 2

12 � 12

a33a26

a13?a31?A � 3ajk4

P R O B L E M  S E T  7 . 1

Find the following expressions, indicating which of the
rules in (3) or (4) they illustrate, or give reasons why they
are not defined.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17. Resultant of forces. If the above vectors u, v, w
represent forces in space, their sum is called their
resultant. Calculate it.

18. Equilibrium. By definition, forces are in equilibrium
if their resultant is the zero vector. Find a force p such
that the above u, v, w, and p are in equilibrium.

19. General rules. Prove (3) and (4) for general 
matrices and scalars c and k.

2 � 3

8.5w � 11.1u � 0.4v
15v � 3w � 0u, �3w � 15v, D � u � 3C,

0E � u � v
(u � v) � w, u � (v � w), C � 0w,

10(u � v) � wE � (u � v),
(5u � 5v) � 1

2 
w, �20(u � v) � 2w,

(2 # 7)C, 2(7C), �D � 0E, E � D � C � u

A � 0C
(C � D) � E, (D � E) � C, 0(C � E) � 4D,

0.6(C � D)
8C � 10D, 2(5D � 4C), 0.6C � 0.6D,

(4 # 3)A, 4(3A), 14B � 3B, 11B

3A, 0.5B, 3A � 0.5B, 3A � 0.5B � C

2A � 4B, 4B � 2A, 0A � B, 0.4B � 4.2A

u � D 1.5

0  

�3.0

T ,  v � D�1

3

2

T ,  w � D �5

�30

10

T .

E � D03
3

2

4

�1

T

Hence matrix addition is commutative and associative [by (3a) and (3b)].
Similarly, for scalar multiplication we obtain the rules

(a)

(4)
(b)

(c) (written ckA)

(d) 1A � A.

c(kA) � (ck)A

(c � k)A � cA � kA

c(A � B) � cA � cB
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20. TEAM PROJECT. Matrices for Networks. Matrices
have various engineering applications, as we shall see.
For instance, they can be used to characterize connections
in electrical networks, in nets of roads, in production
processes, etc., as follows.

(a) Nodal Incidence Matrix. The network in Fig. 155
consists of six branches (connections) and four nodes
(points where two or more branches come together).
One node is the reference node (grounded node, whose
voltage is zero). We number the other nodes and
number and direct the branches. This we do arbitrarily.
The network can now be described by a matrix

, where

A is called the nodal incidence matrix of the network.
Show that for the network in Fig. 155 the matrix A has
the given form.

ajk � d 

�1 if branch k leaves node   j

�1 if branch k enters node   j

0 if branch k does not touch node   j  .

A � 3ajk4

262 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

(c) Sketch the three networks corresponding to the
nodal incidence matrices

(d) Mesh Incidence Matrix. A network can also be
characterized by the mesh incidence matrix
where

and a mesh is a loop with no branch in its interior (or
in its exterior). Here, the meshes are numbered and
directed (oriented) in an arbitrary fashion. Show that
for the network in Fig. 157, the matrix M has the given
form, where Row 1 corresponds to mesh 1, etc.

�1 if branch k is in mesh j

and has the same orientation

�1 if branch k is in mesh j

and has the opposite orientation

0 if branch k is not in mesh j

m jk � f
M � 3m jk4,

D 1 0 1 0 0

�1 1 0 1 0

0 �1 �1 0 1

T .

 D 1 �1 0 0 1

�1 1 �1 1 0

0 0 1 �1 0

T ,D 1 0 0 1

�1 1 0 0

0 �1 1 0

T ,

1 6

1 2

3

4

2 5

3

4

1 1

0

–1

0

0

0 –1

1

0

0

1

0 0

1

0

–1

1

01 01 10

M =

1 6

1

2 5

4

3

2 3

(Reference node)

Branch 1

1

2

–1

1

0

3 4 5

Node 1

0Node 2

0

–1 0

1

0

0

1

0

1

–1Node 3

6

0

0

–1

Fig. 155. Network and nodal incidence 
matrix in Team Project 20(a)

1

2 3

4

5
321

25

34

1

7

6

1 2

34

Fig. 156. Electrical networks in Team Project 20(b)

Fig. 157. Network and matrix M in 
Team Project 20(d)

(b) Find the nodal incidence matrices of the networks
in Fig. 156.
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where we shaded the entries that contribute to the calculation of entry just discussed.
Matrix multiplication will be motivated by its use in linear transformations in this

section and more fully in Sec. 7.9.
Let us illustrate the main points of matrix multiplication by some examples. Note that

matrix multiplication also includes multiplying a matrix by a vector, since, after all,
a vector is a special matrix.

E X A M P L E  1 Matrix Multiplication

Here and so on. The entry in the box is 
The product BA is not defined. �

c23 � 4 # 3 � 0 # 7 � 2 # 1 � 14.c11 � 3 # 2 � 5 # 5 � (�1) # 9 � 22,

AB � D 3

4

�6

5

0

�3

�1

2

2

T  D25
9

�2

0

�4

3

7

1

1

8

1

T � D 22

26

�9

�2

�16

4

43

14

�37

42

6

�28

T

c21

SEC. 7.2 Matrix Multiplication 263

7.2 Matrix Multiplication
Matrix multiplication means that one multiplies matrices by matrices. Its definition is
standard but it looks artificial. Thus you have to study matrix multiplication carefully,
multiply a few matrices together for practice until you can understand how to do it. Here
then is the definition. (Motivation follows later.)

D E F I N I T I O N Multiplication of a Matrix by a Matrix

The product (in this order) of an matrix times an
matrix is defined if and only if and is then the matrix

with entries

(1)

The condition means that the second factor, B, must have as many rows as the first
factor has columns, namely n. A diagram of sizes that shows when matrix multiplication
is possible is as follows:

The entry in (1) is obtained by multiplying each entry in the jth row of A by the
corresponding entry in the kth column of B and then adding these n products. For instance,

and so on. One calls this briefly a multiplication
of rows into columns. For , this is illustrated byn � 3
c21 � a21b11 � a22b21 � Á � a2nbn1,

cjk

 A        B      �       C  
3m � n4 3n � p4 � 3m � p4.

r � n

cjk � a

n

l�1

 ajlblk � aj1b1k � aj2b2k � Á � ajnbnk  
j � 1, Á , m

k � 1, Á , p.

C � 3cjk4
m � pr � nB � 3bjk4

r � pA � 3ajk4m � nC � AB

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

a
41

a
42

a
43

m = 4m = 4

n = 3

=

c
11

c
12

c
21

c
22

c
31

c
32

c
41

c
42

b
11

b
12

b
21

b
22

b
31

b
32

p = 2 p = 2

Notations in a product AB � C
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E X A M P L E  2 Multiplication of a Matrix and a Vector

whereas is undefined.

E X A M P L E  3 Products of Row and Column Vectors

E X A M P L E  4 CAUTION! Matrix Multiplication Is Not Commutative, in General

This is illustrated by Examples 1 and 2, where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

but

It is interesting that this also shows that does not necessarily imply or or . We
shall discuss this further in Sec. 7.8, along with reasons when this happens.

Our examples show that in matrix products the order of factors must always be observed
very carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers,
namely.

(a) written kAB or AkB

(2)
(b) written ABC

(c)

(d)

provided A, B, and C are such that the expressions on the left are defined; here, k is any
scalar. (2b) is called the associative law. (2c) and (2d) are called the distributive laws.

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

(3)

where is the jth row vector of A and is the kth column vector of B, so that in
agreement with (1),

ajbk � 3aj1 aj2 Á  ajn4 Db1k

.

.

.
bnk

T � aj1b1k � aj2b2k � Á � ajnbnk.

bkaj

j � 1, Á , m; k � 1, Á , p,cjk � ajbk,

 C(A � B) � CA � CB

 (A � B)C � AC � BC

 A(BC) � (AB)C

 (kA)B � k(AB) � A(kB)

�
B � 0A � 0BA � 0AB � 0

c�1

1

1

�1
d  c 1

100

1

100
d � c 99

�99

99

�99
d .c 1

100

1

100
d  c�1

1

1

�1
d � c0

0

0

0
d

AB � BA

�D12
4

T 33 6 14 � D 3

6

12

6

12

24

1

2

4

T .33 6 14 D12
4

T � 3194,

�c3
5
d  c4

1

2

8
dc4

1

2

8
d  c3

5
d � c4 # 3 � 2 # 5

1 # 3 � 8 # 5
d � c22

43
d
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E X A M P L E  5 Product in Terms of Row and Column Vectors

If is of size and is of size then

(4)

Taking etc., verify (4) for the product in Example 1.

Parallel processing of products on the computer is facilitated by a variant of (3) for
computing , which is used by standard algorithms (such as in Lapack). In this
method, A is used as given, B is taken in terms of its column vectors, and the product is
computed columnwise; thus,

(5)

Columns of B are then assigned to different processors (individually or several to
each processor), which simultaneously compute the columns of the product matrix

etc.

E X A M P L E  6 Computing Products Columnwise by (5)

To obtain

from (5), calculate the columns

of AB and then write them as a single matrix, as shown in the first formula on the right.

Motivation of Multiplication 
by Linear Transformations
Let us now motivate the “unnatural” matrix multiplication by its use in linear
transformations. For variables these transformations are of the form

(6*)

and suffice to explain the idea. (For general n they will be discussed in Sec. 7.9.) For
instance, (6*) may relate an -coordinate system to a -coordinate system in the
plane. In vectorial form we can write (6*) as

(6) y � c y1

y2

d � Ax � ca11

a21

a12

a22

d  c x1

x2

d � ca11x1 � a12x2

a21x1 � a22x2

d .

y1y2x1x2

y1 � a11x1 � a12x2

y2 � a21x1 � a22x2

n � 2

�

c 4

�5

1

2
d  c 3

�1
d � c 11

�17
d , c 4

�5

1

2
d  c  0

4
d � c4

8
d , c 4

�5

1

2
d c7

6
d � c 34

�23
d

AB � c 4

�5

1

2
d  c 3

�1

0

4

7

6
d � c 11

�17

4

8

34

�23
d

Ab1, Ab2,

AB � A3b1 b2 Á
 bp4 � 3Ab1 Ab2 Á

 Abp4.

C � AB

�a1 � 33 5 �14, a2 � 34 0 24,

AB � Da1b1

a2b1

a3b1

a1b2

a2b2

a3b2

a1b3

a2b3

a3b3

a1b4

a2b4

a3b4

T .

3 � 4,B � 3bjk43 � 3A � 3ajk4

SEC. 7.2 Matrix Multiplication 265

c07.qxd  10/28/10  7:30 PM  Page 265



Now suppose further that the -system is related to a -system by another linear
transformation, say,

(7)

Then the -system is related to the -system indirectly via the -system, and
we wish to express this relation directly. Substitution will show that this direct relation is
a linear transformation, too, say,

(8)

Indeed, substituting (7) into (6), we obtain

Comparing this with (8), we see that

This proves that with the product defined as in (1). For larger matrix sizes the
idea and result are exactly the same. Only the number of variables changes. We then have
m variables y and n variables x and p variables w. The matrices A, B, and then
have sizes and , respectively. And the requirement that C be the
product AB leads to formula (1) in its general form. This motivates matrix multiplication.

Transposition
We obtain the transpose of a matrix by writing its rows as columns (or equivalently its
columns as rows). This also applies to the transpose of vectors. Thus, a row vector becomes
a column vector and vice versa. In addition, for square matrices, we can also “reflect”
the elements along the main diagonal, that is, interchange entries that are symmetrically
positioned with respect to the main diagonal to obtain the transpose. Hence becomes

becomes and so forth. Example 7 illustrates these ideas. Also note that, if A
is the given matrix, then we denote its transpose by 

E X A M P L E  7 Transposition of Matrices and Vectors

If A � c5
4

�8

0

1

0
d ,  then  AT � D 5

�8

1

4

0

0

T .

AT.
a13,a21, a31

a12

m � pm � n, n � p,
C � AB

C � AB

c11 � a11b11 � a12b21

c21 � a21b11 � a22b21

  c12 � a11b12 � a12b22

  c22 � a21b12 � a22b22.

 � (a21b11 � a22b21)w1 � (a21b12 � a22b22)w2.

 y2 � a21(b11w1 � b12w2) � a22(b21w1 � b22w2)

 � (a11b11 � a12b21)w1 � (a11b12 � a12b22)w2

 y1 � a11(b11w1 � b12w2) � a12(b21w1 � b22w2)

y � Cw � c c11

c21

c12

c22

d  cw1

w2

d � c c11w1 � c12w2

c21w1 � c22w2

d .

x1x2w1w2y1y2

x � c x1

x2

d � Bw � cb11

b21

b12

b22

d  cw1

w2

d � cb11w1 � b12w2

b21w1 � b22w2

d .

w1w2x1x2
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A little more compactly, we can write

Furthermore, the transpose of the row vector is the column vector

D E F I N I T I O N Transposition of Matrices and Vectors

The transpose of an matrix is the matrix (read A
transpose) that has the first row of A as its first column, the second row of A as its
second column, and so on. Thus the transpose of A in (2) is written out

(9)

As a special case, transposition converts row vectors to column vectors and conversely.

Transposition gives us a choice in that we can work either with the matrix or its
transpose, whichever is more convenient.

Rules for transposition are

(a)

(10)
(b)

(c)

(d)

CAUTION! Note that in (10d) the transposed matrices are in reversed order. We leave
the proofs as an exercise in Probs. 9 and 10.

Special Matrices
Certain kinds of matrices will occur quite frequently in our work, and we now list the
most important ones of them.

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful
classes of matrices. Symmetric matrices are square matrices whose transpose equals the

 (AB)T � BTAT.

 (cA)T � cAT

 (A � B)T � AT � BT

 (AT)T � A

AT � 3akj4 � Ea11

a12

#

a1n

a21

a22

#

a2n

Á

Á

Á

Á

am1

am2

#

amn

U  .

AT � 3akj4,

ATn � mA � 3ajk4m � n

�36 2 34T � D62
3

T #   Conversely,  D62
3

TT

� 36 2 34.

36 2 3436 2 34T

c5
4

�8

0

1

0
d T � D 5

�8

1

4

0

0

T ,   D38
1

0

�1

�9

7

5

4

T T

� D30
7

8

�1

5

1

�9

4

T ,
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matrix itself. Skew-symmetric matrices are square matrices whose transpose equals
minus the matrix. Both cases are defined in (11) and illustrated by Example 8.

(11) (thus (thus hence 

Symmetric Matrix Skew-Symmetric Matrix

E X A M P L E  8 Symmetric and Skew-Symmetric Matrices

is symmetric, and is skew-symmetric.

For instance, if a company has three building supply centers then A could show costs, say, for
handling 1000 bags of cement at center , and the cost of shipping 1000 bags from to . Clearly,

if we assume shipping in the opposite direction will cost the same.
Symmetric matrices have several general properties which make them important. This will be seen as we

proceed.

Triangular Matrices. Upper triangular matrices are square matrices that can have nonzero
entries only on and above the main diagonal, whereas any entry below the diagonal must be
zero. Similarly, lower triangular matrices can have nonzero entries only on and below the
main diagonal. Any entry on the main diagonal of a triangular matrix may be zero or not.

E X A M P L E  9 Upper and Lower Triangular Matrices

Upper triangular Lower triangular

Diagonal Matrices. These are square matrices that can have nonzero entries only on
the main diagonal. Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, c, we call S a scalar
matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is,

(12)

In particular, a scalar matrix, whose entries on the main diagonal are all 1, is called a unit
matrix (or identity matrix) and is denoted by or simply by I. For I, formula (12) becomes

(13)

E X A M P L E  1 0 Diagonal Matrix D. Scalar Matrix S. Unit Matrix I

�D � D20
0

0

�3

0

0

0

0

T ,  S � Dc0
0

0

c

0

0

0

c

T ,  I � D10
0

0

1

0

0

0

1

T
AI � IA � A.

In

AS � SA � cA.

�E39
1

1

0

�3

0

9

0

0

2

3

0

0

0

6

U  .c1
0

3

2
d ,  D10

0

4

3

0

2

2

6

T ,   D28
7

0

�1

6

0

0

 8

T ,

�

ajk � akj

CkCjajk ( j � k)Cj

ajjC1, C2, C3,

B � D 0

�1

3

1

0

2

�3

�2

0

TA � D 20

120

200

  120

10

150

  200

150

30

T

ajj � 0).akj � �ajk,akj � ajk),  AT � �AAT � A
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Some Applications of Matrix Multiplication
E X A M P L E  1 1 Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and PC1186. The matrix A shows the cost per computer
(in thousands of dollars) and B the production figures for the year 2010 (in multiples of 10,000 units.) Find a
matrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw material, labor, and
miscellaneous.

Quarter
PC1086 PC1186 1 2 3 4

Solution.

Quarter
1 2 3 4

Since cost is given in multiples of and production in multiples of 10,000 units, the entries of C are
multiples of millions; thus means million, etc.

E X A M P L E  1 2 Weight Watching. Matrix Times Vector

Suppose that in a weight-watching program, a person of 185 lb burns 350 cal/hr in walking (3 mph), 500 in
bicycling (13 mph), and 950 in jogging (5.5 mph). Bill, weighing 185 lb, plans to exercise according to the
matrix shown. Verify the calculations 

W B J

E X A M P L E  1 3 Markov Process. Powers of a Matrix. Stochastic Matrix

Suppose that the 2004 state of land use in a city of of built-up area is

C: Commercially Used 25% I: Industrially Used 20% R: Residentially Used 55%.

Find the states in 2009, 2014, and 2019, assuming that the transition probabilities for 5-year intervals are given
by the matrix A and remain practically the same over the time considered.

From C From I From R

A � D0.7

0.2

0.1

 0.1

0.9

0  

0  

 0.2

0.8

T  

To C

To I

To R

60 mi2

�

MON

WED

FRI

SAT

 E1.0

1.0

1.5

2.0

0

1.0

0

1.5

0.5

0.5

0.5

1.0

U  D350

500

950

T � E 825

1325

1000

2400

U MON

WED

FRI

SAT

1W � Walking, B � Bicycling, J � Jogging2.

�$132c11 � 13.2$10
$1000

C � AB � D13.2

3.3

5.1

12.8

3.2

5.2

13.6

3.4

5.4

15.6

3.9

6.3

T Raw Components

 Labor

 Miscellaneous

B � c3
6

8

2

6

4

9

3
d PC1086

PC1186
A � D1.2

0.3

0.5

 1.6

 0.4

 0.6

T Raw Components

 Labor

 Miscellaneous
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A is a stochastic matrix, that is, a square matrix with all entries nonnegative and all column sums equal to 1.
Our example concerns a Markov process,1 that is, a process for which the probability of entering a certain state
depends only on the last state occupied (and the matrix A), not on any earlier state.

Solution. From the matrix A and the 2004 state we can compute the 2009 state,

To explain: The 2009 figure for C equals times the probability 0.7 that C goes into C, plus times the
probability 0.1 that I goes into C, plus times the probability 0 that R goes into C. Together,

Also

Similarly, the new R is . We see that the 2009 state vector is the column vector

where the column vector is the given 2004 state vector. Note that the sum of the entries of
y is . Similarly, you may verify that for 2014 and 2019 we get the state vectors

Answer. In 2009 the commercial area will be the industrial and the
residential . For 2014 the corresponding figures are and . For 2019
they are and . (In Sec. 8.2 we shall see what happens in the limit, assuming that
those probabilities remain the same. In the meantime, can you experiment or guess?) �

33.025%16.315%, 50.660%,
39.15%17.05%, 43.80%,46.5% (27.9 mi2)

34% (20.4 mi2),19.5% (11.7 mi2),

u � Az � A2y � A3x � 316.315 50.660 33.0254T.

z � Ay � A(Ax) � A2x � 317.05 43.80 39.154T

100 3%4
x � 325 20 554T

y � 319.5 34.0 46.54T � Ax � A 325 20 554T

46.5%

25 # 0.2 � 20 # 0.9 � 55 # 0.2 � 34 3%4.25 # 0.7 � 20 # 0.1 � 55 # 0 � 19.5 3%4.

55%
20%25%

C

I

R

  D0.7 # 25 � 0.1 # 20 � 0 # 55

0.2 # 25 � 0.9 # 20 � 0.2 # 55

0.1 # 25 � 0 # 20 � 0.8 # 55

T � D0.7

0.2

0.1

0.1

0.9

  0

0

0.2

0.8

T  D25

20

55

T � D19.5

34.0

46.5

T .
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1–10 GENERAL QUESTIONS
1. Multiplication. Why is multiplication of matrices

restricted by conditions on the factors?

2. Square matrix. What form does a matrix have
if it is symmetric as well as skew-symmetric?

3. Product of vectors. Can every matrix be
represented by two vectors as in Example 3?

4. Skew-symmetric matrix. How many different entries
can a skew-symmetric matrix have? An 
skew-symmetric matrix?

5. Same questions as in Prob. 4 for symmetric matrices.

6. Triangular matrix. If are upper triangular and
are lower triangular, which of the following are

triangular?

7. Idempotent matrix, defined by Can you find
four idempotent matrices?2 � 2

A2 � A.

L1 � L2

U1L1,U1 � U2, U1U2, U1
2, U1 � L1,

L1, L2

U1, U2

n � n4 � 4

3 � 3

3 � 3

P R O B L E M  S E T  7 . 2

8. Nilpotent matrix, defined by for some m.
Can you find three nilpotent matrices?

9. Transposition. Can you prove (10a)–(10c) for 
matrices? For matrices?

10. Transposition. (a) Illustrate (10d) by simple examples.
(b) Prove (10d).

11–20 MULTIPLICATION, ADDITION, AND
TRANSPOSITION OF MATRICES AND
VECTORS

Let

C � D 0

3

�2

1

2

0

T ,  a � 31 �2 04, b � D 3

1

�1

T .

A � D 4

�2

1

�2

1

2

3

6

2

T ,  B � D 1

�3

0

�3

1

0

0

0

�2

T

m � n
3 � 3

2 � 2
Bm � 0

1ANDREI ANDREJEVITCH MARKOV (1856–1922), Russian mathematician, known for his work in
probability theory.
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Showing all intermediate results, calculate the following
expressions or give reasons why they are undefined:

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. General rules. Prove (2) for matrices 
and a general scalar.

22. Product. Write AB in Prob. 11 in terms of row and
column vectors.

23. Product. Calculate AB in Prob. 11 columnwise. See
Example 1.

24. Commutativity. Find all matrices 
that commute with , where 

25. TEAM PROJECT. Symmetric and Skew-Symmetric
Matrices. These matrices occur quite frequently in
applications, so it is worthwhile to study some of their
most important properties.

(a) Verify the claims in (11) that for a
symmetric matrix, and for a skew-
symmetric matrix. Give examples.

(b) Show that for every square matrix C the matrix
is symmetric and is skew-symmetric.

Write C in the form , where S is symmetric
and T is skew-symmetric and find S and T in terms
of C. Represent A and B in Probs. 11–20 in this form.

(c) A linear combination of matrices A, B, C, , M
of the same size is an expression of the form

(14)

where a, , m are any scalars. Show that if these
matrices are square and symmetric, so is (14); similarly,
if they are skew-symmetric, so is (14).

(d) Show that AB with symmetric A and B is symmetric
if and only if A and B commute, that is, 

(e) Under what condition is the product of skew-
symmetric matrices skew-symmetric?

26–30 FURTHER APPLICATIONS
26. Production. In a production process, let N mean “no

trouble” and T “trouble.” Let the transition probabilities
from one day to the next be 0.8 for , hence 0.2
for , and 0.5 for , hence 0.5 for T :  T.T :  NN :  T

N :  N

AB � BA.

Á

aA � bB � cC � Á � mM,

Á

C � S � T
C � CTC � CT

akj � �ajk

akj � ajk

bjk � j � k.B � 3bjk4
A � 3ajk42 � 2

B � 3bjk4, C � 3cjk4,
A � 3ajk4,2 � 2

bTAb, aBaT, aCCT, CTba

Ab � Bb(A � B)b,1.5a � 3.0b, 1.5aT � 3.0b,

ab, ba, aA, Bb

ABC, ABa, ABb, CaT

BC, BCT, Bb, bTB

bTATAa, AaT, (Ab)T,

(3A � 2B)TaT
3AT � 2BT,3A � 2B, (3A � 2B)T,

CCT, BC, CB, CTB

AAT, A2, BBT, B2

AB, ABT, BA, BTA
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If today there is no trouble, what is the probability of
N two days after today? Three days after today?

27. CAS Experiment. Markov Process. Write a program
for a Markov process. Use it to calculate further steps
in Example 13 of the text. Experiment with other
stochastic matrices, also using different starting
values.

28. Concert subscription. In a community of 100,000
adults, subscribers to a concert series tend to renew their
subscription with probability and persons presently
not subscribing will subscribe for the next season with
probability . If the present number of subscribers
is 1200, can one predict an increase, decrease, or no
change over each of the next three seasons?

29. Profit vector. Two factory outlets and in New
York and Los Angeles sell sofas (S), chairs (C), and
tables (T) with a profit of , and , respectively.
Let the sales in a certain week be given by the matrix

S C T

Introduce a “profit vector” p such that the components
of give the total profits of and .

30. TEAM PROJECT. Special Linear Transformations.
Rotations have various applications. We show in this
project how they can be handled by matrices.

(a) Rotation in the plane. Show that the linear
transformation with

is a counterclockwise rotation of the Cartesian -
coordinate system in the plane about the origin, where

is the angle of rotation.

(b) Rotation through n�. Show that in (a)

Is this plausible? Explain this in words.

(c) Addition formulas for cosine and sine. By
geometry we should have

Derive from this the addition formulas (6) in App. A3.1.

� c cos (a � b)

sin (a � b)

�sin (a � b)

cos (a � b)
d .

c cos a

sin a

�sin a

cos a
d c cos b

sin b

�sin b

cos b
d

An � c cos nu

sin nu

�sin nu

cos nu
d .

u

x1x2

A � c cos u

sin u

�sin u

cos u
d , x � c x1

x2

d , y � c y1

y2

d
y � Ax

F2F1v � Ap

A � c400

100

60

120

240

500
d F1

F2

$30$35, $62

F2F1

0.2%

90%

3 � 3
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7.3 Linear Systems of Equations. 
Gauss Elimination

We now come to one of the most important use of matrices, that is, using matrices to
solve systems of linear equations. We showed informally, in Example 1 of Sec. 7.1, how
to represent the information contained in a system of linear equations by a matrix, called
the augmented matrix. This matrix will then be used in solving the linear system of
equations. Our approach to solving linear systems is called the Gauss elimination method.
Since this method is so fundamental to linear algebra, the student should be alert.

A shorter term for systems of linear equations is just linear systems. Linear systems
model many applications in engineering, economics, statistics, and many other areas.
Electrical networks, traffic flow, and commodity markets may serve as specific examples
of applications.

Linear System, Coefficient Matrix, Augmented Matrix
A linear system of m equations in n unknowns is a set of equations of
the form

(1)

The system is called linear because each variable appears in the first power only, just
as in the equation of a straight line. are given numbers, called the coefficients
of the system. on the right are also given numbers. If all the are zero, then
(1) is called a homogeneous system. If at least one is not zero, then (1) is called a
nonhomogeneous system.

bj

bjb1, Á , bm

a11, Á , amn

x j

a11x1 � Á � a1nxn � b1

a21x1 � Á � a2nxn � b2

. . . . . . . . . . . . . . . . . . . . . . . 

am1x1 � Á � amnxn � bm.

x1, Á , xn
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(d) Computer graphics. To visualize a three-
dimensional object with plane faces (e.g., a cube), we
may store the position vectors of the vertices with
respect to a suitable -coordinate system (and a
list of the connecting edges) and then obtain a two-
dimensional image on a video screen by projecting
the object onto a coordinate plane, for instance, onto
the -plane by setting . To change the
appearance of the image, we can impose a linear
transformation on the position vectors stored. Show
that a diagonal matrix D with main diagonal entries 3,
1, gives from an the new position vector

, where (stretch in the -direction
by a factor 3), (unchanged), (con-
traction in the -direction). What effect would a scalar
matrix have?

x3

y3 � 1
2 x3y2 � x2

x1y1 � 3x1y � Dx
x � 3x j4

1
2

x3 � 0x1x2

x1x2x3

(e) Rotations in space. Explain geometrically
when A is one of the three matrices

What effect would these transformations have in situations
such as that described in (d)?

Dcos �

0

sin �

0

1

0

�sin �

0

   cos �

T , Dcos c

sin c

0

�sin c

   cos c

0

0

0

1

T .

D10
0

    0

cos u

sin u

   0

�sin u

   cos u

T ,

y � Ax

c07.qxd  10/28/10  7:30 PM  Page 272



A solution of (1) is a set of numbers that satisfies all the m equations.
A solution vector of (1) is a vector x whose components form a solution of (1). If the
system (1) is homogeneous, it always has at least the trivial solution

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be written as a single vector equation

(2)

where the coefficient matrix is the matrix

and and

are column vectors. We assume that the coefficients are not all zero, so that A is
not a zero matrix. Note that x has n components, whereas b has m components. The
matrix

is called the augmented matrix of the system (1). The dashed vertical line could be
omitted, as we shall do later. It is merely a reminder that the last column of did not
come from matrix A but came from vector b. Thus, we augmented the matrix A.

Note that the augmented matrix determines the system (1) completely because it
contains all the given numbers appearing in (1).

E X A M P L E  1 Geometric Interpretation. Existence and Uniqueness of Solutions

If we have two equations in two unknowns 

If we interpret as coordinates in the -plane, then each of the two equations represents a straight line,
and is a solution if and only if the point P with coordinates lies on both lines. Hence there are
three possible cases (see Fig. 158 on next page):

(a) Precisely one solution if the lines intersect

(b) Infinitely many solutions if the lines coincide

(c) No solution if the lines are parallel

x1, x2(x1, x2)
x1x2x1, x2

a11x1 � a12x2 � b1

a21x1 � a22x2 � b2.

x1, x2m � n � 2,

A
~

A
~

A~ � Ea11
Á a1n  b1

# Á #  #

# Á #  #

am1
Á amn  bm

U
ajk

b � Db1

.

.

.
bm

Tx � G
x1

#

#

#

xn

WA � Ea11

a21

#

am1

a12

a22

#

am2

Á

Á

Á

Á

a1n

a2n

#

amn

U  ,

m � nA � 3ajk4

Ax � b

x1 � 0, Á , xn � 0.

x1, Á , xn
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For instance,

274 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Unique solution

Infinitely 
many solutions

No solution

Fig. 158. Three
equations in 

three unknowns
interpreted as
planes in space

1

x2 x2 x2

1 1 x1x1x1

x1 + x2 = 1

2x1 – x2 = 0

Case (a)

x1 + x2 = 1

2x1 + 2x2 = 2

Case (b)

x1 + x2 = 1

x1 + x2 = 0

Case (c)

1
3

2
3

P

If the system is homogenous, Case (c) cannot happen, because then those two straight lines pass through the
origin, whose coordinates constitute the trivial solution. Similarly, our present discussion can be extended
from two equations in two unknowns to three equations in three unknowns. We give the geometric interpretation
of three possible cases concerning solutions in Fig. 158. Instead of straight lines we have planes and the solution
depends on the positioning of these planes in space relative to each other. The student may wish to come up
with some specific examples.

Our simple example illustrated that a system (1) may have no solution. This leads to such
questions as: Does a given system (1) have a solution? Under what conditions does it have
precisely one solution? If it has more than one solution, how can we characterize the set
of all solutions? We shall consider such questions in Sec. 7.5.

First, however, let us discuss an important systematic method for solving linear systems.

Gauss Elimination and Back Substitution
The Gauss elimination method can be motivated as follows. Consider a linear system that
is in triangular form (in full, upper triangular form) such as

(Triangular means that all the nonzero entries of the corresponding coefficient matrix lie
above the diagonal and form an upside-down triangle.) Then we can solve the system
by back substitution, that is, we solve the last equation for the variable, 
and then work backward, substituting into the first equation and solving it for , 
obtaining This gives us the idea of first reducing
a general system to triangular form. For instance, let the given system be

Its augmented matrix is

We leave the first equation as it is. We eliminate from the second equation, to get a
triangular system. For this we add twice the first equation to the second, and we do the same

x1

c 2

�4

5

3

2

�30
d .2x1 � 5x2 � 2

�4x1 � 3x2 � �30.

x1 � 1
2 (2 � 5x2) � 1

2 (2 � 5 # (�2)) � 6.
x1x2 � �2

x2 � �26>13 � �2,
90°

 13x2 � �26

 2x1 � 5x2 � 2

�

(0, 0)
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operation on the rows of the augmented matrix. This gives 
that is, 

where means “Add twice Row 1 to Row 2” in the original matrix. This
is the Gauss elimination (for 2 equations in 2 unknowns) giving the triangular form, from
which back substitution now yields and , as before.

Since a linear system is completely determined by its augmented matrix, Gauss
elimination can be done by merely considering the matrices, as we have just indicated.
We do this again in the next example, emphasizing the matrices by writing them first and
the equations behind them, just as a help in order not to lose track.

E X A M P L E  2 Gauss Elimination. Electrical Network

Solve the linear system

Derivation from the circuit in Fig. 159 (Optional ). This is the system for the unknown currents
in the electrical network in Fig. 159. To obtain it, we label the currents as shown,

choosing directions arbitrarily; if a current will come out negative, this will simply mean that the current flows
against the direction of our arrow. The current entering each battery will be the same as the current leaving it.
The equations for the currents result from Kirchhoff’s laws:

Kirchhoff’s Current Law (KCL). At any point of a circuit, the sum of the inflowing currents equals the sum
of the outflowing currents.

Kirchhoff’s Voltage Law (KVL). In any closed loop, the sum of all voltage drops equals the impressed
electromotive force.

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth, as
indicated in the figure.

x2 � i2, x3 � i3x1 � i1,

x1 � x2 � x3 � 0

�x1 �  x2 � x3 � 0

10x2 � 25x3 � 90

20x1 � 10x2 � 80.

x1 � 6x2 � �2

Row 2 � 2 Row 1

c2
0

5

13

2

�26
d

Row 2 � 2 Row 1

2x1 � 5x2 � 2

13x2 � �26

�30 � 2 # 2,
�4x1 � 4x1 � 3x2 � 10x2 �
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20 Ω 10 Ω

15 Ω

10 Ω 90 V80 V

i1 i3

i2

Node P: i
1
 –     i

2
 +     i

3
 =   0

Node Q:

Q

P

– i
1
 +     i

2
 –     i

3
 =   0

Right loop: 10 i
2
 + 25 i

3
 = 90

Left loop: 20 i
1
 + 10 i

2
            = 80

Fig. 159. Network in Example 2 and equations relating the currents

Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular
form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general,
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Pivot 1

Eliminate

Pivot 1

Eliminate

also for large systems. We apply it to our system and then do back substitution. As indicated, let us write the
augmented matrix of the system first and then the system itself:

Augmented Matrix Equations

Step 1. Elimination of 
Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient 1 of its 

-term the pivot in this step. Use this equation to eliminate (get rid of in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.

Add times the pivot equation to the fourth equation.

This corresponds to row operations on the augmented matrix as indicated in BLUE behind the new matrix in
(3). So the operations are performed on the preceding matrix. The result is

(3)

Step 2. Elimination of 
The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But
since it has no x2-term (in fact, it is , we must first change the order of the equations and the corresponding
rows of the new matrix. We put at the end and move the third equation and the fourth equation one place
up. This is called partial pivoting (as opposed to the rarely used total pivoting, in which the order of the
unknowns is also changed). It gives

To eliminate , do:

Add times the pivot equation to the third equation.
The result is

(4)

Back Substitution. Determination of (in this order)
Working backward from the last to the first equation of this “triangular” system (4), we can now readily find

, then , and then :

where A stands for “amperes.” This is the answer to our problem. The solution is unique. �

x3 � i3 � 2 3A4

x2 � 1
10 (90 � 25x3) � i2 � 4 3A4

x1 � x2 � x3 � i1 � 2 3A4

� 95x3 � �190

10x2 � 25x3 � 90

x1 � x2 � x3 � 0

x1x2x3

x3, x2, x1

x1 � x2 � x3 � 0

10x2 � 25x3 � 90

� 95x3 � �190

0 � 0.

Row 3 � 3 Row 2
E1 �1 1 0

0 10 25 90

0 0 �95  �190

0 0 0 0

U
�3

x2

x1 � x2 � x3 � 0

10x2 � 25x3 � 90

30x2 � 20x3 � 80

0 � 0.

Pivot 10

Eliminate 30x2

E1 �1 1 0

0 10 25  90

0 30 �20 80

0 0 0 0

UPivot 10

Eliminate 30

0 � 0
0 � 0)

x2

x1 � x2 � x3 � 0

0 � 0

10x2 � 25x3 � 90

30x2 � 20x3 � 80.

Row 2 � Row 1

Row 4 � 20 Row 1

E1 �1 1 0

0 0 0 0

0 10 25  90

0 30 �20 80

U
�20

x1)x1x1

x1

x1 � x2 � x3 � 0

 �x1 � x2 � x3 � 0

10x2 � 25x3 � 90

20x1 � 10x2 � 80.

E   

1 �1 1 0

�1 1 �1 0

0 10 25  90

20 10 0 80

U
A
~

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
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Elementary Row Operations. Row-Equivalent Systems
Example 2 illustrates the operations of the Gauss elimination. These are the first two of
three operations, which are called

Elementary Row Operations for Matrices:

Interchange of two rows

Addition of a constant multiple of one row to another row

Multiplication of a row by a nonzero constant c

CAUTION! These operations are for rows, not for columns! They correspond to the
following

Elementary Operations for Equations:

Interchange of two equations

Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c

Clearly, the interchange of two equations does not alter the solution set. Neither does their
addition because we can undo it by a corresponding subtraction. Similarly for their
multiplication, which we can undo by multiplying the new equation by (since 
producing the original equation.

We now call a linear system row-equivalent to a linear system if can be
obtained from by (finitely many!) row operations. This justifies Gauss elimination and
establishes the following result. 

T H E O R E M  1 Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called
equivalent systems. But note well that we are dealing with row operations. No column
operations on the augmented matrix are permitted in this context because they would
generally alter the solution set.

A linear system (1) is called overdetermined if it has more equations than unknowns,
as in Example 2, determined if , as in Example 1, and underdetermined if it has
fewer equations than unknowns.

Furthermore, a system (1) is called consistent if it has at least one solution (thus, one
solution or infinitely many solutions), but inconsistent if it has no solutions at all, as

in Example 1, Case (c).

Gauss Elimination: The Three Possible 
Cases of Systems
We have seen, in Example 2, that Gauss elimination can solve linear systems that have a
unique solution. This leaves us to apply Gauss elimination to a system with infinitely
many solutions (in Example 3) and one with no solution (in Example 4).

x1 � x2 � 1, x1 � x2 � 0

m � n

S2

S1S2S1

c � 0),1>c
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E X A M P L E  3 Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear system of three equations in four unknowns whose augmented matrix is

(5) Thus,

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding
entries to be eliminated. We indicate the operations in terms of equations and operate on both equations and
matrices.

Step 1. Elimination of from the second and third equations by adding

times the first equation to the second equation, 

times the first equation to the third equation.

This gives the following, in which the pivot of the next step is circled.

(6)

Step 2. Elimination of from the third equation of (6) by adding

times the second equation to the third equation.

This gives

(7)

Back Substitution. From the second equation, . From this and the first equation,
. Since and remain arbitrary, we have infinitely many solutions. If we choose a value of 

and a value of , then the corresponding values of and are uniquely determined.

On Notation. If unknowns remain arbitrary, it is also customary to denote them by other letters 
In this example we may thus write (first
arbitrary unknown),  (second arbitrary unknown).

E X A M P L E  4 Gauss Elimination if no Solution Exists

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that
in this case the method will show this fact by producing a contradiction. For instance, consider

Step 1. Elimination of from the second and third equations by adding

times the first equation to the second equation, 

times the first equation to the third equation.�6
3 � �2

�2
3

x1

3x1 � 2x2 � x3 � 3

2x1 � x2 � x3 � 0

6x1 � 2x2 � 4x3 � 6.

D3 2 1  3

2 1 1 0

6 2 4 6

T

�x4 � t2

x1 � 2 � x4 � 2 � t2, x2 � 1 � x3 � 4x4 � 1 � t1 � 4t2, x3 � t1

t1, t2, Á .

x2x1x4

x3x4x3x1 � 2 � x4

x2 � 1 � x3 � 4x4

3.0x1 � 2.0x2 � 2.0x3 � 5.0x4 � 8.0

1.1x2 � 1.1x3 � 4.4x4 � 1.1

0 � 0.Row 3 � Row 2

D3.0 2.0 2.0 �5.0  8.0

0 1.1 1.1 �4.4 1.1

0 0 0 0 0

T
1.1>1.1 � 1

x2

3.0x1 � 2.0x2 � 2.0x3 � 5.0x4 � 8.0

1.1x2 � 1.1x3 � 4.4x4 � 1.1

�1.1x2 � 1.1x3 � 4.4x4 � �1.1.

Row 2 � 0.2 Row 1

Row 3 � 0.4 Row 1

D3.0 2.0 2.0 �5.0 8.0

0 1.1 1.1 �4.4 1.1

0 �1.1 �1.1 4.4 �1.1

T
�1.2>3.0 � �0.4

�0.6>3.0 � �0.2

x1

3.0x1 � 2.0x2 � 2.0x3 � 5.0x4 � 8.0

0.6x1 � 1.5x2 � 1.5x3 � 5.4x4 � 2.7

1.2x1 � 0.3x2 � 0.3x3 � 2.4x4 � 2.1.

D3.0 2.0 2.0 �5.0  8.0

0.6 1.5 1.5 �5.4 2.7

1.2 �0.3 �0.3 2.4 2.1

T .
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This gives

Step 2. Elimination of from the third equation gives

The false statement shows that the system has no solution.

Row Echelon Form and Information From It
At the end of the Gauss elimination the form of the coefficient matrix, the augmented
matrix, and the system itself are called the row echelon form. In it, rows of zeros, if
present, are the last rows, and, in each nonzero row, the leftmost nonzero entry is farther
to the right than in the previous row. For instance, in Example 4 the coefficient matrix
and its augmented in row echelon form are

(8) and

Note that we do not require that the leftmost nonzero entries be 1 since this would have
no theoretic or numeric advantage. (The so-called reduced echelon form, in which those
entries are 1, will be discussed in Sec. 7.8.)

The original system of m equations in n unknowns has augmented matrix . This
is to be row reduced to matrix . The two systems and are equivalent:
if either one has a solution, so does the other, and the solutions are identical.

At the end of the Gauss elimination (before the back substitution), the row echelon form
of the augmented matrix will be

Rx � fAx � b3R | f 4
3A | b4

D3 2 1 3

0 �1
3

1
3  �2

0 0 0 12

T .D3 2 1

0 �1
3

1
3

0 0 0

T

�0 � 12

3x1 � 2x2 � x3 � 3

� 1
3 x2 � 1

3x3 � � 2

0 � 12.Row 3 � 6 Row 2

D3 2 1 3

0 �1
3

1
3  �2

0 0 0 12

T
x2

3x1 � 2x2 � x3 � 3

� 1
3 x2 � 1

3 x3 � �2

� 2x2 � 2x3 � 0.

Row 2 � 2_
3 Row 1

Row 3 � 2 Row 1

D3 2 1 3

0 �1
3

1
3  �2

0 �2 2 0

T
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. . .
. . . . .

. . . . .

rrr rrn fr

fm

f1
r2nr22

r12 r1nr11

f2

fr+1

Here, and all entries in the blue triangle and blue rectangle are zero.
The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the

rank of R and also the rank of A. Here is the method for determining whether 
has solutions and what they are:

(a) No solution. If r is less than m (meaning that R actually has at least one row of
all 0s) and at least one of the numbers is not zero, then the systemfr�1, fr�2, Á , fm

Ax � b

r � m, r11 � 0, 

(9) X.

X
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280 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

1–14 GAUSS ELIMINATION
Solve the linear system given explicitly or by its augmented
matrix. Show details.

1.

 �3x � 8y � 10

 4x � 6y � �11

12.

13.

14.

15. Equivalence relation. By definition, an equivalence
relation on a set is a relation satisfying three conditions:
(named as indicated)

(i) Each element A of the set is equivalent to itself
(Reflexivity).

(ii) If A is equivalent to B, then B is equivalent to A
(Symmetry).

(iii) If A is equivalent to B and B is equivalent to C,
then A is equivalent to C (Transitivity).

Show that row equivalence of matrices satisfies these
three conditions. Hint. Show that for each of the three
elementary row operations these conditions hold.

E2 3 1 �11 1

5 �2 5 �4 5

1 �1 3 �3 3

3 4 �7 2 �7

U
 8w � 34x � 16y � 10z � 4

 w � x � y � 6

 �3w � 17x � y � 2z � 2

 10x � 4y � 2z � �4

D 2 �2 4 0  0

�3 3 �6 5 15

1 �1 2 0 0

T
P R O B L E M  S E T  7 . 3

is inconsistent: No solution is possible. Therefore the system is
inconsistent as well. See Example 4, where and 

If the system is consistent (either or and all the numbers 
are zero), then there are solutions.

(b) Unique solution. If the system is consistent and , there is exactly one
solution, which can be found by back substitution. See Example 2, where 
and 

(c) Infinitely many solutions. To obtain any of these solutions, choose values of
arbitrarily. Then solve the rth equation for (in terms of those

arbitrary values), then the st equation for , and so on up the line. See
Example 3.

Orientation. Gauss elimination is reasonable in computing time and storage demand.
We shall consider those aspects in Sec. 20.1 in the chapter on numeric linear algebra.
Section 7.4 develops fundamental concepts of linear algebra such as linear independence
and rank of a matrix. These in turn will be used in Sec. 7.5 to fully characterize the
behavior of linear systems in terms of existence and uniqueness of solutions.

xr�1(r � 1)
xrx r�1, Á , xn

m � 4.
r � n � 3

r � n

fr�1, fr�2, Á , fmr 	 mr � m,

fr�1 � f3 � 12.r � 2 	 m � 3
Ax � bRx � f

2. c3.0 �0.5 0.6

1.5 4.5 6.0
d

3.

 �2x � 4y � 6z �  40

 8y � 6z � �6

 x � y � z � 9 4. D 4 1 0 4

5 �3 1 2

�9 2 �1 5

T
5. D 13 12 �6

�4 7 �73

11 �13 157

T 6. D 4 �8 3 16

�1 2 �5 �21

3 �6 1 7

T
7. D 2 4 1 0

�1 1 �2 0

4 0 6 0

T 8.

 3x � 2y � 5

 2x � z � 2

 4y � 3z � 8

9.

 3x � 4y � 5z � 13

 �2y � 2z � �8 10. c 5  �7 3 17

�15 21 �9 50
d

11. D0 5 5 �10 0

2 �3 �3 6 2

4 1 1 �2 4

T
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16. CAS PROJECT. Gauss Elimination and Back
Substitution. Write a program for Gauss elimination
and back substitution (a) that does not include pivoting
and (b) that does include pivoting. Apply the programs
to Probs. 11–14 and to some larger systems of your
choice.

17–21 MODELS OF NETWORKS
In Probs. 17–19, using Kirchhoff’s laws (see Example 2)
and showing the details, find the currents:

17.

18.

19.

20. Wheatstone bridge. Show that if in
the figure, then . ( is the resistance of the
instrument by which I is measured.) This bridge is a
method for determining are known. 
is variable. To get , make by varying . Then
calculate .Rx � R3R1>R2

R3I � 0Rx

R3Rx. R1, R2, R3

R0I � 0
Rx>R3 � R1>R2

R
1
 Ω

R
2
 Ω

I2

I1

E
0
 V

I3

12 Ω4 Ω

24 V

8 Ω

I2

I1

12 V

I3

1 Ω
2 Ω 2 Ω

4 Ω

32 V

I3

I1

I2

16 V
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the analog of Kirchhoff’s Current Law, find the traffic
flow (cars per hour) in the net of one-way streets (in
the directions indicated by the arrows) shown in the
figure. Is the solution unique?

22. Models of markets. Determine the equilibrium
solution of the two-commodity
market with linear model demand, supply,
price; index first commodity, index second
commodity)

23. Balancing a chemical equation
means finding integer 

such that the numbers of atoms of carbon (C), hydrogen
(H), and oxygen (O) are the same on both sides of this
reaction, in which propane and give carbon
dioxide and water. Find the smallest positive integers

24. PROJECT. Elementary Matrices. The idea is that
elementary operations can be accomplished by matrix
multiplication. If A is an matrix on which we
want to do an elementary operation, then there is a
matrix E such that EA is the new matrix after the
operation. Such an E is called an elementary matrix.
This idea can be helpful, for instance, in the design
of algorithms. (Computationally, it is generally prefer-
able to do row operations directly, rather than by
multiplication by E.)

(a) Show that the following are elementary matrices,
for interchanging Rows 2 and 3, for adding times
the first row to the third, and for multiplying the fourth
row by 8.

E3 � E 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 8

 U  .

E2 � E 1 0 0 0

0 1 0 0

�5 0 1 0

0 0 0 1

 U  ,

E1 � E 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 U  ,

�5

m � n

x1, Á , x4.

O2C3H8

x1, x2, x3, x4x3CO2 � x4H2O
x1C3H8 � x2O2 :

S1 � 4P1 � P2 � 4,

S2 � 3P2 � 4.

D1 � 40 � 2P1 � P2, 

D2 � 5P1 � 2P2 � 16,

2 �1 �
(D, S, P �

(D1 � S1, D2 � S2)

Rx

R
0

R
3

R
1

R
2

Wheatstone bridge

x4 x2

x1

x3

400

 600

1000

 800

1200

800

600 1000

Net of one-way streets

Problem 20 Problem 21

21. Traffic flow. Methods of electrical circuit analysis
have applications to other fields. For instance, applying
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7.4 Linear Independence. Rank of a Matrix.
Vector Space

Since our next goal is to fully characterize the behavior of linear systems in terms
of existence and uniqueness of solutions (Sec. 7.5), we have to introduce new
fundamental linear algebraic concepts that will aid us in doing so. Foremost among
these are linear independence and the rank of a matrix. Keep in mind that these
concepts are intimately linked with the important Gauss elimination method and how
it works.

Linear Independence and Dependence of Vectors
Given any set of m vectors (with the same number of components), a linear
combination of these vectors is an expression of the form

where are any scalars. Now consider the equation

(1)

Clearly, this vector equation (1) holds if we choose all ’s zero, because then it becomes
. If this is the only m-tuple of scalars for which (1) holds, then our vectors

are said to form a linearly independent set or, more briefly, we call them
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these
vectors linearly dependent. This means that we can express at least one of the vectors
as a linear combination of the other vectors. For instance, if (1) holds with, say,

where .

(Some ’s may be zero. Or even all of them, namely, if .)
Why is linear independence important? Well, if a set of vectors is linearly

dependent, then we can get rid of at least one or perhaps more of the vectors until we
get a linearly independent set. This set is then the smallest “truly essential” set with
which we can work. Thus, we cannot express any of the vectors, of this set, linearly
in terms of the others.

a(1) � 0k j

k j � �cj>c1a(1) � k2a(2) � Á � kma(m)

c1 � 0, we can solve (1) for a(1):

a(1), Á , a(m)

0 � 0
cj

c1a(1) � c2a(2) � Á � cma(m) � 0.

c1, c2, Á , cm

c1a(1) � c2a(2) � Á � cma(m)

a(1), Á , a(m)

282 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Apply to a vector and to a matrix of
your choice. Find , where is
the general matrix. Is B equal to 

(b) Conclude that are obtained by doing
the corresponding elementary operations on the 4 � 4

E1, E2, E3

C � E1E2E3A?4 � 2
A � 3ajk4B � E3E2E1A

4 � 3E1, E2, E3 unit matrix. Prove that if M is obtained from A by an
elementary row operation, then

, 

where E is obtained from the unit matrix by
the same row operation.

Inn � n

M � EA
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E X A M P L E  1 Linear Independence and Dependence

The three vectors

are linearly dependent because

Although this is easily checked by vector arithmetic (do it!), it is not so easy to discover. However, a systematic
method for finding out about linear independence and dependence follows below.

The first two of the three vectors are linearly independent because implies (from
the second components) and then (from any other component of 

Rank of a Matrix

D E F I N I T I O N The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.

Our further discussion will show that the rank of a matrix is an important key concept for
understanding general properties of matrices and linear systems of equations.

E X A M P L E  2 Rank

The matrix

(2)

has rank 2, because Example 1 shows that the first two row vectors are linearly independent, whereas all three
row vectors are linearly dependent.

Note further that rank if and only if This follows directly from the definition.

We call a matrix row-equivalent to a matrix can be obtained from by
(finitely many!) elementary row operations.

Now the maximum number of linearly independent row vectors of a matrix does not
change if we change the order of rows or multiply a row by a nonzero c or take a linear
combination by adding a multiple of a row to another row. This shows that rank is
invariant under elementary row operations:

T H E O R E M  1 Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

Hence we can determine the rank of a matrix by reducing the matrix to row-echelon
form, as was done in Sec. 7.3. Once the matrix is in row-echelon form, we count the
number of nonzero rows, which is precisely the rank of the matrix.

A2A2 if A1A1

�A � 0.A � 0

A � D 3 0 2 2

�6 42 24 54

21 �21 0 �15

T

�a(1).c1 � 0
c2 � 0c1a(1) � c2a(2) � 0

6a(1) � 1
2 a(2) � a(3) � 0.

a(1) � 3 3 0 2 24

a(2) � 3�6 42 24 544

a(3) � 3 21 �21 0 �154
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284 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

E X A M P L E  3 Determination of Rank

For the matrix in Example 2 we obtain successively

(given)

.

The last matrix is in row-echelon form and has two nonzero rows. Hence rank as before.

Examples 1–3 illustrate the following useful theorem (with and the rank of
).

T H E O R E M  2 Linear Independence and Dependence of Vectors

Consider p vectors that each have n components. Then these vectors are linearly
independent if the matrix formed, with these vectors as row vectors, has rank p.
However, these vectors are linearly dependent if that matrix has rank less than p.

Further important properties will result from the basic

T H E O R E M  3 Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent
column vectors of A.

Hence A and its transpose have the same rank.

P R O O F In this proof we write simply “rows” and “columns” for row and column vectors. Let A
be an matrix of rank Then by definition of rank, A has r linearly independent
rows which we denote by (regardless of their position in A), and all the rows

of A are linear combinations of those, say, 

(3)

a(1) � c11v(1) � c12v(2) � Á � c1rv(r)

a(2) � c21v(1) � c22v(2) � Á � c2rv(r)

 .
.
.        .

.

.        .
.
.            .

.

.

a(m) � cm1v(1) � cm2v(2) � Á � cmrv(r).

a(1), Á , a(m)

v(1), Á , v(r)

A � r.m � n

AT

the matrix � 2
n � 3,p � 3,

�A � 2,

Row 3 � 1
2 Row 2

 D 3 0 2 2

0 42 28 58

0 0 0 0

 T
Row 2 � 2 Row 1

Row 3 � 7 Row 1

 D 3 0 2 2

0 42 28 58

0 �21 �14 �29

 T
 A � D 3 0 2 2

�6 42 24 54

21 �21 0 �15

 T
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These are vector equations for rows. To switch to columns, we write (3) in terms of
components as n such systems, with 

(4)

and collect components in columns. Indeed, we can write (4) as

(5)

where Now the vector on the left is the kth column vector of A. We see that
each of these n columns is a linear combination of the same r columns on the right. Hence
A cannot have more linearly independent columns than rows, whose number is rank 
Now rows of A are columns of the transpose . For our conclusion is that cannot
have more linearly independent columns than rows, so that A cannot have more linearly
independent rows than columns. Together, the number of linearly independent columns
of A must be r, the rank of A. This completes the proof.

E X A M P L E  4 Illustration of Theorem 3

The matrix in (2) has rank 2. From Example 3 we see that the first two row vectors are linearly independent
and by “working backward” we can verify that Similarly, the first two columns
are linearly independent, and by reducing the last matrix in Example 3 by columns we find that

and

Combining Theorems 2 and 3 we obtain

T H E O R E M  4 Linear Dependence of Vectors

Consider p vectors each having n components. If then these vectors are
linearly dependent.

P R O O F The matrix A with those p vectors as row vectors has p rows and columns; hence
by Theorem 3 it has rank which implies linear dependence by Theorem 2.

Vector Space
The following related concepts are of general interest in linear algebra. In the present
context they provide a clarification of essential properties of matrices and their role in
connection with linear systems.

�A � n 	 p,
n 	 p

n 	 p,

�Column 4 � 2
3 Column 1 � 29

21 Column 2.Column 3 � 2
3 Column 1 � 2

3 Column 2

Row 3 � 6 Row 1 � 1
2 Row 2.

�

ATATAT
A � r.

k � 1, Á , n.

Ea1k

a2k

.

.

.

amk

U � v1k E c11

c21

.

.

.

cm1

U � v2k E c12

c22

.

.

.

cm2

U � Á � vrk E c1r

c2r

.

.

.

cmr

U

a1k �

a2k �

 .
.
.

amk �

c11v1k �

c21v1k �

   .
.
.

cm1v1k �

c12v2k �

c22v2k �

   .
.
.

cm2v2k �

Á � c1rvrk

Á � c2rvrk

       .
.
.

Á � cmrvrk

k � 1, Á , n, 
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Consider a nonempty set V of vectors where each vector has the same number of
components. If, for any two vectors a and b in V, we have that all their linear combinations

any real numbers) are also elements of V, and if, furthermore, a and b satisfy
the laws (3a), (3c), (3d), and (4) in Sec. 7.1, as well as any vectors a, b, c in V satisfy (3b)
then V is a vector space. Note that here we wrote laws (3) and (4) of Sec. 7.1 in lowercase
letters a, b, c, which is our notation for vectors. More on vector spaces in Sec. 7.9.

The maximum number of linearly independent vectors in V is called the dimension of
V and is denoted by dim V. Here we assume the dimension to be finite; infinite dimension
will be defined in Sec. 7.9.

A linearly independent set in V consisting of a maximum possible number of vectors
in V is called a basis for V. In other words, any largest possible set of independent vectors
in V forms basis for V. That means, if we add one or more vector to that set, the set will
be linearly dependent. (See also the beginning of Sec. 7.4 on linear independence and
dependence of vectors.) Thus, the number of vectors of a basis for V equals dim V.

The set of all linear combinations of given vectors with the same number
of components is called the span of these vectors. Obviously, a span is a vector space. If
in addition, the given vectors are linearly independent, then they form a basis
for that vector space.

This then leads to another equivalent definition of basis. A set of vectors is a basis for
a vector space V if (1) the vectors in the set are linearly independent, and if (2) any vector
in V can be expressed as a linear combination of the vectors in the set. If (2) holds, we
also say that the set of vectors spans the vector space V.

By a subspace of a vector space V we mean a nonempty subset of V (including V itself)
that forms a vector space with respect to the two algebraic operations (addition and scalar
multiplication) defined for the vectors of V.

E X A M P L E  5 Vector Space, Dimension, Basis

The span of the three vectors in Example 1 is a vector space of dimension 2. A basis of this vector space consists
of any two of those three vectors, for instance, or etc.

We further note the simple

T H E O R E M  5 Vector Space 

The vector space consisting of all vectors with n components (n real numbers)
has dimension n.

P R O O F A basis of n vectors is 

For a matrix A, we call the span of the row vectors the row space of A. Similarly, the
span of the column vectors of A is called the column space of A.

Now, Theorem 3 shows that a matrix A has as many linearly independent rows as
columns. By the definition of dimension, their number is the dimension of the row space
or the column space of A. This proves

T H E O R E M  6 Row Space and Column Space

The row space and the column space of a matrix A have the same dimension, equal
to rank A.

�a(n) � 30 Á  0 14.

Á ,a(2) � 30 1 0 Á  04,a(1) � 31 0 Á  04,

Rn

Rn

�a(1), a(3),a(1), a(2),

a(1), Á , a(p)

a(1), Á , a(p)

aa � bb (a, b
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c07.qxd  10/28/10  7:30 PM  Page 286



Finally, for a given matrix A the solution set of the homogeneous system is a
vector space, called the null space of A, and its dimension is called the nullity of A. In
the next section we motivate and prove the basic relation

(6) rank A � nullity A � Number of columns of A.

Ax � 0

SEC. 7.4 Linear Independence. Rank of a Matrix. Vector Space 287

1–10 RANK, ROW SPACE, COLUMN SPACE
Find the rank. Find a basis for the row space. Find a basis
for the column space. Hint. Row-reduce the matrix and its
transpose. (You may omit obvious factors from the vectors
of these bases.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. CAS Experiment. Rank. (a) Show experimentally
that the matrix with 
has rank 2 for any n. (Problem 20 shows ) Try
to prove it.

(b) Do the same when where c is any
positive integer.

(c) What is rank A if ? Try to find other
large matrices of low rank independent of n.

ajk � 2 
j�k�2

ajk � j � k � c, 

n � 4.
ajk � j � k � 1A � 3ajk4n � n

E 5 �2 1 0

�2 0 �4 1

1 �4 �11 2

0 1 2 0

UE9 0 1 0

0 0 1 0

1 1 1 1

0 0 1 0

U
E 2 4 8 16

16 8 4 2

4 8 16 2

2 16 8 4

UD8 0 4 0

0 2 0 4

4 0 2 0

T
D 0 1 0

�1 0 �4

0 4 0

TD0.2 �0.1 0.4

0  1.1 �0.3

0.1 0 �2.1

T
D 6 �4 0

�4 0 2

0 2 6

TD0 3 5

3 5 0

5 0 10

T
ca b

b a
dc 4 �2 6

�2 1 �3
d

12–16 GENERAL PROPERTIES OF RANK
Show the following:

12. rank (Note the order!)

13. rank does not imply rank 
(Give a counterexample.)

14. If A is not square, either the row vectors or the column
vectors of A are linearly dependent.

15. If the row vectors of a square matrix are linearly
independent, so are the column vectors, and conversely.

16. Give examples showing that the rank of a product of
matrices cannot exceed the rank of either factor.

17–25 LINEAR INDEPENDENCE
Are the following sets of vectors linearly independent?
Show the details of your work.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. Linearly independent subset. Beginning with the
last of the vectors 

and 
omit one after another until you get a linearly
independent set.

[9 0 1 2], 36 0 2 44,312 1 2 44,
36 1 0 04,33 0 1 24,

3�4 �4 �4 �44
 32 2 5 04,36 0 �1 3],

32 6 14
31 3 �54,30 8 14,34 �1 34,

39 8 7 6 54,  39 7 5 3 14

33.0 �0.6 1.5430 0 04,30.4 �0.2 0.24,

32 0 1 04
32 0 0 94,32 0 0 84,32 0 0 74,

34 5 6 74
33 4 5 64,32 3 4 54,31 2 3 44,

30 1 14,  31 1 14,  30 0 14

314 
1
5 

1
6 

1
74

313 
1
4 

1
5 

1
64,312 

1
3 

1
4 

1
54,31 1

2 
1
3 

1
44,

31 16 �12 �224
32 �1 3 74,33 4 0 24,

A2 � rank B2.A � rank B

BTAT � rank AB.

P R O B L E M  S E T  7 . 4
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7.5 Solutions of Linear Systems: 
Existence, Uniqueness

Rank, as just defined, gives complete information about existence, uniqueness, and general
structure of the solution set of linear systems as follows.

A linear system of equations in n unknowns has a unique solution if the coefficient
matrix and the augmented matrix have the same rank n, and infinitely many solutions if
that common rank is less than n. The system has no solution if those two matrices have
different rank.

To state this precisely and prove it, we shall use the generally important concept of a
submatrix of A. By this we mean any matrix obtained from A by omitting some rows or
columns (or both). By definition this includes A itself (as the matrix obtained by omitting
no rows or columns); this is practical.

T H E O R E M  1 Fundamental Theorem for Linear Systems

(a) Existence. A linear system of m equations in n unknowns x1, , xn

(1)

is consistent, that is, has solutions, if and only if the coefficient matrix A and the
augmented matrix have the same rank. Here,

(b) Uniqueness. The system (1) has precisely one solution if and only if this
common rank r of A and equals n.A�

A � Ea11
Á a1n

# Á #

# Á #

am1
Á amn

U and A� � E a11
Á a1n b1

# Á # #

# Á # #

am1
Á amn bm

U
A�

a11x1 � a12x2 � Á � a1nxn � b1

a21x1 � a22x2 � Á � a2nxn � b2

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

am1x1 � am2x2 � Á � amnxn � bm

Á

27–35 VECTOR SPACE
Is the given set of vectors a vector space? Give reasons. If
your answer is yes, determine the dimension and find a
basis. denote components.)

27. All vectors in with 

28. All vectors in with 

29. All vectors in with 

30. All vectors in with the first components zeron � 2Rn

v1 
 v2R2

3v2 � v3 � kR3

v1 � v2 � 2v3 � 0R3

(v1, v2, Á

288 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

31. All vectors in with positive components

32. All vectors in with 

33. All vectors in with 

34. All vectors in with for 

35. All vectors in with v1 � 2v2 � 3v3 � 4v4R4

j � 1, Á , nƒ vj ƒ � 1Rn

2v1 � 3v2 � 4v3 � 0
3v1 � v3 � 0,R3

4v1 � 5v2 � 0
3v1 � 2v2 � v3 � 0,R3

R5
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(c) Infinitely many solutions. If this common rank r is less than n, the system
(1) has infinitely many solutions. All of these solutions are obtained by determining
r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of
the remaining unknowns, to which arbitrary values can be assigned. (See
Example 3 in Sec. 7.3.)

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 7.3.)

n � r

P R O O F (a) We can write the system (1) in vector form or in terms of column vectors
of A:

(2)

is obtained by augmenting A by a single column b. Hence, by Theorem 3 in Sec. 7.4,
rank equals rank A or rank Now if (1) has a solution x, then (2) shows that b
must be a linear combination of those column vectors, so that and A have the same
maximum number of linearly independent column vectors and thus the same rank.

Conversely, if rank rank A, then b must be a linear combination of the column
vectors of A, say,

(2*)

since otherwise rank rank But means that (1) has a solution, namely,
as can be seen by comparing and (2).

(b) If rank the n column vectors in (2) are linearly independent by Theorem 3
in Sec. 7.4. We claim that then the representation (2) of b is unique because otherwise

This would imply (take all terms to the left, with a minus sign)

and by linear independence. But this means that the scalars
in (2) are uniquely determined, that is, the solution of (1) is unique.

(c) If rank rank , then by Theorem 3 in Sec. 7.4 there is a linearly
independent set K of r column vectors of A such that the other column vectors of
A are linear combinations of those vectors. We renumber the columns and unknowns,
denoting the renumbered quantities by , so that is that linearly independent
set K. Then (2) becomes

are linear combinations of the vectors of K, and so are the vectors
Expressing these vectors in terms of the vectors of K and collect-

ing terms, we can thus write the system in the form

(3) ĉ(1)y1 � Á � ĉ(r)yr � b

x̂r�1ĉ(r�1), Á , x̂nĉ(n).

ĉ(r�1), Á , ĉ(n)

ĉ(1) x̂1 � Á � ĉ(r) x̂r � ĉ(r�1) x̂r�1 � Á � ĉ(n) x̂n � b,

{ĉ(1), Á , c ˆ (r)}ˆ

n � r
A� � r 	 nA �

x1, Á , xn

x1 � x�1 � 0, Á , xn � x�n � 0

(x1 � x�1)c(1) � Á � (xn � x�n)c (n) � 0

c(1)x1 � Á � c(n)xn � c(1)x�1 � Á � c(n) x�n.

A � n,
(2*)x1 � a1, Á , xn � an,

(2*)A � 1.A� �

b � a1c(1) � Á � anc(n)

A� �

A�
A � 1.A�

A�

c(1) x1 � c(2)x2 � Á � c(n)xn � b.

c(1), Á , c(n)

Ax � b
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with where results from the terms here,
Since the system has a solution, there are satisfying (3). These

scalars are unique since K is linearly independent. Choosing fixes the and
corresponding where 

(d) This was discussed in Sec. 7.3 and is restated here as a reminder. �

The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since rank
(as can be seen from the last matrix in the example). In Example 3

we have rank and can choose and arbitrarily. In
Example 4 there is no solution because rank 

Homogeneous Linear System
Recall from Sec. 7.3 that a linear system (1) is called homogeneous if all the ’s are
zero, and nonhomogeneous if one or several ’s are not zero. For the homogeneous
system we obtain from the Fundamental Theorem the following results.

T H E O R E M  2 Homogeneous Linear System

A homogeneous linear system

(4)

always has the trivial solution Nontrivial solutions exist if and
only if rank If rank these solutions, together with form a
vector space (see Sec. 7.4) of dimension called the solution space of (4).

In particular, if and are solution vectors of (4), then 
with any scalars and is a solution vector of (4). (This does not hold for
nonhomogeneous systems. Also, the term solution space is used for homogeneous
systems only.)

P R O O F The first proposition can be seen directly from the system. It agrees with the fact that
implies that rank , so that a homogeneous system is always consistent.

If rank the trivial solution is the unique solution according to (b) in Theorem 1.
If rank there are nontrivial solutions according to (c) in Theorem 1. The solutions
form a vector space because if and are any of them, then 
and this implies as well as 
where c is arbitrary. If rank Theorem 1 (c) implies that we can choose 
suitable unknowns, call them , in an arbitrary fashion, and every solution is
obtained in this way. Hence a basis for the solution space, briefly called a basis of
solutions of (4), is where the basis vector is obtained by choosing

and the other zero; the corresponding first r components of this
solution vector are then determined. Thus the solution space of (4) has dimension 
This proves Theorem 2. �

n � r.
xr�1, Á , xnx r�j � 1

y( j)y(1), Á , y(n�r),

xr�1, Á , xn

n � rA � r 	 n,
A(cx(1)) � cAx(1) � 0,A(x(1) � x(2)) � Ax(1) � Ax(2) � 0

Ax(1) � 0, Ax(2) � 0,x(2)x(1)

A 	 n,
A � n,

A� � rank Ab � 0

c2c1

x � c1x(1) � c2x(2)x(2)x(1)

n � r
x � 0,A � r 	 n,A 	 n.

x1 � 0, Á , xn � 0.

a11x1 � a12x2 � Á � a1nxn � 0

a21x1 � a22x2 � Á � a2nxn � 0

# # # # # # # # # # # # # # # #

am1x1 � am2x2 � Á � amnxn � 0

bj

bj

A � 2 	 rank A� � 3.
x4x3A� � rank A � 2 	 n � 4

A� � rank A � n � 3

j � 1, Á , r.x̂j � yj � bj,
bjx̂r�1, Á , x̂n

y1, Á , yrj � 1, Á , r.
ĉ(r�1) x̂r�1, Á , ĉ(n) x̂n;n � rbjyj � x̂j � bj,
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The solution space of (4) is also called the null space of A because for every x in
the solution space of (4). Its dimension is called the nullity of A. Hence Theorem 2 states that

(5)

where n is the number of unknowns (number of columns of A).
Furthermore, by the definition of rank we have rank in (4). Hence if 

then rank By Theorem 2 this gives the practically important

T H E O R E M  3 Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns always has
nontrivial solutions.

Nonhomogeneous Linear Systems
The characterization of all solutions of the linear system (1) is now quite simple, as follows.

T H E O R E M  4 Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as

(6)

where is any (fixed) solution of (1) and runs through all the solutions of the
corresponding homogeneous system (4).

P R O O F The difference of any two solutions of (1) is a solution of (4) because
Since x is any solution of (1), we get all

the solutions of (1) if in (6) we take any solution x0 of (1) and let xh vary throughout the
solution space of (4). �

This covers a main part of our discussion of characterizing the solutions of systems of
linear equations. Our next main topic is determinants and their role in linear equations.

Axh � A(x � x0) � Ax � Ax0 � b � b � 0.
xh � x � x0

xhx0

x � x0 � xh

A 	 n.
m 	 n,A � m

rank A � nullity A � n

Ax � 0
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7.6 For Reference: 
Second- and Third-Order Determinants

We created this section as a quick general reference section on second- and third-order
determinants. It is completely independent of the theory in Sec. 7.7 and suffices as a
reference for many of our examples and problems. Since this section is for reference, go
on to the next section, consulting this material only when needed.

A determinant of second order is denoted and defined by

(1)

So here we have bars (whereas a matrix has brackets).

D � det A � 2  a11 a12

a21 a22

 2 � a11a22 � a12a21.
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Cramer’s rule for solving linear systems of two equations in two unknowns

(2)

is

(3)

with D as in (1), provided

The value appears for homogeneous systems with nontrivial solutions.

P R O O F We prove (3). To eliminate multiply (2a) by and (2b) by and add, 

Similarly, to eliminate multiply (2a) by and (2b) by and add, 

Assuming that dividing, and writing the right sides of these
two equations as determinants, we obtain (3).

E X A M P L E  1 Cramer’s Rule for Two Equations

If

Third-Order Determinants
A determinant of third order can be defined by

(4) D � 3  a11 a12 a13

a21 a22 a23

a31 a32 a33

 3 � a11 2  a22 a23

a32 a33

 2 � a21 2  a12 a13

a32 a33

 2 � a31 2  a12 a13

a22 a23

 2 .

�
4x1 � 3x2 � 12

2x1 � 5x2 � �8
  then  x1 �

2  12 3

�8 5
 2

2  4 3

2 5
 2 � 84

14
� 6,  x2 �

2  4   12

2   �8
 2

2  4   3

2   5
 2 � �56

14
� �4.

�

D � a11a22 � a12a21 � 0, 

(a11a22 � a12a21)x2 � a11b2 � b1a21.

a11�a21x1

(a11a22 � a12a21)x1 � b1a22 � a12b2.

�a12a22x2

D � 0

D � 0.

x2 �

2  a11 b1

a21 b2

 2
D

�
a11b2 � b1a21

D

x1 �

2  b1 a12

b2 a22

 2
D

�
b1a22 � a12b2

D
 ,

(a) a11x1 � a12x2 � b1

(b) a21x1 � a22x2 � b2
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Note the following. The signs on the right are Each of the three terms on the
right is an entry in the first column of D times its minor, that is, the second-order
determinant obtained from D by deleting the row and column of that entry; thus, for a11

delete the first row and first column, and so on.
If we write out the minors in (4), we obtain

(4*)

Cramer’s Rule for Linear Systems of Three Equations

(5)

is

(6)

with the determinant D of the system given by (4) and

Note that are obtained by replacing Columns 1, 2, 3, respectively, by the
column of the right sides of (5).

Cramer’s rule (6) can be derived by eliminations similar to those for (3), but it also
follows from the general case (Theorem 4) in the next section.

7.7 Determinants. Cramer’s Rule
Determinants were originally introduced for solving linear systems. Although impractical
in computations, they have important engineering applications in eigenvalue problems
(Sec. 8.1), differential equations, vector algebra (Sec. 9.3), and in other areas. They can
be introduced in several equivalent ways. Our definition is particularly for dealing with
linear systems.

A determinant of order n is a scalar associated with an (hence square!) matrix
and is denoted by

(1) D � det A � 7  
a11 a12

Á a1n

a21 a22
Á a2n

# # Á #

# # Á #

an1 an2
Á ann

 7
 

.

A � 3ajk4, 
n � n

D1, D2, D3

D1 � 3  b1 a12 a13

b2 a22 a23

b3 a32 a33

 3 ,  D2 � 3  a11 b1 a13

a21 b2 a23

a31 b3 a33

 3 ,  D3 � 3  a11 a12 b1

a21 a22 b2

a31 a32 b3

 3 .
(D � 0)x1 �

D1

D
,  x2 �

D2

D
,  x3 �

D3

D

a11x1 � a12x2 � a13x3 � b1

a21x1 � a22x2 � a23x3 � b2

a31x1 � a32x2 � a33x3 � b3

D � a11a22a33 � a11a23a32 � a21a13a32 � a21a12a33 � a31a12a23 � a31a13a22.

� � �.
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For this determinant is defined by

(2)

For by

(3a)

or

(3b)

Here, 

and is a determinant of order namely, the determinant of the submatrix of A
obtained from A by omitting the row and column of the entry , that is, the jth row and
the kth column.

In this way, D is defined in terms of n determinants of order each of which is,
in turn, defined in terms of determinants of order and so on—until we
finally arrive at second-order determinants, in which those submatrices consist of single
entries whose determinant is defined to be the entry itself.

From the definition it follows that we may expand D by any row or column, that is, choose
in (3) the entries in any row or column, similarly when expanding the ’s in (3), and so on.

This definition is unambiguous, that is, it yields the same value for D no matter which
columns or rows we choose in expanding. A proof is given in App. 4.

Terms used in connection with determinants are taken from matrices. In D we have 
entries also n rows and n columns, and a main diagonal on which 
stand. Two terms are new:

is called the minor of in D, and the cofactor of in D.
For later use we note that (3) may also be written in terms of minors

(4a)

(4b)

E X A M P L E  1 Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly.
For the entries in the second row the minors are

and the cofactors are and Similarly for the third row—write these
down yourself. And verify that the signs in form a checkerboard pattern

�

� � �

� � �

� � �

Cjk

C23 � �M23.C21 � �M21, C22 � �M22, 

M21 � 2   a12 a13

a32 a33

  2 ,   M22 � 2  a11 a13

a31 a33

 2 ,   M23 � 2  a11 a12

a31 a32

 2

(k � 1, 2, Á , or n).D � a

n

j�1

(�1) 
j�kajkMjk

( j � 1, 2, Á , or n)D � a

n

k�1

(�1) 
j�kajkMjk

ajkCjkajkMjk

a11, a22, Á , annajk,
n2

Cjk

n � 2, n � 1
n � 1, 

ajk

n � 1, Mjk

Cjk � (�1) 
j�kMjk

D � a1kC1k � a2kC2k � Á � ankCnk (k � 1, 2, Á , or n).

D � aj1Cj1 � aj2Cj2 � Á � ajnCjn    ( j � 1, 2, Á , or n)

n  
  2

D � a11.

n � 1, 
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E X A M P L E  2 Expansions of a Third-Order Determinant

This is the expansion by the first row. The expansion by the third column is

Verify that the other four expansions also give the value �12.

E X A M P L E  3 Determinant of a Triangular Matrix

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal 
matrices?

General Properties of Determinants
There is an attractive way of finding determinants (1) that consists of applying elementary
row operations to (1). By doing so we obtain an “upper triangular” determinant (see
Sec. 7.1, for definition with “matrix” replaced by “determinant”) whose value is then very
easy to compute, being just the product of its diagonal entries. This approach is similar
(but not the same!) to what we did to matrices in Sec. 7.3. In particular, be aware that
interchanging two rows in a determinant introduces a multiplicative factor of to the
value of the determinant! Details are as follows.

T H E O R E M  1 Behavior of an nth-Order Determinant under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant by �1.

(b) Addition of a multiple of a row to another row does not alter the value of the
determinant.

(c) Multiplication of a row by a nonzero constant c multiplies the value of the
determinant by c. (This holds also when but no longer gives an elementary
row operation.)

P R O O F (a) By induction. The statement holds for because2  a b

c d
 2 � ad � bc,   but  2  c d

a b
 2 � bc � ad.

n � 2

c � 0,

�1

�

3  �3 0 0

6 4 0

�1 2 5

 3 � �3 2  4 0

2 5
 2 � �3 # 4 # 5 � �60.

�

D � 0 2  2 6

�1 0
 2 � 4 2  1 3

�1 0
 2 � 2 2  1 3

2 6
 2 � 0 � 12 � 0 � �12.

 � 1(12 � 0) � 3(4 � 4) � 0(0 � 6) � �12.

 D � 3  1 3 0

2 6 4

�1 0 2

 3 � 1 2  6 4

0 2
 2 � 3 2  2 4

�1 2
 2 � 0 2  2 6

�1 0
 2
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We now make the induction hypothesis that (a) holds for determinants of order 
and show that it then holds for determinants of order n. Let D be of order n. Let E be
obtained from D by the interchange of two rows. Expand D and E by a row that is not
one of those interchanged, call it the jth row. Then by (4a), 

(5)

where is obtained from the minor of in D by the interchange of those two
rows which have been interchanged in D (and which must both contain because we
expand by another row!). Now these minors are of order Hence the induction
hypothesis applies and gives Thus by (5).

(b) Add c times Row i to Row j. Let be the new determinant. Its entries in Row j
are If we expand by this Row j, we see that we can write it as

where has in Row j the whereas has in that Row j the
from the addition. Hence has in both Row i and Row j. Interchanging these

two rows gives back, but on the other hand it gives by (a). Together
, so that 

(c) Expand the determinant by the row that has been multiplied.

CAUTION! det (cA) � cn det A (not c det A). Explain why.

E X A M P L E  4 Evaluation of Determinants by Reduction to Triangular Form

Because of Theorem 1 we may evaluate determinants by reduction to triangular form, as in the Gauss elimination
for a matrix. For instance (with the blue explanations always referring to the preceding determinant)

� � 2 # 5 # 2.4 # 47.25 � 1134.

 � 5  2  0 �4 6

0 5 9 �12

0 0 2.4 3.8

0 0 �0  47.25

 5 
Row 4 � 4.75 Row 3

 � 5  2  0 �4 6

0 5 9 �12

0 0 2.4 3.8

0 0 �11.4 29.2

 5 
Row 3 � 0.4 Row 2

Row 4 � 1.6 Row 2

 � 5  2  0 �4 6  

0 5 9 �12  

0 2 6 �1  

0 8 3 10  

 5 Row 2 � 2 Row 1

Row 4 � 1.5 Row 1

 D � 5  2  0 �4 6

4 5 1 0

0 2 6 �1

�3 8 9 1

 5

�

D� � D1 � D.D2 � �D2 � 0
�D2D2

ajkD2ajk

D2ajk, D1 � DD� � D1 � cD2, 
D�ajk � caik.

D�
E � �DNjk � �Mjk.

n � 1.
Njk

ajkMjkNjk

D � a

n

k�1

(�1) 
j�kajkMjk,   E � a

n

k�1

(�1) 
j�kajkNjk

n � 1  
  2
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T H E O R E M  2 Further Properties of nth-Order Determinants

(a)–(c) in Theorem 1 hold also for columns.

(d) Transposition leaves the value of a determinant unaltered.

(e) A zero row or column renders the value of a determinant zero.

(f ) Proportional rows or columns render the value of a determinant zero. In
particular, a determinant with two identical rows or columns has the value zero.

P R O O F (a)–(e) follow directly from the fact that a determinant can be expanded by any row
column. In (d), transposition is defined as for matrices, that is, the jth row becomes the
jth column of the transpose.

(f) If Row times Row i, then , where has Row Hence
an interchange of these rows reproduces but it also gives by Theorem 1(a).
Hence and Similarly for columns.

It is quite remarkable that the important concept of the rank of a matrix A, which is the
maximum number of linearly independent row or column vectors of A (see Sec. 7.4), can
be related to determinants. Here we may assume that rank because the only matrices
with rank 0 are the zero matrices (see Sec. 7.4).

T H E O R E M  3 Rank in Terms of Determinants

Consider an matrix :

(1) A has rank if and only if A has an submatrix with a nonzero
determinant.

(2) The determinant of any square submatrix with more than r rows, contained
in A (if such a matrix exists!) has a value equal to zero.

Furthermore, if , we have:

(3) An square matrix A has rank n if and only if

P R O O F The key idea is that elementary row operations (Sec. 7.3) alter neither rank (by Theorem
1 in Sec. 7.4) nor the property of a determinant being nonzero (by Theorem 1 in this
section). The echelon form Â of A (see Sec. 7.3) has r nonzero row vectors (which are
the first r row vectors) if and only if rank Without loss of generality, we can
assume that Let R̂ be the submatrix in the left upper corner of Â (so that
the entries of R̂ are in both the first r rows and r columns of Â). Now R̂ is triangular,
with all diagonal entries nonzero. Thus, det R̂ Also det for
the corresponding submatrix R of A because R̂ results from R by elementary row
operations. This proves part (1).

Similarly, for any square submatrix S of or more rows perhaps
contained in A because the corresponding submatrix Ŝ of Â must contain a row of zeros
(otherwise we would have rank ), so that det Ŝ by Theorem 2. This proves
part (2). Furthermore, we have proven the theorem for an matrix.m � n

� 0A  
  r � 1

r � 1det S � 0

r � r
R � 0� r11

Á rrr � 0.rjj

r � rr  
  1.
A � r.

det A � 0.

n � n

m � n

r � rr  
  1

A � 3ajk4m � n

A � 0

�D � cD1 � 0.D1 � 0
�D1D1, 

j � Row i.D1D � cD1j � c
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For an square matrix A we proceed as follows. To prove (3), we apply part (1)
(already proven!). This gives us that rank if and only if A contains an 
submatrix with nonzero determinant. But the only such submatrix contained in our square
matrix A, is A itself, hence This proves part (3).

Cramer’s Rule
Theorem 3 opens the way to the classical solution formula for linear systems known as
Cramer’s rule,2 which gives solutions as quotients of determinants. Cramer’s rule is not
practical in computations for which the methods in Secs. 7.3 and 20.1–20.3 are suitable.
However, Cramer’s rule is of theoretical interest in differential equations (Secs. 2.10 and
3.3) and in other theoretical work that has engineering applications.

T H E O R E M  4 Cramer’s Theorem (Solution of Linear Systems by Determinants)

(a) If a linear system of n equations in the same number of unknowns 

(6)

has a nonzero coefficient determinant the system has precisely one
solution. This solution is given by the formulas

(7)

where is the determinant obtained from D by replacing in D the kth column by
the column with the entries 

(b) Hence if the system (6) is homogeneous and it has only the trivial
solution If the homogeneous system also has
nontrivial solutions.

P R O O F The augmented matrix A� of the system (6) is of size n � (n � 1). Hence its rank can be
at most n. Now if

(8) D � det A � 5  a11
Á a1n

# Á #

# Á #

an1
Á ann

 5 � 0, 

D � 0,x1 � 0, x2 � 0, Á , xn � 0.
D � 0,

b1, Á , bn.
Dk

(Cramer’s rule)x1 �
D1

D
 ,  x2 �

D2

D
 , Á , xn �

Dn

D

D � det A,

a11x1 � a12x2 � Á � a1nxn � b1

a21x1 � a22x2 � Á � a2nxn � b2

# # # # # # # # # # # # # # # # #

an1x1 � an2x2 � Á � annxn � bn

x1, Á , xn

�det A � 0.

n � nA � n  
  1
n � n
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2GABRIEL CRAMER (1704–1752), Swiss mathematician. 

c07.qxd  10/28/10  7:30 PM  Page 298



then rank by Theorem 3. Thus rank . Hence, by the Fundamental
Theorem in Sec. 7.5, the system (6) has a unique solution.

Let us now prove (7). Expanding D by its kth column, we obtain

(9)

where is the cofactor of entry in D. If we replace the entries in the kth column of
D by any other numbers, we obtain a new determinant, say, D̂. Clearly, its expansion by
the kth column will be of the form (9), with replaced by those new numbers
and the cofactors as before. In particular, if we choose as new numbers the entries

of the lth column of D (where ), we have a new determinant D̂ which
has the column twice, once as its lth column, and once as its kth because
of the replacement. Hence D̂ by Theorem 2(f). If we now expand D̂ by the column
that has been replaced (the kth column), we thus obtain

(10)

We now multiply the first equation in (6) by on both sides, the second by 
the last by and add the resulting equations. This gives

(11)

Collecting terms with the same xj, we can write the left side as

From this we see that is multiplied by

Equation (9) shows that this equals D. Similarly, is multiplied by

Equation (10) shows that this is zero when Accordingly, the left side of (11) equals
simply so that (11) becomes

Now the right side of this is as defined in the theorem, expanded by its kth column,
so that division by D gives (7). This proves Cramer’s rule.

If (6) is homogeneous and , then each has a column of zeros, so that 
by Theorem 2(e), and (7) gives the trivial solution.

Finally, if (6) is homogeneous and then rank by Theorem 3, so that
nontrivial solutions exist by Theorem 2 in Sec. 7.5.

E X A M P L E  5 Illustration of Cramer’s Rule (Theorem 4)

For see Example 1 of Sec. 7.6. Also, at the end of that section, we give Cramer’s rule for a general
linear system of three equations. �

n � 2, 

�

A 	 nD � 0,

Dk � 0DkD � 0

Dk

xkD � b1C1k � b2C2k � Á � bnCnk.

xkD,
l � k.

a1lC1k � a2lC2k � Á � anlCnk.

x1

a1kC1k � a2kC2k � Á � ankCnk.

xk

x1(a11C1k � a21C2k � Á � an1Cnk) � Á � xn(a1nC1k � a2nC2k � Á � annCnk).

� b1C1k � Á � bnCnk.

C1k(a11x1 � Á � a1nxn) � Á � Cnk(an1x1 � Á � annxn)

Cnk,
C2k, Á , C1k

(l � k).a1lC1k � a2lC2k � Á � anlCnk � 0

� 0
3a1l Á  anl4

T
l � ka1l, Á , anl

Cik

a1k, Á , ank

aikCik

D � a1kC1k � a2kC2k � Á � ankCnk, 

A~ � rank AA � n
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Finally, an important application for Cramer’s rule dealing with inverse matrices will
be given in the next section.
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1–6 GENERAL PROBLEMS
1. General Properties of Determinants. Illustrate each

statement in Theorems 1 and 2 with an example of
your choice.

2. Second-Order Determinant. Expand a general
second-order determinant in four possible ways and
show that the results agree.

3. Third-Order Determinant. Do the task indicated in
Theorem 2. Also evaluate D by reduction to triangular
form.

4. Expansion Numerically Impractical. Show that the
computation of an nth-order determinant by expansion
involves multiplications, which if a multiplication
takes sec would take these times:

n 10 15 20 25

Time
0.004 22 77
sec min years years

5. Multiplication by Scalar. Show that 
(not k det A). Give an example.

6. Minors, cofactors. Complete the list in Example 1.

7–15 EVALUATION OF DETERMINANTS
Showing the details, evaluate:

7. 8.

9. 10.

11. 12.

13. 14. 6   
4 7 0   0

2 8 0 0

0 0 1 5

0 0 �2 2

  66  
0 4 �1 5

�4 0 3 �2

1 �3 0 1

�5 2 �1 0

 6

3  a b c

c a b

b c a

 33  4 �1 8

0 2 3

0 0 5

 3
2  cosh t sinh t

sinh t cosh t
 22  cos nu sin nu

�sin nu cos nu
 2

2  0.4 4.9

1.5 �1.3
 22  cos a sin a

sin b cos b
 2

kn det A
det (kA) �

0.5 # 109

10�9
n!

P R O B L E M  S E T  7 . 7

15.

16. CAS EXPERIMENT. Determinant of Zeros and
Ones. Find the value of the determinant of the 
matrix with main diagonal entries all 0 and all
others 1. Try to find a formula for this. Try to prove it
by induction. Interpret and as incidence matrices
(as in Problem Set 7.1 but without the minuses) of a
triangle and a tetrahedron, respectively; similarly for an
n-simplex, having n vertices and edges (and
spanning ).

17–19 RANK BY DETERMINANTS
Find the rank by Theorem 3 (which is not very practical)
and check by row reduction. Show details.

17. 18.

19.

20. TEAM PROJECT. Geometric Applications: Curves
and Surfaces Through Given Points. The idea is to
get an equation from the vanishing of the determinant
of a homogeneous linear system as the condition for a
nontrivial solution in Cramer’s theorem. We explain
the trick for obtaining such a system for the case of
a line L through two given points and

The unknown line is
say. We write it as To get a
nontrivial solution a, b, c, the determinant of the
“coefficients” x, y, 1 must be zero. The system is

(12)

 ax2 � by2 � c # 1 � 0 (P2 on L).

 ax1 � by1 � c # 1 � 0 (P1 on L)

 ax � by  � c # 1 � 0 (Line L)

ax � by � c # 1 � 0.
ax � by � �c,P2: (x2, y2).
P1: (x1, y1)

D 

1 5 2 2

1 3 2 6

4 0 8 48

 T
D 

0 4 �6

4 0 10

�6 10 0

 TD 

4 9

�8 �6

16 12

 T

Rn�1, n � 5, 6, Á

n (n � 1)>2

A4A3

An

n � n

6  
1 2 0 0

2 4 2 0

0 2 9 2

0 0 2 16

 6
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(a) Line through two points. Derive from in
(12) the familiar formula

(b) Plane. Find the analog of (12) for a plane through
three given points. Apply it when the points are

(c) Circle. Find a similar formula for a circle in the
plane through three given points. Find and sketch the
circle through 
(d) Sphere. Find the analog of the formula in (c) for
a sphere through four given points. Find the sphere
through by this
formula or by inspection.
(e) General conic section. Find a formula for a
general conic section (the vanishing of a determinant
of 6th order). Try it out for a quadratic parabola and
for a more general conic section of your own choice.

(0, 0, 5), (4, 0, 1), (0, 4, 1), (0, 0, �3)

(2, 6), (6, 4), (7, 1).

(1, 1, 1), (3, 2, 6), (5, 0, 5).

x � x1

x1 � x2
 �

y � y1

y1 � y2
.

D � 0
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21–25 CRAMER’S RULE
Solve by Cramer’s rule. Check by Gauss elimination and
back substitution. Show details.

21. 22.

23. 24.

25. �4w � x � y � �10

w � 4x � z � 1

w � 4y � z � �7

x � y � 4z � 10

3x � 2y � z � 13

�2x � y � 4z � 11

x � 4y � 5z � �31

3y � 4z � 16

2x � 5y � 7z � �27

�x � 9z � 9

2x � 4y � �24

5x � 2y � 0

3x � 5y � 15.5

6x � 16y � 5.0

7.8 Inverse of a Matrix.
Gauss–Jordan Elimination

In this section we consider square matrices exclusively.
The inverse of an matrix is denoted by and is an matrix

such that

(1)

where I is the unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then

A is called a singular matrix.
If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then and so that we obtain

the uniqueness from

We prove next that A has an inverse (is nonsingular) if and only if it has maximum
possible rank n. The proof will also show that implies provided 
exists, and will thus give a motivation for the inverse as well as a relation to linear systems.
(But this will not give a good method of solving numerically because the Gauss
elimination in Sec. 7.3 requires fewer computations.)

T H E O R E M  1 Existence of the Inverse

The inverse of an matrix A exists if and only if , thus (by
Theorem 3, Sec. 7.7) if and only if . Hence A is nonsingular if
and is singular if .rank A 	 n

rank A � n,det A � 0
rank A � nn � nA�1

Ax � b

A�1x � A�1bAx � b

B � IB � (CA)B � C(AB) � CI � C.

CA � I, AB � I

n � n

AA�1 � A�1A � I

n � nA�1A � 3ajk4n � n
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P R O O F Let A be a given matrix and consider the linear system

(2)

If the inverse exists, then multiplication from the left on both sides and use of (1)
gives

.

This shows that (2) has a solution x, which is unique because, for another solution u, we
have , so that . Hence A must have rank n by the Fundamental
Theorem in Sec. 7.5.

Conversely, let rank . Then by the same theorem, the system (2) has a unique
solution x for any b. Now the back substitution following the Gauss elimination (Sec. 7.3)
shows that the components of x are linear combinations of those of b. Hence we can
write

(3)

with B to be determined. Substitution into (2) gives

for any b. Hence , the unit matrix. Similarly, if we substitute (2) into (3) we get

for any x (and ). Hence . Together, exists.

Determination of the Inverse by the 
Gauss–Jordan Method
To actually determine the inverse of a nonsingular matrix A, we can use a
variant of the Gauss elimination (Sec. 7.3), called the Gauss–Jordan elimination.3 The
idea of the method is as follows.

Using A, we form n linear systems

where the vectors are the columns of the unit matrix I; thus,
etc. These are n vector equations

in the unknown vectors . We combine them into a single matrix equationx(1), Á , x(n)

e(1) � 31 0 Á  04T, e(2) � 30 1 0 Á  04T, 
n � ne(1), Á , e(n)

Ax(1) � e(1), Á ,  Ax(n) � e(n)

n � nA�1

�B � A�1BA � Ib � Ax

x � Bb � B(Ax) � (BA)x

C � AB � I

(C � AB)Ax � A(Bb) � (AB)b � Cb � b

x � Bb

x j

A � n

u � A�1b � xAu � b

A�1Ax � x � A�1b

A�1

Ax � b.

n � n

3WILHELM JORDAN (1842–1899), German geodesist and mathematician. He did important geodesic work
in Africa, where he surveyed oases. [See Althoen, S.C. and R. McLaughlin, Gauss–Jordan reduction: A brief
history. American Mathematical Monthly, Vol. 94, No. 2 (1987), pp. 130–142.]

We do not recommend it as a method for solving systems of linear equations, since the number of operations
in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss–Jordan
elimination avoids. See also Sec. 20.1.
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, with the unknown matrix X having the columns Correspondingly,
we combine the n augmented matrices into one wide 
“augmented matrix” . Now multiplication of by from the left
gives Hence, to solve for X, we can apply the Gauss
elimination to . This gives a matrix of the form with upper triangular
U because the Gauss elimination triangularizes systems. The Gauss–Jordan method
reduces U by further elementary row operations to diagonal form, in fact to the unit matrix
I. This is done by eliminating the entries of U above the main diagonal and making the
diagonal entries all 1 by multiplication (see Example 1). Of course, the method operates
on the entire matrix , transforming H into some matrix K, hence the entire 
to . This is the “augmented matrix” of . Now , as shown
before. By comparison, , so that we can read directly from .

The following example illustrates the practical details of the method.

E X A M P L E  1 Finding the Inverse of a Matrix by Gauss–Jordan Elimination

Determine the inverse of

Solution. We apply the Gauss elimination (Sec. 7.3) to the following matrix, where BLUE
always refers to the previous matrix.

This is as produced by the Gauss elimination. Now follow the additional Gauss–Jordan steps, reducing
U to I, that is, to diagonal form with entries 1 on the main diagonal.

 D1 0 0

0 1 0

0 0 1

3  

�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T Row 1 � Row 2

 D1 �1 0

0 1 0

0 0 1

3  

0.6 0.4 �0.4

�1.3 �0.2 0.7

0.8 0.2 �0.2

T Row 1 � 2 Row 3

Row 2 – 3.5 Row 3

 D1 �1 �2

0 1 3.5

0 0 1

3  

�1 0 0

1.5 0.5 0

0.8 0.2 �0.2

T �Row 1

0.5 Row 2

�0.2 Row 3

3U H4

 D�1 1 2

0 2 7

0 0 �5

3 1 0 0

3 1 0

�4 �1 1

T 
Row 3 � Row 2

 D�1 1 2

0 2 7

0 2 2

3  

1 0 0

3 1 0

�1 0 1

T Row 2 � 3 Row 1

Row 3 � Row 1

 3A I4 � D�1 1 2

3 �1 1

�1 3 4

3  

1 0 0

0 1 0

0 0 1

T
n � 2n � 3 � 6

A � D�1 1 2

3 �1 1

�1 3 4

T .

A�1

3I K4A�1K � A�1
IX � X � A�1IX � K3I K4

3U H43U H4

3U H4A� � 3A I4
AX � IX � A�1I � A�1.

A�1AX � IA� � 3A I4
n � 2n3A e(1)4, Á , 3A e(n)4

x(1), Á , x(n).AX � I
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The last three columns constitute Check:

Hence Similarly, 

Formulas for Inverses
Since finding the inverse of a matrix is really a problem of solving a system of linear
equations, it is not surprising that Cramer’s rule (Theorem 4, Sec. 7.7) might come into
play. And similarly, as Cramer’s rule was useful for theoretical study but not for
computation, so too is the explicit formula (4) in the following theorem useful for
theoretical considerations but not recommended for actually determining inverse matrices,
except for the frequently occurring case as given in 

T H E O R E M 2 Inverse of a Matrix by Determinants

The inverse of a nonsingular matrix is given by

(4)

where is the cofactor of in det A (see Sec. 7.7). (CAUTION! Note well that
in , the cofactor occupies the same place as (not ) does in A.)

In particular, the inverse of

P R O O F We denote the right side of (4) by B and show that . We first write

(5)

and then show that . Now by the definition of matrix multiplication and because of
the form of B in (4), we obtain (CAUTION! not )

(6) gkl � a

n

s�1

 
Csk

det A
 asl �

1
det A

 (a1lC1k � Á � anlCnk).

CksCsk, 
G � I

BA � G � 3gkl4

BA � I

A � ca11 a12

a21 a22

d  is  A�1 �
1

det A
 c a22 �a12

�a21 a11

d .(4*)

ajkakjCjkA�1
ajkCjk

A�1 �
1

det A
 3Cjk4

T �
1

det A
  EC11 C21

Á Cn1

C12 C22
Á Cn2

# # Á #

C1n C2n
Á Cnn

U  ,

A � 3ajk4n � n

(4*).2 � 2

�A�1A � I.AA�1 � I.

D�1 1 2

3 �1 1

�1 3 4

T  D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T � D1   0   0

0   1   0

0   0   1

T .

A�1.
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Now (9) and (10) in Sec. 7.7 show that the sum on the right is when
, and is zero when . Hence

In particular, for we have in (4), in the first row, and, 
in the second row, This gives 

The special case occurs quite frequently in geometric and other applications. You
may perhaps want to memorize formula (4*). Example 2 gives an illustration of (4*).

E X A M P L E  2 Inverse of a Matrix by Determinants

E X A M P L E  3 Further Illustration of Theorem 2

Using (4), find the inverse of

Solution. We obtain and in (4),

so that by (4), in agreement with Example 1, 

Diagonal matrices when have an inverse if and only if all
Then is diagonal, too, with entries 

P R O O F For a diagonal matrix we have in (4)

etc. �
C11

D
�

a22
Á ann

a11a22
Á ann

�
1

a11
,

1>a11, Á , 1>ann.A�1ajj � 0.
j � k, A � [ajk], ajk � 0

�A�1 � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T .

 C13 � 2  3 �1

�1 3
 2 � 8,   C23 � � 2  �1 1

�1 3
 2 � 2,   C33 � 2  �1 1

3 �1
 2 � �2, 

 C12 � � 2  3 1

�1 4
 2 � �13,   C22 � 2  �1 2

�1 4
 2 � �2,   C32 � � 2  �1 2

3 1
 2 � 7, 

 C11 � 2  �1 1

3 4
 2 � �7,   C21 � � 2  1 2

3 4
 2 � 2,   C31 � 2  1 2

�1 1
 2 � 3, 

det A � �1(�7) � 1 # 13 � 2 # 8 � 10, 

A � D�1 1 2

3 �1 1

�1 3 4

T .

�A � c3 1

2 4
d ,  A�1 �

1

10
 c 4 �1

�2 3
d � c 0.4 �0.1

�0.2 0.3
d

2 � 2

n � 2

�(4*).C12 � �a21, C22 � a11.
C11 � a22, C21 � �a12n � 2

 gkl � 0 (l � k).

 gkk �
1

det A
 det A � 1, 

l � kl � k
D � det A( Á )
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E X A M P L E  4 Inverse of a Diagonal Matrix

Let

Then we obtain the inverse by inverting each individual diagonal element of A, that is, by taking 
and as the diagonal entries of , that is,

Products can be inverted by taking the inverse of each factor and multiplying these
inverses in reverse order,

(7)

Hence for more than two factors, 

(8)

P R O O F The idea is to start from (1) for AC instead of A, that is, , and multiply
it on both sides from the left, first by which because of gives

and then multiplying this on both sides from the left, this time by and by using

This proves (7), and from it, (8) follows by induction.

We also note that the inverse of the inverse is the given matrix, as you may prove, 

(9)

Unusual Properties of Matrix Multiplication.
Cancellation Laws
Section 7.2 contains warnings that some properties of matrix multiplication deviate from
those for numbers, and we are now able to explain the restricted validity of the so-called
cancellation laws [2] and [3] below, using rank and inverse, concepts that were not yet

(A�1)�1 � A.

�

C�1C(AC)�1 � (AC)�1 � C�1A�1.

C�1C � I, 
C�1

� A�1I � A�1,

A�1AC(AC)�1 � C(AC)�1

A�1A � IA�1, 
AC(AC)�1 � I

(AC Á PQ)�1 � Q�1P�1 Á C�1A�1.

(AC)�1 � C�1A�1.

�A�1 � D�2 0 0

0 0.25 0

0 0 1

T .

A�11
1

1>(�0.5), 14  
,A�1

A � D�0.5 0 0

0 4 0

0 0 1

T .
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available in Sec. 7.2. The deviations from the usual are of great practical importance and
must be carefully observed. They are as follows.

[1] Matrix multiplication is not commutative, that is, in general we have

[2] does not generally imply or (or ); for example, 

[3] does not generally imply (even when 

Complete answers to [2] and [3] are contained in the following theorem.

T H E O R E M 3 Cancellation Laws

Let A, B, C be matrices. Then:

(a) If rank and , then

(b) If rank , then implies . Hence if , but
as well as , then rank and rank 

(c) If A is singular, so are BA and AB.

P R O O F (a) The inverse of A exists by Theorem 1. Multiplication by from the left gives
, hence .

(b) Let rank . Then exists, and implies Similarly
when rank . This implies the second statement in (b).

Rank by Theorem 1. Hence has nontrivial solutions by Theorem 2
in Sec. 7.5. Multiplication by B shows that these solutions are also solutions of 
so that rank by Theorem 2 in Sec. 7.5 and BA is singular by Theorem 1.

is singular by Theorem 2(d) in Sec. 7.7. Hence is singular by part ,
and is equal to by (10d) in Sec. 7.2. Hence AB is singular by Theorem 2(d) in
Sec. 7.7.

Determinants of Matrix Products
The determinant of a matrix product AB or BA can be written as the product of the
determinants of the factors, and it is interesting that , although 
in general. The corresponding formula (10) is needed occasionally and can be obtained
by Gauss–Jordan elimination (see Example 1) and from the theorem just proved.

T H E O R E M 4 Determinant of a Product of Matrices

For any matrices A and B,

(10) .det (AB) � det (BA) � det A det B

n � n

AB � BAdet AB � det BA

�

(AB)T
(c1)BTATAT(c2)

(BA) 	 n
BAx � 0,

Ax � 0A 	 n(c1)
B � n

A�1AB � B � 0.AB � 0A�1A � n
B � CA�1AB � A�1AC

A�1

B 	 n.A 	 nB � 0
A � 0AB � 0B � 0AB � 0A � n

B � C.AB � ACA � n

n � n

A � 0).C � DAC � AD

c1 1

2 2
d  c�1 1

1 �1
d � c0 0

0 0
d .
BA � 0B � 0A � 0AB � 0

AB � BA.
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P R O O F If A or B is singular, so are AB and BA by Theorem 3(c), and (10) reduces to by
Theorem 3 in Sec. 7.7.

Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix Â
by Gauss–Jordan steps. Under these operations, det A retains its value, by Theorem 1 in
Sec. 7.7, (a) and (b) [not (c)] except perhaps for a sign reversal in row interchanging when
pivoting. But the same operations reduce AB to ÂB with the same effect on .
Hence it remains to prove (10) for ÂB; written out,

Â

We now take the determinant (ÂB). On the right we can take out a factor from
the first row, from the second, from the nth. But this product 
equals Â because Â is diagonal. The remaining determinant is . This proves (10)
for , and the proof for follows by the same idea.

This completes our discussion of linear systems (Secs. 7.3–7.8). Section 7.9 on vector
spaces and linear transformations is optional. Numeric methods are discussed in Secs.
20.1–20.4, which are independent of other sections on numerics.

�det (BA)det (AB)
det Bdet 

â11â22
Á ânn

Á , a ˆnnâ22

â11det 

� E â11b11 â11b12
Á â11b1n

â22b21 â22b22
Á â22b2n

.

.

.

ânnbn1 ânnbn2
Á ânnbnn

U .

B � Eâ11 0 Á 0

0 â22
Á 0

. . .

0 0 Á ânn

U Eb11 b12
Á b1n

b21 b22
Á b2n

.

.

.

bn1 bn2
Á bnn

U
det (AB)

� [ajk]

0 � 0

1–10 INVERSE
Find the inverse by Gauss–Jordan (or by if ).
Check by using (1).

1. 2.

3. 4.

5. 6. D�4 0 0

0 8 13

0 3 5

TD1 0 0

2 1 0

5 4 1

T
D0 0 0.1

0 �0.4 0

2.5 0 0

TD0.3 �0.1 0.5

2 6 4

5 0 9

T
c cos 2u sin 2u

�sin 2u cos 2u
dc 1.80 �2.32

�0.25 0.60
d

n � 2(4*)
7. 8.

9. 10.

11–18 SOME GENERAL FORMULAS
11. Inverse of the square. Verify for A

in Prob. 1.

12. Prove the formula in Prob. 11.

(A2)�1 � (A�1)2

D 2
3

1
3

2
3

�2
3

2
3

1
3

1
3

2
3 �2

3

TD0 8 0

0 0 4

2 0 0

T
D1 2 3

4 5 6

7 8 9

TD0 1 0

1 0 0

0 0 1

T
P R O B L E M  S E T  7 . 8
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13. Inverse of the transpose. Verify for
A in Prob. 1.

14. Prove the formula in Prob. 13.

15. Inverse of the inverse. Prove that 

16. Rotation. Give an application of the matrix in Prob. 2
that makes the form of the inverse obvious.

17. Triangular matrix. Is the inverse of a triangular
matrix always triangular (as in Prob. 5)? Give reason.

(A�1)�1 � A.

(AT)�1 � (A�1)T

SEC. 7.9 Vector Spaces, Inner Product Spaces, Linear Transformations Optional 309

18. Row interchange. Same task as in Prob. 16 for the
matrix in Prob. 7.

19–20 FORMULA (4) 
Formula (4) is occasionally needed in theory. To understand
it, apply it and check the result by Gauss–Jordan:

19. In Prob. 3

20. In Prob. 6

7.9 Vector Spaces, Inner Product Spaces, 
Linear Transformations Optional

We have captured the essence of vector spaces in Sec. 7.4. There we dealt with special
vector spaces that arose quite naturally in the context of matrices and linear systems. The
elements of these vector spaces, called vectors, satisfied rules (3) and (4) of Sec. 7.1
(which were similar to those for numbers). These special vector spaces were generated
by spans, that is, linear combination of finitely many vectors. Furthermore, each such
vector had n real numbers as components. Review this material before going on.

We can generalize this idea by taking all vectors with n real numbers as components
and obtain the very important real n-dimensional vector space . The vectors are known
as “real vectors.” Thus, each vector in is an ordered n-tuple of real numbers.

Now we can consider special values for n. For , we obtain the vector space
of all ordered pairs, which correspond to the vectors in the plane. For , we obtain

the vector space of all ordered triples, which are the vectors in 3-space. These vectors
have wide applications in mechanics, geometry, and calculus and are basic to the engineer
and physicist.

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex
numbers as scalars, we obtain the complex vector space , which we shall consider in
Sec. 8.5.

Furthermore, there are other sets of practical interest consisting of matrices, functions,
transformations, or others for which addition and scalar multiplication can be defined in
an almost natural way so that they too form vector spaces.

It is perhaps not too great an intellectual jump to create, from the concrete model
the abstract concept of a real vector space V by taking the basic properties (3) and (4)
in Sec. 7.1 as axioms. In this way, the definition of a real vector space arises.

D E F I N I T I O N Real Vector Space

A nonempty set V of elements a, b, • • • is called a real vector space (or real linear
space), and these elements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if, in V, there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.

I. Vector addition associates with every pair of vectors a and b of V a unique
vector of V, called the sum of a and b and denoted by a � b, such that the following
axioms are satisfied.

Rn,

C n

R3, 
n � 3

R2, n � 2
Rn

Rn
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I.1 Commutativity. For any two vectors a and b of V,

a � b � b � a.

I.2 Associativity. For any three vectors a, b, c of V,

(a � b) � c � a � (b � c) (written a � b � c).

I.3 There is a unique vector in V, called the zero vector and denoted by 0, such
that for every a in V,

a � 0 � a.

I.4 For every a in V there is a unique vector in V that is denoted by �a and is
such that

a � (�a) � 0.

II. Scalar multiplication. The real numbers are called scalars. Scalar
multiplication associates with every a in V and every scalar c a unique vector of V,
called the product of c and a and denoted by ca (or ac) such that the following
axioms are satisfied.

II.1 Distributivity. For every scalar c and vectors a and b in V,

c (a � b) � ca � cb.

II.2 Distributivity. For all scalars c and k and every a in V,

(c � k)a � ca � ka.

II.3 Associativity. For all scalars c and k and every a in V,

c(ka) � (ck)a (written cka).

II.4 For every a in V,

1a � a.

If, in the above definition, we take complex numbers as scalars instead of real numbers,
we obtain the axiomatic definition of a complex vector space.

Take a look at the axioms in the above definition. Each axiom stands on its own: It
is concise, useful, and it expresses a simple property of V. There are as few axioms as
possible and together they express all the desired properties of V. Selecting good axioms
is a process of trial and error that often extends over a long period of time. But once
agreed upon, axioms become standard such as the ones in the definition of a real vector
space.
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The following concepts related to a vector space are exactly defined as those given in
Sec. 7.4. Indeed, a linear combination of vectors in a vector space V is an
expression

any scalars).

These vectors form a linearly independent set (briefly, they are called linearly
independent) if

(1)

implies that . Otherwise, if (1) also holds with scalars not all zero, the
vectors are called linearly dependent.

Note that (1) with is and shows that a single vector a is linearly
independent if and only if .

V has dimension n, or is n-dimensional, if it contains a linearly independent set of n
vectors, whereas any set of more than n vectors in V is linearly dependent. That set of
n linearly independent vectors is called a basis for V. Then every vector in V can be
written as a linear combination of the basis vectors. Furthermore, for a given basis, this
representation is unique (see Prob. 2).

E X A M P L E  1 Vector Space of Matrices

The real matrices form a four-dimensional real vector space. A basis is

because any matrix has a unique representation .
Similarly, the real matrices with fixed m and n form an mn-dimensional vector space. What is the
dimension of the vector space of all skew-symmetric matrices? Can you find a basis?

E X A M P L E  2 Vector Space of Polynomials

The set of all constant, linear, and quadratic polynomials in x together is a vector space of dimension 3 with
basis under the usual addition and multiplication by real numbers because these two operations give
polynomials not exceeding degree 2. What is the dimension of the vector space of all polynomials of degree
not exceeding a given fixed n? Can you find a basis?

If a vector space V contains a linearly independent set of n vectors for every n, no matter
how large, then V is called infinite dimensional, as opposed to a finite dimensional
(n-dimensional) vector space just defined. An example of an infinite dimensional vector
space is the space of all continuous functions on some interval [a, b] of the x-axis, as we
mention without proof.

Inner Product Spaces
If a and b are vectors in , regarded as column vectors, we can form the product .
This is a matrix, which we can identify with its single entry, that is, with a number.1 � 1

aTbRn

�

{1, x, x2}

�3 � 3
m � n

A � a11B11 �  a12B12 � a21B21 � a22B22A � [ajk]2 � 2

B11 � c1 0

0 0
d ,  B12 � c0 1

0 0
d ,  B21 � c0 0

1 0
d ,  B22 � c0 0

0 1
d

2 � 2

a � 0
ca � 0m � 1

c1 � 0, Á , cm � 0

c1a(1) � Á � cma(m) � 0

(c1, Á , cmc1a(1) � Á � cmam

a(1), Á , a(m)
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This product is called the inner product or dot product of a and b. Other notations for
it are (a, b) and . Thus

.

We now extend this concept to general real vector spaces by taking basic properties of
(a, b) as axioms for an “abstract inner product” (a, b) as follows.

D E F I N I T I O N Real Inner Product Space

A real vector space V is called a real inner product space (or real pre-Hilbert4

space) if it has the following property. With every pair of vectors a and b in V there
is associated a real number, which is denoted by (a, b) and is called the inner
product of a and b, such that the following axioms are satisfied.

I. For all scalars q1 and q2 and all vectors a, b, c in V,

(Linearity).

II. For all vectors a and b in V,

(Symmetry).

III. For every a in V,

(Positive-definiteness).

Vectors whose inner product is zero are called orthogonal.
The length or norm of a vector in V is defined by

(2) .

A vector of norm 1 is called a unit vector.

� a � � 2(a, a) (
  0)

(a, a)  
  0,

(a, a) � 0 if and only if a � 0
 r

(a, b) � (b, a)

(q1a � q2b, c) � q1(a, c) � q2(b, c)

aTb � (a, b) � a • b � 3a1
Á an4 Db1

o

bn

T � a

n

i�1

albl � a1b1 � Á � anbn

a • b
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4DAVID HILBERT (1862–1943), great German mathematician, taught at Königsberg and Göttingen and was
the creator of the famous Göttingen mathematical school. He is known for his basic work in algebra, the calculus
of variations, integral equations, functional analysis, and mathematical logic. His “Foundations of Geometry”
helped the axiomatic method to gain general recognition. His famous 23 problems (presented in 1900 at the
International Congress of Mathematicians in Paris) considerably influenced the development of modern
mathematics.

If V is finite dimensional, it is actually a so-called Hilbert space; see [GenRef7], p. 128, listed in App. 1. 
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From these axioms and from (2) one can derive the basic inequality

(3) (Cauchy–Schwarz5 inequality).

From this follows

(4) (Triangle inequality).

A simple direct calculation gives

(5) (Parallelogram equality).

E X A M P L E  3 n-Dimensional Euclidean Space

with the inner product

(6)

(where both a and b are column vectors) is called the n-dimensional Euclidean space and is denoted by or
again simply by . Axioms I–III hold, as direct calculation shows. Equation (2) gives the “Euclidean norm”

(7) .

E X A M P L E  4 An Inner Product for Functions. Function Space

The set of all real-valued continuous functions on a given interval is a real vector
space under the usual addition of functions and multiplication by scalars (real numbers). On this “function
space” we can define an inner product by the integral

(8)

Axioms I–III can be verified by direct calculation. Equation (2) gives the norm

(9)

Our examples give a first impression of the great generality of the abstract concepts of
vector spaces and inner product spaces. Further details belong to more advanced courses
(on functional analysis, meaning abstract modern analysis; see [GenRef7] listed in App.
1) and cannot be discussed here. Instead we now take up a related topic where matrices
play a central role.

Linear Transformations
Let X and Y be any vector spaces. To each vector x in X we assign a unique vector y in
Y. Then we say that a mapping (or transformation or operator) of X into Y is given.
Such a mapping is denoted by a capital letter, say F. The vector y in Y assigned to a vector
x in X is called the image of x under F and is denoted by [or Fx, without parentheses].F (x)

�� f � � 2( f, f ) �

G
�
b

a

f (x)2 dx.

( f, g) � �
b

a

f (x) g (x) dx.

a � x � bf (x), g (x), Á

�� a � � 2(a, a) � 2aTa � 2a1
2 � Á � an

2

Rn
En

(a, b) � aTb � a1b1 � Á � anbn

Rn

� a � b �2 � � a � b �2 � 2(� a �2 � � b �2)

� a � b � � � a � � � b �

ƒ (a, b) ƒ � � a � � b �

SEC. 7.9 Vector Spaces, Inner Product Spaces, Linear Transformations Optional 313

5HERMANN AMANDUS SCHWARZ (1843–1921). German mathematician, known by his work in complex
analysis (conformal mapping) and differential geometry. For Cauchy see Sec. 2.5. 
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F is called a linear mapping or linear transformation if, for all vectors v and x in X
and scalars c, 

(10)

Linear Transformation of Space into Space 
From now on we let and . Then any real matrix gives
a transformation of into , 

(11) .

Since and , this transformation is linear.
We show that, conversely, every linear transformation F of into can be given

in terms of an matrix A, after a basis for and a basis for have been chosen.
This can be proved as follows.

Let be any basis for . Then every x in has a unique representation

.

Since F is linear, this representation implies for the image :

.

Hence F is uniquely determined by the images of the vectors of a basis for . We now
choose for the “standard basis”

(12)

where has its jth component equal to 1 and all others 0. We show that we can now
determine an matrix such that for every x in and image in

,

.

Indeed, from the image we get the condition

y(1) � Fy1
(1)

y2
(1)

.

.

.

ym
(1)

V � Fa11
Á a1n

a21
Á a2n

.

.

.
.
.
.

am1
Á amm

V F10
.
.
.

0

V
y(1) � F (e(1)) of e(1)

y � F (x) � Ax

Rm
y � F (x)RnA � [ajk]m � n

e( j)

e(1) � G
1

0

0

.

.

.

0

W,  e(2) � G
0

1

0

.

.

.

0

W,  Á ,  e(n) � G
0

0

0

.

.

.

1

W
Rn

Rn

F (x) � F (x1e(1) � Á � xne(n)) � x1F (e(1)) � Á � xnF (e(n))

F (x)

x � x1e(1) � Á � xne(n)

RnRne(1), Á , e(n)

RmRnm � n
RmRn

A(cx) � cAxA(u � x) � Au � Ax

y � Ax

RmRn
A � [ajk]m � nY � RmX � Rn

RmRn

 F (cx) � cF (x).

 F (v � x) � F (v) � F (x)

314 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
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from which we can determine the first column of A, namely 
. Similarly, from the image of we get the second column of A, and so on.

This completes the proof.

We say that A represents F, or is a representation of F, with respect to the bases for 
and . Quite generally, the purpose of a “representation” is the replacement of one
object of study by another object whose properties are more readily apparent.

In three-dimensional Euclidean space the standard basis is usually written 
. Thus, 

(13) .

These are the three unit vectors in the positive directions of the axes of the Cartesian
coordinate system in space, that is, the usual coordinate system with the same scale of
measurement on the three mutually perpendicular coordinate axes.

E X A M P L E  5 Linear Transformations

Interpreted as transformations of Cartesian coordinates in the plane, the matrices

represent a reflection in the line , a reflection in the -axis, a reflection in the origin, and a stretch 
(when , or a contraction when ) in the -direction, respectively.

E X A M P L E  6 Linear Transformations

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find A representing
the linear transformation that maps onto 

Solution. Obviously, the transformation is

From this we can directly see that the matrix is

. Check: .

If A in (11) is square, , then (11) maps into . If this A is nonsingular, so that
exists (see Sec. 7.8), then multiplication of (11) by from the left and use of

gives the inverse transformation

(14) .

It maps every onto that x, which by (11) is mapped onto . The inverse of a linear
transformation is itself linear, because it is given by a matrix, as (14) shows.

y0y � y0

x � A�1y

A�1A � I
A�1A�1

RnRnn � n

�c y1

y2

d � c2 �5

3    4
d c x1

x2

d � c2x1 � 5x2

3x1 � 4x2

dA � c2 �5

3 4
d

 y2 � 3x1 � 4x2.

 y1 � 2x1 � 5x2

(2x1 � 5x2, 3x1 � 4x2).(x1, x2)

�x10 	 a 	 1a � 1
x1x2 � x1

c0 1

1 0
d ,  c1 0

0 �1
d ,  c�1 0

0 �1
d ,  ca 0

0 1
d

i � D10
0

T ,  j � D01
0

T ,  k � D00
1

T 

e(2) � j, e(3) � k
e(1) � i,E 3

Rm
Rn

�

e(2)am1 � ym
(1)

Á ,a21 � y2
(1),a11 � y1

(1),
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Composition of Linear Transformations
We want to give you a flavor of how linear transformations in general vector spaces work.
You will notice, if you read carefully, that definitions and verifications (Example 7) strictly
follow the given rules and you can think your way through the material by going in a
slow systematic fashion.

The last operation we want to discuss is composition of linear transformations. Let X,
Y, W be general vector spaces. As before, let F be a linear transformation from X to Y.
Let G be a linear transformation from W to X. Then we denote, by H, the composition
of F and G, that is, 

,

which means we take transformation G and then apply transformation F to it (in that
order!, i.e. you go from left to right).

Now, to give this a more concrete meaning, if we let w be a vector in W, then 
is a vector in X and is a vector in Y. Thus, H maps W to Y, and we can write

(15)

which completes the definition of composition in a general vector space setting. But is
composition really linear? To check this we have to verify that H, as defined in (15), obeys
the two equations of (10).

E X A M P L E  7 The Composition of Linear Transformations Is Linear

To show that H is indeed linear we must show that (10) holds. We have, for two vectors in W,

(by linearity of G)

(by linearity of F)

(by (15))

(by definition of H).

Similarly, 

.

We defined composition as a linear transformation in a general vector space setting and
showed that the composition of linear transformations is indeed linear.

Next we want to relate composition of linear transformations to matrix multiplication.
To do so we let and . This choice of particular vector spaces

allows us to represent the linear transformations as matrices and form matrix equations,
as was done in (11). Thus F can be represented by a general real matrix 
and G by an matrix . Then we can write for F, with column vectors x
with n entries, and resulting vector y, with m entries

(16) y � Ax

B � 3bjk4n � p
A � 3ajk4m � n

W � RpX � Rn, Y � Rm, 

� � cF (G (w2)) � c (F � G)(w2) � cH(w2)

 H (cw2) � (F � G)(cw2) � F (G (cw2)) � F (c (G (w2))

 � H (w1) � H (w2)

 � (F � G)(w1) � (F � G)(w2)

 � F (G (w1)) � F (G (w2))

 � F (G (w1) � G (w2))

 � F (G (w1 � w2))

 H (w1 � w2) � (F � G)(w1 � w2)

w1, w2

H (w) � (F � G) (w) � (FG) (w) � F(G(w)),

F (G (w))
G (w)

H � F � G � FG � F(G)
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and similarly for G, with column vector w with p entries, 

(17)

Substituting (17) into (16) gives

(18) where .

This is (15) in a matrix setting, this is, we can define the composition of linear transfor-
mations in the Euclidean spaces as multiplication by matrices. Hence, the real 
matrix C represents a linear transformation H which maps to with vector w, a
column vector with p entries.

Remarks. Our discussion is similar to the one in Sec. 7.2, where we motivated the
“unnatural” matrix multiplication of matrices. Look back and see that our current, more
general, discussion is written out there for the case of dimension and 
(You may want to write out our development by picking small distinct dimensions, such
as and , and writing down the matrices and vectors. This is a trick
of the trade of mathematicians in that we like to develop and test theories on smaller
examples to see that they work.)

E X A M P L E  8 Linear Transformations. Composition

In Example 5 of Sec. 7.9, let A be the first matrix and B be the fourth matrix with . Then, applying B to
a vector , stretches the element by a in the direction. Next, when we apply A to the
“stretched” vector, we reflect the vector along the line , resulting in a vector . But this
represents, precisely, a geometric description for the composition H of two linear transformations F and G
represented by matrices A and B. We now show that, for this example, our result can be obtained by
straightforward matrix multiplication, that is, 

and as in (18) calculate

, 

which is the same as before. This shows that indeed , and we see the composition of linear
transformations can be represented by a linear transformation. It also shows that the order of matrix multiplication
is important (!). You may want to try applying A first and then B, resulting in BA. What do you see? Does it
make geometric sense? Is it the same result as AB?

We have learned several abstract concepts such as vector space, inner product space,
and linear transformation. The introduction of such concepts allows engineers and
scientists to communicate in a concise and common language. For example, the concept
of a vector space encapsulated a lot of ideas in a very concise manner. For the student,
learning such concepts provides a foundation for more advanced studies in engineering.

This concludes Chapter 7. The central theme was the Gaussian elimination of Sec. 7.3
from which most of the other concepts and theory flowed. The next chapter again has a
central theme, that is, eigenvalue problems, an area very rich in applications such as in
engineering, modern physics, and other areas.

�

AB � C

ABw � c0 1

a 0
d  cw1

w2

d � c w2

aw1

d

AB � c0 1

1 0
d  ca 0

0 1
d � c0 1

a 0
d

y � [w2 aw1]Tx1 � x2

x1w1w � [w1 w2]T
a � 1

p � 4m � 2, n � 3,

p � 2.n � 2,m � 2,

RnRp
m � p

C � ABy � Ax � A(Bw) � (AB)w � ABw � Cw

x � Bw.
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318 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

1. Basis. Find three bases of 

2. Uniqueness. Show that the representation 
of any given vector in an n-dimensional

vector space V in terms of a given basis 
for V is unique. Hint. Take two representations and
consider the difference.

3–10 VECTOR SPACE

(More problems in Problem Set 9.4.) Is the given set, taken
with the usual addition and scalar multiplication, a vector
space? Give reason. If your answer is yes, find the dimen-
sion and a basis.

3. All vectors in satisfying 

4. All skew-symmetric matrices.

5. All polynomials in x of degree 4 or less with
nonnegative coefficients.

6. All functions with arbitrary
constants a and b.

7. All functions with any constant a
and b.

8. All matrices A with fixed n and .

9. All matrices with .

10. All matrices with first column any multiple
of 

11–14 LINEAR TRANSFORMATIONS

Find the inverse transformation. Show the details.

11. 12. y1 � 3x1 � 2x2

y2 � 4x1 � x2

y1 � 0.5x1 � 0.5x2

y2 � 1.5x1 � 2.5x2

[3 0 �5]T.
[ajk]3 � 2

a11 � a22 � 0[ajk]2 � 2

det A � 0n � n

y (x) � (ax � b)e�x

y (x) � a cos 2x � b sin 2x

3 � 3

�4v1 � v2 � v3 � 0.
�v1 � 2v2 � 3v3 � 0,R3

a(1), Á , a(n)

� Á � cna(n)

v � c1a(1)

R2. 13.

14.

15–20 EUCLIDEAN NORM
Find the Euclidean norm of the vectors:

15. 16.

17.

18. 19.

20.

21–25 INNER PRODUCT. ORTHOGONALITY
21. Orthogonality. For what value(s) of k are the vectors

and orthogonal?

22. Orthogonality. Find all vectors in orthogonal to
Do they form a vector space?

23. Triangle inequality. Verify (4) for the vectors in
Probs. 15 and 18.

24. Cauchy–Schwarz inequality. Verify (3) for the
vectors in Probs. 16 and 19.

25. Parallelogram equality. Verify (5) for the first two
column vectors of the coefficient matrix in Prob. 13.

32 0 14.
R3

35 k 0 1
44

T32 1
2 �4 04T

312  �
1
2  �

1
2

1
24

T

323 
2
3 

1
3   04T3�4 8 �14T

31 0 0 1 �1 0 �1 14T
312

1
3   �

1
2   �

1
34

T33 1 �44T

y1 � 0.2x1 � 0.1x2

y2 � � 0.2x2 � 0.1x3

y3 � 0.1x1 � 0.1x3

y1 � 5x1 � 3x2 � 3x3

y2 � 3x1 � 2x2 � 2x3

y3 � 2x1 � x2 � 2x3

P R O B L E M  S E T  7 . 9

1. What properties of matrix multiplication differ from
those of the multiplication of numbers?

2. Let A be a matrix and B a matrix.
Are the following expressions defined or not? 

Give
reasons.

3. Are there any linear systems without solutions? With
one solution? With more than one solution? Give
simple examples.

4. Let C be matrix and a a column vector with
10 components. Are the following expressions defined
or not? Ca, CTa, CaT, aC, aTC, (CaT)T.

10 � 10

A2, B2, AB, BA, AAT, BTA, BTB, BBT, BTAB. 
A � B,

100 � 50100 � 100

5. Motivate the definition of matrix multiplication.

6. Explain the use of matrices in linear transformations.

7. How can you give the rank of a matrix in terms of row
vectors? Of column vectors? Of determinants?

8. What is the role of rank in connection with solving
linear systems?

9. What is the idea of Gauss elimination and back
substitution?

10. What is the inverse of a matrix? When does it exist?
How would you determine it?

C H A P T E R  7  R E V I E W  Q U E S T I O N S  A N D  P R O B L E M S
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11–20 MATRIX AND VECTOR CALCULATIONS
Showing the details, calculate the following expressions or
give reason why they are not defined, when

11. AB, BA 12.

13. 14.

15. 16.

17.

18. 19.

20.

21–28 LINEAR SYSTEMS 
Showing the details, find all solutions or indicate that no
solution exists.

21.

22.

23.

24.

25.

26. 2x � 3y � 7z � 3

�4x � 6y � 14z � 7

0.3x � 0.7y � 1.3z � 3.24

0.9y � 0.8z � �2.53

0.7z � 1.19

�6x � 39y � 9z � �12

2x � 13y � 3z � 4

9x � 3y � 6z � 60

2x � 4y � 8z � 4

5x � 3y � z � 7

2x � 3y � z � 0

8x � 9y � 3z � 2

4y � z � 0

12x � 5y � 3z � 34

�6x � 4z � 8

(A � AT)(B � BT)

AB � BA(A2)�1,  (A�1)2

det A,  det A2,  (det A)2,  det B

A�1,  B�1uTAu,  vTBv

uTv,  uvTAu,  uTA

AT,  BT

v � D 7

�3

3

Tu � D 2

0

�5

T ,

B � D 0 4 1

�4 0 �2

�1 2 0

T ,A � D 3 1 �3

1 4 2

�3 2 5

T ,

Chapter 7 Review Questions and Problems 319

27.

28.

29–32 RANK
Determine the ranks of the coefficient matrix and the
augmented matrix and state how many solutions the linear
system will have.

29. In Prob. 23

30. In Prob. 24

31. In Prob. 27

32. In Prob. 26

33–35 NETWORKS
Find the currents.

33.

34.

35.

10 V

130 V30 Ω

10 Ω

20 Ω

I2

I1

I3

10 Ω

5 Ω

20 Ω

I2

I1

I3

220 V

240 V

10 Ω

20 Ω

110 V

I1

I3

I2

�8x � 2z � 1

6y � 4z � 3

 12x � 2y � 2

x � 2y � 6

3x � 5y � 20

�4x � y � �42
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320 CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

An matrix is a rectangular array of numbers or functions
(“entries,” “elements”) arranged in m horizontal rows and n vertical columns. If

, the matrix is called square. A matrix is called a row vector and an
matrix a column vector (Sec. 7.1).

The sum of matrices of the same size (i.e., both is obtained by
adding corresponding entries. The product of A by a scalar c is obtained by
multiplying each by c (Sec. 7.1).

The product of an matrix A by an matrix is
defined only when , and is the matrix with entries

(1)

This multiplication is motivated by the composition of linear transformations
(Secs. 7.2, 7.9). It is associative, but is not commutative: if AB is defined, BA may
not be defined, but even if BA is defined, in general. Also may
not imply or or (Secs. 7.2, 7.8). Illustrations:

The transpose of a matrix is ; rows become columns
and conversely (Sec. 7.2). Here, A need not be square. If it is and , then A
is called symmetric; if , it is called skew-symmetric. For a product,

(Sec. 7.2).
A main application of matrices concerns linear systems of equations

(2) (Sec. 7.3)

(m equations in n unknowns A and b given). The most important method
of solution is the Gauss elimination (Sec. 7.3), which reduces the system to
“triangular” form by elementary row operations, which leave the set of solutions
unchanged. (Numeric aspects and variants, such as Doolittle’s and Cholesky’s
methods, are discussed in Secs. 20.1 and 20.2.)

x1, Á , xn;

Ax � b

(AB)T � BTAT
A � �AT

A � AT
AT � 3akj4A � 3ajk4AT

c3
4
d [1 2] � c3 6

4 8
d .[1 2] c3

4
d � [11],

 c�1 1

1 �1
d c1 1

2 2
d � c 1 1

�1 �1
d

 c1 1

2 2
d c�1 1

1 �1
d � c0 0

0 0
d

BA � 0B � 0A � 0
AB � 0AB � BA

(row j of A times

column k of B).
cjk � aj1b1k � aj2b2k � Á � ajnbnk

C � 3cjk4m � pr � n
B � [bjk]r � pm � nC � AB

ajk

m � n)A � B
m � 1

1 � nm � n

A � [ajk]m � n

SUMMARY OF CHAPTER 7
Linear Algebra: Matrices, Vectors, Determinants. 
Linear Systems
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Cramer’s rule (Secs. 7.6, 7.7) represents the unknowns in a system (2) of n
equations in n unknowns as quotients of determinants; for numeric work it is
impractical. Determinants (Sec. 7.7) have decreased in importance, but will retain
their place in eigenvalue problems, elementary geometry, etc.

The inverse of a square matrix satisfies . It exists if and
only if det A 0. It can be computed by the Gauss–Jordan elimination (Sec. 7.8).

The rank r of a matrix A is the maximum number of linearly independent rows
or columns of A or, equivalently, the number of rows of the largest square submatrix
of A with nonzero determinant (Secs. 7.4, 7.7).

The system (2) has solutions if and only if rank , where 
is the augmented matrix (Fundamental Theorem, Sec. 7.5).

The homogeneous system

(3)

has solutions (“nontrivial solutions”) if and only if rank , in the case
equivalently if and only if (Secs. 7.6, 7.7).

Vector spaces, inner product spaces, and linear transformations are discussed in
Sec. 7.9. See also Sec. 7.4. 

det A � 0m � n
A 	 nx � 0

Ax � 0

[A b]A � rank [A b]

�
AA�1 � A�1A � IA�1

Summary of Chapter 7 321
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C H A P T E R 8

Linear Algebra: 
Matrix Eigenvalue Problems

A matrix eigenvalue problem considers the vector equation

(1)

Here A is a given square matrix, an unknown scalar, and x an unknown vector. In a
matrix eigenvalue problem, the task is to determine ’s and x’s that satisfy (1). Since

is always a solution for any and thus not interesting, we only admit solutions
with 

The solutions to (1) are given the following names: The ’s that satisfy (1) are called
eigenvalues of A and the corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.

From this rather innocent looking vector equation flows an amazing amount of relevant
theory and an incredible richness of applications. Indeed, eigenvalue problems come up
all the time in engineering, physics, geometry, numerics, theoretical mathematics, biology,
environmental science, urban planning, economics, psychology, and other areas. Thus, in
your career you are likely to encounter eigenvalue problems.

We start with a basic and thorough introduction to eigenvalue problems in Sec. 8.1 and
explain (1) with several simple matrices. This is followed by a section devoted entirely
to applications ranging from mass–spring systems of physics to population control models
of environmental science. We show you these diverse examples to train your skills in
modeling and solving eigenvalue problems. Eigenvalue problems for real symmetric,
skew-symmetric, and orthogonal matrices are discussed in Sec. 8.3 and their complex
counterparts (which are important in modern physics) in Sec. 8.5. In Sec. 8.4 we show
how by diagonalizing a matrix, we obtain its eigenvalues.

COMMENT. Numerics for eigenvalues (Secs. 20.6–20.9) can be studied immediately
after this chapter.

Prerequisite: Chap. 7.
Sections that may be omitted in a shorter course: 8.4, 8.5.
References and Answers to Problems: App. 1 Part B, App. 2.

l

x � 0.
lx � 0

l

l

Ax � lx.
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SEC. 8.1 The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors 323

The following chart identifies where different types of eigenvalue problems appear in the
book.

Topic Where to find it

Matrix Eigenvalue Problem (algebraic eigenvalue problem) Chap. 8
Eigenvalue Problems in Numerics Secs. 20.6–20.9
Eigenvalue Problem for ODEs (Sturm–Liouville problems) Secs. 11.5, 11.6
Eigenvalue Problems for Systems of ODEs Chap. 4
Eigenvalue Problems for PDEs Secs. 12.3–12.11

8.1 The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Consider multiplying nonzero vectors by a given square matrix, such as

We want to see what influence the multiplication of the given matrix has on the vectors.
In the first case, we get a totally new vector with a different direction and different length
when compared to the original vector. This is what usually happens and is of no interest
here. In the second case something interesting happens. The multiplication produces a
vector which means the new vector has the same direction as
the original vector. The scale constant, which we denote by is 10. The problem of
systematically finding such ’s and nonzero vectors for a given square matrix will be the
theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the
eigenvalue problem.

We formalize our observation. Let be a given nonzero square matrix of
dimension Consider the following vector equation:

(1)

The problem of finding nonzero x’s and ’s that satisfy equation (1) is called an eigenvalue
problem.

Remark. So A is a given square matrix, x is an unknown vector, and is an
unknown scalar. Our task is to find ’s and nonzero x’s that satisfy (1). Geometrically,
we are looking for vectors, x, for which the multiplication by A has the same effect as
the multiplication by a scalar in other words, Ax should be proportional to x. Thus,
the multiplication has the effect of producing, from the original vector x, a new vector

that has the same or opposite (minus sign) direction as the original vector. (This was
all demonstrated in our intuitive opening example. Can you see that the second equation in
that example satisfies (1) with and and A the given matrix?
Write it out.) Now why do we require x to be nonzero? The reason is that is
always a solution of (1) for any value of because This is of no interest.A0 � 0.l,

x � 0
2 � 2x � [3 4]T,l � 10

lx

l;

l

l(!)

l

Ax � lx.

n � n.
A � [ajk]

l

l

[30 40]T � 10 [3 4]T,

c6 3

4 7
d c5

1
d � c33

27
d ,  c6 3

4 7
d c3

4
d � c30

40
d .
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324 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

We introduce more terminology. A value of for which (1) has a solution is
called an eigenvalue or characteristic value of the matrix A. Another term for is a latent
root. (“Eigen” is German and means “proper” or “characteristic.”). The corresponding
solutions of (1) are called the eigenvectors or characteristic vectors of A
corresponding to that eigenvalue . The set of all the eigenvalues of A is called the
spectrum of A. We shall see that the spectrum consists of at least one eigenvalue and at
most of n numerically different eigenvalues. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A, a name to be motivated later.

How to Find Eigenvalues and Eigenvectors
Now, with the new terminology for (1), we can just say that the problem of determining
the eigenvalues and eigenvectors of a matrix is called an eigenvalue problem. (However,
more precisely, we are considering an algebraic eigenvalue problem, as opposed to an
eigenvalue problem involving an ODE or PDE, as considered in Secs. 11.5 and 12.3, or
an integral equation.)

Eigenvalues have a very large number of applications in diverse fields such as in
engineering, geometry, physics, mathematics, biology, environmental science, economics,
psychology, and other areas. You will encounter applications for elastic membranes,
Markov processes, population models, and others in this chapter.

Since, from the viewpoint of engineering applications, eigenvalue problems are the most
important problems in connection with matrices, the student should carefully follow our
discussion.

Example 1 demonstrates how to systematically solve a simple eigenvalue problem.

E X A M P L E  1 Determination of Eigenvalues and Eigenvectors

We illustrate all the steps in terms of the matrix

Solution. (a) Eigenvalues. These must be determined first. Equation (1) is

Transferring the terms on the right to the left, we get

(2 )

This can be written in matrix notation

(3 )

because (1) is which gives (3 ). We see that this is a homogeneous
linear system. By Cramer’s theorem in Sec. 7.7 it has a nontrivial solution (an eigenvector of A we are
looking for) if and only if its coefficient determinant is zero, that is,

(4 ) D (l) � det (A � lI) � 2�5 � l 2

2 �2 � l
2 � (�5 � l)(�2 � l) � 4 � l2 � 7l � 6 � 0.*

x � 0
*Ax � lx � Ax � lIx � (A � lI)x � 0,

(A � lI)x � 0*

(�5 � l)x1 � 2x2 � 0

2x1 � (�2 � l)x2 � 0.
*

Ax � c�5 2

2 �2
d c x1

x2

d � l c x1

x2

d ;  in components,  
�5x1 � 2x2 � lx1

2x1 � 2x2 � lx2.

A � c�5 2

2 �2
d .

l

x � 0

l

x � 0,l,
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We call the characteristic determinant or, if expanded, the characteristic polynomial, and 
the characteristic equation of A. The solutions of this quadratic equation are and . These
are the eigenvalues of A.

( ) Eigenvector of A corresponding to . This vector is obtained from (2 ) with , that is,

A solution is , as we see from either of the two equations, so that we need only one of them. This
determines an eigenvector corresponding to up to a scalar multiple. If we choose , we obtain
the eigenvector

( ) Eigenvector of A corresponding to . For , equation (2 ) becomes

A solution is with arbitrary . If we choose , we get Thus an eigenvector of A
corresponding to is

For the matrix in the intuitive opening example at the start of Sec. 8.1, the characteristic equation is
The eigenvalues are Corresponding eigenvectors are

and , respectively. The reader may want to verify this.

This example illustrates the general case as follows. Equation (1) written in components is

Transferring the terms on the right side to the left side, we have

(2)

In matrix notation,

(3) (A � lI)x � 0.

(a11 � l)x1 � a12x2 � Á � a1nxn � 0

a21x1 � (a22 � l)x2 � Á � a2nxn � 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 � an2x2 � Á � (ann � l)xn � 0.

a11x1 � Á � a1nxn � lx1

a21x1 � Á � a2nxn � lx2

# # # # # # # # # # # # # # # # # # # # # # #

an1x1 � Á � annxn � lxn.

�[�1 1]T[3 4]T
{10, 3}.l2 � 13l � 30 � (l � 10)(l � 3) � 0.

x2 � c 2

�1
d ,   Check:   Ax2 � c�5 2

2 �2
d c 2

�1
d � c�12

6
d � (�6)x2 � l2x2.

l2 � �6
x2 � �1.x1 � 2x1x2 � �x1>2

 2x1 � 4x2 � 0.

 x1 � 2x2 � 0

*l � l2 � �6l2b2

x1 � c1
2
d ,   Check:   Ax1 � c�5 2

2 �2
d c1

2
d � c�1

�2
d � (�1)x1 � l1x1.

x1 � 1l1 � �1
x2 � 2x1

 2x1 � x2 � 0.

 �4x1 � 2x2 � 0

l � l1 � �1*l1b1

l2 � �6l1 � �1
D (l) � 0D (l)

SEC. 8.1 The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors 325
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326 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

By Cramer’s theorem in Sec. 7.7, this homogeneous linear system of equations has a
nontrivial solution if and only if the corresponding determinant of the coefficients is zero:

(4)

is called the characteristic matrix and the characteristic determinant of
A. Equation (4) is called the characteristic equation of A. By developing we obtain
a polynomial of nth degree in . This is called the characteristic polynomial of A.

This proves the following important theorem.

T H E O R E M  1 Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
(4) of A.

Hence an n � n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.

For larger n, the actual computation of eigenvalues will, in general, require the use 
of Newton’s method (Sec. 19.2) or another numeric approximation method in Secs.
20.7–20.9.

The eigenvalues must be determined first. Once these are known, corresponding
eigenvectors are obtained from the system (2), for instance, by the Gauss elimination,
where is the eigenvalue for which an eigenvector is wanted. This is what we did in
Example 1 and shall do again in the examples below. (To prevent misunderstandings:
numeric approximation methods, such as in Sec. 20.8, may determine eigenvectors first.)

Eigenvectors have the following properties.

T H E O R E M  2 Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue
so are (provided ) and kx for any .

Hence the eigenvectors corresponding to one and the same eigenvalue of A,
together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A
corresponding to that .

P R O O F and imply and 
hence 

In particular, an eigenvector x is determined only up to a constant factor. Hence we
can normalize x, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9). For 
instance, in Example 1 has the length hence 

is a normalized eigenvector (a unit eigenvector).[1>15 2>15]T
�x1� � 212 � 22 � 15;x1 � [1 2]T

�A (kw � /x) � l (kw � /x).A (kw) � k (Aw) � k (lw) � l (kw);
A(w � x) � Aw � Ax � lw � lx � l(w � x)Ax � lxAw � lw

l

l

k � 0x � �ww � x
l,

l

l

D(l)
D (l)A � lI

D(l) � det (A � lI) � 5a11 � l a12
Á a1n

a21 a22 � l Á a2n

# # Á #

an1 an2
Á ann � l

5 � 0.
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Examples 2 and 3 will illustrate that an matrix may have n linearly independent
eigenvectors, or it may have fewer than n. In Example 4 we shall see that a real matrix
may have complex eigenvalues and eigenvectors.

E X A M P L E  2 Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

Solution. For our matrix, the characteristic determinant gives the characteristic equation

The roots (eigenvalues of A) are (If you have trouble finding roots, you may want to
use a root finding algorithm such as Newton’s method (Sec. 19.2). Your CAS or scientific calculator can find
roots. However, to really learn and remember this material, you have to do some exercises with paper and pencil.)
To find eigenvectors, we apply the Gauss elimination (Sec. 7.3) to the system , first with 
and then with . For the characteristic matrix is

Hence it has rank 2. Choosing we have from and then from
Hence an eigenvector of A corresponding to is .

For the characteristic matrix

Hence it has rank 1. From we have Choosing and
, we obtain two linearly independent eigenvectors of A corresponding to [as they must

exist by (5), Sec. 7.5, with and 

and

The order of an eigenvalue as a root of the characteristic polynomial is called the
algebraic multiplicity of The number of linearly independent eigenvectors
corresponding to is called the geometric multiplicity of Thus is the dimension
of the eigenspace corresponding to this l.

mll.l

mll.
lMl

�x3 � D30
1

T .

x2 � D�2

1

0

T
n � 3],rank � 1

l � �3x2 � 0, x3 � 1
x2 � 1, x3 � 0x1 � �2x2 � 3x3.x1 � 2x2 � 3x3 � 0

A � lI � A � 3I � D 1 2 �3

2 4 �6

�1 �2 3

T  row-reduces to  D1 2 �3

0 0 0

0 0 0

T .
l � �3

x1 � [1 2 �1]Tl � 5�7x1 � 2x2 � 3x3 � 0.
x1 � 1� 

24
7  x2 � 48

7  x3 � 0x2 � 2x3 � �1

A � lI � A � 5I � D�7 2 �3

2 �4 �6

�1 �2 �5

T .  It row-reduces to  D�7 2 �3

0 � 
24
7  � 

48
7  

0 0 0

T .
l � 5l � �3

l � 5(A � lI)x � 0

l1 � 5, l2 � l3 � �3.

�l3 � l2 � 21l � 45 � 0.

A � D�2 2 �3

2 1 �6

�1 �2 0

T .

n � n
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328 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Since the characteristic polynomial has degree n, the sum of all the algebraic
multiplicities must equal n. In Example 2 for we have In general,

, as can be shown. The difference is called the defect of 
Thus in Example 2, but positive defects can easily occur:

E X A M P L E  3 Algebraic Multiplicity, Geometric Multiplicity. Positive Defect

The characteristic equation of the matrix

Hence is an eigenvalue of algebraic multiplicity . But its geometric multiplicity is only 
since eigenvectors result from , hence , in the form . Hence for the defect
is 

Similarly, the characteristic equation of the matrix

Hence is an eigenvalue of algebraic multiplicity , but its geometric multiplicity is only 
since eigenvectors result from in the form 

E X A M P L E  4 Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

It gives the eigenvalues . Eigenvectors are obtained from and
, respectively, and we can choose to get

In the next section we shall need the following simple theorem.

T H E O R E M  3 Eigenvalues of the Transpose

The transpose AT of a square matrix A has the same eigenvalues as A.

P R O O F Transposition does not change the value of the characteristic determinant, as follows from
Theorem 2d in Sec. 7.7. �

Having gained a first impression of matrix eigenvalue problems, we shall illustrate their
importance with some typical applications in Sec. 8.2.

�c1
i
d  and  c 1

�i
d .

x1 � 1ix1 � x2 � 0
�ix1 � x2 � 0l1 � i (� 1�1), l2 � �i

A � c 0 1

�1 0
d  is  det (A � lI) � 2  �l 1

�1 �l
 2 � l2 � 1 � 0.

�[x1 0]T.0x1 � 2x2 � 0
m3 � 1,M3 � 2l � 3

A � c3 2

0 3
d   is  det (A � lI) � 2  3 � l 2

0 3 � l
 2 � (3 � l)2 � 0.

¢0 � 1.
l � 0[x1 0]Tx2 � 0�0x1 � x2 � 0

m0 � 1,M0 � 2l � 0

A � c0 1

0 0
d  is  det (A � lI) � 2  �l 1

0 �l
 2 � l2 � 0.

¢l¢�3 � 0
l.¢l � Ml � mlml � Ml

ml � Ml � 2.l � �3
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SEC. 8.2 Some Applications of Eigenvalue Problems 329

1–16 EIGENVALUES, EIGENVECTORS
Find the eigenvalues. Find the corresponding eigenvectors.
Use the given or factor in Probs. 11 and 15.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12. 13.

14. D2 0 �1

0 1
2 0

1 0 4

T
D13 5 2

2 7 �8

5 4 7

TD3 5 3

0 4 6

0 0 1

T
D 6 2 �2

2 5 0

�2 0 7

T , l � 3

c cos u �sin u

sin u cos u
dc 0.8 �0.6

0.6 0.8
d

c a b

�b a
dc0 1

0 0
d

c1 2

0 3
dc 0 3

�3 0
d

c 1 2

2 4
dc5 �2

9 �6
d

c0 0

0 0
dc3.0 0

0 �0.6
d

l 15.

16.

17–20 LINEAR TRANSFORMATIONS 
AND EIGENVALUES

Find the matrix A in the linear transformation 
where ( ) are Cartesian
coordinates. Find the eigenvalues and eigenvectors and
explain their geometric meaning.

17. Counterclockwise rotation through the angle about
the origin in .

18. Reflection about the -axis in 

19. Orthogonal projection (perpendicular projection) of 
onto the -axis.

20. Orthogonal projection of onto the plane 

21–25 GENERAL PROBLEMS

21. Nonzero defect. Find further and 
matrices with positive defect. See Example 3.

22. Multiple eigenvalues. Find further and 
matrices with multiple eigenvalues. See Example 2.

23. Complex eigenvalues. Show that the eigenvalues of a
real matrix are real or complex conjugate in pairs.

24. Inverse matrix. Show that exists if and only if
the eigenvalues are all nonzero, and then

has the eigenvalues 

25. Transpose. Illustrate Theorem 3 with examples of your
own.

1>l1, Á , 1>ln.A�1
l1, Á , ln

A�1

3 � 32 � 2

3 � 32 � 2

x2 � x1.R3

x2

R2

R2.x1

R2
p>2

x � [x1 x2 x3]Tx � [x1 x2]T
y � Ax,

E�3 0 4 2

0 1 �2 4

2 4 �1 �2

0 2 �2 3

U
E�1 0 12 0

0 �1 0 12

0 0 �1 �4

0 0 �4 �1

U, (l � 1)2

P R O B L E M  S E T  8 . 1

8.2 Some Applications of Eigenvalue Problems
We have selected some typical examples from the wide range of applications of matrix
eigenvalue problems. The last example, that is, Example 4, shows an application involving
vibrating springs and ODEs. It falls into the domain of Chapter 4, which covers matrix
eigenvalue problems related to ODE’s modeling mechanical systems and electrical
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networks. Example 4 is included to keep our discussion independent of Chapter 4.
(However, the reader not interested in ODEs may want to skip Example 4 without loss
of continuity.)

E X A M P L E  1 Stretching of an Elastic Membrane

An elastic membrane in the -plane with boundary circle (Fig. 160) is stretched so that a point
P: goes over into the point Q: given by

(1)

Find the principal directions, that is, the directions of the position vector x of P for which the direction of the
position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this
deformation?

Solution. We are looking for vectors x such that . Since , this gives , the equation
of an eigenvalue problem. In components, is

(2) or

The characteristic equation is

(3)

Its solutions are and These are the eigenvalues of our problem. For our system (2)
becomes

For , our system (2) becomes

We thus obtain as eigenvectors of A, for instance, corresponding to and corresponding to
(or a nonzero scalar multiple of these). These vectors make and angles with the positive x1-direction.

They give the principal directions, the answer to our problem. The eigenvalues show that in the principal
directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 160.

Accordingly, if we choose the principal directions as directions of a new Cartesian -coordinate system,
say, with the positive -semi-axis in the first quadrant and the positive -semi-axis in the second quadrant of
the -system, and if we set then a boundary point of the unstretched circular
membrane has coordinates Hence, after the stretch we have

Since , this shows that the deformed boundary is an ellipse (Fig. 160)

(4) �
z1

2

82
 �

z2
2

22
 � 1.

cos2 � � sin2 � � 1

z1 � 8 cos �,  z2 � 2 sin �.

cos �, sin �.
u1 � r cos �, u2 � r sin �,x1x2

u2u1

u1u2

135°45°l2

[1 �1]Tl1[1 1]T

3x1 � 3x2 � 0,

3x1 � 3x2 � 0.
 2 Solution x2 � �x1, x1 arbitrary,

for instance, x1 � 1, x2 � �1.

l2 � 2

�3x1 � 3x2 � 0,

3x1 � 3x2 � 0.
 2 Solution x2 � x1, x1 arbitrary,

for instance, x1 � x2 � 1.

l � l1 � 8,l2 � 2.l1 � 8

2  5 � l 3

3 5 � l
 2 � (5 � l)2 � 9 � 0.

(5 � l)x1 �   3x2  � 0

3x1 � (5 � l)x2 � 0.

5x1 � 3x2 � lx1

3x1 � 5x2 � lx2

Ax � lx
Ax � lxy � Axy � lx

y � c y1

y2

d � Ax � c5 3

3 5
d c x1

x2

d ;  in components,  
y1 � 5x1 � 3x2

y2 � 3x1 � 5x2.

(y1, y2)(x1, x2)
x1

2 � x2
2 � 1x1x2

330 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems
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Fig. 160. Undeformed and deformed membrane in Example 1
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E X A M P L E  2 Eigenvalue Problems Arising from Markov Processes

Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems if we ask for the limit
state of the process in which the state vector x is reproduced under the multiplication by the stochastic matrix
A governing the process, that is, . Hence A should have the eigenvalue 1, and x should be a corresponding
eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled
by the process.

In that example,

Hence has the eigenvalue 1, and the same is true for A by Theorem 3 in Sec. 8.1. An eigenvector x of A
for is obtained from

Taking , we get from and then from This
gives It means that in the long run, the ratio Commercial:Industrial:Residential will approach
2:6:1, provided that the probabilities given by A remain (about) the same. (We switched to ordinary fractions
to avoid rounding errors.)

E X A M P L E  3 Eigenvalue Problems Arising from Population Models. Leslie Model

The Leslie model describes age-specified population growth, as follows. Let the oldest age attained by the
females in some animal population be 9 years. Divide the population into three age classes of 3 years each. Let
the “Leslie matrix” be

(5)

where is the average number of daughters born to a single female during the time she is in age class k, and
is the fraction of females in age class that will survive and pass into class j. (a) What is the

number of females in each class after 3, 6, 9 years if each class initially consists of 400 females? (b) For what initial
distribution will the number of females in each class change by the same proportion? What is this rate of change?

j � 1lj, j�1( j � 2, 3)
l1k

L � [ljk] � D0 2.3 0.4

0.6 0 0

0 0.3 0

T

�

x � [2 6 1]T.
�3x1>10 � x2>10 � 0.x1 � 2�x2>30 � x3>5 � 0x2 � 6x3 � 1

A � I � D�0.3 0.1 0

0.2 �0.1 0.2

0.1 0 �0.2

T ,   row-reduced to   D� 3
10

1
10 0

0 � 1
30

1
5

0 0 0

T .
l � 1

AT

A � D0.7 0.1 0

0.2 0.9 0.2

0.1 0 0.8

T .   For the transpose,   D0.7 0.2 0.1

0.1 0.9 0

0 0.2 0.8

T D11
1

T � D11
1

T .

Ax � x
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332 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Solution. (a) Initially, After 3 years,

Similarly, after 6 years the number of females in each class is given by and
after 9 years we have 

(b) Proportional change means that we are looking for a distribution vector x such that , where is
the rate of change (growth if decrease if ). The characteristic equation is (develop the characteristic
determinant by the first column)

A positive root is found to be (for instance, by Newton’s method, Sec. 19.2) A corresponding eigenvector
x can be determined from the characteristic matrix

where is chosen, then follows from and from
To get an initial population of 1200 as before, we multiply x by
Answer: Proportional growth of the numbers of females in the three classes

will occur if the initial values are 738, 369, 92 in classes 1, 2, 3, respectively. The growth rate will be 1.2 per
3 years.

E X A M P L E  4 Vibrating System of Two Masses on Two Springs (Fig. 161)

Mass–spring systems involving several masses and springs can be treated as eigenvalue problems. For instance,
the mechanical system in Fig. 161 is governed by the system of ODEs

(6)

where and are the displacements of the masses from rest, as shown in the figure, and primes denote
derivatives with respect to time t. In vector form, this becomes

(7)

Fig. 161. Masses on springs in Example 4

k
1 

= 3

k
2 

= 2 (Net change in
 spring length
  = y

2 
– y

1
)

System in
motion

System in
static

equilibrium 

m
1 

= 1(y
1 

= 0)

(y
2 

= 0) m
2 

= 1

y
1

y
2

y
2

y
1

ys � c y1s

y2s
d � Ay � c�5 2

2 �2
d c y1

y2

d .

y2y1

y1s � �3y1 � 2(y1 � y2) � �5y1 � 2y2

y2s � �2(y2 � y1) � 2y1 � 2y2

�

1200>(1 � 0.5 � 0.125) � 738.
�1.2x1 � 2.3x2 � 0.4x3 � 0.

x1 � 10.3x2 � 1.2x3 � 0,x2 � 0.5x3 � 0.125

A � 1.2I � D�1.2 2.3 0.4

0.6 �1.2 0

0 0.3 �1.2

T ,   say,   x � D 1

0.5

0.125

T
l � 1.2.

det (L � lI) � �l3 � 0.6(�2.3l � 0.3 # 0.4) � �l3 � 1.38l � 0.072 � 0.

l � 1l 	 1,
lLx � lx

x(9)
T � (Lx(6))

T � [1519.2 360 194.4].
x(6)

T � (Lx(3))
T � [600 648 72],

x(3) � Lx(0) � D0 2.3 0.4

0.6 0 0

0 0.3 0

T D400

400

400

T � D1080

240

120

T .
x(0)

T � [400 400 400].
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1–6 ELASTIC DEFORMATIONS
Given A in a deformation find the principal
directions and corresponding factors of extension or
contraction. Show the details.

1. 2.

3. 4.

5. 6. c1.25 0.75

0.75 1.25
dc1 1

2

1
2 1

d
c5 2

2 13
dc 7 16

16 2
d

c 2.0 0.4

0.4 2.0
dc3.0 1.5

1.5 3.0
d

y � Ax,

7–9 MARKOV PROCESSES
Find the limit state of the Markov process modeled by the
given matrix. Show the details.

7.

8. 9. D0.6 0.1 0.2

0.4 0.1 0.4

0 0.8 0.4

TD0.4 0.3 0.3

0.3 0.6 0.1

0.3 0.1 0.6

T
c0.2 0.5

0.8 0.5
d

P R O B L E M  S E T  8 . 2

We try a vector solution of the form

(8)

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution into (7) gives

Dividing by and writing we see that our mechanical system leads to the eigenvalue problem

(9) where 

From Example 1 in Sec. 8.1 we see that A has the eigenvalues and Consequently,
and respectively. Corresponding eigenvectors are

(10)

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2]

By addition and subtraction (see Sec. 2.2) we get the four real solutions

A general solution is obtained by taking a linear combination of these,

with arbitrary constants (to which values can be assigned by prescribing initial displacement and
initial velocity of each of the two masses). By (10), the components of y are

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because
we have neglected damping. �

y2 � 2a1 cos t � 2b1 sin t � a2 cos 16 t � b2 sin 16 t.

y1 � a1 cos t � b1 sin t � 2a2 cos 16 t � 2b2 sin 16 t

a1, b1, a2, b2

y � x1 (a1 cos t � b1 sin t) � x2  (a2 cos 16 t � b2 sin 16 t)

x1 cos t,  x1 sin t,  x2 cos 16 t,  x2 sin 16 t.

 x2e
i26t � x2 (cos 16 t 
 i sin 16 t).

 x1e
it � x1 (cos t 
 i sin t),

x1 � c1
2
d  and  x2 � c 2

�1
d .

1�6 � 
i16,v � 
1�1 � 
i
l2 � �6.l1 � �1

l � v2.Ax � lx

v2 � l,evt

v2xevt � Axevt.

y � xevt.
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334 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

1WASSILY LEONTIEF (1906–1999). American economist at New York University. For his input–output
analysis he was awarded the Nobel Prize in 1973.

10–12 AGE-SPECIFIC POPULATION
Find the growth rate in the Leslie model (see Example 3)
with the matrix as given. Show the details.

10. 11.

12.

13–15 LEONTIEF MODELS1

13. Leontief input–output model. Suppose that three
industries are interrelated so that their outputs are used
as inputs by themselves, according to the 
consumption matrix

where is the fraction of the output of industry k
consumed (purchased) by industry j. Let be the price
charged by industry j for its total output. A problem is
to find prices so that for each industry, total
expenditures equal total income. Show that this leads
to , where , and find a
solution p with nonnegative 

14. Show that a consumption matrix as considered in Prob.
13 must have column sums 1 and always has the
eigenvalue 1.

15. Open Leontief input–output model. If not the whole
output but only a portion of it is consumed by the

p1, p2, p3.
p � [p1 p2 p3]TAp � p

pj

ajk

A � [ajk] � D0.1 0.5 0

0.8 0 0.4

0.1 0.5 0.6

T
3 � 3

E0 3.0 2.0 2.0

0.5 0 0 0

0 0.5 0 0

0 0 0.1 0

U
D0 3.45 0.60

0.90 0 0

0 0.45 0

TD0 9.0 5.0

0.4 0 0

0 0.4 0

T
industries themselves, then instead of (as in Prob.
13), we have , where 
is produced, Ax is consumed by the industries, and, thus,
y is the net production available for other consumers.
Find for what production x a given demand vector

can be achieved if the consump-
tion matrix is

16–20 GENERAL PROPERTIES OF EIGENVALUE
PROBLEMS

Let be an matrix with (not necessarily
distinct) eigenvalues Show.

16. Trace. The sum of the main diagonal entries, called
the trace of A, equals the sum of the eigenvalues of A.

17. “Spectral shift.” has the eigenvalues
and the same eigenvectors as A.

18. Scalar multiples, powers. kA has the eigenvalues
has the eigenvalues

. The eigenvectors are those of A.

19. Spectral mapping theorem. The “polynomial
matrix”

has the eigenvalues

where , and the same eigenvectors as A.

20. Perron’s theorem. A Leslie matrix L with positive
has a positive eigenvalue. (This is a

special case of the Perron–Frobenius theorem in Sec.
20.7, which is difficult to prove in its general form.)

l12, l13, l21, l32

j � 1, Á , n

p (lj) � kmlj
m � km�1lj

m�1 � Á � k1lj � k0

p (A) � kmAm � km�1Am�1 � Á � k1A � k0I

l1
m, Á , ln

m
kl1, Á , kln. Am(m � 1, 2, Á )

l1 � k, Á , ln � k
A � kI

l1, Á , ln.
n � nA � [ajk]

A � D0.1 0.4 0.2

0.5 0 0.1

0.1 0.4 0.4

T .
y � [0.1 0.3 0.1]T

x � [x1 x2 x3]Tx � Ax � y
Ax � x

8.3 Symmetric, Skew-Symmetric, 
and Orthogonal Matrices

We consider three classes of real square matrices that, because of their remarkable
properties, occur quite frequently in applications. The first two matrices have already been
mentioned in Sec. 7.2. The goal of Sec. 8.3 is to show their remarkable properties.
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D E F I N I T I O N S Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix is called
symmetric if transposition leaves it unchanged,

(1) thus

skew-symmetric if transposition gives the negative of A,

(2) , thus

orthogonal if transposition gives the inverse of A,

(3)

E X A M P L E  1 Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-symmetric
matrix has all main diagonal entries zero. (Can you prove this?)

Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

(4) and

E X A M P L E  2 Illustration of Formula (4)

T H E O R E M  1 Eigenvalues of Symmetric and Skew-Symmetric Matrices

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

This basic theorem (and an extension of it) will be proved in Sec. 8.5.

�A � D9 5 2

2 3 �8

5 4 3

T � R � S � D9.0 3.5 3.5

3.5 3.0 �2.0

3.5 �2.0 3.0

T � D 0 1.5 �1.5

�1.5 0 �6.0

1.5 6.0 0

T

S � 1
2 (A � AT).R � 1

2 (A � AT)

�

D�3 1 5

1 0 �2

5 �2 4

T ,  D 0 9 �12

�9 0 20

12 �20 0

T ,  D 2
3

1
3

2
3

�2
3

2
3

1
3

1
3

2
3 �2

3

T

AT � A�1.

akj � �ajk,AT � �A

akj � ajk,AT � A,

A � [ajk]
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E X A M P L E  3 Eigenvalues of Symmetric and Skew-Symmetric Matrices

The matrices in (1) and (7) of Sec. 8.2 are symmetric and have real eigenvalues. The skew-symmetric matrix
in Example 1 has the eigenvalues 0, �25 i, and 25 i. (Verify this.) The following matrix has the real eigenvalues
1 and 5 but is not symmetric. Does this contradict Theorem 1?

Orthogonal Transformations and Orthogonal Matrices
Orthogonal transformations are transformations

(5) where A is an orthogonal matrix.

With each vector x in such a transformation assigns a vector y in . For instance,
the plane rotation through an angle 

(6)

is an orthogonal transformation. It can be shown that any orthogonal transformation in
the plane or in three-dimensional space is a rotation (possibly combined with a reflection
in a straight line or a plane, respectively).

The main reason for the importance of orthogonal matrices is as follows.

T H E O R E M 2 Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors
a and b in , defined by

(7)

That is, for any a and b in , orthogonal matrix A, and 
we have

Hence the transformation also preserves the length or norm of any vector a in
given by

(8)

P R O O F Let A be orthogonal. Let and . We must show that Now
by (10d) in Sec. 7.2 and by (3). Hence

(9)

From this the invariance of follows if we set �b � a.� a �

u • v � uTv � (Aa)TAb � aTATAb � aTIb � aTb � a • b.

ATA � A�1A � I(Aa)T � aTAT
u • v � a • b.v � Abu � Aa

� a � � 1a • a � 2aTa.

Rn

u • v � a • b.
u � Aa, v � Abn � nRn

a • b � aTb � [a1 
Á

 an] Db1

.

.

.

bn

T .
Rn

y � c y1

y2

d � c cos u �sin u

sin u cos u
d c x1

x2

d
u

RnRn

y � Ax

�c3 4

1 3
d

336 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

c08.qxd  10/30/10  10:56 AM  Page 336



SEC. 8.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices 337

Orthogonal matrices have further interesting properties as follows.

T H E O R E M 3 Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors (and
also its row vectors) form an orthonormal system, that is,

(10)

P R O O F (a) Let A be orthogonal. Then . In terms of column vectors 

(11)

The last equality implies (10), by the definition of the unit matrix I. From (3) it
follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 12).
Now the column vectors of are the row vectors of A. Hence the row vectors
of A also form an orthonormal system.
(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal entries in (11)
must be 0 and the diagonal entries 1. Hence , as (11) shows. Similarly, 
This implies because also and the inverse is unique. Hence
A is orthogonal. Similarly when the row vectors of A form an orthonormal system, by
what has been said at the end of part (a).

T H E O R E M  4 Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value or

P R O O F From (Sec. 7.8, Theorem 4) and (Sec. 7.7,
Theorem 2d), we get for an orthogonal matrix

E X A M P L E  4 Illustration of Theorems 3 and 4

The last matrix in Example 1 and the matrix in (6) illustrate Theorems 3 and 4 because their determinants are 
and , as you should verify.

T H E O R E M  5 Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs
and have absolute value 1.

��1�1

�1 � det  I � det (AA�1) � det (AAT) � det A det AT � (det A)2.

det  AT � det  Adet  AB � det  A det B

�1.�1

�

A�1A � AA�1 � IAT � A�1
AAT � I.ATA � I

A�1(�AT)

n � n

I � A�1A � ATA � Da1
T

.

.

.

an
T

T [a1
Á an] � Da1

Ta1 a1
Ta2 � �� a1

Tan

� � � � � �

an
Ta1 an

Ta2 � �� an
Tan

T .
a1, Á , an,A�1A � ATA � I

aj • ak � aj
Tak � e 0 if j � k

1 if j � k.

a1, Á , an
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P R O O F The first part of the statement holds for any real matrix A because its characteristic
polynomial has real coefficients, so that its zeros (the eigenvalues of A) must be as 
indicated. The claim that will be proved in Sec. 8.5.

E X A M P L E  5 Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic equation

Now one of the eigenvalues must be real (why?), hence or . Trying, we find . Division by 
gives and the two eigenvalues and , which have absolute
value 1. Verify all of this.

Looking back at this section, you will find that the numerous basic results it contains have
relatively short, straightforward proofs. This is typical of large portions of matrix
eigenvalue theory.

�
(5 � i111)>6(5 � i111)>6�(l2 � 5l>3 � 1) � 0

l � 1�1�1�1

�l3 � 2
3 l2 � 2

3 l � 1 � 0.

�ƒl ƒ � 1

338 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

1–10 SPECTRUM
Are the following matrices symmetric, skew-symmetric, or
orthogonal? Find the spectrum of each, thereby illustrating
Theorems 1 and 5. Show your work in detail.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. WRITING PROJECT. Section Summary. Sum-
marize the main concepts and facts in this section,
giving illustrative examples of your own.

12. CAS EXPERIMENT. Orthogonal Matrices.

(a) Products. Inverse. Prove that the product of two
orthogonal matrices is orthogonal, and so is the inverse
of an orthogonal matrix. What does this mean in terms
of rotations?

D 4
9

8
9

1
9

�7
9

4
9 �4

9

�4
9

1
9

8
9

TD 0 0 1

0 1 0

�1 0 0

T
D1 0 0

0 cos u �sin u

0 sin u cos u

TD 0 9 �12

�9 0 20

12 �20 0

T
Da k k

k a k

k k a

TD6 0 0

0 2 �2

0 �2 5

T
c cos u �sin u

sin u cos u
dc 2 8

�8 2
d

c a b

�b a
dc 0.8 0.6

�0.6 0.8
d

(b) Rotation. Show that (6) is an orthogonal trans-
formation. Verify that it satisfies Theorem 3. Find the
inverse transformation.

(c) Powers. Write a program for computing powers
of a matrix A and their

spectra. Apply it to the matrix in Prob. 1 (call it A). To
what rotation does A correspond? Do the eigenvalues
of have a limit as ?

(d) Compute the eigenvalues of where A is
the matrix in Prob. 1. Plot them as points. What is their
limit? Along what kind of curve do these points
approach the limit?

(e) Find A such that is a counterclockwise
rotation through in the plane.

13–20 GENERAL PROPERTIES

13. Verification. Verify the statements in Example 1.

14. Verify the statements in Examples 3 and 4.

15. Sum. Are the eigenvalues of sums of the
eigenvalues of A and of B?

16. Orthogonality. Prove that eigenvectors of a symmetric
matrix corresponding to different eigenvalues are
orthogonal. Give examples.

17. Skew-symmetric matrix. Show that the inverse of a
skew-symmetric matrix is skew-symmetric.

18. Do there exist nonsingular skew-symmetric 
matrices with odd n?

19. Orthogonal matrix. Do there exist skew-symmetric
orthogonal matrices?

20. Symmetric matrix. Do there exist nondiagonal
symmetric matrices that are orthogonal? 3 � 3

3 � 3

n � n

A � B

30°
y � Ax

(0.9A)m,

m : �Am

2 � 2Am (m � 1, 2, Á )

P R O B L E M  S E T  8 . 3
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8.4 Eigenbases. Diagonalization. 
Quadratic Forms

So far we have emphasized properties of eigenvalues. We now turn to general properties
of eigenvectors. Eigenvectors of an matrix A may (or may not!) form a basis for

If we are interested in a transformation such an “eigenbasis” (basis of
eigenvectors)—if it exists—is of great advantage because then we can represent any x in

uniquely as a linear combination of the eigenvectors say,

And, denoting the corresponding (not necessarily distinct) eigenvalues of the matrix A by
we have so that we simply obtain

(1)

This shows that we have decomposed the complicated action of A on an arbitrary vector
x into a sum of simple actions (multiplication by scalars) on the eigenvectors of A. This
is the point of an eigenbasis.

Now if the n eigenvalues are all different, we do obtain a basis:

T H E O R E M  1 Basis of Eigenvectors

If an matrix A has n distinct eigenvalues, then A has a basis of eigenvectors
for

P R O O F All we have to show is that are linearly independent. Suppose they are not. Let
r be the largest integer such that is a linearly independent set. Then 
and the set is linearly dependent. Thus there are scalars 
not all zero, such that

(2)

(see Sec. 7.4). Multiplying both sides by A and using we obtain

(3)

To get rid of the last term, we subtract times (2) from this, obtaining

Here since is linearly independent.
Hence , since all the eigenvalues are distinct. But with this, (2) reduces to

hence since (an eigenvector!). This contradicts the fact
that not all scalars in (2) are zero. Hence the conclusion of the theorem must hold. �

xr�1 � 0cr�1 � 0,cr�1xr�1 � 0,
c1 � Á � cr � 0

{x1, Á , x r}c1(l1 � lr�1) � 0, Á , cr(lr � lr�1) � 0

c1(l1 � lr�1)x1 � Á � cr(lr � lr�1)xr � 0.

lr�1

A(c1x1 � Á � cr�1xr�1) � c1l1x1 � Á � cr�1lr�1xr�1 � A0 � 0.

Axj � ljxj,

c1x1 � Á � cr�1xr�1 � 0

c1, Á , cr�1,{x1, Á , xr, xr�1}
r � n{x1, Á , xr}

x1, Á , xn

Rn.x1, Á , xn

n � n

 � c1l1x1 � Á � cnlnxn.

 � c1Ax1 � Á � cnAxn

 y � Ax � A(c1x1 � Á � cnxn)

Axj � ljxj,l1, Á , ln,

x � c1x1 � c2x2 � Á � cnxn.

x1, Á , xn,Rn

y � Ax,Rn.
n � n
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E X A M P L E  1 Eigenbasis. Nondistinct Eigenvalues. Nonexistence

The matrix has a basis of eigenvectors corresponding to the eigenvalues 

(See Example 1 in Sec. 8.2.)
Even if not all n eigenvalues are different, a matrix A may still provide an eigenbasis for . See Example 2

in Sec. 8.1, where 
On the other hand, A may not have enough linearly independent eigenvectors to make up a basis. For

instance, A in Example 3 of Sec. 8.1 is

and has only one eigenvector , arbitrary).

Actually, eigenbases exist under much more general conditions than those in Theorem 1.
An important case is the following.

T H E O R E M  2 Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors for

For a proof (which is involved) see Ref. [B3], vol. 1, pp. 270–272.

E X A M P L E  2 Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an orthonormal basis of eigenvectors is 

Similarity of Matrices. Diagonalization
Eigenbases also play a role in reducing a matrix A to a diagonal matrix whose entries are
the eigenvalues of A. This is done by a “similarity transformation,” which is defined as
follows (and will have various applications in numerics in Chap. 20).

D E F I N I T I O N Similar Matrices. Similarity Transformation

An matrix is called similar to an matrix A if

(4)

for some (nonsingular!) matrix P. This transformation, which gives from
A, is called a similarity transformation.

The key property of this transformation is that it preserves the eigenvalues of A:

T H E O R E M  3 Eigenvalues and Eigenvectors of Similar Matrices

If is similar to A, then has the same eigenvalues as A.
Furthermore, if x is an eigenvector of A, then is an eigenvector of

corresponding to the same eigenvalue.
Ây � P�1x

ÂÂ

Ân � n

Â � P�1AP

n � nÂn � n

�[1>12 �1>124T.
31>12 1>124T,

Rn.

�(k � 0c k
0
dA � c0 1

0 0
d

n � 3.
Rn

l2 � 2.

l1 � 8,c1
1
d , c 1

�1
dA � c5 3

3 5
d
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P R O O F From an eigenvalue, we get Now By
this identity trick the equation gives

Hence is an eigenvalue of and a corresponding eigenvector. Indeed, 
because would give , contradicting 

E X A M P L E  3 Eigenvalues and Vectors of Similar Matrices

Let, and

Then

Here was obtained from (4*) in Sec. 7.8 with . We see that has the eigenvalues 
The characteristic equation of A is It has the roots (the eigenvalues
of A) , confirming the first part of Theorem 3.

We confirm the second part. From the first component of we have . For
this gives say, For it gives , say, . In

Theorem 3 we thus have

Indeed, these are eigenvectors of the diagonal matrix 
Perhaps we see that and are the columns of P. This suggests the general method of transforming a

matrix A to diagonal form D by using , the matrix with eigenvectors as columns.

By a suitable similarity transformation we can now transform a matrix A to a diagonal
matrix D whose diagonal entries are the eigenvalues of A:

T H E O R E M  4 Diagonalization of a Matrix

If an matrix A has a basis of eigenvectors, then

(5)

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X
is the matrix with these eigenvectors as column vectors. Also, 

(5*) .(m � 2, 3, Á )Dm � X�1AmX

D � X�1AX

n � n

�P � X
x2x1

Â.

y1 � P�1x1 � c 4 �3

�1 1
d c1

1
d � c1

0
d ,    y2 � P�1x2 � c 4 �3

�1 1
d c3

4
d � c0

1
d .

x2 � 33 44T4x1 � 3x2 � 0l � 2x1 � 31 14T.3x1 � 3x2 � 0,l � 3
(6 � l)x1 � 3x2 � 0(A � lI)x � 0

l1 � 3, l2 � 2
(6 � l)(�1 � l) � 12 � l2 � 5l � 6 � 0.

l1 � 3, l2 � 2.Âdet P � 1P�1

Â � c 4 �3

�1 1
d c6 �3

4 �1
d c1 3

1 4
d � c3 0

0 2
d .

P � c1 3

1 4
d .A � c6 �3

4 �1
d

�x � 0.x � Ix � PP�1x � P0 � 0P�1x � 0
P�1x � 0P�1xÂl

P�1Ax � P�1AIx � P�1APP�1x � (P�1AP)P�1x � Â(P�1x) � lP�1x.

P�1Ax � lP�1x
I � PP�1.P�1Ax � lP�1x.x � 0)(lAx � lx
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P R O O F Let be a basis of eigenvectors of A for . Let the corresponding eigenvalues
of A be , respectively, so that . Then

has rank n, by Theorem 3 in Sec. 7.4. Hence exists by Theorem 1
in Sec. 7.8. We claim that

(6)

where D is the diagonal matrix as in (5). The fourth equality in (6) follows by direct
calculation. (Try it for and then for general n.) The third equality uses 
The second equality results if we note that the first column of AX is A times the first
column of X, which is , and so on. For instance, when and we write

, , we have

Column 1 Column 2

If we multiply (6) by from the left, we obtain (5). Since (5) is a similarity
transformation, Theorem 3 implies that D has the same eigenvalues as A. Equation (5*)
follows if we note that

etc.

E X A M P L E  4 Diagonalization

Diagonalize

Solution. The characteristic determinant gives the characteristic equation The roots
(eigenvalues of A) are By the Gauss elimination applied to with

we find eigenvectors and then by the Gauss–Jordan elimination (Sec. 7.8, Example 1). The
results are

Calculating AX and multiplying by from the left, we thus obtain

�D � X�1AX � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T  D�3 �4 0

9 4 0

�3 �12 0

T � D3 0 0

0 �4 0

0 0 0

T .
X�1

D�1

3

�1

T , D 1

�1

3

T , D21
4

T ,  X � D�1 1 2

3 �1 1

�1 3 4

T ,  X�1 � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T .
X�1l � l1, l2, l3

(A � lI)x � 0l1 � 3, l2 � �4, l3 � 0.
�l3 � l2 � 12l � 0.

A � D 7.3 0.2 �3.7

�11.5 1.0 5.5

17.7 1.8 �9.3

T .

�D2 � DD � (X�1AX)(X�1AX) � X�1A(XX�1)AX � X�1AAX � X�1A2X,

X�1

 � ca11x11 � a12x21  a11x12 � a12x22

a21x11 � a22x21 a21x12 � a22x22

d � 3Ax1 Ax24.

 AX � A3x1 x24 � ca11 a12

a21 a22

d  c x11 x12

x21 x22

d
x2 � 3x12 x224x1 � 3x11 x214

n � 2x1

Axk � lkxk.n � 2

Ax � A3x1 
Á

 xn4 � 3Ax1 
Á

 Axn4 � 3l1x1 
Á

 lnxn4 � XD

X�1X � 3x1
Á  xn4

Ax1 � l1x1, Á , Axn � lnxnl1, Á , ln

Rnx1, Á , xn
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Quadratic Forms. Transformation to Principal Axes
By definition, a quadratic form Q in the components of a vector x is a sum
of terms, namely, 

(7)

is called the coefficient matrix of the form. We may assume that A is
symmetric, because we can take off-diagonal terms together in pairs and write the result
as a sum of two equal terms; see the following example.

E X A M P L E  5 Quadratic Form. Symmetric Coefficient Matrix

Let

Here From the corresponding symmetric matrix , where 
thus , we get the same result; indeed, 

Quadratic forms occur in physics and geometry, for instance, in connection with conic
sections (ellipses , etc.) and quadratic surfaces (cones, etc.). Their
transformation to principal axes is an important practical task related to the diagonalization
of matrices, as follows.

By Theorem 2, the symmetric coefficient matrix A of (7) has an orthonormal basis of
eigenvectors. Hence if we take these as column vectors, we obtain a matrix X that is
orthogonal, so that . From (5) we thus have . Substitution
into (7) gives

(8)

If we set , then, since , we have and thus obtain

(9)

Furthermore, in (8) we have and , so that Q becomes simply

(10) Q � yTDy � l1y1
2 � l2y2

2 � Á � lnyn
2 .

XTx � yxTX � (XTx)T � yT

x � Xy.

X�1x � yXT � X�1XTx � y

Q � xTXDXTx.

A � XDX�1 � XDXTX�1 � XT

x1
2>a2 � x2

2>b2 � 1

�xTCx � 3x1 x24 c3 5

5 2
d  c x1

x2

d � 3x1
2 � 5x1x2 � 5x2x1 � 2x2

2 � 3x1
2 � 10x1x2 � 2x2

2.

c11 � 3, c12 � c21 � 5, c22 � 2
cjk � 1

2 (ajk � akj),C � [cjk44 � 6 � 10 � 5 � 5.

xTAx � 3x1 x24 c3 4

6 2
d  c x1

x2

d � 3x1
2 � 4x1x2 � 6x2x1 � 2x2

2 � 3x1
2 � 10x1x2 � 2x2

2.

A � 3ajk4

 � an1xnx1 � an2xnx2 � Á
 � annxn

2 .

 � # # # # # # # # # # # # # # # # # # # # # # # # # # #

 � a21x2x1  � a22x2
2  � Á  � a2nx2xn

�  a11x1
2  � a12x1x2  � Á

 � a1nx1xn

 Q � xTAx � a

n

j�1

 a

n

k�1

ajkx jxk

n2
x1, Á , xn
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This proves the following basic theorem.

T H E O R E M  5 Principal Axes Theorem

The substitution (9) transforms a quadratic form

to the principal axes form or canonical form (10), where are the (not
necessarily distinct) eigenvalues of the (symmetric!) matrix A, and X is an
orthogonal matrix with corresponding eigenvectors , respectively, as
column vectors.

E X A M P L E  6 Transformation to Principal Axes. Conic Sections

Find out what type of conic section the following quadratic form represents and transform it to principal axes:

Solution. We have , where

,

This gives the characteristic equation . It has the roots . Hence (10)
becomes

We see that represents the ellipse that is, 

If we want to know the direction of the principal axes in the -coordinates, we have to determine normalized
eigenvectors from with and and then use (9). We get

and

hence

,

This is a rotation. Our results agree with those in Sec. 8.2, Example 1, except for the notations. See also
Fig. 160 in that example. �

45°

x1 � y1>12 � y2>12

x2 � y1>12 � y2>12.
x � Xy � c1>12 �1>12

1>12 1>12
d  c y1

y2

d

c�1>12

1>12
d ,c1>12

1>12
d

l � l2 � 32l � l1 � 2(A � lI)x � 0
x1x2

y1
2

82
 �

y2
2

22
 � 1.

2y1
2 � 32y2

2 � 128,Q � 128

Q � 2y1
2 � 32y2

2.

l1 � 2, l2 � 32(17 � l)2 � 152 � 0

x � c x1

x2

d .A � c 17 �15

�15 17
d

Q � xTAx

Q � 17x1
2 � 30x1x2 � 17x2

2 � 128.

x1, Á , xn

l1, Á , ln

Q � xTAx � a

n

j�1

 a

n

k�1

ajkx jxk  (akj � ajk)
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1–5 SIMILAR MATRICES HAVE EQUAL
EIGENVALUES

Verify this for A and If y is an eigenvector
of P, show that are eigenvectors of A. Show the
details of your work.

1.

2.

3.

4.

5.

6. PROJECT. Similarity of Matrices. Similarity is
basic, for instance, in designing numeric methods.

(a) Trace. By definition, the trace of an matrix
is the sum of the diagonal entries, 

trace 

Show that the trace equals the sum of the eigenvalues,
each counted as often as its algebraic multiplicity
indicates. Illustrate this with the matrices A in Probs.
1, 3, and 5.

(b) Trace of product. Let be . Show
that similar matrices have equal traces, by first proving

trace 

(c) Find a relationship between in (4) and

(d) Diagonalization. What can you do in (5) if you
want to change the order of the eigenvalues in D, for
instance, interchange and ?

7. No basis. Find further and matrices
without eigenbasis.

3 � 32 � 2

d22 � l2d11 � l1

Â � PAP�1.
Â

AB � a

n

i�1

 a

n

l�1

ailbli � trace BA.

n � nB � 3bjk4

A � a11 � a22 � Á � ann.

A � 3ajk4
n � n

A � D�5

3

�5

0

4

0

15

�9

15

T ,   P � D01
0

1

0

0

0

0

1

T
l1 � 3

A � D00
1

0

3

0

2

2

1

T ,  P � D20
3

0

1

0

3

0

5

T ,
A � c8

2

�4

2
d  ,   P � c 0.28

�0.96

0.96

0.28
S

A � c1
2

0

�1
d  ,   P � c 7

10

�5

�7
d

A � c3
4

4

�3
d  ,   P � c�4

3

2

�1
d

x � Py
A � P�1AP.

8. Orthonormal basis. Illustrate Theorem 2 with further
examples.

9–16 DIAGONALIZATION OF MATRICES
Find an eigenbasis (a basis of eigenvectors) and diagonalize.
Show the details.

9. 10.

11. 12.

13.

14.

15.

16.

17–23 PRINCIPAL AXES. CONIC SECTIONS
What kind of conic section (or pair of straight lines) is given
by the quadratic form? Transform it to principal axes.
Express in terms of the new coordinate
vector , as in Example 6.

17.

18.

19.

20.

21.

22.

23. �11x1
2 � 84x1x2 � 24x2

2 � 156

4x1
2 � 12x1x2 � 13x2

2 � 16

x1
2 � 12x1x2 � x2

2 � 70

9x1
2 � 6x1x2 � x2

2 � 10

3x1
2 � 22x1x2 � 3x2

2 � 0

3x1
2 � 8x1x2 � 3x2

2 � 10

7x1
2 � 6x1x2 � 7x2

2 � 200

yT � 3y1 y24
xT � 3x1 x24

D11
0

1

1

0

0

0

�4

T
D43
3

3

6

1

3

1

6

T ,   l1 � 10

D �5

�9

�12

�6

�8

�12

6

12

16

T ,   l1 � �2

D 4

12

21

0

�2

�6

0

0

1

T
c�4.3

1.3

7.7

9.3
dc�19

�42

7

16
d

c 1
2

0

�1
dc1

2

2

4
d
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24. Definiteness. A quadratic form and its
(symmetric!) matrix A are called (a) positive definite
if for all (b) negative definite if

for all (c) indefinite if takes
both positive and negative values. (See Fig. 162.)

and A are called positive semidefinite (negative
semidefinite) if for all x.] Show
that a necessary and sufficient condition for (a), (b),
and (c) is that the eigenvalues of A are (a) all positive,
(b) all negative, and (c) both positive and negative.

Hint. Use Theorem 5.

25. Definiteness. A necessary and sufficient condition for
positive definiteness of a quadratic form 
with symmetric matrix A is that all the principal minors
are positive (see Ref. [B3], vol. 1, p. 306), that is, 

Show that the form in Prob. 22 is positive definite,
whereas that in Prob. 23 is indefinite.

3  a11

a12

a13

a12

a22

a23

a13

a23

a33

 3 	 0,  Á ,  det A 	 0.

a11 	 0,   2  a11

a12

a12

a22

 2 	 0,

Q (x) � xTAx

Q (x) � 0 (Q (x) � 0)
3Q (x)

Q (x)x � 0,Q (x) � 0
x � 0,Q (x) 	 0

Q (x) � xTAx

Q(x)

Q(x)

x1
x2

(a) Positive definite form

Q(x)

(c) Indefinite form

x1

x2

(b) Negative definite form

x1

x2

Fig. 162. Quadratic forms in two variables (Problem 24)

8.5 Complex Matrices and Forms. Optional
The three classes of matrices in Sec. 8.3 have complex counterparts which are of practical
interest in certain applications, for instance, in quantum mechanics. This is mainly because
of their spectra as shown in Theorem 1 in this section. The second topic is about extending
quadratic forms of Sec. 8.4 to complex numbers. (The reader who wants to brush up on
complex numbers may want to consult Sec. 13.1.)

Notations

is obtained from by replacing each entry 
real) with its complex conjugate Also, is the transpose

of hence the conjugate transpose of A.

E X A M P L E  1 Notations

If then and �A 
T

� c3 � 4i

1 � i

6

2 � 5i
d  .A � c3 � 4i

6

1 � i

2 � 5i
dA � c3 � 4i

6

1 � i

2 � 5i
d  ,

A,
A 

T
� 3akj4ajk � a � ib.(a, b

ajk � a � ibA � 3ajk4A � 3ajk4
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D E F I N I T I O N Hermitian, Skew-Hermitian, and Unitary Matrices

A square matrix is called 

Hermitian if that is,

skew-Hermitian if that is,

unitary if

The first two classes are named after Hermite (see footnote 13 in Problem Set 5.8).
From the definitions we see the following. If A is Hermitian, the entries on the main

diagonal must satisfy that is, they are real. Similarly, if A is skew-Hermitian,
then If we set this becomes Hence 
so that must be pure imaginary or 0.

E X A M P L E  2 Hermitian, Skew-Hermitian, and Unitary Matrices

are Hermitian, skew-Hermitian, and unitary matrices, respectively, as you may verify by using the definitions.

If a Hermitian matrix is real, then Hence a real Hermitian matrix is a
symmetric matrix (Sec. 8.3).

Similarly, if a skew-Hermitian matrix is real, then Hence a real skew-
Hermitian matrix is a skew-symmetric matrix.

Finally, if a unitary matrix is real, then Hence a real unitary matrix
is an orthogonal matrix.

This shows that Hermitian, skew-Hermitian, and unitary matrices generalize symmetric,
skew-symmetric, and orthogonal matrices, respectively.

Eigenvalues
It is quite remarkable that the matrices under consideration have spectra (sets of eigenvalues;
see Sec. 8.1) that can be characterized in a general way as follows (see Fig. 163).

A 
T

� AT � A�1.

A 
T

� AT � �A.

A 
T

� AT � A.

�

C � c 12 i

1
2 13

 1
2 13

  
1
2 i

d  B � c 3i

� 2 � i

 2 � i

� i
d  A � c 4

1 � 3i

 1 � 3i

7
d  

ajj

a � 0,a � ib � �(a � ib).ajj � a � ib,ajj � �ajj.
ajj � ajj;

 A 
T

� A�1.

akj � �ajk A 
T

� �A,

akj � ajk A 
T

� A,

A � 3akj4

Fig. 163. Location of the eigenvalues of Hermitian, skew-Hermitian, 
and unitary matrices in the complex -planel

Re λ1

Im λ Skew-Hermitian (skew-symmetric)

Unitary (orthogonal)

Hermitian (symmetric)
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T H E O R E M  1 Eigenvalues

(a) The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix)
are real.

(b) The eigenvalues of a skew-Hermitian matrix (and thus of a skew-symmetric
matrix) are pure imaginary or zero.

(c) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have
absolute value 1.

E X A M P L E  3 Illustration of Theorem 1

For the matrices in Example 2 we find by direct calculation

Matrix Characteristic Equation Eigenvalues

A Hermitian 9, 2
B Skew-Hermitian
C Unitary

and 

P R O O F We prove Theorem 1. Let be an eigenvalue and x an eigenvector of A. Multiply 
from the left by thus and divide by 

which is real and not 0 because This gives

(1)

(a) If A is Hermitian,  or and we show that then the numerator in (1)
is real, which makes real. is a scalar; hence taking the transpose has no effect. Thus

(2)

Hence, equals its complex conjugate, so that it must be real. 
implies 

(b) If A is skew-Hermitian, and instead of (2) we obtain

(3)

so that equals minus its complex conjugate and is pure imaginary or 0.
implies 

(c) Let A be unitary. We take and its conjugate transpose

and multiply the two left sides and the two right sides, 

(Ax )TAx � llxTx � ƒl ƒ
2

 xTx.

(Ax )T � (lx )T � lxT

Ax � lx
a � 0.)(a � ib � �(a � ib)

xTAx

( xTAx)xTAx � �

AT � �A
b � 0.)

(a � ib � a � ibxTAx

xTAx � (xTAx)T � xTATx � xT
 Ax � ( xTAx).

xTAxl

AT � AA 
T

� A

l �
xTAx

xTx
 .

x � 0.ƒ x1 ƒ
2 � Á � ƒ xn ƒ

2,
xTx � x1x1 � Á � xnxn �xTAx � lxTx,xT,

Ax � lxl

�ƒ 
1
2 13 � 1

2 i ƒ
2 � 3

4 � 1
4 � 1.

1
2 13 � 1

2 i, �1
2 13 � 1

2 il2 � il � 1 � 0
4i, �2il2 � 2il � 8 � 0

l2 � 11l � 18 � 0
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But A is unitary, , so that on the left we obtain

Together, We now divide by to get Hence 
This proves Theorem 1 as well as Theorems 1 and 5 in Sec. 8.3.

Key properties of orthogonal matrices (invariance of the inner product, orthonormality of
rows and columns; see Sec. 8.3) generalize to unitary matrices in a remarkable way.

To see this, instead of we now use the complex vector space of all complex
vectors with n complex numbers as components, and complex numbers as scalars. For
such complex vectors the inner product is defined by (note the overbar for the complex
conjugate)

(4)

The length or norm of such a complex vector is a real number defined by

(5)

T H E O R E M  2 Invariance of Inner Product

A unitary transformation, that is, with a unitary matrix A, preserves the
value of the inner product (4), hence also the norm (5).

P R O O F The proof is the same as that of Theorem 2 in Sec. 8.3, which the theorem generalizes.
In the analog of (9), Sec. 8.3, we now have bars, 

.

The complex analog of an orthonormal system of real vectors (see Sec. 8.3) is defined as
follows.

D E F I N I T I O N Unitary System

A unitary system is a set of complex vectors satisfying the relationships

(6)

Theorem 3 in Sec. 8.3 extends to complex as follows.

T H E O R E M  3 Unitary Systems of Column and Row Vectors

A complex square matrix is unitary if and only if its column vectors (and also its
row vectors) form a unitary system.

aj • ak � aj
Tak � b 

0

1

if

if

j � k

j � k.

u • v � uTv � (Aa)TAb � aT
 A 

TAb � aTIb � aTb � a • b

y � Ax

� a � � 2a • a � 2aj
Ta � 2a1a1 � Á � anan � 2 ƒ a1 ƒ

2 � Á � ƒ an ƒ
2.

a • b � aTb.

C nRn

�

ƒl ƒ � 1.ƒl ƒ
2 � 1.xTx (�0)xTx � ƒl ƒ

2
 xTx.

(Ax )TAx � xT
 A 

TAx � xTA�1Ax � xTIx � xTx.

A 
T

� A�1
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P R O O F The proof is the same as that of Theorem 3 in Sec. 8.3, except for the bars required in
and in (4) and (6) of the present section.

T H E O R E M  4 Determinant of a Unitary Matrix

Let A be a unitary matrix. Then its determinant has absolute value one, that is,

P R O O F Similarly, as in Sec. 8.3, we obtain

Hence (where det A may now be complex).

E X A M P L E  4 Unitary Matrix Illustrating Theorems 1c and 2–4

For the vectors and we get and 
and with

also and

as one can readily verify. This gives illustrating Theorem 2. The matrix is unitary. Its
columns form a unitary system, 

and so do its rows. Also, The eigenvalues are and with eigenvectors 
and respectively.

Theorem 2 in Sec. 8.4 on the existence of an eigenbasis extends to complex matrices as
follows.

T H E O R E M  5 Basis of Eigenvectors

A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors for 
that is a unitary system.

For a proof see Ref. [B3], vol. 1, pp. 270–272 and p. 244 (Definition 2).

E X A M P L E  5 Unitary Eigenbases

The matrices A, B, C in Example 2 have the following unitary systems of eigenvectors, as you should verify.

A:

B:

C: �
1

12
 31 14T (l � 1

2 (i � 13)) ,    
1

12
 31 �14T (l � 1

2 (i � 13)) .

1

130
 31 � 2i �54T (l � �2i),    

1

130
 35 1 � 2i4T (l � 4i)

1

135
 31 � 3i 54T (l � 9),    

1

114
 31 � 3i �24T (l � 2)

C n

�31 �14T,
31 14T�0.6 � 0.8i,0.6 � 0.8idet A � �1.

 a2
Ta2 � 0.62 � (�0.8i)0.8i � 1

 a1
Ta1 � �0.8i # 0.8i � 0.62 � 1,   a1

Ta2 � �0.8i # 0.6 � 0.6 # 0.8i � 0,

(Aa)TAb � �2 � 2i,

Ab � c�0.8 � 3.2i

�2.6 � 0.6i
d ,Aa � c i

2
dA � c0.8i

0.6

0.6

0.8i
d

aTb � 2(1 � i) � 4 � �2 � 2iaT � 32 i4TbT � 31 � i 4i4aT � 32 �i4

�ƒ det A ƒ � 1

 � det A det A � ƒ det A ƒ
2.

 1 � det (AA�1) � det (AA 
T) � det A det A 

T
� det A det A

ƒ det A ƒ � 1.

A 
T

� A�1
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Hermitian and Skew-Hermitian Forms
The concept of a quadratic form (Sec. 8.4) can be extended to complex. We call the
numerator in (1) a form in the components of x, which may now be
complex. This form is again a sum of terms

(7)

A is called its coefficient matrix. The form is called a Hermitian or skew-Hermitian
form if A is Hermitian or skew-Hermitian, respectively. The value of a Hermitian form
is real, and that of a skew-Hermitian form is pure imaginary or zero. This can be seen
directly from (2) and (3) and accounts for the importance of these forms in physics. Note
that (2) and (3) are valid for any vectors because, in the proof of (2) and (3), we did not
use that x is an eigenvector but only that is real and not 0.

E X A M P L E  6 Hermitian Form

For A in Example 2 and, say, we get

Clearly, if A and x in (4) are real, then (7) reduces to a quadratic form, as discussed in
the last section.

�xTAx � 31 � i �5i4 c 4

1 � 3i

1 � 3i

7
d  c1 � i

5i
d � 31 � i �5i4 c4(1 � i) � (1 � 3i) # 5i

(1 � 3i)(1 � i) � 7 # 5i
d � 223.

x � 31 � i 5i4T

xTx

 � an1xnx1 � Á
 � annxnxn.

� # # # # # # # # # # # # # # # # # # #

 � a21x2x1  � Á
 � a2nx2xn

�   a11x1x1  � Á
 � a1nx1xn

xTAx � a

n

j�1

 a

n

k�1

ajk x j xk

n2
x1, Á , xn xTAx

1–6 EIGENVALUES AND VECTORS
Is the given matrix Hermitian? Skew-Hermitian? Unitary?
Find its eigenvalues and eigenvectors.

1. 2.

3. 4.

5. 6. D 0

2 � 2i

0

2 � 2i

0

2 � 2i

0

2 � 2i

0

TD i

0

0

0

0

i

0

i

0

T
c0

i

i

0
dc 12

i23
4

i23
4

1
2

d
c i

�1 � i

1 � i

0
dc 6

�i

i

6
d

7. Pauli spin matrices. Find the eigenvalues and eigen-
vectors of the so-called Pauli spin matrices and show
that 
where

8. Eigenvectors. Find eigenvectors of A, B, C in
Examples 2 and 3.

Sz � c1
0

0

�1
d  .

Sy � c0
i

�i

0
d  ,Sx � c0

1

1

0
d  ,

Sx
2 � Sy

2 � Sz
2 � I,SySx � �iSz,SxSy � iSz,
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9–12 COMPLEX FORMS
Is the matrix A Hermitian or skew-Hermitian? Find 
Show the details.

9.

10.

11.

12.

13–20 GENERAL PROBLEMS
13. Product. Show that for any

Hermitian A, skew-Hermitian B, and unitary C.n � n
(ABC) 

T � �C�1BA

A � D 1

�i

4

i

3

0

4

0

2

T ,   x � D 1

i

�i

T
A � D i

�1

�2 � i

1

0

3i

2 � i

3i

i

T ,   x � D 1

i

�i

T
A � c i

2 � 3i

�2 � 3i

0
S  ,   x � c2i

8
d

A � c 4

3 � 2i

3 � 2i

�4
d  ,   x � c �4i

2 � 2i
d

xTAx.

14. Product. Show for A and B in
Example 2. For any Hermitian A and 
skew-Hermitian B.

15. Decomposition. Show that any square matrix may be
written as the sum of a Hermitian and a skew-Hermitian
matrix. Give examples.

16. Unitary matrices. Prove that the product of two
unitary matrices and the inverse of a unitary
matrix are unitary. Give examples.

17. Powers of unitary matrices in applications may
sometimes be very simple. Show that in
Example 2. Find further examples.

18. Normal matrix. This important concept denotes a
matrix that commutes with its conjugate transpose,

Prove that Hermitian, skew-Hermitian,
and unitary matrices are normal. Give corresponding
examples of your own.

19. Normality criterion. Prove that A is normal if and
only if the Hermitian and skew-Hermitian matrices in
Prob. 18 commute.

20. Find a simple matrix that is not normal. Find a normal
matrix that is not Hermitian, skew-Hermitian, or
unitary.

AA 
T � A 

TA.

C12 � I

n � n

n � n
(BA) 

T � �AB

352 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

1. In solving an eigenvalue problem, what is given and
what is sought?

2. Give a few typical applications of eigenvalue problems.

3. Do there exist square matrices without eigenvalues?

4. Can a real matrix have complex eigenvalues? Can a
complex matrix have real eigenvalues?

5. Does a matrix always have a real eigenvalue?

6. What is algebraic multiplicity of an eigenvalue? Defect?

7. What is an eigenbasis? When does it exist? Why is it
important?

8. When can we expect orthogonal eigenvectors?

9. State the definitions and main properties of the three
classes of real matrices and of complex matrices that
we have discussed.

10. What is diagonalization? Transformation to principal axes?

11–15 SPECTRUM
Find the eigenvalues. Find the eigenvectors.

11. 12.

13. c8
5

�1

2
d

c �7

�12

4

7
dc 2.5

0.5

0.5

2.5
d

5 � 5

14.

15.

16–17 SIMILARITY
Verify that A and have the same spectrum.

16.

17.

18. A � D�4

0

�1

6

2

1

6

0

1

T ,   P � D10
0

8

1

0

�7

3

1

T
A � c 7

12

�4

�7
d  ,   P � c5

3

3

5
d

A � c19

12

12

1
d  ,   P � c2

4

4

2
d

Â � p�1AP

D0 �3 �6

3 0 �6

6 6 0

T
D 7 2 �1

2 7 1

�1 1 8.5

T
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Summary of Chapter 8 353

19–21 DIAGONALIZATION
Find an eigenbasis and diagonalize.

9. 20.

21. D�12

8

�8

22

2

20

6

6

16

T
c 72

�56

�56

513
dc�1.4

�1.0

1.0

1.1
d

22–25 CONIC SECTIONS. PRINCIPAL AXES
Transform to canonical form (to principal axes). Express

in terms of the new variables 

22.

23.

24.

25. 3.7x1
2 � 3.2x1x2 � 1.3x2

2 � 4.5

5x1
2 � 24x1x2 � 5x2

2 � 0

4x1
2 � 24x1x2 � 14x2

2 � 20

9x1
2 � 6x1x2 � 17x2

2 � 36

3y1 y24
T.3x1 x24

T

The practical importance of matrix eigenvalue problems can hardly be overrated.
The problems are defined by the vector equation

(1)

A is a given square matrix. All matrices in this chapter are square. is a scalar. To
solve the problem (1) means to determine values of , called eigenvalues (or
characteristic values) of A, such that (1) has a nontrivial solution x (that is, 
called an eigenvector of A corresponding to that . An matrix has at least
one and at most n numerically different eigenvalues. These are the solutions of the
characteristic equation (Sec. 8.1)

(2)

is called the characteristic determinant of A. By expanding it we get the
characteristic polynomial of A, which is of degree n in . Some typical applications
are shown in Sec. 8.2.

Section 8.3 is devoted to eigenvalue problems for symmetric skew-
symmetric and orthogonal matrices Section 8.4
concerns the diagonalization of matrices and the transformation of quadratic forms
to principal axes and its relation to eigenvalues.

Section 8.5 extends Sec. 8.3 to the complex analogs of those real matrices, called
Hermitian skew-Hermitian and unitary matrices

All the eigenvalues of a Hermitian matrix (and a symmetric one) are
real. For a skew-Hermitian (and a skew-symmetric) matrix they are pure imaginary
or zero. For a unitary (and an orthogonal) matrix they have absolute value 1.

(A 
T � A�1).

(AT � �A),(AT � A),

(AT � A�1).(AT � �A),
(AT � A),

l

D (l)

D (l) � det (A � lI) � 5  a11 � l

a21

#

an1

a12

a22 � l

#

an2

Á

Á

Á

Á

a1n

a2n

#

ann � l 

5 � 0.

n � nl

x � 0),
l

l

Ax � lx.

SUMMARY OF CHAPTER 8
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354

C H A P T E R 9

Vector Differential Calculus.
Grad, Div, Curl

Engineering, physics, and computer sciences, in general, but particularly solid mechanics,
aerodynamics, aeronautics, fluid flow, heat flow, electrostatics, quantum physics, laser
technology, robotics as well as other areas have applications that require an understanding
of vector calculus. This field encompasses vector differential calculus and vector integral
calculus. Indeed, the engineer, physicist, and mathematician need a good grounding in
these areas as provided by the carefully chosen material of Chaps. 9 and 10.

Forces, velocities, and various other quantities may be thought of as vectors. Vectors
appear frequently in the applications above and also in the biological and social sciences,
so it is natural that problems are modeled in 3-space. This is the space of three dimensions
with the usual measurement of distance, as given by the Pythagorean theorem. Within that
realm, 2-space (the plane) is a special case. Working in 3-space requires that we extend
the common differential calculus to vector differential calculus, that is, the calculus that
deals with vector functions and vector fields and is explained in this chapter.

Chapter 9 is arranged in three groups of sections. Sections 9.1–9.3 extend the basic
algebraic operations of vectors into 3-space. These operations include the inner product
and the cross product. Sections 9.4 and 9.5 form the heart of vector differential calculus.
Finally, Secs. 9.7–9.9 discuss three physically important concepts related to scalar and
vector fields: gradient (Sec. 9.7), divergence (Sec. 9.8), and curl (Sec. 9.9). They are
expressed in Cartesian coordinates in this chapter and, if desired, expressed in curvilinear
coordinates in a short section in App. A3.4.

We shall keep this chapter independent of Chaps. 7 and 8. Our present approach is in
harmony with Chap. 7, with the restriction to two and three dimensions providing for a
richer theory with basic physical, engineering, and geometric applications.

Prerequisite: Elementary use of second- and third-order determinants in Sec. 9.3.
Sections that may be omitted in a shorter course: 9.5, 9.6.
References and Answers to Problems: App. 1 Part B, App. 2.

9.1 Vectors in 2-Space and 3-Space
In engineering, physics, mathematics, and other areas we encounter two kinds of quantities.
They are scalars and vectors.

A scalar is a quantity that is determined by its magnitude. It takes on a numerical value,
i.e., a number. Examples of scalars are time, temperature, length, distance, speed, density,
energy, and voltage.
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In contrast, a vector is a quantity that has both magnitude and direction. We can say
that a vector is an arrow or a directed line segment. For example, a velocity vector has
length or magnitude, which is speed, and direction, which indicates the direction of motion.
Typical examples of vectors are displacement, velocity, and force, see Fig. 164 as an
illustration.

More formally, we have the following. We denote vectors by lowercase boldface letters
a, b, v, etc. In handwriting you may use arrows, for instance, (in place of a), , etc.

A vector (arrow) has a tail, called its initial point, and a tip, called its terminal point.
This is motivated in the translation (displacement without rotation) of the triangle in
Fig. 165, where the initial point P of the vector a is the original position of a point, and
the terminal point Q is the terminal position of that point, its position after the translation.
The length of the arrow equals the distance between P and Q. This is called the length
(or magnitude) of the vector a and is denoted by Another name for length is norm
(or Euclidean norm).

A vector of length 1 is called a unit vector.

ƒ a ƒ .

b�a�
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a b

Vectors having
the same length
but different 
direction

(B)

Vectors having
the same direction
but different 
length

a b

(C)

a b

Vectors having
different length
and different 
direction

(D)

a b

Equal vectors,
a = b

(A)

Fig. 166. (A) Equal vectors. (B)–(D) Different vectors

Earth

Velocity

Force

Sun

Fig. 164. Force and velocity

P

Q
a

Fig. 165. Translation

Of course, we would like to calculate with vectors. For instance, we want to find the
resultant of forces or compare parallel forces of different magnitude. This motivates our
next ideas: to define components of a vector, and then the two basic algebraic operations
of vector addition and scalar multiplication.

For this we must first define equality of vectors in a way that is practical in connection
with forces and other applications.

D E F I N I T I O N Equality of Vectors

Two vectors a and b are equal, written , if they have the same length and the
same direction [as explained in Fig. 166; in particular, note (B)]. Hence a vector
can be arbitrarily translated; that is, its initial point can be chosen arbitrarily.

a � b
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Components of a Vector
We choose an xyz Cartesian coordinate system1 in space (Fig. 167), that is, a usual
rectangular coordinate system with the same scale of measurement on the three mutually
perpendicular coordinate axes. Let a be a given vector with initial point and
terminal point Then the three coordinate differences

(1)

are called the components of the vector a with respect to that coordinate system, and we
write simply See Fig. 168.

The length of a can now readily be expressed in terms of components because from
(1) and the Pythagorean theorem we have

(2)

E X A M P L E  1 Components and Length of a Vector

The vector a with initial point and terminal point has the components

Hence (Can you sketch a, as in Fig. 168?) Equation (2) gives the length

If we choose as the initial point of a, the corresponding terminal point is (1, 4, 8).
If we choose the origin (0, 0, 0) as the initial point of a, the corresponding terminal point is its

coordinates equal the components of a. This suggests that we can determine each point in space by a vector,
called the position vector of the point, as follows.

A Cartesian coordinate system being given, the position vector r of a point A: (x, y, z)
is the vector with the origin (0, 0, 0) as the initial point and A as the terminal point (see
Fig. 169). Thus in components, This can be seen directly from (1) with

.x1 � y1 � z1 � 0
r � [x, y, z].

�

(2, �1, 0);
(�1, 5, 8)

ƒ a ƒ � 222 � (�1)2 � 02 � 15.

a � [2, �1, 0].

a1 � 6 � 4 � 2,  a2 � �1 � 0 � �1,  a3 � 2 � 2 � 0.

Q: (6, �1, 2)P: (4, 0, 2)

ƒ a ƒ � 2a1
2 � a2

2 � a3
2.

ƒ a ƒ

a � [a1, a2, a3].

a1 � x2 � x1,  a2 � y2 � y1,  a3 � z2 � z1

Q: (x2, y2, z2).
P: (x1, y1, z1)
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1Named after the French philosopher and mathematician RENATUS CARTESIUS, latinized for RENÉ
DESCARTES (1596–1650), who invented analytic geometry. His basic work Géométrie appeared in 1637, as
an appendix to his Discours de la méthode.

yx

z

1 1

1

Fig. 167. Cartesian
coordinate system

yx

z

a
3

a
1

a
2

P

Q

Fig. 168. Components 
of a vector

yx

z

r

A

Fig. 169. Position vector r
of a point A: (x, y, z)
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Furthermore, if we translate a vector a, with initial point P and terminal point Q, then
corresponding coordinates of P and Q change by the same amount, so that the differences
in (1) remain unchanged. This proves

T H E O R E M  1 Vectors as Ordered Triples of Real Numbers

A fixed Cartesian coordinate system being given, each vector is uniquely determined
by its ordered triple of corresponding components. Conversely, to each ordered
triple of real numbers there corresponds precisely one vector

with (0, 0, 0) corresponding to the zero vector 0, which has length
0 and no direction.

Hence a vector equation is equivalent to the three equations
for the components.

We now see that from our “geometric” definition of a vector as an arrow we have arrived
at an “algebraic” characterization of a vector by Theorem 1. We could have started from
the latter and reversed our process. This shows that the two approaches are equivalent.

Vector Addition, Scalar Multiplication
Calculations with vectors are very useful and are almost as simple as the arithmetic for
real numbers. Vector arithmetic follows almost naturally from applications. We first define
how to add vectors and later on how to multiply a vector by a number.

D E F I N I T I O N Addition of Vectors

The sum of two vectors and is obtained by
adding the corresponding components, 

(3)

Geometrically, place the vectors as in Fig. 170 (the initial point of b at the terminal
point of a); then is the vector drawn from the initial point of a to the terminal
point of b.

For forces, this addition is the parallelogram law by which we obtain the resultant of two
forces in mechanics. See Fig. 171.

Figure 172 shows (for the plane) that the “algebraic” way and the “geometric way” of
vector addition give the same vector.

a � b

a � b � [a1 � b1, a2 � b2, a3 � b3].

b � [b1, b2, b3]a � [a1, a2, a3]a � b

a3 � b3a2 � b2,
a1 � b1,a � b

a � [a1, a2, a3],
(a1, a2, a3)
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b

a c = a + b

Fig. 170. Vector
addition

R
es

ul
ta

nt

c

c

b

b

a a

Fig. 171. Resultant of two forces (parallelogram law)
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Basic Properties of Vector Addition. Familiar laws for real numbers give immediately

(a) (Commutativity)

(4)
(b) (Associativity)

(c)

(d)

Properties (a) and (b) are verified geometrically in Figs. 173 and 174. Furthermore, 
denotes the vector having the length and the direction opposite to that of a.ƒ a ƒ

�a

 a � (�a) � 0.

 a � 0 � 0 � a � a

 (u � v) � w � u � (v � w)

 a � b � b � a
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b

aa
2

a
1

b
1

c
1

c
2

b
2

c

y

x

Fig. 172. Vector addition

b

b

a

ac

Fig. 173. Cummutativity
of vector addition

u + v + w

u

v

w

u
 +

 v

v + w

Fig. 174. Associativity 
of vector addition

D E F I N I T I O N Scalar Multiplication (Multiplication by a Number)

The product ca of any vector and any scalar c (real number c) is
the vector obtained by multiplying each component of a by c, 

(5)

Geometrically, if then ca with has the direction of a and with 
the direction opposite to a. In any case, the length of ca is and 
if or (or both). (See Fig. 175.)

Basic Properties of Scalar Multiplication. From the definitions we obtain directly

(a)

(6)
(b)

(c) (written cka)

(d)  1a � a.

 c(ka) � (ck)a

 (c � k)a � ca � ka

 c(a � b) � ca � cb

c � 0a � 0
ca � 0ƒ ca ƒ � ƒ c ƒ ƒ a ƒ ,

c � 0c � 0a � 0,

ca � [ca1, ca2, ca3].

a � [a1, a2, a3]

a 2a –a –   a1
2

Fig. 175. Scalar
multiplication

[multiplication of
vectors by scalars

(numbers)]

In (4b) we may simply write and similarly for sums of more than three
vectors. Instead of we also write 2a, and so on. This (and the notation used
just before) motivates defining the second algebraic operation for vectors as follows.

�aa � a
u � v � w,
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You may prove that (4) and (6) imply for any vector a

(7)
(a)

(b)

Instead of we simply write (Fig. 176).

E X A M P L E  2 Vector Addition. Multiplication by Scalars

With respect to a given coordinate system, let

and

Then , and

Unit Vectors i, j, k. Besides another popular way of writing vectors is

(8)

In this representation, i, j, k are the unit vectors in the positive directions of the axes of
a Cartesian coordinate system (Fig. 177). Hence, in components, 

(9)

and the right side of (8) is a sum of three vectors parallel to the three axes.

E X A M P L E  3 i jk Notation for Vectors

In Example 2 we have and so on.

All the vectors (with real numbers as components)
form the real vector space with the two algebraic operations of vector addition and
scalar multiplication as just defined. has dimension 3. The triple of vectors i, j, k
is called a standard basis of Given a Cartesian coordinate system, the representation
(8) of a given vector is unique.

Vector space is a model of a general vector space, as discussed in Sec. 7.9, but is
not needed in this chapter.

R3

R3.
R3

R3
a � [a1, a2, a3] � a1i � a2 j � a3k

�a � 4i � k, b � 2i � 5j � 1
3 k,

i � [1, 0, 0],  j � [0, 1, 0],  k � [0, 0, 1]

a � a1i � a2 j � a3k.

a � [a1, a2, a3]

�2(a � b) � 2[2, 5, 23 ] � [4, 10, 43 ] � 2a � 2b.

�a � [�4, 0, �1], 7a � [28, 0, 7], a � b � [6, �5, 43 ]

b � [2, �5, 13 ].a � [4, 0, 1]

b � ab � (�a)

 (�1)a � �a.

 0a � 0
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b
–a

–a

a

b – a

Fig. 176. Difference of vectors

i

k

j

yx

z

yx

z

a1i
a3k

a
2 j

a

Fig. 177. The unit vectors i, j, k
and the representation (8)
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1–5 COMPONENTS AND LENGTH
Find the components of the vector v with initial point P
and terminal point Q. Find Sketch Find the unit
vector u in the direction of v.

1.

2.

3.

4.

5.

6–10 Find the terminal point Q of the vector v with
components as given and initial point P. Find 

6.

7.

8.

9.

10.

11–18 ADDITION, SCALAR MULTIPLICATION
Let 

Find:

11.

12.

13.

14.

15.

16.

17.

18.

19. What laws do Probs. 12–16 illustrate?

20. Prove Eqs. (4) and (6).

21–25 FORCES, RESULTANT
Find the resultant in terms of components and its
magnitude.

21.

22.

23.

24.

25. u � [3, 1, �6], v � [0, 2, 5], w � [3, �1, �13]

p � [�1, 2, �3], q � [1, 1, 1], u � [1, �2, 2]

u � [8, �1, 0], v � [1
2 , 0, 43 ], w � [�17

2  , 1, 11
3  ]

u � [�4, �19, 13]
p � [1, �2, 3], q � [3, 21, �16],

p � [2, 3, 0], q � [0, 6, 1], u � [2, 0, �4]

4a � 3b, �4a � 3b

(7 � 3) a, 7a � 3a

9
2 a � 3c, 9 (1

2 a � 1
3 c)

7(c � b), 7c � 7b

3c � 6d, 3(c � 2d)

b � c, c � b

(a � b) � c, a � (b � c)

2a, 1
2 a, �a

d � [0, 0, 4] � 4k.c � [5, �1, 8] � 5i � j � 8k,
b � [�4, 6, 0] � 4i � 6j,a � [3, 2, 0] � 3i � 2j;

0, �3, 3; P: (0, 3, �3)

6, 1, �4; P: (�6, �1, �4)

13.1, 0.8, �2.0; P: (0, 0, 0)

1
2 , 3, �1

4 ; P: (7
2 , �3, 34 )

4, 0, 0; P: (0, 2, 13)

ƒ v ƒ .

P: (0, 0, 0), Q: (2, 1, �2)

P: (1, 4, 2), Q: (�1, �4, �2)

P: (�3.0, 4,0, �0.5), Q: (5.5, 0, 1.2)

P: (1, 1, 1), Q: (2, 2, 0)

P: (1, 1, 0), Q: (6, 2, 0)

ƒ v ƒ .ƒ v ƒ .

26–37 FORCES, VELOCITIES

26. Equilibrium. Find v such that p, q, u in Prob. 21 and
v are in equilibrium.

27. Find p such that u, v, w in Prob. 23 and p are in
equilibrium.

28. Unit vector. Find the unit vector in the direction of
the resultant in Prob. 24.

29. Restricted resultant. Find all v such that the resultant
of v, p, q, u with p, q, u as in Prob. 21 is parallel to
the xy-plane.

30. Find v such that the resultant of p, q, u, v with p, 
q, u as in Prob. 24 has no components in x- and 
y-directions.

31. For what k is the resultant of and
parallel to the xy-plane?

32. If and what can you say about the
magnitude and direction of the resultant? Can you think
of an application to robotics?

33. Same question as in Prob. 32 if 

34. Relative velocity. If airplanes A and B are moving
southwest with speed , and north-
west with speed , respectively, what
is the relative velocity of B with respect
to A?

35. Same question as in Prob. 34 for two ships moving
northeast with speed knots and west with
speed knots.

36. Reflection. If a ray of light is reflected once in each
of two mutually perpendicular mirrors, what can you
say about the reflected ray?

37. Force polygon. Truss. Find the forces in the system
of two rods (truss) in the figure, where 
Hint. Forces in equilibrium form a polygon, the force
polygon.

ƒ p ƒ � 1000 nt.

ƒ vB ƒ � 19
ƒ vA ƒ � 22

v � vB � vA

ƒ vB ƒ � 450 mph
ƒ vA ƒ � 550 mph

ƒ u ƒ � 3.
ƒ q ƒ � 6,ƒ p ƒ � 9,

ƒ q ƒ � 4,ƒ p ƒ � 6

[0, 3, k]
[2, 0, �7], [1, 2, �3],

P R O B L E M  S E T  9 . 1

p

u

v

Force polygonTruss

x

y

p

45�

Problem 37
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38. TEAM PROJECT. Geometric Applications. To
increase your skill in dealing with vectors, use vectors
to prove the following (see the figures).

(a) The diagonals of a parallelogram bisect each other.

(b) The line through the midpoints of adjacent sides
of a parallelogram bisects one of the diagonals in the
ratio 1 3.

(c) Obtain (b) from (a).

(d) The three medians of a triangle (the segments
from a vertex to the midpoint of the opposite side)
meet at a single point, which divides the medians in
the ratio 2 1.

(e) The quadrilateral whose vertices are the mid-
points of the sides of an arbitrary quadrilateral is a
parallelogram.

(f) The four space diagonals of a parallelepiped meet
and bisect each other.

(g) The sum of the vectors drawn from the center of
a regular polygon to its vertices is the zero vector.

:

:
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b

a

P

Team Project 38(d)

Team Project 38(a)

b

a

P Q

0

Team Project 38(e)

a

B

bC

A

c
D

d

9.2 Inner Product (Dot Product)
Orthogonality
The inner product or dot product can be motivated by calculating work done by a constant
force, determining components of forces, or other applications. It involves the length of
vectors and the angle between them. The inner product is a kind of multiplication of two
vectors, defined in such a way that the outcome is a scalar. Indeed, another term for inner
product is scalar product, a term we shall not use here. The definition of the inner product
is as follows.

D E F I N I T I O N Inner Product (Dot Product) of Vectors

The inner product or dot product (read “a dot b”) of two vectors a and b is
the product of their lengths times the cosine of their angle (see Fig. 178), 

(1)

The angle , between a and b is measured when the initial points of
the vectors coincide, as in Fig. 178. In components, 
and

(2) a • b � a1b1 � a2b2 � a3b3.

a � [a1, a2, a3], b � [b1, b2, b3],
g, 0 	 g 	 p

a • b � ƒ a ƒ ƒ b ƒ  cos g

a • b � 0

 if

 if

a � 0, b � 0

a � 0 or b � 0.

a • b

c09.qxd  10/30/10  3:25 PM  Page 361



The second line in (1) is needed because is undefined when or . The
derivation of (2) from (1) is shown below.

b � 0a � 0g

362 CHAP. 9 Vector Differential Calculus. Grad, Div, Curl

a
a

a

bbb

a.b > 0 a.b = 0 a.b < 0

γ

γ

γ

Fig. 178. Angle between vectors and value of inner product

Orthogonality. Since the cosine in (1) may be positive, 0, or negative, so may be the
inner product (Fig. 178). The case that the inner product is zero is of particular practical
interest and suggests the following concept.

A vector a is called orthogonal to a vector b if . Then b is also orthogonal
to a, and we call a and b orthogonal vectors. Clearly, this happens for nonzero vectors
if and only if ; thus . This proves the important

T H E O R E M  1 Orthogonality Criterion

The inner product of two nonzero vectors is 0 if and only if these vectors are
perpendicular.

Length and Angle. Equation (1) with gives . Hence

(3)

From (3) and (1) we obtain for the angle between two nonzero vectors

(4)

E X A M P L E  1 Inner Product. Angle Between Vectors

Find the inner product and the lengths of and as well as the angle between these
vectors.

Solution. , and (4)
gives the angle

�g � arccos 
a • b

ƒ a ƒ ƒ b ƒ

� arccos (�0.11952) � 1.69061 � 96.865°.

a • b � 1 # 3 � 2 # 1�22 � 0 # 1 � �1, ƒ a ƒ � 1a • a � 15, ƒ b ƒ � 1b • b � 114

b � [3, �2, 1]a � [1, 2, 0]

cos g �
a • b

ƒ a ƒ ƒ b ƒ

�
a • b

1a • a1b • b
 .

g

ƒ a ƒ � 1a • a.

a • a � ƒ a ƒ
2b � a

g � p>2 (90°)cos g � 0

a • b � 0

(orthogonality)
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From the definition we see that the inner product has the following properties. For any
vectors a, b, c and scalars 

(a) (Linearity)

(5)
(b) (Symmetry)

(c) (Positive-definiteness).

Hence dot multiplication is commutative as shown by (5b). Furthermore, it is distributive
with respect to vector addition. This follows from (5a) with and :

(5a*) (Distributivity).

Furthermore, from (1) and we see that

(6) (Cauchy–Schwarz inequality).

Using this and (3), you may prove (see Prob. 16)

(7) (Triangle inequality).

Geometrically, (7) with says that one side of a triangle must be shorter than the other
two sides together; this motivates the name of (7).

A simple direct calculation with inner products shows that

(8) (Parallelogram equality).

Equations (6)–(8) play a basic role in so-called Hilbert spaces, which are abstract inner
product spaces. Hilbert spaces form the basis of quantum mechanics, for details see
[GenRef7] listed in App. 1.

Derivation of (2) from (1). We write and 
as in (8) of Sec. 9.1. If we substitute this into and use , we first have a sum of

products

Now i, j, k are unit vectors, so that by (3). Since the coordinate
axes are perpendicular, so are i, j, k, and Theorem 1 implies that the other six of those
nine products are 0, namely, . But this
reduces our sum for to (2). �a • b

i • j � j • i � j • k � k • j � k • i � i • k � 0

i • i � j • j � k • k � 1

a • b � a1b1i • i � a1b2i • j � Á � a3b3k • k.

3 
 3 � 9
(5a*)a • b

b � b1i � b2 j � b3k,a � a1i � a2 j � a3k

ƒ a � b ƒ
2 � ƒ a � b ƒ

2 � 2( ƒ a ƒ
2 � ƒ b ƒ

2)

�

ƒ a � b ƒ 	 ƒ a ƒ � ƒ b ƒ

ƒ a • b ƒ 	 ƒ a ƒ ƒ b ƒ

ƒ cos g ƒ 	 1

(a � b) • c � a • c � b • c

q2 � 1q1 � 1

ra • a � 0

a • a � 0 if and only if a � 0

 a • b � b • a

 (q1a � q2b) • c � q1a • c � q1b • c

q1, q2,
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Applications of Inner Products
Typical applications of inner products are shown in the following examples and in 
Problem Set 9.2.

E X A M P L E  2 Work Done by a Force Expressed as an Inner Product

This is a major application. It concerns a body on which a constant force p acts. (For a variable force, see 
Sec. 10.1.) Let the body be given a displacement d. Then the work done by p in the displacement is defined as

(9)

that is, magnitude of the force times length of the displacement times the cosine of the angle between
p and d (Fig. 179). If , as in Fig. 179, then . If p and d are orthogonal, then the work is zero
(why?). If , then , which means that in the displacement one has to do work against the force.
For example, think of swimming across a river at some angle against the current.a

W � 0a � 90°
W � 0a � 90°

aƒ d ƒƒ p ƒ

W � ƒ p ƒ ƒ d ƒ  cos a � p • d,
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p

d

α

Fig. 179. Work done by a force

y

x

25°

c
a

p

–pRope

y

x

Fig. 180. Example 3

E X A M P L E  3 Component of a Force in a Given Direction

What force in the rope in Fig. 180 will hold a car of 5000 lb in equilibrium if the ramp makes an angle of 
with the horizontal?

Solution. Introducing coordinates as shown, the weight is because this force points
downward, in the negative y-direction. We have to represent a as a sum (resultant) of two forces, 
where c is the force the car exerts on the ramp, which is of no interest to us, and p is parallel to the rope. A
vector in the direction of the rope is (see Fig. 180)

The direction of the unit vector u is opposite to the direction of the rope so that

Since and , we see that we can write our result as

We can also note that  is the angle between a and p so that

Answer: About 2100 lb. �

ƒ p ƒ � ƒ a ƒ  cos g � 5000 cos 65° � 2113 [1b].

g � 90° � 25° � 65°

ƒ p ƒ � ( ƒ a ƒ  cos g) ƒ u ƒ � a • u � � 

a • b

ƒ b ƒ

�
5000 # 0.46631

1.10338
� 2113 [1b].

cos g � 0ƒ u ƒ � 1

u � � 

1

ƒ b ƒ

 b � [0.90631, �0.42262].

b � [�1, tan 25°] � [�1, 0.46631],  thus  ƒ b ƒ � 1.10338,

a � c � p,
a � [0, �5000]

25°

c09.qxd  10/30/10  3:25 PM  Page 364



SEC. 9.2 Inner Product (Dot Product) 365

Example 3 is typical of applications that deal with the component or projection of a
vector a in the direction of a vector . If we denote by p the length of the orthogonal
projection of a on a straight line l parallel to b as shown in Fig. 181, then

(10)

Here p is taken with the plus sign if pb has the direction of b and with the minus sign if
pb has the direction opposite to b.

p � ƒ a ƒ  cos g.

b (�0)

ll l

a aa

b bb
p

(p > 0) (p = 0)

γ γ
γ

p

(p < 0)

Fig. 181. Component of a vector a in the direction of a vector b

q
a

p

b

Fig. 182. Projections p of a on b and q of b on a

Multiplying (10) by , we have in the numerator and thus

(11)

If b is a unit vector, as it is often used for fixing a direction, then (11) simply gives

(12)

Figure 182 shows the projection p of a in the direction of b (as in Fig. 181) and the
projection of b in the direction of a.q � ƒ b ƒ  cos g

( ƒ b ƒ � 1).p � a • b

(b � 0).p �
a • b

ƒ b ƒ

a • bƒ b ƒ > ƒ b ƒ � 1

E X A M P L E  4 Orthonormal Basis

By definition, an orthonormal basis for 3-space is a basis consisting of orthogonal unit vectors. It has
the great advantage that the determination of the coefficients in representations of a given
vector v is very simple. We claim that . Indeed, this follows simply by taking
the inner products of the representation with a, b, c, respectively, and using the orthonormality of the basis,

, etc.
For example, the unit vectors i, j, k in (8), Sec. 9.1, associated with a Cartesian coordinate system form an

orthonormal basis, called the standard basis with respect to the given coordinate system. �

a • v � l1a • a � l2a • b � l3a • c � l1

l1 � a • v, l2 � b • v, l3 � c • v
v � l1a � l2b � l3c

{a, b, c}
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E X A M P L E  5 Orthogonal Straight Lines in the Plane

Find the straight line through the point P: (1, 3) in the xy-plane and perpendicular to the straight line
; see Fig. 183.

Solution. The idea is to write a general straight line as with 
and , according to (2). Now the line through the origin and parallel to is . Hence, by
Theorem 1, the vector a is perpendicular to r. Hence it is perpendicular to and also to because and

are parallel. a is called a normal vector of (and of ).
Now a normal vector of the given line is . Thus is perpendicular to 

if , for instance, if . Hence is given by It passes through
when . Answer: . Show that the point of intersection is

.

E X A M P L E  6 Normal Vector to a Plane

Find a unit vector perpendicular to the plane .

Solution. Using (2), we may write any plane in space as

(13)

where and . The unit vector in the direction of a is (Fig. 184)

Dividing by , we obtain from (13)

(14)

From (12) we see that p is the projection of r in the direction of n. This projection has the same constant value
for the position vector r of any point in the plane. Clearly this holds if and only if n is perpendicular to

the plane. n is called a unit normal vector of the plane (the other being .
Furthermore, from this and the definition of projection, it follows that is the distance of the plane from

the origin. Representation (14) is called Hesse’s2 normal form of a plane. In our case, 
, and the plane has the distance from the origin. �7

6ƒ a ƒ � 6, n � 1
6 a � [2

3 , 13 , 23 ]
c � �7,a � [4, 2, 4],

ƒ p ƒ

�n)
c> ƒ a ƒ

n • r � p  where  p �
c

ƒ a ƒ

 .

ƒ a ƒ

n �
1

ƒ a ƒ

 a.

r � [x, y, z]a � [a1, a2, a3] � 0

a • r � a1x � a2y � a3z � c

4x � 2y � 4z � �7

�(x, y) � (1.6, 1.8)
y � �2x � 52 # 1 � 3 � c � 5P: (1, 3)

2x � y � c.L1a � [2, 1]b • a � a1 � 2a2 � 0
L2L1b � [1, �2]x � 2y � 2 � 0

L1*L1L1*
L1L1L1*

a • r � 0L1L1*r � [x, y]
a � [a1, a2] � 0a • r � cL1 : a1x � a2y � c

L2 : x � 2y � 2 � 0
L1
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1

Fig. 183. Example 5

n

r

|p|

Fig. 184. Normal vector to a plane

2LUDWIG OTTO HESSE (1811–1874), German mathematician who contributed to the theory of curves and
surfaces.
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1–10 INNER PRODUCT

Let .
Find:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11–16 GENERAL PROBLEMS

11. What laws do Probs. 1 and 4–7 illustrate?

12. What does imply if ? If ?

13. Prove the Cauchy–Schwarz inequality.

14. Verify the Cauchy–Schwarz and triangle inequalities
for the above a and b.

15. Prove the parallelogram equality. Explain its name.

16. Triangle inequality. Prove Eq. (7). Hint. Use Eq. (3)
for and Eq. (6) to prove the square of Eq. (7),
then take roots.

17–20 WORK
Find the work done by a force p acting on a body if the
body is displaced along the straight segment from A to
B. Sketch and p. Show the details.

17.

18.

19.

20.

21. Resultant. Is the work done by the resultant of two
forces in a displacement the sum of the work done
by each of the forces separately? Give proof or
counterexample.

22–30 ANGLE BETWEEN VECTORS

Let . Find the
angle between:

22. a, b

23. b, c

24. a � c,  b � c

a � [1, 1, 0], b � [3, 2, 1], and c � [1, 0, 2]

p � [6, �3, �3],  A: (1, 5, 2),  B: (3, 4, 1)

p � [0, 4, 3],  A: (4, 5, �1),  B: (1, 3, 0)

p � [�1, �2, 4],  A: (0, 0, 0), B: (6, 7, 5)

p � [2, 5, 0],  A: (1, 3, 3),  B: (3, 5, 5)

AB
AB

ƒ a � b ƒ

u � 0u � 0u • v � u • w

a • (b � c),  (a � b) • c

15a • b � 15a • c,  15a • (b � c)

5a • 13b,  65a • b

ƒ a • c ƒ ,  ƒ a ƒ ƒ c ƒ

ƒ a � c ƒ
2 � ƒ a � c ƒ

2 � 2( ƒ a ƒ
2 � ƒ c ƒ

2)

ƒ b � c ƒ ,  ƒ b ƒ � ƒ c ƒ

ƒ a � b ƒ ,  ƒ a ƒ � ƒ b ƒ

ƒ a ƒ ,  ƒ 2b ƒ ,  ƒ �c ƒ

(�3a � 5c) • b,  15(a � c) • b

a • b,  b • a,  b • c

a � [1, �3, 5],  b � [4, 0, 8],  c � [�2, 9, 1]

25. What will happen to the angle in Prob. 24 if we replace
c by nc with larger and larger n?

26. Cosine law. Deduce the law of cosines by using
vectors a, b, and .

27. Addition law.
. Obtain this by using ,

where 

28. Triangle. Find the angles of the triangle with vertices
, and . Sketch the

triangle.

29. Parallelogram. Find the angles if the vertices are
(0, 0), (6, 0), (8, 3), and (2, 3).

30. Distance. Find the distance of the point 
from the plane . Make a sketch.

31–35 ORTHOGONALITY is particularly important,
mainly because of orthogonal coordinates, such as Cartesian
coordinates, whose natural basis [Eq. (9), Sec. 9.1], consists
of three orthogonal unit vectors.

31. For what values of are and 
orthogonal?

32. Planes. For what c are and 
orthogonal?

33. Unit vectors. Find all unit vectors in the
plane orthogonal to [4, 3].

34. Corner reflector. Find the angle between a light ray
and its reflection in three orthogonal plane mirrors,
known as corner reflector.

35. Parallelogram. When will the diagonals be ortho-
gonal? Give a proof.

36–40 COMPONENT IN THE DIRECTION 
OF A VECTOR

Find the component of a in the direction of b. Make a
sketch.

36.

37.

38.

39. When will the component (the projection) of a in the
direction of b be equal to the component (the
projection) of b in the direction of a? First guess.

40. What happens to the component of a in the direction
of b if you change the length of b?

a � [8, 2, 0],  b � [�4, �1, 0]

a � [3, 4, 0],  b � [4, �3, 2]

a � [1, 1, 1],  b � [2, 1, 3]

a � [a1, a2]

cz � 9
8x � y �3x � z � 5

[3, �2, 12][a1, 4, 3]a1

P: 3x � y � z � 9
A: (1, 0, 2)

C: (1, 1, 1)A: (0, 0, 2), B: (3, 0, 2)

0 	 a 	 b 	 2p.b � [cos b, sin b]
a � [cos a, sin a]sin b

sin acos (a � b) � cos a cos b �

a � b

P R O B L E M  S E T  9 . 2
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9.3 Vector Product (Cross Product)
We shall define another form of multiplication of vectors, inspired by applications, whose
result will be a vector. This is in contrast to the dot product of Sec. 9.2 where multiplication
resulted in a scalar. We can construct a vector v that is perpendicular to two vectors a
and b, which are two sides of a parallelogram on a plane in space as indicated in Fig. 185,
such that the length is numerically equal to the area of that parallelogram. Here then
is the new concept.

D E F I N I T I O N Vector Product (Cross Product, Outer Product) of Vectors

The vector product or cross product (read “a cross b”) of two vectors a
and b is the vector v denoted by

I. If , then we define .
II. If both vectors are nonzero vectors, then vector v has the length

(1) , 

where is the angle between a and b as in Sec. 9.2.

Furthermore, by design, a and b form the sides of a parallelogram on a plane
in space. The parallelogram is shaded in blue in Fig. 185. The area of this blue
parallelogram is precisely given by Eq. (1), so that the length of the vector
v is equal to the area of that parallelogram.

III. If a and b lie in the same straight line, i.e., a and b have the same or opposite
directions, then is or so that . In that case so that

IV. If cases I and III do not occur, then v is a nonzero vector. The direction of
is perpendicular to both a and b such that a, b, v—precisely in this

order (!)—form a right-handed triple as shown in Figs. 185–187 and explained
below.

Another term for vector product is outer product.

Remark. Note that I and III completely characterize the exceptional case when the cross
product is equal to the zero vector, and II and IV the regular case where the cross product
is perpendicular to two vectors.

Just as we did with the dot product, we would also like to express the cross product in
components. Let and . Then has
the components

(2)

Here the Cartesian coordinate system is right-handed, as explained below (see also
Fig. 188). (For a left-handed system, each component of v must be multiplied by .
Derivation of (2) in App. 4.)

�1

v1 � a2b3 � a3b2,   v2 � a3b1 � a1b3,   v3 � a1b2 � a2b1.

v � [v1, v2, v3] � a � bb � [b1, b2, b3]a � [a1, a2, a3]

v � a � b

v � a � b � 0.
ƒ v ƒ � 0sin g � 0180°0°g

ƒ v ƒ

g

ƒ v ƒ � ƒ a � b ƒ � ƒ a ƒ ƒ b ƒ  sin g

v � a � b � 0a � 0 or b � 0

v � a � b

a � b

ƒ v ƒ
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Right-Handed Triple. A triple of vectors a, b, v is right-handed if the vectors in the
given order assume the same sort of orientation as the thumb, index finger, and middle
finger of the right hand when these are held as in Fig. 186. We may also say that if a is
rotated into the direction of b through the angle , then v advances in the same
direction as a right-handed screw would if turned in the same way (Fig. 187).

g (�p)

SEC. 9.3 Vector Product (Cross Product) 369

a

b

v

Fig. 185. Vector product Fig. 186. Right-handed  Fig. 187. Right-handed
triple of vectors a, b, v screw

a

b

v = a × b

γ

a

b

v

Right-Handed Cartesian Coordinate System. The system is called right-handed if
the corresponding unit vectors i, j, k in the positive directions of the axes (see Sec. 9.1)
form a right-handed triple as in Fig. 188a. The system is called left-handed if the sense
of k is reversed, as in Fig. 188b. In applications, we prefer right-handed systems.

Fig. 188. The two types of Cartesian coordinate systems

z

yx

z

yx

i j

k

i j

k

(a)  Right-handed (b)  Left-handed

How to Memorize (2). If you know second- and third-order determinants, you see that
(2) can be written

(2*) v1 � 2  a2 a3

b2 b3

 2 ,  v2 � �2  a1 a3

b1 b3

 2 � � 2  a3 a1

b3 b1

 2 ,  v3 � 2  a1 a2

b1 b2

 2
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and is the expansion of the following symbolic
determinant by its first row. (We call the determinant “symbolic” because the first row
consists of vectors rather than of numbers.)

(2**)

For a left-handed system the determinant has a minus sign in front.

E X A M P L E  1 Vector Product

For the vector product of and in right-handed coordinates we obtain
from (2)

We confirm this by (2**):

To check the result in this simple case, sketch a, b, and v. Can you see that two vectors in the xy-plane must
always have their vector product parallel to the z-axis (or equal to the zero vector)?

E X A M P L E  2 Vector Products of the Standard Basis Vectors

(3)

We shall use this in the next proof.

T H E O R E M  1 General Properties of Vector Products

(a) For every scalar l, 

(4)

(b) Cross multiplication is distributive with respect to vector addition; that is, 

(5)

(c) Cross multiplication is not commutative but anticommutative; that is, 

(6) (Fig. 189).b � a � �(a � b)

(a) a � (b � c) � (a � b) � (a � c), 

( b) (a � b) � c � (a � c) � (b � c).

(la) � b � l(a � b) � a � (lb).

�

i � j � k, j � k � i, k � i � j

j � i � �k, k � j � �i, i � k � �j.

�

v � a � b � 3 i j k

1 1 0

3 0 0

 3 � 2  1 0

0 0
 2 i � 2  1 0

3 0
 2 j � 2  1 1

3 0
 2 k � �3k � [0, 0, �3].

v1 � 0,   v2 � 0,   v3 � 1 # 0 � 1 # 3 � �3.

b � [3, 0, 0]a � [1, 1, 0]v � a � b

v � a � b � 3  i j k

a1 a2 a3

b1 b2 b3

 3 � 2  a2 a3

b2 b3

 2 i � 2  a1 a3

b1 b3

 2  j � 2   a1 a2

b1 b2

 2 k.

v � [v1, v2, v3] � v1i � v2 j � v3k
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b

a

a × b

b × a

Fig. 189.
Anticommutativity

of cross
multiplication

c09.qxd  10/30/10  3:25 PM  Page 370



(d) Cross multiplication is not associative; that is, in general, 

(7)

so that the parentheses cannot be omitted.

P R O O F Equation (4) follows directly from the definition. In , formula (2*) gives for the first
component on the left

By (2*) the sum of the two determinants is the first component of , the
right side of . For the other components in and in , equality follows by the
same idea.

Anticommutativity (6) follows from (2**) by noting that the interchange of Rows 2
and 3 multiplies the determinant by . We can confirm this geometrically if we set

and ; then by (1), and for b, a, w to form a right-handed
triple, we must have 

Finally, , whereas (see Example 2).
This proves (7).

Typical Applications of Vector Products
E X A M P L E  3 Moment of a Force

In mechanics the moment m of a force p about a point Q is defined as the product , where d is the
(perpendicular) distance between Q and the line of action L of p (Fig. 190). If r is the vector from Q to any
point A on L, then , as shown in Fig. 190, and

Since is the angle between r and p, we see from (1) that . The vector

(8)

is called the moment vector or vector moment of p about Q. Its magnitude is m. If , its direction is
that of the axis of the rotation about Q that p has the tendency to produce. This axis is perpendicular to both
r and p. �

m � 0

m � r � p

m � ƒ r � p ƒg

m � ƒ r ƒ ƒ p ƒ  sin g.

d � ƒ r ƒ  sin g

m � ƒ p ƒ d

�

(i � i) � j � 0 � j � 0i � (i � j) � i � k � �j
w � �v.

ƒ v ƒ � ƒ w ƒb � a � wa � b � v
�1

5(b)(5a)(5a)
(a � b) � (a � c)

 � 2  a2 a3

b2 b3

 2 � 2  a2 a3

c2 c3

 2 . � (a2b3 � a3b2) � (a2c3 � a3c2)

 2  a2 a3

b2 � c2 b3 � c3

2 � a2(b3 � c3) � a3(b2 � c2)

(5a)

a � (b � c) � (a � b) � c
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Fig. 190. Moment of a force p

r
p

L

Q

Ad

γ
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